code-generator-mips.cc 167 KB
Newer Older
1 2 3 4
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5
#include "src/codegen/assembler-inl.h"
6
#include "src/codegen/callable.h"
7 8
#include "src/codegen/macro-assembler.h"
#include "src/codegen/optimized-compilation-info.h"
9 10 11
#include "src/compiler/backend/code-generator-impl.h"
#include "src/compiler/backend/code-generator.h"
#include "src/compiler/backend/gap-resolver.h"
12
#include "src/compiler/node-matchers.h"
13
#include "src/compiler/osr.h"
14
#include "src/heap/memory-chunk.h"
15 16

#if V8_ENABLE_WEBASSEMBLY
17
#include "src/wasm/wasm-code-manager.h"
18
#endif  // V8_ENABLE_WEBASSEMBLY
19 20 21 22 23

namespace v8 {
namespace internal {
namespace compiler {

24
#define __ tasm()->
25 26 27 28 29 30 31 32 33 34 35

// TODO(plind): consider renaming these macros.
#define TRACE_MSG(msg)                                                      \
  PrintF("code_gen: \'%s\' in function %s at line %d\n", msg, __FUNCTION__, \
         __LINE__)

#define TRACE_UNIMPL()                                                       \
  PrintF("UNIMPLEMENTED code_generator_mips: %s at line %d\n", __FUNCTION__, \
         __LINE__)

// Adds Mips-specific methods to convert InstructionOperands.
36
class MipsOperandConverter final : public InstructionOperandConverter {
37 38 39 40
 public:
  MipsOperandConverter(CodeGenerator* gen, Instruction* instr)
      : InstructionOperandConverter(gen, instr) {}

41
  FloatRegister OutputSingleRegister(size_t index = 0) {
42 43 44
    return ToSingleRegister(instr_->OutputAt(index));
  }

45
  FloatRegister InputSingleRegister(size_t index) {
46 47 48 49 50 51 52 53 54
    return ToSingleRegister(instr_->InputAt(index));
  }

  FloatRegister ToSingleRegister(InstructionOperand* op) {
    // Single (Float) and Double register namespace is same on MIPS,
    // both are typedefs of FPURegister.
    return ToDoubleRegister(op);
  }

55 56
  Register InputOrZeroRegister(size_t index) {
    if (instr_->InputAt(index)->IsImmediate()) {
57
      DCHECK_EQ(0, InputInt32(index));
58 59 60 61 62
      return zero_reg;
    }
    return InputRegister(index);
  }

63 64 65 66 67 68 69 70 71 72 73 74
  DoubleRegister InputOrZeroDoubleRegister(size_t index) {
    if (instr_->InputAt(index)->IsImmediate()) return kDoubleRegZero;

    return InputDoubleRegister(index);
  }

  DoubleRegister InputOrZeroSingleRegister(size_t index) {
    if (instr_->InputAt(index)->IsImmediate()) return kDoubleRegZero;

    return InputSingleRegister(index);
  }

75
  Operand InputImmediate(size_t index) {
76 77 78 79 80
    Constant constant = ToConstant(instr_->InputAt(index));
    switch (constant.type()) {
      case Constant::kInt32:
        return Operand(constant.ToInt32());
      case Constant::kFloat32:
81
        return Operand::EmbeddedNumber(constant.ToFloat32());
82
      case Constant::kFloat64:
83
        return Operand::EmbeddedNumber(constant.ToFloat64().value());
84 85
      case Constant::kInt64:
      case Constant::kExternalReference:
86
      case Constant::kCompressedHeapObject:
87 88 89 90
      case Constant::kHeapObject:
        // TODO(plind): Maybe we should handle ExtRef & HeapObj here?
        //    maybe not done on arm due to const pool ??
        break;
91 92 93
      case Constant::kDelayedStringConstant:
        return Operand::EmbeddedStringConstant(
            constant.ToDelayedStringConstant());
94 95
      case Constant::kRpoNumber:
        UNREACHABLE();  // TODO(titzer): RPO immediates on mips?
96 97 98 99
    }
    UNREACHABLE();
  }

100
  Operand InputOperand(size_t index) {
101 102 103 104 105 106 107
    InstructionOperand* op = instr_->InputAt(index);
    if (op->IsRegister()) {
      return Operand(ToRegister(op));
    }
    return InputImmediate(index);
  }

108 109
  MemOperand MemoryOperand(size_t* first_index) {
    const size_t index = *first_index;
110 111 112 113 114 115 116 117 118 119 120 121 122
    switch (AddressingModeField::decode(instr_->opcode())) {
      case kMode_None:
        break;
      case kMode_MRI:
        *first_index += 2;
        return MemOperand(InputRegister(index + 0), InputInt32(index + 1));
      case kMode_MRR:
        // TODO(plind): r6 address mode, to be implemented ...
        UNREACHABLE();
    }
    UNREACHABLE();
  }

123
  MemOperand MemoryOperand(size_t index = 0) { return MemoryOperand(&index); }
124 125

  MemOperand ToMemOperand(InstructionOperand* op) const {
126
    DCHECK_NOT_NULL(op);
127
    DCHECK(op->IsStackSlot() || op->IsFPStackSlot());
128 129 130 131 132
    return SlotToMemOperand(AllocatedOperand::cast(op)->index());
  }

  MemOperand SlotToMemOperand(int slot) const {
    FrameOffset offset = frame_access_state()->GetFrameOffset(slot);
133 134 135 136
    return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset());
  }
};

137
static inline bool HasRegisterInput(Instruction* instr, size_t index) {
138 139 140
  return instr->InputAt(index)->IsRegister();
}

141 142
namespace {

143 144 145 146
class OutOfLineRecordWrite final : public OutOfLineCode {
 public:
  OutOfLineRecordWrite(CodeGenerator* gen, Register object, Register index,
                       Register value, Register scratch0, Register scratch1,
147
                       RecordWriteMode mode, StubCallMode stub_mode)
148 149 150 151 152 153
      : OutOfLineCode(gen),
        object_(object),
        index_(index),
        value_(value),
        scratch0_(scratch0),
        scratch1_(scratch1),
154
        mode_(mode),
155
#if V8_ENABLE_WEBASSEMBLY
156
        stub_mode_(stub_mode),
157
#endif  // V8_ENABLE_WEBASSEMBLY
158
        must_save_lr_(!gen->frame_access_state()->has_frame()),
159
        zone_(gen->zone()) {
160 161
    DCHECK(!AreAliased(object, index, scratch0, scratch1));
    DCHECK(!AreAliased(value, index, scratch0, scratch1));
162
  }
163 164

  void Generate() final {
165 166 167
    __ CheckPageFlag(value_, scratch0_,
                     MemoryChunk::kPointersToHereAreInterestingMask, eq,
                     exit());
168
    __ Addu(scratch1_, object_, index_);
169
    RememberedSetAction const remembered_set_action =
170 171 172 173
        mode_ > RecordWriteMode::kValueIsMap ||
                FLAG_use_full_record_write_builtin
            ? RememberedSetAction::kEmit
            : RememberedSetAction::kOmit;
174 175 176
    SaveFPRegsMode const save_fp_mode = frame()->DidAllocateDoubleRegisters()
                                            ? SaveFPRegsMode::kSave
                                            : SaveFPRegsMode::kIgnore;
177
    if (must_save_lr_) {
178 179 180
      // We need to save and restore ra if the frame was elided.
      __ Push(ra);
    }
181

182 183
    if (mode_ == RecordWriteMode::kValueIsEphemeronKey) {
      __ CallEphemeronKeyBarrier(object_, scratch1_, save_fp_mode);
184
#if V8_ENABLE_WEBASSEMBLY
185
    } else if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
186 187 188
      // A direct call to a wasm runtime stub defined in this module.
      // Just encode the stub index. This will be patched when the code
      // is added to the native module and copied into wasm code space.
189 190 191
      __ CallRecordWriteStubSaveRegisters(object_, scratch1_,
                                          remembered_set_action, save_fp_mode,
                                          StubCallMode::kCallWasmRuntimeStub);
192
#endif  // V8_ENABLE_WEBASSEMBLY
193
    } else {
194 195
      __ CallRecordWriteStubSaveRegisters(object_, scratch1_,
                                          remembered_set_action, save_fp_mode);
196
    }
197
    if (must_save_lr_) {
198 199
      __ Pop(ra);
    }
200 201 202 203 204 205 206 207 208
  }

 private:
  Register const object_;
  Register const index_;
  Register const value_;
  Register const scratch0_;
  Register const scratch1_;
  RecordWriteMode const mode_;
209
#if V8_ENABLE_WEBASSEMBLY
210
  StubCallMode const stub_mode_;
211
#endif  // V8_ENABLE_WEBASSEMBLY
212
  bool must_save_lr_;
213
  Zone* zone_;
214 215
};

216
#define CREATE_OOL_CLASS(ool_name, tasm_ool_name, T)                 \
217 218 219 220 221
  class ool_name final : public OutOfLineCode {                      \
   public:                                                           \
    ool_name(CodeGenerator* gen, T dst, T src1, T src2)              \
        : OutOfLineCode(gen), dst_(dst), src1_(src1), src2_(src2) {} \
                                                                     \
222
    void Generate() final { __ tasm_ool_name(dst_, src1_, src2_); }  \
223 224 225 226 227 228 229 230 231 232 233 234 235
                                                                     \
   private:                                                          \
    T const dst_;                                                    \
    T const src1_;                                                   \
    T const src2_;                                                   \
  }

CREATE_OOL_CLASS(OutOfLineFloat32Max, Float32MaxOutOfLine, FPURegister);
CREATE_OOL_CLASS(OutOfLineFloat32Min, Float32MinOutOfLine, FPURegister);
CREATE_OOL_CLASS(OutOfLineFloat64Max, Float64MaxOutOfLine, DoubleRegister);
CREATE_OOL_CLASS(OutOfLineFloat64Min, Float64MinOutOfLine, DoubleRegister);

#undef CREATE_OOL_CLASS
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
Condition FlagsConditionToConditionCmp(FlagsCondition condition) {
  switch (condition) {
    case kEqual:
      return eq;
    case kNotEqual:
      return ne;
    case kSignedLessThan:
      return lt;
    case kSignedGreaterThanOrEqual:
      return ge;
    case kSignedLessThanOrEqual:
      return le;
    case kSignedGreaterThan:
      return gt;
    case kUnsignedLessThan:
      return lo;
    case kUnsignedGreaterThanOrEqual:
      return hs;
    case kUnsignedLessThanOrEqual:
      return ls;
    case kUnsignedGreaterThan:
      return hi;
    case kUnorderedEqual:
    case kUnorderedNotEqual:
      break;
    default:
      break;
  }
  UNREACHABLE();
}

Condition FlagsConditionToConditionTst(FlagsCondition condition) {
  switch (condition) {
    case kNotEqual:
      return ne;
    case kEqual:
      return eq;
    default:
      break;
  }
  UNREACHABLE();
}

280 281
FPUCondition FlagsConditionToConditionCmpFPU(bool* predicate,
                                             FlagsCondition condition) {
282 283
  switch (condition) {
    case kEqual:
284
      *predicate = true;
285 286
      return EQ;
    case kNotEqual:
287
      *predicate = false;
288 289
      return EQ;
    case kUnsignedLessThan:
290
      *predicate = true;
291 292
      return OLT;
    case kUnsignedGreaterThanOrEqual:
293
      *predicate = false;
294
      return OLT;
295
    case kUnsignedLessThanOrEqual:
296
      *predicate = true;
297 298
      return OLE;
    case kUnsignedGreaterThan:
299
      *predicate = false;
300
      return OLE;
301 302
    case kUnorderedEqual:
    case kUnorderedNotEqual:
303
      *predicate = true;
304 305
      break;
    default:
306
      *predicate = true;
307 308 309 310 311
      break;
  }
  UNREACHABLE();
}

312 313 314
#define UNSUPPORTED_COND(opcode, condition)                                    \
  StdoutStream{} << "Unsupported " << #opcode << " condition: \"" << condition \
                 << "\"";                                                      \
315 316
  UNIMPLEMENTED();

317 318
}  // namespace

319 320 321 322 323 324
#define ASSEMBLE_ATOMIC_LOAD_INTEGER(asm_instr)          \
  do {                                                   \
    __ asm_instr(i.OutputRegister(), i.MemoryOperand()); \
    __ sync();                                           \
  } while (0)

325 326 327 328 329
#define ASSEMBLE_ATOMIC_STORE_INTEGER(asm_instr)               \
  do {                                                         \
    __ sync();                                                 \
    __ asm_instr(i.InputOrZeroRegister(2), i.MemoryOperand()); \
    __ sync();                                                 \
330 331
  } while (0)

332 333 334
#define ASSEMBLE_ATOMIC_BINOP(bin_instr)                                \
  do {                                                                  \
    Label binop;                                                        \
335
    __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1)); \
336 337 338 339 340 341 342 343 344 345
    __ sync();                                                          \
    __ bind(&binop);                                                    \
    __ Ll(i.OutputRegister(0), MemOperand(i.TempRegister(0), 0));       \
    __ bin_instr(i.TempRegister(1), i.OutputRegister(0),                \
                 Operand(i.InputRegister(2)));                          \
    __ Sc(i.TempRegister(1), MemOperand(i.TempRegister(0), 0));         \
    __ BranchShort(&binop, eq, i.TempRegister(1), Operand(zero_reg));   \
    __ sync();                                                          \
  } while (0)

346
#define ASSEMBLE_ATOMIC64_LOGIC_BINOP(bin_instr, external)                     \
347 348 349
  do {                                                                         \
    if (IsMipsArchVariant(kMips32r6)) {                                        \
      Label binop;                                                             \
350 351 352 353 354
      Register oldval_low =                                                    \
          instr->OutputCount() >= 1 ? i.OutputRegister(0) : i.TempRegister(1); \
      Register oldval_high =                                                   \
          instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(2); \
      __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1));      \
355 356
      __ sync();                                                               \
      __ bind(&binop);                                                         \
357 358 359 360 361 362
      __ llx(oldval_high, MemOperand(i.TempRegister(0), 4));                   \
      __ ll(oldval_low, MemOperand(i.TempRegister(0), 0));                     \
      __ bin_instr(i.TempRegister(1), i.TempRegister(2), oldval_low,           \
                   oldval_high, i.InputRegister(2), i.InputRegister(3));       \
      __ scx(i.TempRegister(2), MemOperand(i.TempRegister(0), 4));             \
      __ sc(i.TempRegister(1), MemOperand(i.TempRegister(0), 0));              \
363 364 365
      __ BranchShort(&binop, eq, i.TempRegister(1), Operand(zero_reg));        \
      __ sync();                                                               \
    } else {                                                                   \
366 367
      FrameScope scope(tasm(), StackFrame::MANUAL);                            \
      __ Addu(a0, i.InputRegister(0), i.InputRegister(1));                     \
368
      __ PushCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);                     \
369 370
      __ PrepareCallCFunction(3, 0, kScratchReg);                              \
      __ CallCFunction(ExternalReference::external(), 3, 0);                   \
371
      __ PopCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);                      \
372 373 374
    }                                                                          \
  } while (0)

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#define ASSEMBLE_ATOMIC64_ARITH_BINOP(bin_instr, external)                     \
  do {                                                                         \
    if (IsMipsArchVariant(kMips32r6)) {                                        \
      Label binop;                                                             \
      Register oldval_low =                                                    \
          instr->OutputCount() >= 1 ? i.OutputRegister(0) : i.TempRegister(1); \
      Register oldval_high =                                                   \
          instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(2); \
      __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1));      \
      __ sync();                                                               \
      __ bind(&binop);                                                         \
      __ llx(oldval_high, MemOperand(i.TempRegister(0), 4));                   \
      __ ll(oldval_low, MemOperand(i.TempRegister(0), 0));                     \
      __ bin_instr(i.TempRegister(1), i.TempRegister(2), oldval_low,           \
                   oldval_high, i.InputRegister(2), i.InputRegister(3),        \
                   kScratchReg, kScratchReg2);                                 \
      __ scx(i.TempRegister(2), MemOperand(i.TempRegister(0), 4));             \
      __ sc(i.TempRegister(1), MemOperand(i.TempRegister(0), 0));              \
      __ BranchShort(&binop, eq, i.TempRegister(1), Operand(zero_reg));        \
      __ sync();                                                               \
    } else {                                                                   \
      FrameScope scope(tasm(), StackFrame::MANUAL);                            \
      __ Addu(a0, i.InputRegister(0), i.InputRegister(1));                     \
398
      __ PushCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);                     \
399 400
      __ PrepareCallCFunction(3, 0, kScratchReg);                              \
      __ CallCFunction(ExternalReference::external(), 3, 0);                   \
401
      __ PopCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);                      \
402
    }                                                                          \
403 404
  } while (0)

405 406 407
#define ASSEMBLE_ATOMIC_BINOP_EXT(sign_extend, size, bin_instr)                \
  do {                                                                         \
    Label binop;                                                               \
408
    __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1));        \
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    __ andi(i.TempRegister(3), i.TempRegister(0), 0x3);                        \
    __ Subu(i.TempRegister(0), i.TempRegister(0), Operand(i.TempRegister(3))); \
    __ sll(i.TempRegister(3), i.TempRegister(3), 3);                           \
    __ sync();                                                                 \
    __ bind(&binop);                                                           \
    __ Ll(i.TempRegister(1), MemOperand(i.TempRegister(0), 0));                \
    __ ExtractBits(i.OutputRegister(0), i.TempRegister(1), i.TempRegister(3),  \
                   size, sign_extend);                                         \
    __ bin_instr(i.TempRegister(2), i.OutputRegister(0),                       \
                 Operand(i.InputRegister(2)));                                 \
    __ InsertBits(i.TempRegister(1), i.TempRegister(2), i.TempRegister(3),     \
                  size);                                                       \
    __ Sc(i.TempRegister(1), MemOperand(i.TempRegister(0), 0));                \
    __ BranchShort(&binop, eq, i.TempRegister(1), Operand(zero_reg));          \
    __ sync();                                                                 \
  } while (0)

426 427 428 429 430
#define ASSEMBLE_ATOMIC_EXCHANGE_INTEGER()                               \
  do {                                                                   \
    Label exchange;                                                      \
    __ sync();                                                           \
    __ bind(&exchange);                                                  \
431
    __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1));  \
432 433 434 435 436
    __ Ll(i.OutputRegister(0), MemOperand(i.TempRegister(0), 0));        \
    __ mov(i.TempRegister(1), i.InputRegister(2));                       \
    __ Sc(i.TempRegister(1), MemOperand(i.TempRegister(0), 0));          \
    __ BranchShort(&exchange, eq, i.TempRegister(1), Operand(zero_reg)); \
    __ sync();                                                           \
437 438 439 440 441
  } while (0)

#define ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(sign_extend, size)                \
  do {                                                                         \
    Label exchange;                                                            \
442
    __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1));        \
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    __ andi(i.TempRegister(1), i.TempRegister(0), 0x3);                        \
    __ Subu(i.TempRegister(0), i.TempRegister(0), Operand(i.TempRegister(1))); \
    __ sll(i.TempRegister(1), i.TempRegister(1), 3);                           \
    __ sync();                                                                 \
    __ bind(&exchange);                                                        \
    __ Ll(i.TempRegister(2), MemOperand(i.TempRegister(0), 0));                \
    __ ExtractBits(i.OutputRegister(0), i.TempRegister(2), i.TempRegister(1),  \
                   size, sign_extend);                                         \
    __ InsertBits(i.TempRegister(2), i.InputRegister(2), i.TempRegister(1),    \
                  size);                                                       \
    __ Sc(i.TempRegister(2), MemOperand(i.TempRegister(0), 0));                \
    __ BranchShort(&exchange, eq, i.TempRegister(2), Operand(zero_reg));       \
    __ sync();                                                                 \
  } while (0)

#define ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER()                      \
  do {                                                                  \
    Label compareExchange;                                              \
    Label exit;                                                         \
462
    __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1)); \
463 464 465 466 467
    __ sync();                                                          \
    __ bind(&compareExchange);                                          \
    __ Ll(i.OutputRegister(0), MemOperand(i.TempRegister(0), 0));       \
    __ BranchShort(&exit, ne, i.InputRegister(2),                       \
                   Operand(i.OutputRegister(0)));                       \
468 469 470
    __ mov(i.TempRegister(2), i.InputRegister(3));                      \
    __ Sc(i.TempRegister(2), MemOperand(i.TempRegister(0), 0));         \
    __ BranchShort(&compareExchange, eq, i.TempRegister(2),             \
471 472 473 474 475 476 477 478 479
                   Operand(zero_reg));                                  \
    __ bind(&exit);                                                     \
    __ sync();                                                          \
  } while (0)

#define ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(sign_extend, size)        \
  do {                                                                         \
    Label compareExchange;                                                     \
    Label exit;                                                                \
480
    __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1));        \
481 482 483 484 485 486 487 488
    __ andi(i.TempRegister(1), i.TempRegister(0), 0x3);                        \
    __ Subu(i.TempRegister(0), i.TempRegister(0), Operand(i.TempRegister(1))); \
    __ sll(i.TempRegister(1), i.TempRegister(1), 3);                           \
    __ sync();                                                                 \
    __ bind(&compareExchange);                                                 \
    __ Ll(i.TempRegister(2), MemOperand(i.TempRegister(0), 0));                \
    __ ExtractBits(i.OutputRegister(0), i.TempRegister(2), i.TempRegister(1),  \
                   size, sign_extend);                                         \
489 490
    __ ExtractBits(i.InputRegister(2), i.InputRegister(2), zero_reg, size,     \
                   sign_extend);                                               \
491 492 493 494 495 496 497 498 499 500 501
    __ BranchShort(&exit, ne, i.InputRegister(2),                              \
                   Operand(i.OutputRegister(0)));                              \
    __ InsertBits(i.TempRegister(2), i.InputRegister(3), i.TempRegister(1),    \
                  size);                                                       \
    __ Sc(i.TempRegister(2), MemOperand(i.TempRegister(0), 0));                \
    __ BranchShort(&compareExchange, eq, i.TempRegister(2),                    \
                   Operand(zero_reg));                                         \
    __ bind(&exit);                                                            \
    __ sync();                                                                 \
  } while (0)

502 503 504 505 506 507 508 509 510
#define ASSEMBLE_IEEE754_BINOP(name)                                        \
  do {                                                                      \
    FrameScope scope(tasm(), StackFrame::MANUAL);                           \
    __ PrepareCallCFunction(0, 2, kScratchReg);                             \
    __ MovToFloatParameters(i.InputDoubleRegister(0),                       \
                            i.InputDoubleRegister(1));                      \
    __ CallCFunction(ExternalReference::ieee754_##name##_function(), 0, 2); \
    /* Move the result in the double result register. */                    \
    __ MovFromFloatResult(i.OutputDoubleRegister());                        \
511 512
  } while (0)

513 514 515 516 517 518 519 520
#define ASSEMBLE_IEEE754_UNOP(name)                                         \
  do {                                                                      \
    FrameScope scope(tasm(), StackFrame::MANUAL);                           \
    __ PrepareCallCFunction(0, 1, kScratchReg);                             \
    __ MovToFloatParameter(i.InputDoubleRegister(0));                       \
    __ CallCFunction(ExternalReference::ieee754_##name##_function(), 0, 1); \
    /* Move the result in the double result register. */                    \
    __ MovFromFloatResult(i.OutputDoubleRegister());                        \
521 522
  } while (0)

523 524 525 526 527 528
#define ASSEMBLE_F64X2_ARITHMETIC_BINOP(op)                     \
  do {                                                          \
    __ op(i.OutputSimd128Register(), i.InputSimd128Register(0), \
          i.InputSimd128Register(1));                           \
  } while (0)

529 530 531 532 533 534 535 536 537
#define ASSEMBLE_SIMD_EXTENDED_MULTIPLY(op0, op1)                           \
  do {                                                                      \
    CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);                           \
    __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);            \
    __ op0(kSimd128ScratchReg, kSimd128RegZero, i.InputSimd128Register(0)); \
    __ op0(kSimd128RegZero, kSimd128RegZero, i.InputSimd128Register(1));    \
    __ op1(i.OutputSimd128Register(), kSimd128ScratchReg, kSimd128RegZero); \
  } while (0)

538 539 540 541 542
void CodeGenerator::AssembleDeconstructFrame() {
  __ mov(sp, fp);
  __ Pop(ra, fp);
}

543
void CodeGenerator::AssemblePrepareTailCall() {
544
  if (frame_access_state()->has_frame()) {
545 546 547
    __ lw(ra, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
    __ lw(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  }
548
  frame_access_state()->SetFrameAccessToSP();
svenpanne's avatar
svenpanne committed
549
}
550 551
namespace {

552
void AdjustStackPointerForTailCall(TurboAssembler* tasm,
553 554 555 556 557 558 559
                                   FrameAccessState* state,
                                   int new_slot_above_sp,
                                   bool allow_shrinkage = true) {
  int current_sp_offset = state->GetSPToFPSlotCount() +
                          StandardFrameConstants::kFixedSlotCountAboveFp;
  int stack_slot_delta = new_slot_above_sp - current_sp_offset;
  if (stack_slot_delta > 0) {
560
    tasm->Subu(sp, sp, stack_slot_delta * kSystemPointerSize);
561 562
    state->IncreaseSPDelta(stack_slot_delta);
  } else if (allow_shrinkage && stack_slot_delta < 0) {
563
    tasm->Addu(sp, sp, -stack_slot_delta * kSystemPointerSize);
564 565 566 567 568 569 570
    state->IncreaseSPDelta(stack_slot_delta);
  }
}

}  // namespace

void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr,
571
                                              int first_unused_slot_offset) {
572
  AdjustStackPointerForTailCall(tasm(), frame_access_state(),
573
                                first_unused_slot_offset, false);
574 575 576
}

void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr,
577
                                             int first_unused_slot_offset) {
578
  AdjustStackPointerForTailCall(tasm(), frame_access_state(),
579
                                first_unused_slot_offset);
580 581
}

582 583
// Check that {kJavaScriptCallCodeStartRegister} is correct.
void CodeGenerator::AssembleCodeStartRegisterCheck() {
584
  __ ComputeCodeStartAddress(kScratchReg);
585
  __ Assert(eq, AbortReason::kWrongFunctionCodeStart,
586
            kJavaScriptCallCodeStartRegister, Operand(kScratchReg));
587 588
}

589 590 591
// Check if the code object is marked for deoptimization. If it is, then it
// jumps to the CompileLazyDeoptimizedCode builtin. In order to do this we need
// to:
592
//    1. read from memory the word that contains that bit, which can be found in
593
//       the flags in the referenced {CodeDataContainer} object;
594 595
//    2. test kMarkedForDeoptimizationBit in those flags; and
//    3. if it is not zero then it jumps to the builtin.
596
void CodeGenerator::BailoutIfDeoptimized() {
597
  int offset = Code::kCodeDataContainerOffset - Code::kHeaderSize;
598 599 600 601 602 603
  __ lw(kScratchReg, MemOperand(kJavaScriptCallCodeStartRegister, offset));
  __ lw(kScratchReg,
        FieldMemOperand(kScratchReg,
                        CodeDataContainer::kKindSpecificFlagsOffset));
  __ And(kScratchReg, kScratchReg,
         Operand(1 << Code::kMarkedForDeoptimizationBit));
604 605
  __ Jump(BUILTIN_CODE(isolate(), CompileLazyDeoptimizedCode),
          RelocInfo::CODE_TARGET, ne, kScratchReg, Operand(zero_reg));
606 607
}

608
// Assembles an instruction after register allocation, producing machine code.
609 610
CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
    Instruction* instr) {
611 612
  MipsOperandConverter i(this, instr);
  InstructionCode opcode = instr->opcode();
613 614
  ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode);
  switch (arch_opcode) {
615 616
    case kArchCallCodeObject: {
      if (instr->InputAt(0)->IsImmediate()) {
617
        __ Call(i.InputCode(0), RelocInfo::CODE_TARGET);
618
      } else {
619 620
        Register reg = i.InputRegister(0);
        DCHECK_IMPLIES(
621
            instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister),
622 623
            reg == kJavaScriptCallCodeStartRegister);
        __ Call(reg, reg, Code::kHeaderSize - kHeapObjectTag);
624
      }
625
      RecordCallPosition(instr);
626
      frame_access_state()->ClearSPDelta();
627 628
      break;
    }
629 630
    case kArchCallBuiltinPointer: {
      DCHECK(!instr->InputAt(0)->IsImmediate());
631 632
      Register builtin_index = i.InputRegister(0);
      __ CallBuiltinByIndex(builtin_index);
633 634 635 636
      RecordCallPosition(instr);
      frame_access_state()->ClearSPDelta();
      break;
    }
637
#if V8_ENABLE_WEBASSEMBLY
638 639
    case kArchCallWasmFunction: {
      if (instr->InputAt(0)->IsImmediate()) {
640 641 642
        Constant constant = i.ToConstant(instr->InputAt(0));
        Address wasm_code = static_cast<Address>(constant.ToInt32());
        __ Call(wasm_code, constant.rmode());
643
      } else {
644
        __ Call(i.InputRegister(0));
645 646 647 648 649
      }
      RecordCallPosition(instr);
      frame_access_state()->ClearSPDelta();
      break;
    }
650 651 652 653 654 655 656 657 658 659 660 661 662
    case kArchTailCallWasm: {
      if (instr->InputAt(0)->IsImmediate()) {
        Constant constant = i.ToConstant(instr->InputAt(0));
        Address wasm_code = static_cast<Address>(constant.ToInt32());
        __ Jump(wasm_code, constant.rmode());
      } else {
        __ Jump(i.InputRegister(0));
      }
      frame_access_state()->ClearSPDelta();
      frame_access_state()->SetFrameAccessToDefault();
      break;
    }
#endif  // V8_ENABLE_WEBASSEMBLY
svenpanne's avatar
svenpanne committed
663 664
    case kArchTailCallCodeObject: {
      if (instr->InputAt(0)->IsImmediate()) {
665
        __ Jump(i.InputCode(0), RelocInfo::CODE_TARGET);
svenpanne's avatar
svenpanne committed
666
      } else {
667 668
        Register reg = i.InputRegister(0);
        DCHECK_IMPLIES(
669
            instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister),
670
            reg == kJavaScriptCallCodeStartRegister);
671 672
        __ Addu(reg, reg, Code::kHeaderSize - kHeapObjectTag);
        __ Jump(reg);
svenpanne's avatar
svenpanne committed
673
      }
674
      frame_access_state()->ClearSPDelta();
675
      frame_access_state()->SetFrameAccessToDefault();
svenpanne's avatar
svenpanne committed
676 677
      break;
    }
678 679
    case kArchTailCallAddress: {
      CHECK(!instr->InputAt(0)->IsImmediate());
680 681
      Register reg = i.InputRegister(0);
      DCHECK_IMPLIES(
682
          instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister),
683 684
          reg == kJavaScriptCallCodeStartRegister);
      __ Jump(reg);
685
      frame_access_state()->ClearSPDelta();
686
      frame_access_state()->SetFrameAccessToDefault();
687 688
      break;
    }
689 690 691 692 693
    case kArchCallJSFunction: {
      Register func = i.InputRegister(0);
      if (FLAG_debug_code) {
        // Check the function's context matches the context argument.
        __ lw(kScratchReg, FieldMemOperand(func, JSFunction::kContextOffset));
694 695
        __ Assert(eq, AbortReason::kWrongFunctionContext, cp,
                  Operand(kScratchReg));
696
      }
697 698
      static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
      __ lw(a2, FieldMemOperand(func, JSFunction::kCodeOffset));
699 700
      __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag);
      __ Call(a2);
701
      RecordCallPosition(instr);
702
      frame_access_state()->ClearSPDelta();
703
      frame_access_state()->SetFrameAccessToDefault();
704
      break;
svenpanne's avatar
svenpanne committed
705
    }
706 707 708
    case kArchPrepareCallCFunction: {
      int const num_parameters = MiscField::decode(instr->opcode());
      __ PrepareCallCFunction(num_parameters, kScratchReg);
709 710
      // Frame alignment requires using FP-relative frame addressing.
      frame_access_state()->SetFrameAccessToFP();
711 712
      break;
    }
713
    case kArchSaveCallerRegisters: {
714 715
      fp_mode_ =
          static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode()));
716 717
      DCHECK(fp_mode_ == SaveFPRegsMode::kIgnore ||
             fp_mode_ == SaveFPRegsMode::kSave);
718
      // kReturnRegister0 should have been saved before entering the stub.
719
      int bytes = __ PushCallerSaved(fp_mode_, kReturnRegister0);
720
      DCHECK(IsAligned(bytes, kSystemPointerSize));
721
      DCHECK_EQ(0, frame_access_state()->sp_delta());
722
      frame_access_state()->IncreaseSPDelta(bytes / kSystemPointerSize);
723 724
      DCHECK(!caller_registers_saved_);
      caller_registers_saved_ = true;
725 726 727
      break;
    }
    case kArchRestoreCallerRegisters: {
728 729
      DCHECK(fp_mode_ ==
             static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode())));
730 731
      DCHECK(fp_mode_ == SaveFPRegsMode::kIgnore ||
             fp_mode_ == SaveFPRegsMode::kSave);
732
      // Don't overwrite the returned value.
733
      int bytes = __ PopCallerSaved(fp_mode_, kReturnRegister0);
734
      frame_access_state()->IncreaseSPDelta(-(bytes / kSystemPointerSize));
735
      DCHECK_EQ(0, frame_access_state()->sp_delta());
736 737
      DCHECK(caller_registers_saved_);
      caller_registers_saved_ = false;
738 739
      break;
    }
740
    case kArchPrepareTailCall:
741
      AssemblePrepareTailCall();
742
      break;
743 744
    case kArchCallCFunction: {
      int const num_parameters = MiscField::decode(instr->opcode());
745
#if V8_ENABLE_WEBASSEMBLY
746 747 748
      Label start_call;
      bool isWasmCapiFunction =
          linkage()->GetIncomingDescriptor()->IsWasmCapiFunction();
749
      // from start_call to return address.
750
      int offset = __ root_array_available() ? 64 : 88;
751
#endif  // V8_ENABLE_WEBASSEMBLY
752
#if V8_HOST_ARCH_MIPS
753
      if (FLAG_debug_code) {
754 755 756
        offset += 16;
      }
#endif
757 758

#if V8_ENABLE_WEBASSEMBLY
759
      if (isWasmCapiFunction) {
760
        // Put the return address in a stack slot.
761 762 763 764
        __ mov(kScratchReg, ra);
        __ bind(&start_call);
        __ nal();
        __ nop();
765
        __ Addu(ra, ra, offset - 8);  // 8 = nop + nal
766 767
        __ sw(ra, MemOperand(fp, WasmExitFrameConstants::kCallingPCOffset));
        __ mov(ra, kScratchReg);
768
      }
769 770
#endif  // V8_ENABLE_WEBASSEMBLY

771 772 773 774 775 776 777
      if (instr->InputAt(0)->IsImmediate()) {
        ExternalReference ref = i.InputExternalReference(0);
        __ CallCFunction(ref, num_parameters);
      } else {
        Register func = i.InputRegister(0);
        __ CallCFunction(func, num_parameters);
      }
778 779

#if V8_ENABLE_WEBASSEMBLY
780 781
      if (isWasmCapiFunction) {
        CHECK_EQ(offset, __ SizeOfCodeGeneratedSince(&start_call));
782
        RecordSafepoint(instr->reference_map());
783
      }
784
#endif  // V8_ENABLE_WEBASSEMBLY
785

786
      frame_access_state()->SetFrameAccessToDefault();
787 788 789 790 791
      // Ideally, we should decrement SP delta to match the change of stack
      // pointer in CallCFunction. However, for certain architectures (e.g.
      // ARM), there may be more strict alignment requirement, causing old SP
      // to be saved on the stack. In those cases, we can not calculate the SP
      // delta statically.
792
      frame_access_state()->ClearSPDelta();
793 794
      if (caller_registers_saved_) {
        // Need to re-sync SP delta introduced in kArchSaveCallerRegisters.
795 796 797 798
        // Here, we assume the sequence to be:
        //   kArchSaveCallerRegisters;
        //   kArchCallCFunction;
        //   kArchRestoreCallerRegisters;
799
        int bytes =
800
            __ RequiredStackSizeForCallerSaved(fp_mode_, kReturnRegister0);
801
        frame_access_state()->IncreaseSPDelta(bytes / kSystemPointerSize);
802
      }
803 804
      break;
    }
805
    case kArchJmp:
806
      AssembleArchJump(i.InputRpo(0));
807
      break;
808 809 810
    case kArchBinarySearchSwitch:
      AssembleArchBinarySearchSwitch(instr);
      break;
811 812
    case kArchTableSwitch:
      AssembleArchTableSwitch(instr);
813
      break;
814
    case kArchAbortCSADcheck:
815
      DCHECK(i.InputRegister(0) == a0);
816
      {
817 818
        // We don't actually want to generate a pile of code for this, so just
        // claim there is a stack frame, without generating one.
819
        FrameScope scope(tasm(), StackFrame::NO_FRAME_TYPE);
820
        __ Call(isolate()->builtins()->code_handle(Builtin::kAbortCSADcheck),
821
                RelocInfo::CODE_TARGET);
822
      }
823
      __ stop();
824
      break;
825
    case kArchDebugBreak:
826
      __ DebugBreak();
827
      break;
828 829
    case kArchComment:
      __ RecordComment(reinterpret_cast<const char*>(i.InputInt32(0)));
830
      break;
831
    case kArchNop:
832
    case kArchThrowTerminator:
833 834
      // don't emit code for nops.
      break;
835
    case kArchDeoptimize: {
836
      DeoptimizationExit* exit =
837
          BuildTranslation(instr, -1, 0, 0, OutputFrameStateCombine::Ignore());
838
      __ Branch(exit->label());
839 840
      break;
    }
841
    case kArchRet:
842
      AssembleReturn(instr->InputAt(0));
843
      break;
844 845 846 847
    case kArchStackPointerGreaterThan: {
      Register lhs_register = sp;
      uint32_t offset;
      if (ShouldApplyOffsetToStackCheck(instr, &offset)) {
848
        lhs_register = i.TempRegister(1);
849 850
        __ Subu(lhs_register, sp, offset);
      }
851
      __ Sltu(i.TempRegister(0), i.InputRegister(0), lhs_register);
852
      break;
853
    }
854 855 856
    case kArchStackCheckOffset:
      __ Move(i.OutputRegister(), Smi::FromInt(GetStackCheckOffset()));
      break;
857 858 859
    case kArchFramePointer:
      __ mov(i.OutputRegister(), fp);
      break;
860
    case kArchParentFramePointer:
861
      if (frame_access_state()->has_frame()) {
862 863 864 865 866
        __ lw(i.OutputRegister(), MemOperand(fp, 0));
      } else {
        __ mov(i.OutputRegister(), fp);
      }
      break;
867
    case kArchTruncateDoubleToI:
868
      __ TruncateDoubleToI(isolate(), zone(), i.OutputRegister(),
869
                           i.InputDoubleRegister(0), DetermineStubCallMode());
870
      break;
871 872
    case kArchStoreWithWriteBarrier:
    case kArchAtomicStoreWithWriteBarrier: {
873 874 875 876 877 878 879
      RecordWriteMode mode =
          static_cast<RecordWriteMode>(MiscField::decode(instr->opcode()));
      Register object = i.InputRegister(0);
      Register index = i.InputRegister(1);
      Register value = i.InputRegister(2);
      Register scratch0 = i.TempRegister(0);
      Register scratch1 = i.TempRegister(1);
880 881 882
      auto ool = zone()->New<OutOfLineRecordWrite>(this, object, index, value,
                                                   scratch0, scratch1, mode,
                                                   DetermineStubCallMode());
883
      __ Addu(kScratchReg, object, index);
884 885 886 887 888 889 890 891
      if (arch_opcode == kArchStoreWithWriteBarrier) {
        __ sw(value, MemOperand(kScratchReg));
      } else {
        DCHECK_EQ(kArchAtomicStoreWithWriteBarrier, arch_opcode);
        __ sync();
        __ sw(value, MemOperand(kScratchReg));
        __ sync();
      }
892 893 894
      if (mode > RecordWriteMode::kValueIsPointer) {
        __ JumpIfSmi(value, ool->exit());
      }
895 896 897 898 899 900
      __ CheckPageFlag(object, scratch0,
                       MemoryChunk::kPointersFromHereAreInterestingMask, ne,
                       ool->entry());
      __ bind(ool->exit());
      break;
    }
901 902 903
    case kArchStackSlot: {
      FrameOffset offset =
          frame_access_state()->GetFrameOffset(i.InputInt32(0));
904 905
      Register base_reg = offset.from_stack_pointer() ? sp : fp;
      __ Addu(i.OutputRegister(), base_reg, Operand(offset.offset()));
906
      if (FLAG_debug_code > 0) {
907
        // Verify that the output_register is properly aligned
908 909
        __ And(kScratchReg, i.OutputRegister(),
               Operand(kSystemPointerSize - 1));
910
        __ Assert(eq, AbortReason::kAllocationIsNotDoubleAligned, kScratchReg,
911 912
                  Operand(zero_reg));
      }
913 914
      break;
    }
915 916 917 918 919 920 921 922 923 924 925 926
    case kIeee754Float64Acos:
      ASSEMBLE_IEEE754_UNOP(acos);
      break;
    case kIeee754Float64Acosh:
      ASSEMBLE_IEEE754_UNOP(acosh);
      break;
    case kIeee754Float64Asin:
      ASSEMBLE_IEEE754_UNOP(asin);
      break;
    case kIeee754Float64Asinh:
      ASSEMBLE_IEEE754_UNOP(asinh);
      break;
927 928 929
    case kIeee754Float64Atan:
      ASSEMBLE_IEEE754_UNOP(atan);
      break;
930 931 932
    case kIeee754Float64Atanh:
      ASSEMBLE_IEEE754_UNOP(atanh);
      break;
933 934 935
    case kIeee754Float64Atan2:
      ASSEMBLE_IEEE754_BINOP(atan2);
      break;
936 937 938
    case kIeee754Float64Cos:
      ASSEMBLE_IEEE754_UNOP(cos);
      break;
939 940 941
    case kIeee754Float64Cosh:
      ASSEMBLE_IEEE754_UNOP(cosh);
      break;
942 943 944
    case kIeee754Float64Cbrt:
      ASSEMBLE_IEEE754_UNOP(cbrt);
      break;
945 946 947
    case kIeee754Float64Exp:
      ASSEMBLE_IEEE754_UNOP(exp);
      break;
948 949 950
    case kIeee754Float64Expm1:
      ASSEMBLE_IEEE754_UNOP(expm1);
      break;
951 952 953 954 955
    case kIeee754Float64Log:
      ASSEMBLE_IEEE754_UNOP(log);
      break;
    case kIeee754Float64Log1p:
      ASSEMBLE_IEEE754_UNOP(log1p);
956
      break;
957 958 959
    case kIeee754Float64Log10:
      ASSEMBLE_IEEE754_UNOP(log10);
      break;
960 961 962
    case kIeee754Float64Log2:
      ASSEMBLE_IEEE754_UNOP(log2);
      break;
963 964
    case kIeee754Float64Pow:
      ASSEMBLE_IEEE754_BINOP(pow);
965
      break;
966 967
    case kIeee754Float64Sin:
      ASSEMBLE_IEEE754_UNOP(sin);
968
      break;
969 970 971
    case kIeee754Float64Sinh:
      ASSEMBLE_IEEE754_UNOP(sinh);
      break;
972 973 974
    case kIeee754Float64Tan:
      ASSEMBLE_IEEE754_UNOP(tan);
      break;
975 976 977
    case kIeee754Float64Tanh:
      ASSEMBLE_IEEE754_UNOP(tanh);
      break;
978 979 980 981
    case kMipsAdd:
      __ Addu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
    case kMipsAddOvf:
982 983
      __ AddOverflow(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1),
                     kScratchReg);
984 985 986 987 988
      break;
    case kMipsSub:
      __ Subu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
    case kMipsSubOvf:
989 990
      __ SubOverflow(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1),
                     kScratchReg);
991 992 993 994
      break;
    case kMipsMul:
      __ Mul(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
995
    case kMipsMulOvf:
996 997
      __ MulOverflow(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1),
                     kScratchReg);
998
      break;
999 1000 1001
    case kMipsMulHigh:
      __ Mulh(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
1002 1003 1004
    case kMipsMulHighU:
      __ Mulhu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
1005 1006
    case kMipsDiv:
      __ Div(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
1007
      if (IsMipsArchVariant(kMips32r6)) {
1008
        __ selnez(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
1009 1010 1011
      } else {
        __ Movz(i.OutputRegister(), i.InputRegister(1), i.InputRegister(1));
      }
1012 1013 1014
      break;
    case kMipsDivU:
      __ Divu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
1015
      if (IsMipsArchVariant(kMips32r6)) {
1016
        __ selnez(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
1017 1018 1019
      } else {
        __ Movz(i.OutputRegister(), i.InputRegister(1), i.InputRegister(1));
      }
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
      break;
    case kMipsMod:
      __ Mod(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
    case kMipsModU:
      __ Modu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
    case kMipsAnd:
      __ And(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
    case kMipsOr:
      __ Or(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
1033
    case kMipsNor:
1034 1035 1036
      if (instr->InputAt(1)->IsRegister()) {
        __ Nor(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      } else {
1037
        DCHECK_EQ(0, i.InputOperand(1).immediate());
1038 1039
        __ Nor(i.OutputRegister(), i.InputRegister(0), zero_reg);
      }
1040
      break;
1041 1042 1043
    case kMipsXor:
      __ Xor(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
1044 1045 1046
    case kMipsClz:
      __ Clz(i.OutputRegister(), i.InputRegister(0));
      break;
1047
    case kMipsCtz: {
1048 1049
      Register src = i.InputRegister(0);
      Register dst = i.OutputRegister();
1050
      __ Ctz(dst, src);
1051 1052
    } break;
    case kMipsPopcnt: {
1053 1054
      Register src = i.InputRegister(0);
      Register dst = i.OutputRegister();
1055
      __ Popcnt(dst, src);
1056
    } break;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    case kMipsShl:
      if (instr->InputAt(1)->IsRegister()) {
        __ sllv(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
      } else {
        int32_t imm = i.InputOperand(1).immediate();
        __ sll(i.OutputRegister(), i.InputRegister(0), imm);
      }
      break;
    case kMipsShr:
      if (instr->InputAt(1)->IsRegister()) {
        __ srlv(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
      } else {
        int32_t imm = i.InputOperand(1).immediate();
        __ srl(i.OutputRegister(), i.InputRegister(0), imm);
      }
      break;
    case kMipsSar:
      if (instr->InputAt(1)->IsRegister()) {
        __ srav(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
      } else {
        int32_t imm = i.InputOperand(1).immediate();
        __ sra(i.OutputRegister(), i.InputRegister(0), imm);
      }
      break;
1081
    case kMipsShlPair: {
1082 1083
      Register second_output =
          instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
1084
      if (instr->InputAt(2)->IsRegister()) {
1085
        __ ShlPair(i.OutputRegister(0), second_output, i.InputRegister(0),
1086 1087
                   i.InputRegister(1), i.InputRegister(2), kScratchReg,
                   kScratchReg2);
1088 1089
      } else {
        uint32_t imm = i.InputOperand(2).immediate();
1090
        __ ShlPair(i.OutputRegister(0), second_output, i.InputRegister(0),
1091
                   i.InputRegister(1), imm, kScratchReg);
1092 1093 1094
      }
    } break;
    case kMipsShrPair: {
1095 1096
      Register second_output =
          instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
1097
      if (instr->InputAt(2)->IsRegister()) {
1098
        __ ShrPair(i.OutputRegister(0), second_output, i.InputRegister(0),
1099 1100
                   i.InputRegister(1), i.InputRegister(2), kScratchReg,
                   kScratchReg2);
1101 1102
      } else {
        uint32_t imm = i.InputOperand(2).immediate();
1103
        __ ShrPair(i.OutputRegister(0), second_output, i.InputRegister(0),
1104
                   i.InputRegister(1), imm, kScratchReg);
1105 1106 1107
      }
    } break;
    case kMipsSarPair: {
1108 1109
      Register second_output =
          instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
1110
      if (instr->InputAt(2)->IsRegister()) {
1111
        __ SarPair(i.OutputRegister(0), second_output, i.InputRegister(0),
1112 1113
                   i.InputRegister(1), i.InputRegister(2), kScratchReg,
                   kScratchReg2);
1114 1115
      } else {
        uint32_t imm = i.InputOperand(2).immediate();
1116
        __ SarPair(i.OutputRegister(0), second_output, i.InputRegister(0),
1117
                   i.InputRegister(1), imm, kScratchReg);
1118 1119
      }
    } break;
1120 1121 1122 1123
    case kMipsExt:
      __ Ext(i.OutputRegister(), i.InputRegister(0), i.InputInt8(1),
             i.InputInt8(2));
      break;
1124 1125 1126 1127 1128 1129 1130 1131
    case kMipsIns:
      if (instr->InputAt(1)->IsImmediate() && i.InputInt8(1) == 0) {
        __ Ins(i.OutputRegister(), zero_reg, i.InputInt8(1), i.InputInt8(2));
      } else {
        __ Ins(i.OutputRegister(), i.InputRegister(0), i.InputInt8(1),
               i.InputInt8(2));
      }
      break;
1132 1133 1134 1135
    case kMipsRor:
      __ Ror(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
      break;
    case kMipsTst:
1136
      __ And(kScratchReg, i.InputRegister(0), i.InputOperand(1));
1137 1138
      break;
    case kMipsCmp:
1139
      // Pseudo-instruction used for cmp/branch. No opcode emitted here.
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
      break;
    case kMipsMov:
      // TODO(plind): Should we combine mov/li like this, or use separate instr?
      //    - Also see x64 ASSEMBLE_BINOP & RegisterOrOperandType
      if (HasRegisterInput(instr, 0)) {
        __ mov(i.OutputRegister(), i.InputRegister(0));
      } else {
        __ li(i.OutputRegister(), i.InputOperand(0));
      }
      break;
1150 1151 1152 1153 1154
    case kMipsLsa:
      DCHECK(instr->InputAt(2)->IsImmediate());
      __ Lsa(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
             i.InputInt8(2));
      break;
1155 1156 1157 1158 1159
    case kMipsCmpS: {
      FPURegister left = i.InputOrZeroSingleRegister(0);
      FPURegister right = i.InputOrZeroSingleRegister(1);
      bool predicate;
      FPUCondition cc =
1160
          FlagsConditionToConditionCmpFPU(&predicate, instr->flags_condition());
1161 1162 1163 1164 1165 1166 1167 1168

      if ((left == kDoubleRegZero || right == kDoubleRegZero) &&
          !__ IsDoubleZeroRegSet()) {
        __ Move(kDoubleRegZero, 0.0);
      }

      __ CompareF32(cc, left, right);
    } break;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    case kMipsAddS:
      // TODO(plind): add special case: combine mult & add.
      __ add_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
    case kMipsSubS:
      __ sub_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
    case kMipsMulS:
      // TODO(plind): add special case: right op is -1.0, see arm port.
      __ mul_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
    case kMipsDivS:
      __ div_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
1187
    case kMipsAbsS:
1188 1189 1190 1191 1192 1193 1194
      if (IsMipsArchVariant(kMips32r6)) {
        __ abs_s(i.OutputSingleRegister(), i.InputSingleRegister(0));
      } else {
        __ mfc1(kScratchReg, i.InputSingleRegister(0));
        __ Ins(kScratchReg, zero_reg, 31, 1);
        __ mtc1(kScratchReg, i.OutputSingleRegister());
      }
1195
      break;
1196 1197 1198 1199
    case kMipsSqrtS: {
      __ sqrt_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
      break;
    }
1200 1201 1202 1203 1204 1205 1206 1207
    case kMipsMaxS:
      __ max_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
    case kMipsMinS:
      __ min_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
1208 1209 1210 1211 1212
    case kMipsCmpD: {
      FPURegister left = i.InputOrZeroDoubleRegister(0);
      FPURegister right = i.InputOrZeroDoubleRegister(1);
      bool predicate;
      FPUCondition cc =
1213
          FlagsConditionToConditionCmpFPU(&predicate, instr->flags_condition());
1214 1215 1216 1217 1218 1219
      if ((left == kDoubleRegZero || right == kDoubleRegZero) &&
          !__ IsDoubleZeroRegSet()) {
        __ Move(kDoubleRegZero, 0.0);
      }
      __ CompareF64(cc, left, right);
    } break;
1220 1221
    case kMipsAddPair:
      __ AddPair(i.OutputRegister(0), i.OutputRegister(1), i.InputRegister(0),
1222 1223
                 i.InputRegister(1), i.InputRegister(2), i.InputRegister(3),
                 kScratchReg, kScratchReg2);
1224 1225 1226
      break;
    case kMipsSubPair:
      __ SubPair(i.OutputRegister(0), i.OutputRegister(1), i.InputRegister(0),
1227 1228
                 i.InputRegister(1), i.InputRegister(2), i.InputRegister(3),
                 kScratchReg, kScratchReg2);
1229
      break;
1230
    case kMipsMulPair: {
1231 1232 1233
      __ MulPair(i.OutputRegister(0), i.OutputRegister(1), i.InputRegister(0),
                 i.InputRegister(1), i.InputRegister(2), i.InputRegister(3),
                 kScratchReg, kScratchReg2);
1234
    } break;
1235 1236 1237 1238 1239 1240 1241 1242 1243
    case kMipsAddD:
      // TODO(plind): add special case: combine mult & add.
      __ add_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
    case kMipsSubD:
      __ sub_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
1244
    case kMipsMaddS:
1245 1246 1247
      __ Madd_s(i.OutputFloatRegister(), i.InputFloatRegister(0),
                i.InputFloatRegister(1), i.InputFloatRegister(2),
                kScratchDoubleReg);
1248 1249
      break;
    case kMipsMaddD:
1250 1251 1252
      __ Madd_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
                i.InputDoubleRegister(1), i.InputDoubleRegister(2),
                kScratchDoubleReg);
1253 1254
      break;
    case kMipsMsubS:
1255 1256 1257
      __ Msub_s(i.OutputFloatRegister(), i.InputFloatRegister(0),
                i.InputFloatRegister(1), i.InputFloatRegister(2),
                kScratchDoubleReg);
1258 1259
      break;
    case kMipsMsubD:
1260 1261 1262
      __ Msub_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
                i.InputDoubleRegister(1), i.InputDoubleRegister(2),
                kScratchDoubleReg);
1263
      break;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    case kMipsMulD:
      // TODO(plind): add special case: right op is -1.0, see arm port.
      __ mul_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
    case kMipsDivD:
      __ div_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
    case kMipsModD: {
      // TODO(bmeurer): We should really get rid of this special instruction,
      // and generate a CallAddress instruction instead.
1276
      FrameScope scope(tasm(), StackFrame::MANUAL);
1277 1278 1279
      __ PrepareCallCFunction(0, 2, kScratchReg);
      __ MovToFloatParameters(i.InputDoubleRegister(0),
                              i.InputDoubleRegister(1));
1280
      __ CallCFunction(ExternalReference::mod_two_doubles_operation(), 0, 2);
1281 1282 1283 1284
      // Move the result in the double result register.
      __ MovFromFloatResult(i.OutputDoubleRegister());
      break;
    }
1285 1286 1287
    case kMipsAbsD: {
      FPURegister src = i.InputDoubleRegister(0);
      FPURegister dst = i.OutputDoubleRegister();
1288
      if (IsMipsArchVariant(kMips32r6)) {
1289
        __ abs_d(dst, src);
1290
      } else {
1291 1292
        __ Move(dst, src);
        __ mfhc1(kScratchReg, src);
1293
        __ Ins(kScratchReg, zero_reg, 31, 1);
1294
        __ mthc1(kScratchReg, dst);
1295
      }
1296
      break;
1297
    }
1298
    case kMipsNegS:
1299
      __ Neg_s(i.OutputSingleRegister(), i.InputSingleRegister(0));
1300 1301
      break;
    case kMipsNegD:
1302
      __ Neg_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
1303
      break;
1304 1305 1306 1307
    case kMipsSqrtD: {
      __ sqrt_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
      break;
    }
1308 1309 1310 1311 1312 1313 1314 1315
    case kMipsMaxD:
      __ max_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
    case kMipsMinD:
      __ min_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0),
               i.InputDoubleRegister(1));
      break;
1316
    case kMipsFloat64RoundDown: {
1317
      __ Floor_d_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
1318 1319 1320
      break;
    }
    case kMipsFloat32RoundDown: {
1321
      __ Floor_s_s(i.OutputSingleRegister(), i.InputSingleRegister(0));
1322 1323 1324
      break;
    }
    case kMipsFloat64RoundTruncate: {
1325
      __ Trunc_d_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
1326 1327 1328
      break;
    }
    case kMipsFloat32RoundTruncate: {
1329
      __ Trunc_s_s(i.OutputSingleRegister(), i.InputSingleRegister(0));
1330 1331
      break;
    }
1332
    case kMipsFloat64RoundUp: {
1333
      __ Ceil_d_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
1334 1335 1336
      break;
    }
    case kMipsFloat32RoundUp: {
1337
      __ Ceil_s_s(i.OutputSingleRegister(), i.InputSingleRegister(0));
1338 1339
      break;
    }
1340
    case kMipsFloat64RoundTiesEven: {
1341
      __ Round_d_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
1342 1343 1344
      break;
    }
    case kMipsFloat32RoundTiesEven: {
1345
      __ Round_s_s(i.OutputSingleRegister(), i.InputSingleRegister(0));
1346 1347
      break;
    }
1348
    case kMipsFloat32Max: {
1349 1350 1351
      FPURegister dst = i.OutputSingleRegister();
      FPURegister src1 = i.InputSingleRegister(0);
      FPURegister src2 = i.InputSingleRegister(1);
1352
      auto ool = zone()->New<OutOfLineFloat32Max>(this, dst, src1, src2);
1353 1354
      __ Float32Max(dst, src1, src2, ool->entry());
      __ bind(ool->exit());
1355 1356
      break;
    }
1357
    case kMipsFloat64Max: {
1358 1359 1360
      DoubleRegister dst = i.OutputDoubleRegister();
      DoubleRegister src1 = i.InputDoubleRegister(0);
      DoubleRegister src2 = i.InputDoubleRegister(1);
1361
      auto ool = zone()->New<OutOfLineFloat64Max>(this, dst, src1, src2);
1362 1363
      __ Float64Max(dst, src1, src2, ool->entry());
      __ bind(ool->exit());
1364 1365
      break;
    }
1366
    case kMipsFloat32Min: {
1367 1368 1369
      FPURegister dst = i.OutputSingleRegister();
      FPURegister src1 = i.InputSingleRegister(0);
      FPURegister src2 = i.InputSingleRegister(1);
1370
      auto ool = zone()->New<OutOfLineFloat32Min>(this, dst, src1, src2);
1371 1372
      __ Float32Min(dst, src1, src2, ool->entry());
      __ bind(ool->exit());
1373 1374
      break;
    }
1375
    case kMipsFloat64Min: {
1376 1377 1378
      DoubleRegister dst = i.OutputDoubleRegister();
      DoubleRegister src1 = i.InputDoubleRegister(0);
      DoubleRegister src2 = i.InputDoubleRegister(1);
1379
      auto ool = zone()->New<OutOfLineFloat64Min>(this, dst, src1, src2);
1380 1381
      __ Float64Min(dst, src1, src2, ool->entry());
      __ bind(ool->exit());
1382 1383
      break;
    }
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    case kMipsCvtSD: {
      __ cvt_s_d(i.OutputSingleRegister(), i.InputDoubleRegister(0));
      break;
    }
    case kMipsCvtDS: {
      __ cvt_d_s(i.OutputDoubleRegister(), i.InputSingleRegister(0));
      break;
    }
    case kMipsCvtDW: {
      FPURegister scratch = kScratchDoubleReg;
      __ mtc1(i.InputRegister(0), scratch);
      __ cvt_d_w(i.OutputDoubleRegister(), scratch);
      break;
    }
1398 1399 1400 1401 1402 1403
    case kMipsCvtSW: {
      FPURegister scratch = kScratchDoubleReg;
      __ mtc1(i.InputRegister(0), scratch);
      __ cvt_s_w(i.OutputDoubleRegister(), scratch);
      break;
    }
1404 1405 1406 1407 1408 1409
    case kMipsCvtSUw: {
      FPURegister scratch = kScratchDoubleReg;
      __ Cvt_d_uw(i.OutputDoubleRegister(), i.InputRegister(0), scratch);
      __ cvt_s_d(i.OutputDoubleRegister(), i.OutputDoubleRegister());
      break;
    }
1410 1411 1412 1413 1414
    case kMipsCvtDUw: {
      FPURegister scratch = kScratchDoubleReg;
      __ Cvt_d_uw(i.OutputDoubleRegister(), i.InputRegister(0), scratch);
      break;
    }
1415 1416
    case kMipsFloorWD: {
      FPURegister scratch = kScratchDoubleReg;
1417
      __ Floor_w_d(scratch, i.InputDoubleRegister(0));
1418 1419 1420 1421 1422
      __ mfc1(i.OutputRegister(), scratch);
      break;
    }
    case kMipsCeilWD: {
      FPURegister scratch = kScratchDoubleReg;
1423
      __ Ceil_w_d(scratch, i.InputDoubleRegister(0));
1424 1425 1426 1427 1428
      __ mfc1(i.OutputRegister(), scratch);
      break;
    }
    case kMipsRoundWD: {
      FPURegister scratch = kScratchDoubleReg;
1429
      __ Round_w_d(scratch, i.InputDoubleRegister(0));
1430 1431 1432
      __ mfc1(i.OutputRegister(), scratch);
      break;
    }
1433 1434 1435
    case kMipsTruncWD: {
      FPURegister scratch = kScratchDoubleReg;
      // Other arches use round to zero here, so we follow.
1436
      __ Trunc_w_d(scratch, i.InputDoubleRegister(0));
1437 1438 1439
      __ mfc1(i.OutputRegister(), scratch);
      break;
    }
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    case kMipsFloorWS: {
      FPURegister scratch = kScratchDoubleReg;
      __ floor_w_s(scratch, i.InputDoubleRegister(0));
      __ mfc1(i.OutputRegister(), scratch);
      break;
    }
    case kMipsCeilWS: {
      FPURegister scratch = kScratchDoubleReg;
      __ ceil_w_s(scratch, i.InputDoubleRegister(0));
      __ mfc1(i.OutputRegister(), scratch);
      break;
    }
    case kMipsRoundWS: {
      FPURegister scratch = kScratchDoubleReg;
      __ round_w_s(scratch, i.InputDoubleRegister(0));
      __ mfc1(i.OutputRegister(), scratch);
      break;
    }
    case kMipsTruncWS: {
      FPURegister scratch = kScratchDoubleReg;
      __ trunc_w_s(scratch, i.InputDoubleRegister(0));
      __ mfc1(i.OutputRegister(), scratch);
1462 1463
      // Avoid INT32_MAX as an overflow indicator and use INT32_MIN instead,
      // because INT32_MIN allows easier out-of-bounds detection.
1464 1465 1466 1467 1468 1469
      bool set_overflow_to_min_i32 = MiscField::decode(instr->opcode());
      if (set_overflow_to_min_i32) {
        __ Addu(kScratchReg, i.OutputRegister(), 1);
        __ Slt(kScratchReg2, kScratchReg, i.OutputRegister());
        __ Movn(i.OutputRegister(), kScratchReg, kScratchReg2);
      }
1470 1471
      break;
    }
1472 1473
    case kMipsTruncUwD: {
      FPURegister scratch = kScratchDoubleReg;
1474
      __ Trunc_uw_d(i.OutputRegister(), i.InputDoubleRegister(0), scratch);
1475 1476
      break;
    }
1477 1478
    case kMipsTruncUwS: {
      FPURegister scratch = kScratchDoubleReg;
1479
      __ Trunc_uw_s(i.OutputRegister(), i.InputDoubleRegister(0), scratch);
1480 1481
      // Avoid UINT32_MAX as an overflow indicator and use 0 instead,
      // because 0 allows easier out-of-bounds detection.
1482 1483 1484 1485 1486
      bool set_overflow_to_min_i32 = MiscField::decode(instr->opcode());
      if (set_overflow_to_min_i32) {
        __ Addu(kScratchReg, i.OutputRegister(), 1);
        __ Movz(i.OutputRegister(), zero_reg, kScratchReg);
      }
1487 1488
      break;
    }
1489
    case kMipsFloat64ExtractLowWord32:
1490 1491
      __ FmoveLow(i.OutputRegister(), i.InputDoubleRegister(0));
      break;
1492
    case kMipsFloat64ExtractHighWord32:
1493 1494
      __ FmoveHigh(i.OutputRegister(), i.InputDoubleRegister(0));
      break;
1495 1496 1497 1498
    case kMipsFloat64InsertLowWord32:
      __ FmoveLow(i.OutputDoubleRegister(), i.InputRegister(1));
      break;
    case kMipsFloat64InsertHighWord32:
1499 1500
      __ FmoveHigh(i.OutputDoubleRegister(), i.InputRegister(1));
      break;
1501 1502
    case kMipsFloat64SilenceNaN:
      __ FPUCanonicalizeNaN(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
1503 1504
      break;

1505
    // ... more basic instructions ...
1506
    case kMipsSeb:
1507
      __ Seb(i.OutputRegister(), i.InputRegister(0));
1508 1509
      break;
    case kMipsSeh:
1510
      __ Seh(i.OutputRegister(), i.InputRegister(0));
1511
      break;
1512 1513 1514 1515 1516 1517 1518
    case kMipsLbu:
      __ lbu(i.OutputRegister(), i.MemoryOperand());
      break;
    case kMipsLb:
      __ lb(i.OutputRegister(), i.MemoryOperand());
      break;
    case kMipsSb:
1519
      __ sb(i.InputOrZeroRegister(2), i.MemoryOperand());
1520 1521 1522 1523
      break;
    case kMipsLhu:
      __ lhu(i.OutputRegister(), i.MemoryOperand());
      break;
1524 1525 1526
    case kMipsUlhu:
      __ Ulhu(i.OutputRegister(), i.MemoryOperand());
      break;
1527 1528 1529
    case kMipsLh:
      __ lh(i.OutputRegister(), i.MemoryOperand());
      break;
1530 1531 1532
    case kMipsUlh:
      __ Ulh(i.OutputRegister(), i.MemoryOperand());
      break;
1533
    case kMipsSh:
1534
      __ sh(i.InputOrZeroRegister(2), i.MemoryOperand());
1535
      break;
1536
    case kMipsUsh:
1537
      __ Ush(i.InputOrZeroRegister(2), i.MemoryOperand(), kScratchReg);
1538
      break;
1539 1540 1541
    case kMipsLw:
      __ lw(i.OutputRegister(), i.MemoryOperand());
      break;
1542 1543 1544
    case kMipsUlw:
      __ Ulw(i.OutputRegister(), i.MemoryOperand());
      break;
1545
    case kMipsSw:
1546
      __ sw(i.InputOrZeroRegister(2), i.MemoryOperand());
1547
      break;
1548
    case kMipsUsw:
1549
      __ Usw(i.InputOrZeroRegister(2), i.MemoryOperand());
1550
      break;
1551 1552 1553 1554
    case kMipsLwc1: {
      __ lwc1(i.OutputSingleRegister(), i.MemoryOperand());
      break;
    }
1555 1556 1557 1558
    case kMipsUlwc1: {
      __ Ulwc1(i.OutputSingleRegister(), i.MemoryOperand(), kScratchReg);
      break;
    }
1559
    case kMipsSwc1: {
1560
      size_t index = 0;
1561
      MemOperand operand = i.MemoryOperand(&index);
1562
      FPURegister ft = i.InputOrZeroSingleRegister(index);
1563
      if (ft == kDoubleRegZero && !__ IsDoubleZeroRegSet()) {
1564 1565 1566
        __ Move(kDoubleRegZero, 0.0);
      }
      __ swc1(ft, operand);
1567 1568
      break;
    }
1569 1570 1571
    case kMipsUswc1: {
      size_t index = 0;
      MemOperand operand = i.MemoryOperand(&index);
1572
      FPURegister ft = i.InputOrZeroSingleRegister(index);
1573
      if (ft == kDoubleRegZero && !__ IsDoubleZeroRegSet()) {
1574 1575 1576
        __ Move(kDoubleRegZero, 0.0);
      }
      __ Uswc1(ft, operand, kScratchReg);
1577 1578
      break;
    }
1579
    case kMipsLdc1:
1580
      __ Ldc1(i.OutputDoubleRegister(), i.MemoryOperand());
1581
      break;
1582 1583 1584
    case kMipsUldc1:
      __ Uldc1(i.OutputDoubleRegister(), i.MemoryOperand(), kScratchReg);
      break;
1585 1586
    case kMipsSdc1: {
      FPURegister ft = i.InputOrZeroDoubleRegister(2);
1587
      if (ft == kDoubleRegZero && !__ IsDoubleZeroRegSet()) {
1588 1589
        __ Move(kDoubleRegZero, 0.0);
      }
1590
      __ Sdc1(ft, i.MemoryOperand());
1591
      break;
1592 1593 1594
    }
    case kMipsUsdc1: {
      FPURegister ft = i.InputOrZeroDoubleRegister(2);
1595
      if (ft == kDoubleRegZero && !__ IsDoubleZeroRegSet()) {
1596 1597 1598
        __ Move(kDoubleRegZero, 0.0);
      }
      __ Usdc1(ft, i.MemoryOperand(), kScratchReg);
1599
      break;
1600
    }
1601 1602 1603 1604
    case kMipsSync: {
      __ sync();
      break;
    }
1605
    case kMipsPush:
1606
      if (instr->InputAt(0)->IsFPRegister()) {
1607 1608 1609 1610 1611
        LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
        switch (op->representation()) {
          case MachineRepresentation::kFloat32:
            __ swc1(i.InputFloatRegister(0), MemOperand(sp, -kFloatSize));
            __ Subu(sp, sp, Operand(kFloatSize));
1612 1613
            frame_access_state()->IncreaseSPDelta(kFloatSize /
                                                  kSystemPointerSize);
1614 1615 1616 1617
            break;
          case MachineRepresentation::kFloat64:
            __ Sdc1(i.InputDoubleRegister(0), MemOperand(sp, -kDoubleSize));
            __ Subu(sp, sp, Operand(kDoubleSize));
1618 1619
            frame_access_state()->IncreaseSPDelta(kDoubleSize /
                                                  kSystemPointerSize);
1620 1621 1622 1623 1624
            break;
          default: {
            UNREACHABLE();
          }
        }
1625 1626
      } else {
        __ Push(i.InputRegister(0));
1627
        frame_access_state()->IncreaseSPDelta(1);
1628
      }
1629
      break;
1630
    case kMipsPeek: {
1631
      int reverse_slot = i.InputInt32(0);
1632 1633 1634 1635 1636 1637
      int offset =
          FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
      if (instr->OutputAt(0)->IsFPRegister()) {
        LocationOperand* op = LocationOperand::cast(instr->OutputAt(0));
        if (op->representation() == MachineRepresentation::kFloat64) {
          __ Ldc1(i.OutputDoubleRegister(), MemOperand(fp, offset));
1638
        } else if (op->representation() == MachineRepresentation::kFloat32) {
1639
          __ lwc1(i.OutputSingleRegister(0), MemOperand(fp, offset));
1640 1641 1642
        } else {
          DCHECK_EQ(op->representation(), MachineRepresentation::kSimd128);
          __ ld_b(i.OutputSimd128Register(), MemOperand(fp, offset));
1643 1644 1645 1646 1647 1648
        }
      } else {
        __ lw(i.OutputRegister(0), MemOperand(fp, offset));
      }
      break;
    }
1649
    case kMipsStackClaim: {
1650
      __ Subu(sp, sp, Operand(i.InputInt32(0)));
1651 1652
      frame_access_state()->IncreaseSPDelta(i.InputInt32(0) /
                                            kSystemPointerSize);
1653 1654 1655
      break;
    }
    case kMipsStoreToStackSlot: {
1656
      if (instr->InputAt(0)->IsFPRegister()) {
1657 1658
        LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
        if (op->representation() == MachineRepresentation::kFloat64) {
1659
          __ Sdc1(i.InputDoubleRegister(0), MemOperand(sp, i.InputInt32(1)));
1660
        } else if (op->representation() == MachineRepresentation::kFloat32) {
1661
          __ swc1(i.InputSingleRegister(0), MemOperand(sp, i.InputInt32(1)));
1662 1663 1664 1665
        } else {
          DCHECK_EQ(MachineRepresentation::kSimd128, op->representation());
          CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
          __ st_b(i.InputSimd128Register(0), MemOperand(sp, i.InputInt32(1)));
1666
        }
1667 1668 1669
      } else {
        __ sw(i.InputRegister(0), MemOperand(sp, i.InputInt32(1)));
      }
1670 1671
      break;
    }
1672 1673 1674 1675
    case kMipsByteSwap32: {
      __ ByteSwapSigned(i.OutputRegister(0), i.InputRegister(0), 4);
      break;
    }
1676
    case kMipsS128Load8Splat: {
1677 1678 1679 1680 1681
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ lb(kScratchReg, i.MemoryOperand());
      __ fill_b(i.OutputSimd128Register(), kScratchReg);
      break;
    }
1682
    case kMipsS128Load16Splat: {
1683 1684 1685 1686 1687
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ lh(kScratchReg, i.MemoryOperand());
      __ fill_h(i.OutputSimd128Register(), kScratchReg);
      break;
    }
1688
    case kMipsS128Load32Splat: {
1689 1690 1691 1692 1693
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ Lw(kScratchReg, i.MemoryOperand());
      __ fill_w(i.OutputSimd128Register(), kScratchReg);
      break;
    }
1694
    case kMipsS128Load64Splat: {
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      MemOperand memLow = i.MemoryOperand();
      MemOperand memHigh = MemOperand(memLow.rm(), memLow.offset() + 4);
      __ Lw(kScratchReg, memLow);
      __ fill_w(dst, kScratchReg);
      __ Lw(kScratchReg, memHigh);
      __ fill_w(kSimd128ScratchReg, kScratchReg);
      __ ilvr_w(dst, kSimd128ScratchReg, dst);
      break;
    }
1706
    case kMipsS128Load8x8S: {
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      MemOperand memLow = i.MemoryOperand();
      MemOperand memHigh = MemOperand(memLow.rm(), memLow.offset() + 4);
      __ Lw(kScratchReg, memLow);
      __ fill_w(dst, kScratchReg);
      __ Lw(kScratchReg, memHigh);
      __ fill_w(kSimd128ScratchReg, kScratchReg);
      __ ilvr_w(dst, kSimd128ScratchReg, dst);
      __ clti_s_b(kSimd128ScratchReg, dst, 0);
      __ ilvr_b(dst, kSimd128ScratchReg, dst);
      break;
    }
1720
    case kMipsS128Load8x8U: {
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      MemOperand memLow = i.MemoryOperand();
      MemOperand memHigh = MemOperand(memLow.rm(), memLow.offset() + 4);
      __ Lw(kScratchReg, memLow);
      __ fill_w(dst, kScratchReg);
      __ Lw(kScratchReg, memHigh);
      __ fill_w(kSimd128ScratchReg, kScratchReg);
      __ ilvr_w(dst, kSimd128ScratchReg, dst);
      __ ilvr_b(dst, kSimd128RegZero, dst);
      break;
    }
1733
    case kMipsS128Load16x4S: {
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      MemOperand memLow = i.MemoryOperand();
      MemOperand memHigh = MemOperand(memLow.rm(), memLow.offset() + 4);
      __ Lw(kScratchReg, memLow);
      __ fill_w(dst, kScratchReg);
      __ Lw(kScratchReg, memHigh);
      __ fill_w(kSimd128ScratchReg, kScratchReg);
      __ ilvr_w(dst, kSimd128ScratchReg, dst);
      __ clti_s_h(kSimd128ScratchReg, dst, 0);
      __ ilvr_h(dst, kSimd128ScratchReg, dst);
      break;
    }
1747
    case kMipsS128Load16x4U: {
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      MemOperand memLow = i.MemoryOperand();
      MemOperand memHigh = MemOperand(memLow.rm(), memLow.offset() + 4);
      __ Lw(kScratchReg, memLow);
      __ fill_w(dst, kScratchReg);
      __ Lw(kScratchReg, memHigh);
      __ fill_w(kSimd128ScratchReg, kScratchReg);
      __ ilvr_w(dst, kSimd128ScratchReg, dst);
      __ ilvr_h(dst, kSimd128RegZero, dst);
      break;
    }
1760
    case kMipsS128Load32x2S: {
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      MemOperand memLow = i.MemoryOperand();
      MemOperand memHigh = MemOperand(memLow.rm(), memLow.offset() + 4);
      __ Lw(kScratchReg, memLow);
      __ fill_w(dst, kScratchReg);
      __ Lw(kScratchReg, memHigh);
      __ fill_w(kSimd128ScratchReg, kScratchReg);
      __ ilvr_w(dst, kSimd128ScratchReg, dst);
      __ clti_s_w(kSimd128ScratchReg, dst, 0);
      __ ilvr_w(dst, kSimd128ScratchReg, dst);
      break;
    }
1774
    case kMipsS128Load32x2U: {
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      MemOperand memLow = i.MemoryOperand();
      MemOperand memHigh = MemOperand(memLow.rm(), memLow.offset() + 4);
      __ Lw(kScratchReg, memLow);
      __ fill_w(dst, kScratchReg);
      __ Lw(kScratchReg, memHigh);
      __ fill_w(kSimd128ScratchReg, kScratchReg);
      __ ilvr_w(dst, kSimd128ScratchReg, dst);
      __ ilvr_w(dst, kSimd128RegZero, dst);
      break;
    }
1787
    case kAtomicLoadInt8:
1788 1789
      ASSEMBLE_ATOMIC_LOAD_INTEGER(lb);
      break;
1790
    case kAtomicLoadUint8:
1791 1792
      ASSEMBLE_ATOMIC_LOAD_INTEGER(lbu);
      break;
1793
    case kAtomicLoadInt16:
1794 1795
      ASSEMBLE_ATOMIC_LOAD_INTEGER(lh);
      break;
1796
    case kAtomicLoadUint16:
1797 1798
      ASSEMBLE_ATOMIC_LOAD_INTEGER(lhu);
      break;
1799
    case kAtomicLoadWord32:
1800
      ASSEMBLE_ATOMIC_LOAD_INTEGER(lw);
1801
      break;
1802
    case kAtomicStoreWord8:
1803 1804
      ASSEMBLE_ATOMIC_STORE_INTEGER(sb);
      break;
1805
    case kAtomicStoreWord16:
1806 1807
      ASSEMBLE_ATOMIC_STORE_INTEGER(sh);
      break;
1808
    case kAtomicStoreWord32:
1809
      ASSEMBLE_ATOMIC_STORE_INTEGER(sw);
1810
      break;
1811
    case kAtomicExchangeInt8:
1812 1813
      ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(true, 8);
      break;
1814
    case kAtomicExchangeUint8:
1815 1816
      ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(false, 8);
      break;
1817
    case kAtomicExchangeInt16:
1818 1819
      ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(true, 16);
      break;
1820
    case kAtomicExchangeUint16:
1821 1822
      ASSEMBLE_ATOMIC_EXCHANGE_INTEGER_EXT(false, 16);
      break;
1823
    case kAtomicExchangeWord32:
1824 1825
      ASSEMBLE_ATOMIC_EXCHANGE_INTEGER();
      break;
1826
    case kAtomicCompareExchangeInt8:
1827 1828
      ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(true, 8);
      break;
1829
    case kAtomicCompareExchangeUint8:
1830 1831
      ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(false, 8);
      break;
1832
    case kAtomicCompareExchangeInt16:
1833 1834
      ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(true, 16);
      break;
1835
    case kAtomicCompareExchangeUint16:
1836 1837
      ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER_EXT(false, 16);
      break;
1838
    case kAtomicCompareExchangeWord32:
1839
      ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_INTEGER();
1840
      break;
1841
#define ATOMIC_BINOP_CASE(op, inst)             \
1842
  case kAtomic##op##Int8:                       \
1843 1844
    ASSEMBLE_ATOMIC_BINOP_EXT(true, 8, inst);   \
    break;                                      \
1845
  case kAtomic##op##Uint8:                      \
1846 1847
    ASSEMBLE_ATOMIC_BINOP_EXT(false, 8, inst);  \
    break;                                      \
1848
  case kAtomic##op##Int16:                      \
1849 1850
    ASSEMBLE_ATOMIC_BINOP_EXT(true, 16, inst);  \
    break;                                      \
1851
  case kAtomic##op##Uint16:                     \
1852 1853
    ASSEMBLE_ATOMIC_BINOP_EXT(false, 16, inst); \
    break;                                      \
1854
  case kAtomic##op##Word32:                     \
1855 1856 1857 1858 1859 1860 1861 1862
    ASSEMBLE_ATOMIC_BINOP(inst);                \
    break;
      ATOMIC_BINOP_CASE(Add, Addu)
      ATOMIC_BINOP_CASE(Sub, Subu)
      ATOMIC_BINOP_CASE(And, And)
      ATOMIC_BINOP_CASE(Or, Or)
      ATOMIC_BINOP_CASE(Xor, Xor)
#undef ATOMIC_BINOP_CASE
1863 1864
    case kMipsWord32AtomicPairLoad: {
      if (IsMipsArchVariant(kMips32r6)) {
1865 1866 1867 1868 1869 1870 1871 1872 1873
        if (instr->OutputCount() > 0) {
          Register second_output = instr->OutputCount() == 2
                                       ? i.OutputRegister(1)
                                       : i.TempRegister(1);
          __ Addu(a0, i.InputRegister(0), i.InputRegister(1));
          __ llx(second_output, MemOperand(a0, 4));
          __ ll(i.OutputRegister(0), MemOperand(a0, 0));
          __ sync();
        }
1874
      } else {
1875 1876
        FrameScope scope(tasm(), StackFrame::MANUAL);
        __ Addu(a0, i.InputRegister(0), i.InputRegister(1));
1877
        __ PushCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);
1878 1879
        __ PrepareCallCFunction(1, 0, kScratchReg);
        __ CallCFunction(ExternalReference::atomic_pair_load_function(), 1, 0);
1880
        __ PopCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);
1881 1882 1883 1884 1885 1886
      }
      break;
    }
    case kMipsWord32AtomicPairStore: {
      if (IsMipsArchVariant(kMips32r6)) {
        Label store;
1887
        __ Addu(a0, i.InputRegister(0), i.InputRegister(1));
1888 1889
        __ sync();
        __ bind(&store);
1890 1891 1892 1893 1894 1895
        __ llx(i.TempRegister(2), MemOperand(a0, 4));
        __ ll(i.TempRegister(1), MemOperand(a0, 0));
        __ Move(i.TempRegister(1), i.InputRegister(2));
        __ scx(i.InputRegister(3), MemOperand(a0, 4));
        __ sc(i.TempRegister(1), MemOperand(a0, 0));
        __ BranchShort(&store, eq, i.TempRegister(1), Operand(zero_reg));
1896 1897
        __ sync();
      } else {
1898 1899
        FrameScope scope(tasm(), StackFrame::MANUAL);
        __ Addu(a0, i.InputRegister(0), i.InputRegister(1));
1900
        __ PushCallerSaved(SaveFPRegsMode::kIgnore);
1901 1902
        __ PrepareCallCFunction(3, 0, kScratchReg);
        __ CallCFunction(ExternalReference::atomic_pair_store_function(), 3, 0);
1903
        __ PopCallerSaved(SaveFPRegsMode::kIgnore);
1904 1905 1906
      }
      break;
    }
1907 1908 1909
#define ATOMIC64_BINOP_ARITH_CASE(op, instr, external) \
  case kMipsWord32AtomicPair##op:                      \
    ASSEMBLE_ATOMIC64_ARITH_BINOP(instr, external);    \
1910
    break;
1911 1912
      ATOMIC64_BINOP_ARITH_CASE(Add, AddPair, atomic_pair_add_function)
      ATOMIC64_BINOP_ARITH_CASE(Sub, SubPair, atomic_pair_sub_function)
1913
#undef ATOMIC64_BINOP_ARITH_CASE
1914 1915 1916
#define ATOMIC64_BINOP_LOGIC_CASE(op, instr, external) \
  case kMipsWord32AtomicPair##op:                      \
    ASSEMBLE_ATOMIC64_LOGIC_BINOP(instr, external);    \
1917
    break;
1918 1919 1920
      ATOMIC64_BINOP_LOGIC_CASE(And, AndPair, atomic_pair_and_function)
      ATOMIC64_BINOP_LOGIC_CASE(Or, OrPair, atomic_pair_or_function)
      ATOMIC64_BINOP_LOGIC_CASE(Xor, XorPair, atomic_pair_xor_function)
1921 1922
#undef ATOMIC64_BINOP_LOGIC_CASE
    case kMipsWord32AtomicPairExchange:
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
      if (IsMipsArchVariant(kMips32r6)) {
        Label binop;
        Register oldval_low =
            instr->OutputCount() >= 1 ? i.OutputRegister(0) : i.TempRegister(1);
        Register oldval_high =
            instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(2);
        __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1));
        __ sync();
        __ bind(&binop);
        __ llx(oldval_high, MemOperand(i.TempRegister(0), 4));
        __ ll(oldval_low, MemOperand(i.TempRegister(0), 0));
        __ Move(i.TempRegister(1), i.InputRegister(2));
        __ scx(i.InputRegister(3), MemOperand(i.TempRegister(0), 4));
        __ sc(i.TempRegister(1), MemOperand(i.TempRegister(0), 0));
        __ BranchShort(&binop, eq, i.TempRegister(1), Operand(zero_reg));
        __ sync();
      } else {
        FrameScope scope(tasm(), StackFrame::MANUAL);
1941
        __ PushCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);
1942 1943 1944 1945
        __ PrepareCallCFunction(3, 0, kScratchReg);
        __ Addu(a0, i.InputRegister(0), i.InputRegister(1));
        __ CallCFunction(ExternalReference::atomic_pair_exchange_function(), 3,
                         0);
1946
        __ PopCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);
1947
      }
1948
      break;
1949
    case kMipsWord32AtomicPairCompareExchange: {
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
      if (IsMipsArchVariant(kMips32r6)) {
        Label compareExchange, exit;
        Register oldval_low =
            instr->OutputCount() >= 1 ? i.OutputRegister(0) : kScratchReg;
        Register oldval_high =
            instr->OutputCount() >= 2 ? i.OutputRegister(1) : kScratchReg2;
        __ Addu(i.TempRegister(0), i.InputRegister(0), i.InputRegister(1));
        __ sync();
        __ bind(&compareExchange);
        __ llx(oldval_high, MemOperand(i.TempRegister(0), 4));
        __ ll(oldval_low, MemOperand(i.TempRegister(0), 0));
        __ BranchShort(&exit, ne, i.InputRegister(2), Operand(oldval_low));
        __ BranchShort(&exit, ne, i.InputRegister(3), Operand(oldval_high));
        __ mov(kScratchReg, i.InputRegister(4));
        __ scx(i.InputRegister(5), MemOperand(i.TempRegister(0), 4));
        __ sc(kScratchReg, MemOperand(i.TempRegister(0), 0));
        __ BranchShort(&compareExchange, eq, kScratchReg, Operand(zero_reg));
        __ bind(&exit);
        __ sync();
      } else {
        FrameScope scope(tasm(), StackFrame::MANUAL);
1971
        __ PushCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);
1972 1973 1974 1975 1976
        __ PrepareCallCFunction(5, 0, kScratchReg);
        __ addu(a0, i.InputRegister(0), i.InputRegister(1));
        __ sw(i.InputRegister(5), MemOperand(sp, 16));
        __ CallCFunction(
            ExternalReference::atomic_pair_compare_exchange_function(), 5, 0);
1977
        __ PopCallerSaved(SaveFPRegsMode::kIgnore, v0, v1);
1978
      }
1979 1980
      break;
    }
1981
    case kMipsS128Zero: {
1982
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
1983 1984 1985 1986 1987
      __ xor_v(i.OutputSimd128Register(), i.OutputSimd128Register(),
               i.OutputSimd128Register());
      break;
    }
    case kMipsI32x4Splat: {
1988
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
1989 1990 1991 1992
      __ fill_w(i.OutputSimd128Register(), i.InputRegister(0));
      break;
    }
    case kMipsI32x4ExtractLane: {
1993
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
1994 1995 1996 1997 1998
      __ copy_s_w(i.OutputRegister(), i.InputSimd128Register(0),
                  i.InputInt8(1));
      break;
    }
    case kMipsI32x4ReplaceLane: {
1999
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2000 2001
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register dst = i.OutputSimd128Register();
2002
      if (src != dst) {
2003 2004 2005 2006 2007 2008
        __ move_v(dst, src);
      }
      __ insert_w(dst, i.InputInt8(1), i.InputRegister(2));
      break;
    }
    case kMipsI32x4Add: {
2009
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2010 2011 2012 2013 2014
      __ addv_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsI32x4Sub: {
2015
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2016 2017 2018 2019
      __ subv_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
    case kMipsI32x4ExtAddPairwiseI16x8S: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ hadd_s_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(0));
      break;
    }
    case kMipsI32x4ExtAddPairwiseI16x8U: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ hadd_u_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(0));
      break;
    }
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
    case kMipsF64x2Abs: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ bclri_d(i.OutputSimd128Register(), i.InputSimd128Register(0), 63);
      break;
    }
    case kMipsF64x2Neg: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ bnegi_d(i.OutputSimd128Register(), i.InputSimd128Register(0), 63);
      break;
    }
2042 2043 2044 2045 2046
    case kMipsF64x2Sqrt: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ fsqrt_d(i.OutputSimd128Register(), i.InputSimd128Register(0));
      break;
    }
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    case kMipsF64x2Add: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      ASSEMBLE_F64X2_ARITHMETIC_BINOP(fadd_d);
      break;
    }
    case kMipsF64x2Sub: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      ASSEMBLE_F64X2_ARITHMETIC_BINOP(fsub_d);
      break;
    }
    case kMipsF64x2Mul: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      ASSEMBLE_F64X2_ARITHMETIC_BINOP(fmul_d);
      break;
    }
    case kMipsF64x2Div: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      ASSEMBLE_F64X2_ARITHMETIC_BINOP(fdiv_d);
      break;
    }
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
    case kMipsF64x2Min: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      ASSEMBLE_F64X2_ARITHMETIC_BINOP(fmin_d);
      break;
    }
    case kMipsF64x2Max: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      ASSEMBLE_F64X2_ARITHMETIC_BINOP(fmax_d);
      break;
    }
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    case kMipsF64x2Eq: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ fceq_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF64x2Ne: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ fcne_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF64x2Lt: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ fclt_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF64x2Le: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ fcle_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
    case kMipsF64x2Splat: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      __ FmoveLow(kScratchReg, i.InputDoubleRegister(0));
      __ insert_w(dst, 0, kScratchReg);
      __ insert_w(dst, 2, kScratchReg);
      __ FmoveHigh(kScratchReg, i.InputDoubleRegister(0));
      __ insert_w(dst, 1, kScratchReg);
      __ insert_w(dst, 3, kScratchReg);
      break;
    }
    case kMipsF64x2ExtractLane: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ copy_u_w(kScratchReg, i.InputSimd128Register(0), i.InputInt8(1) * 2);
      __ FmoveLow(i.OutputDoubleRegister(), kScratchReg);
      __ copy_u_w(kScratchReg, i.InputSimd128Register(0),
                  i.InputInt8(1) * 2 + 1);
      __ FmoveHigh(i.OutputDoubleRegister(), kScratchReg);
      break;
    }
    case kMipsF64x2ReplaceLane: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register dst = i.OutputSimd128Register();
      if (src != dst) {
        __ move_v(dst, src);
      }
      __ FmoveLow(kScratchReg, i.InputDoubleRegister(2));
      __ insert_w(dst, i.InputInt8(1) * 2, kScratchReg);
      __ FmoveHigh(kScratchReg, i.InputDoubleRegister(2));
      __ insert_w(dst, i.InputInt8(1) * 2 + 1, kScratchReg);
      break;
    }
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
    case kMipsF64x2Pmin: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register lhs = i.InputSimd128Register(0);
      Simd128Register rhs = i.InputSimd128Register(1);
      // dst = rhs < lhs ? rhs : lhs
      __ fclt_d(dst, rhs, lhs);
      __ bsel_v(dst, lhs, rhs);
      break;
    }
    case kMipsF64x2Pmax: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register lhs = i.InputSimd128Register(0);
      Simd128Register rhs = i.InputSimd128Register(1);
      // dst = lhs < rhs ? rhs : lhs
      __ fclt_d(dst, lhs, rhs);
      __ bsel_v(dst, lhs, rhs);
      break;
    }
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
    case kMipsF64x2Ceil: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cfcmsa(kScratchReg, MSACSR);
      __ li(kScratchReg2, kRoundToPlusInf);
      __ ctcmsa(MSACSR, kScratchReg2);
      __ frint_d(i.OutputSimd128Register(), i.InputSimd128Register(0));
      __ ctcmsa(MSACSR, kScratchReg);
      break;
    }
    case kMipsF64x2Floor: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cfcmsa(kScratchReg, MSACSR);
      __ li(kScratchReg2, kRoundToMinusInf);
      __ ctcmsa(MSACSR, kScratchReg2);
      __ frint_d(i.OutputSimd128Register(), i.InputSimd128Register(0));
      __ ctcmsa(MSACSR, kScratchReg);
      break;
    }
    case kMipsF64x2Trunc: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cfcmsa(kScratchReg, MSACSR);
      __ li(kScratchReg2, kRoundToZero);
      __ ctcmsa(MSACSR, kScratchReg2);
      __ frint_d(i.OutputSimd128Register(), i.InputSimd128Register(0));
      __ ctcmsa(MSACSR, kScratchReg);
      break;
    }
    case kMipsF64x2NearestInt: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cfcmsa(kScratchReg, MSACSR);
      // kRoundToNearest == 0
      __ ctcmsa(MSACSR, zero_reg);
      __ frint_d(i.OutputSimd128Register(), i.InputSimd128Register(0));
      __ ctcmsa(MSACSR, kScratchReg);
      break;
    }
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
    case kMipsF64x2ConvertLowI32x4S: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ilvr_w(kSimd128RegZero, kSimd128RegZero, i.InputSimd128Register(0));
      __ slli_d(kSimd128RegZero, kSimd128RegZero, 32);
      __ srai_d(kSimd128RegZero, kSimd128RegZero, 32);
      __ ffint_s_d(i.OutputSimd128Register(), kSimd128RegZero);
      break;
    }
    case kMipsF64x2ConvertLowI32x4U: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ilvr_w(kSimd128RegZero, kSimd128RegZero, i.InputSimd128Register(0));
      __ ffint_u_d(i.OutputSimd128Register(), kSimd128RegZero);
      break;
    }
    case kMipsF64x2PromoteLowF32x4: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ fexupr_d(i.OutputSimd128Register(), i.InputSimd128Register(0));
      break;
    }
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
    case kMipsI64x2Add: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ addv_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsI64x2Sub: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ subv_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2223 2224 2225 2226 2227 2228
    case kMipsI64x2Mul: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ mulv_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2229 2230 2231 2232 2233 2234 2235
    case kMipsI64x2Neg: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ subv_d(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
    case kMipsI64x2Shl: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ slli_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt6(1));
      break;
    }
    case kMipsI64x2ShrS: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ srai_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt6(1));
      break;
    }
    case kMipsI64x2ShrU: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ srli_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt6(1));
      break;
    }
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
    case kMipsI64x2BitMask: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Register dst = i.OutputRegister();
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register scratch0 = kSimd128RegZero;
      Simd128Register scratch1 = kSimd128ScratchReg;
      __ srli_d(scratch0, src, 63);
      __ shf_w(scratch1, scratch0, 0x02);
      __ slli_d(scratch1, scratch1, 1);
      __ or_v(scratch0, scratch0, scratch1);
      __ copy_u_b(dst, scratch0, 0);
      break;
    }
2267 2268 2269 2270 2271 2272
    case kMipsI64x2Eq: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ ceq_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
               i.InputSimd128Register(1));
      break;
    }
2273 2274 2275 2276 2277 2278 2279 2280
    case kMipsI64x2Ne: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ ceq_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
               i.InputSimd128Register(1));
      __ nor_v(i.OutputSimd128Register(), i.OutputSimd128Register(),
               i.OutputSimd128Register());
      break;
    }
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    case kMipsI64x2GtS: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ clt_s_d(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
      break;
    }
    case kMipsI64x2GeS: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cle_s_d(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
      break;
    }
2293 2294 2295 2296 2297 2298 2299
    case kMipsI64x2Abs: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ adds_a_d(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  kSimd128RegZero);
      break;
    }
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
    case kMipsI64x2SConvertI32x4Low: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src = i.InputSimd128Register(0);
      __ ilvr_w(kSimd128ScratchReg, src, src);
      __ slli_d(dst, kSimd128ScratchReg, 32);
      __ srai_d(dst, dst, 32);
      break;
    }
    case kMipsI64x2SConvertI32x4High: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src = i.InputSimd128Register(0);
      __ ilvl_w(kSimd128ScratchReg, src, src);
      __ slli_d(dst, kSimd128ScratchReg, 32);
      __ srai_d(dst, dst, 32);
      break;
    }
    case kMipsI64x2UConvertI32x4Low: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ilvr_w(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
    case kMipsI64x2UConvertI32x4High: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ilvl_w(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
    case kMipsI64x2ExtMulLowI32x4S:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvr_w, dotp_s_d);
      break;
    case kMipsI64x2ExtMulHighI32x4S:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvl_w, dotp_s_d);
      break;
    case kMipsI64x2ExtMulLowI32x4U:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvr_w, dotp_u_d);
      break;
    case kMipsI64x2ExtMulHighI32x4U:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvl_w, dotp_u_d);
      break;
    case kMipsI32x4ExtMulLowI16x8S:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvr_h, dotp_s_w);
      break;
    case kMipsI32x4ExtMulHighI16x8S:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvl_h, dotp_s_w);
      break;
    case kMipsI32x4ExtMulLowI16x8U:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvr_h, dotp_u_w);
      break;
    case kMipsI32x4ExtMulHighI16x8U:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvl_h, dotp_u_w);
      break;
    case kMipsI16x8ExtMulLowI8x16S:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvr_b, dotp_s_h);
      break;
    case kMipsI16x8ExtMulHighI8x16S:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvl_b, dotp_s_h);
      break;
    case kMipsI16x8ExtMulLowI8x16U:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvr_b, dotp_u_h);
      break;
    case kMipsI16x8ExtMulHighI8x16U:
      ASSEMBLE_SIMD_EXTENDED_MULTIPLY(ilvl_b, dotp_u_h);
      break;
2368
    case kMipsF32x4Splat: {
2369
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2370 2371 2372 2373 2374
      __ FmoveLow(kScratchReg, i.InputSingleRegister(0));
      __ fill_w(i.OutputSimd128Register(), kScratchReg);
      break;
    }
    case kMipsF32x4ExtractLane: {
2375
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2376 2377 2378 2379 2380
      __ copy_u_w(kScratchReg, i.InputSimd128Register(0), i.InputInt8(1));
      __ FmoveLow(i.OutputSingleRegister(), kScratchReg);
      break;
    }
    case kMipsF32x4ReplaceLane: {
2381
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2382 2383
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register dst = i.OutputSimd128Register();
2384
      if (src != dst) {
2385 2386 2387 2388 2389 2390 2391
        __ move_v(dst, src);
      }
      __ FmoveLow(kScratchReg, i.InputSingleRegister(2));
      __ insert_w(dst, i.InputInt8(1), kScratchReg);
      break;
    }
    case kMipsF32x4SConvertI32x4: {
2392
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2393 2394 2395 2396
      __ ffint_s_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      break;
    }
    case kMipsF32x4UConvertI32x4: {
2397
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2398 2399 2400
      __ ffint_u_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      break;
    }
2401 2402 2403 2404 2405 2406 2407
    case kMipsF32x4DemoteF64x2Zero: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ fexdo_w(i.OutputSimd128Register(), kSimd128RegZero,
                 i.InputSimd128Register(0));
      break;
    }
2408
    case kMipsI32x4Mul: {
2409
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2410 2411 2412 2413 2414
      __ mulv_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsI32x4MaxS: {
2415
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2416 2417 2418 2419 2420
      __ max_s_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI32x4MinS: {
2421
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2422 2423 2424 2425 2426
      __ min_s_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI32x4Eq: {
2427
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2428 2429 2430 2431 2432
      __ ceq_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
               i.InputSimd128Register(1));
      break;
    }
    case kMipsI32x4Ne: {
2433
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2434 2435 2436 2437 2438 2439
      Simd128Register dst = i.OutputSimd128Register();
      __ ceq_w(dst, i.InputSimd128Register(0), i.InputSimd128Register(1));
      __ nor_v(dst, dst, dst);
      break;
    }
    case kMipsI32x4Shl: {
2440
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2441 2442 2443 2444 2445
      __ slli_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt5(1));
      break;
    }
    case kMipsI32x4ShrS: {
2446
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2447 2448 2449 2450 2451
      __ srai_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt5(1));
      break;
    }
    case kMipsI32x4ShrU: {
2452
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2453 2454 2455 2456 2457
      __ srli_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt5(1));
      break;
    }
    case kMipsI32x4MaxU: {
2458
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2459 2460 2461 2462 2463
      __ max_u_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI32x4MinU: {
2464
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2465 2466 2467 2468
      __ min_u_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
2469
    case kMipsS128Select: {
2470
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2471
      DCHECK(i.OutputSimd128Register() == i.InputSimd128Register(0));
2472 2473 2474 2475
      __ bsel_v(i.OutputSimd128Register(), i.InputSimd128Register(2),
                i.InputSimd128Register(1));
      break;
    }
2476 2477 2478 2479 2480 2481 2482
    case kMipsS128AndNot: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      __ nor_v(dst, i.InputSimd128Register(1), i.InputSimd128Register(1));
      __ and_v(dst, dst, i.InputSimd128Register(0));
      break;
    }
2483
    case kMipsF32x4Abs: {
2484
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2485 2486 2487 2488
      __ bclri_w(i.OutputSimd128Register(), i.InputSimd128Register(0), 31);
      break;
    }
    case kMipsF32x4Neg: {
2489
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2490 2491 2492
      __ bnegi_w(i.OutputSimd128Register(), i.InputSimd128Register(0), 31);
      break;
    }
2493 2494 2495 2496 2497
    case kMipsF32x4Sqrt: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ fsqrt_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      break;
    }
2498
    case kMipsF32x4Add: {
2499
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2500 2501 2502 2503 2504
      __ fadd_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF32x4Sub: {
2505
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2506 2507 2508 2509 2510
      __ fsub_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF32x4Mul: {
2511
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2512 2513 2514 2515
      __ fmul_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2516 2517 2518 2519 2520 2521
    case kMipsF32x4Div: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ fdiv_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2522
    case kMipsF32x4Max: {
2523
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2524 2525 2526 2527 2528
      __ fmax_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF32x4Min: {
2529
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2530 2531 2532 2533 2534
      __ fmin_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF32x4Eq: {
2535
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2536 2537 2538 2539 2540
      __ fceq_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF32x4Ne: {
2541
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2542 2543 2544 2545 2546
      __ fcne_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF32x4Lt: {
2547
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2548 2549 2550 2551 2552
      __ fclt_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsF32x4Le: {
2553
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2554 2555 2556 2557
      __ fcle_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
    case kMipsF32x4Pmin: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register lhs = i.InputSimd128Register(0);
      Simd128Register rhs = i.InputSimd128Register(1);
      // dst = rhs < lhs ? rhs : lhs
      __ fclt_w(dst, rhs, lhs);
      __ bsel_v(dst, lhs, rhs);
      break;
    }
    case kMipsF32x4Pmax: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register lhs = i.InputSimd128Register(0);
      Simd128Register rhs = i.InputSimd128Register(1);
      // dst = lhs < rhs ? rhs : lhs
      __ fclt_w(dst, lhs, rhs);
      __ bsel_v(dst, lhs, rhs);
      break;
    }
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
    case kMipsF32x4Ceil: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cfcmsa(kScratchReg, MSACSR);
      __ li(kScratchReg2, kRoundToPlusInf);
      __ ctcmsa(MSACSR, kScratchReg2);
      __ frint_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      __ ctcmsa(MSACSR, kScratchReg);
      break;
    }
    case kMipsF32x4Floor: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cfcmsa(kScratchReg, MSACSR);
      __ li(kScratchReg2, kRoundToMinusInf);
      __ ctcmsa(MSACSR, kScratchReg2);
      __ frint_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      __ ctcmsa(MSACSR, kScratchReg);
      break;
    }
    case kMipsF32x4Trunc: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cfcmsa(kScratchReg, MSACSR);
      __ li(kScratchReg2, kRoundToZero);
      __ ctcmsa(MSACSR, kScratchReg2);
      __ frint_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      __ ctcmsa(MSACSR, kScratchReg);
      break;
    }
    case kMipsF32x4NearestInt: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ cfcmsa(kScratchReg, MSACSR);
      // kRoundToNearest == 0
      __ ctcmsa(MSACSR, zero_reg);
      __ frint_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      __ ctcmsa(MSACSR, kScratchReg);
      break;
    }
2614
    case kMipsI32x4SConvertF32x4: {
2615
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2616 2617 2618 2619
      __ ftrunc_s_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      break;
    }
    case kMipsI32x4UConvertF32x4: {
2620
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2621 2622 2623
      __ ftrunc_u_w(i.OutputSimd128Register(), i.InputSimd128Register(0));
      break;
    }
2624
    case kMipsI32x4Neg: {
2625
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2626 2627 2628 2629 2630
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ subv_w(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
2631
    case kMipsI32x4GtS: {
2632
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2633 2634
      __ clt_s_w(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
2635 2636
      break;
    }
2637
    case kMipsI32x4GeS: {
2638
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2639 2640
      __ cle_s_w(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
2641 2642
      break;
    }
2643
    case kMipsI32x4GtU: {
2644
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2645 2646
      __ clt_u_w(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
2647 2648
      break;
    }
2649
    case kMipsI32x4GeU: {
2650
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2651 2652
      __ cle_u_w(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
2653 2654
      break;
    }
2655 2656 2657 2658 2659 2660
    case kMipsI32x4Abs: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ asub_s_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  kSimd128RegZero);
      break;
    }
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
    case kMipsI32x4BitMask: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Register dst = i.OutputRegister();
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register scratch0 = kSimd128RegZero;
      Simd128Register scratch1 = kSimd128ScratchReg;
      __ srli_w(scratch0, src, 31);
      __ srli_d(scratch1, scratch0, 31);
      __ or_v(scratch0, scratch0, scratch1);
      __ shf_w(scratch1, scratch0, 0x0E);
      __ slli_d(scratch1, scratch1, 2);
      __ or_v(scratch0, scratch0, scratch1);
      __ copy_u_b(dst, scratch0, 0);
      break;
    }
2676 2677 2678 2679 2680 2681
    case kMipsI32x4DotI16x8S: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ dotp_s_w(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    case kMipsI32x4TruncSatF64x2SZero: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ftrunc_s_d(kSimd128ScratchReg, i.InputSimd128Register(0));
      __ sat_s_d(kSimd128ScratchReg, kSimd128ScratchReg, 31);
      __ pckev_w(i.OutputSimd128Register(), kSimd128RegZero,
                 kSimd128ScratchReg);
      break;
    }
    case kMipsI32x4TruncSatF64x2UZero: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ftrunc_u_d(kSimd128ScratchReg, i.InputSimd128Register(0));
      __ sat_u_d(kSimd128ScratchReg, kSimd128ScratchReg, 31);
      __ pckev_w(i.OutputSimd128Register(), kSimd128RegZero,
                 kSimd128ScratchReg);
      break;
    }
2700
    case kMipsI16x8Splat: {
2701
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2702 2703 2704
      __ fill_h(i.OutputSimd128Register(), i.InputRegister(0));
      break;
    }
2705 2706 2707 2708 2709 2710 2711
    case kMipsI16x8ExtractLaneU: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ copy_u_h(i.OutputRegister(), i.InputSimd128Register(0),
                  i.InputInt8(1));
      break;
    }
    case kMipsI16x8ExtractLaneS: {
2712
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2713 2714 2715 2716 2717
      __ copy_s_h(i.OutputRegister(), i.InputSimd128Register(0),
                  i.InputInt8(1));
      break;
    }
    case kMipsI16x8ReplaceLane: {
2718
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2719 2720
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register dst = i.OutputSimd128Register();
2721
      if (src != dst) {
2722 2723 2724 2725 2726 2727
        __ move_v(dst, src);
      }
      __ insert_h(dst, i.InputInt8(1), i.InputRegister(2));
      break;
    }
    case kMipsI16x8Neg: {
2728
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2729 2730 2731 2732 2733 2734
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ subv_h(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
    case kMipsI16x8Shl: {
2735
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2736 2737 2738 2739 2740
      __ slli_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt4(1));
      break;
    }
    case kMipsI16x8ShrS: {
2741
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2742 2743 2744 2745 2746
      __ srai_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt4(1));
      break;
    }
    case kMipsI16x8ShrU: {
2747
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2748 2749 2750 2751 2752
      __ srli_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt4(1));
      break;
    }
    case kMipsI16x8Add: {
2753
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2754 2755 2756 2757
      __ addv_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2758
    case kMipsI16x8AddSatS: {
2759
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2760 2761 2762 2763 2764
      __ adds_s_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
    case kMipsI16x8Sub: {
2765
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2766 2767 2768 2769
      __ subv_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2770
    case kMipsI16x8SubSatS: {
2771
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2772 2773 2774 2775
      __ subs_s_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
2776
    case kMipsI16x8Mul: {
2777
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2778 2779 2780 2781 2782
      __ mulv_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
    case kMipsI16x8MaxS: {
2783
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2784 2785 2786 2787 2788
      __ max_s_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI16x8MinS: {
2789
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2790 2791 2792 2793 2794
      __ min_s_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI16x8Eq: {
2795
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2796 2797 2798 2799 2800
      __ ceq_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
               i.InputSimd128Register(1));
      break;
    }
    case kMipsI16x8Ne: {
2801
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2802 2803 2804 2805 2806
      Simd128Register dst = i.OutputSimd128Register();
      __ ceq_h(dst, i.InputSimd128Register(0), i.InputSimd128Register(1));
      __ nor_v(dst, dst, dst);
      break;
    }
2807
    case kMipsI16x8GtS: {
2808
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2809 2810
      __ clt_s_h(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
2811 2812
      break;
    }
2813
    case kMipsI16x8GeS: {
2814
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2815 2816
      __ cle_s_h(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
2817 2818
      break;
    }
2819
    case kMipsI16x8AddSatU: {
2820
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2821 2822 2823 2824
      __ adds_u_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
2825
    case kMipsI16x8SubSatU: {
2826
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2827 2828 2829 2830 2831
      __ subs_u_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
    case kMipsI16x8MaxU: {
2832
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2833 2834 2835 2836 2837
      __ max_u_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI16x8MinU: {
2838
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2839 2840 2841 2842
      __ min_u_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
2843
    case kMipsI16x8GtU: {
2844
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2845 2846
      __ clt_u_h(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
2847 2848
      break;
    }
2849
    case kMipsI16x8GeU: {
2850
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2851 2852
      __ cle_u_h(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
2853 2854
      break;
    }
2855 2856 2857 2858 2859 2860
    case kMipsI16x8RoundingAverageU: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ aver_u_h(i.OutputSimd128Register(), i.InputSimd128Register(1),
                  i.InputSimd128Register(0));
      break;
    }
2861 2862 2863 2864 2865 2866
    case kMipsI16x8Abs: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ asub_s_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  kSimd128RegZero);
      break;
    }
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    case kMipsI16x8BitMask: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Register dst = i.OutputRegister();
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register scratch0 = kSimd128RegZero;
      Simd128Register scratch1 = kSimd128ScratchReg;
      __ srli_h(scratch0, src, 15);
      __ srli_w(scratch1, scratch0, 15);
      __ or_v(scratch0, scratch0, scratch1);
      __ srli_d(scratch1, scratch0, 30);
      __ or_v(scratch0, scratch0, scratch1);
      __ shf_w(scratch1, scratch0, 0x0E);
      __ slli_d(scratch1, scratch1, 4);
      __ or_v(scratch0, scratch0, scratch1);
      __ copy_u_b(dst, scratch0, 0);
      break;
    }
2884 2885 2886 2887 2888 2889
    case kMipsI16x8Q15MulRSatS: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ mulr_q_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
    case kMipsI16x8ExtAddPairwiseI8x16S: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ hadd_s_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(0));
      break;
    }
    case kMipsI16x8ExtAddPairwiseI8x16U: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ hadd_u_h(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(0));
      break;
    }
2902
    case kMipsI8x16Splat: {
2903
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2904 2905 2906
      __ fill_b(i.OutputSimd128Register(), i.InputRegister(0));
      break;
    }
2907 2908 2909 2910 2911 2912 2913
    case kMipsI8x16ExtractLaneU: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ copy_u_b(i.OutputRegister(), i.InputSimd128Register(0),
                  i.InputInt8(1));
      break;
    }
    case kMipsI8x16ExtractLaneS: {
2914
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2915 2916 2917 2918 2919
      __ copy_s_b(i.OutputRegister(), i.InputSimd128Register(0),
                  i.InputInt8(1));
      break;
    }
    case kMipsI8x16ReplaceLane: {
2920
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2921 2922
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register dst = i.OutputSimd128Register();
2923
      if (src != dst) {
2924 2925 2926 2927 2928 2929
        __ move_v(dst, src);
      }
      __ insert_b(dst, i.InputInt8(1), i.InputRegister(2));
      break;
    }
    case kMipsI8x16Neg: {
2930
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2931 2932 2933 2934 2935 2936
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ subv_b(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
    case kMipsI8x16Shl: {
2937
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2938 2939 2940 2941 2942
      __ slli_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt3(1));
      break;
    }
    case kMipsI8x16ShrS: {
2943
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2944 2945 2946 2947
      __ srai_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt3(1));
      break;
    }
2948
    case kMipsI8x16Add: {
2949
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2950 2951 2952 2953
      __ addv_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2954
    case kMipsI8x16AddSatS: {
2955
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2956 2957 2958 2959 2960
      __ adds_s_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
    case kMipsI8x16Sub: {
2961
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2962 2963 2964 2965
      __ subv_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputSimd128Register(1));
      break;
    }
2966
    case kMipsI8x16SubSatS: {
2967
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2968 2969 2970 2971 2972
      __ subs_s_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
    case kMipsI8x16MaxS: {
2973
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2974 2975 2976 2977 2978
      __ max_s_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI8x16MinS: {
2979
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2980 2981 2982 2983 2984
      __ min_s_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI8x16Eq: {
2985
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2986 2987 2988 2989 2990
      __ ceq_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
               i.InputSimd128Register(1));
      break;
    }
    case kMipsI8x16Ne: {
2991
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2992 2993 2994 2995 2996 2997
      Simd128Register dst = i.OutputSimd128Register();
      __ ceq_b(dst, i.InputSimd128Register(0), i.InputSimd128Register(1));
      __ nor_v(dst, dst, dst);
      break;
    }
    case kMipsI8x16GtS: {
2998
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
2999 3000 3001 3002 3003
      __ clt_s_b(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
      break;
    }
    case kMipsI8x16GeS: {
3004
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3005 3006 3007 3008 3009
      __ cle_s_b(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
      break;
    }
    case kMipsI8x16ShrU: {
3010
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3011 3012 3013 3014
      __ srli_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                i.InputInt3(1));
      break;
    }
3015
    case kMipsI8x16AddSatU: {
3016
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3017 3018 3019 3020
      __ adds_u_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
3021
    case kMipsI8x16SubSatU: {
3022
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3023 3024 3025 3026 3027
      __ subs_u_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  i.InputSimd128Register(1));
      break;
    }
    case kMipsI8x16MaxU: {
3028
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3029 3030 3031 3032 3033
      __ max_u_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI8x16MinU: {
3034
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3035 3036 3037 3038 3039
      __ min_u_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                 i.InputSimd128Register(1));
      break;
    }
    case kMipsI8x16GtU: {
3040
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3041 3042 3043 3044 3045
      __ clt_u_b(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
      break;
    }
    case kMipsI8x16GeU: {
3046
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3047 3048 3049 3050
      __ cle_u_b(i.OutputSimd128Register(), i.InputSimd128Register(1),
                 i.InputSimd128Register(0));
      break;
    }
3051 3052 3053 3054 3055 3056
    case kMipsI8x16RoundingAverageU: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ aver_u_b(i.OutputSimd128Register(), i.InputSimd128Register(1),
                  i.InputSimd128Register(0));
      break;
    }
3057 3058 3059 3060 3061 3062
    case kMipsI8x16Abs: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ asub_s_b(i.OutputSimd128Register(), i.InputSimd128Register(0),
                  kSimd128RegZero);
      break;
    }
3063 3064 3065 3066 3067
    case kMipsI8x16Popcnt: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      __ pcnt_b(i.OutputSimd128Register(), i.InputSimd128Register(0));
      break;
    }
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
    case kMipsI8x16BitMask: {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Register dst = i.OutputRegister();
      Simd128Register src = i.InputSimd128Register(0);
      Simd128Register scratch0 = kSimd128RegZero;
      Simd128Register scratch1 = kSimd128ScratchReg;
      __ srli_b(scratch0, src, 7);
      __ srli_h(scratch1, scratch0, 7);
      __ or_v(scratch0, scratch0, scratch1);
      __ srli_w(scratch1, scratch0, 14);
      __ or_v(scratch0, scratch0, scratch1);
      __ srli_d(scratch1, scratch0, 28);
      __ or_v(scratch0, scratch0, scratch1);
      __ shf_w(scratch1, scratch0, 0x0E);
      __ ilvev_b(scratch0, scratch1, scratch0);
      __ copy_u_h(dst, scratch0, 0);
      break;
    }
3086
    case kMipsS128And: {
3087
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3088 3089 3090 3091 3092
      __ and_v(i.OutputSimd128Register(), i.InputSimd128Register(0),
               i.InputSimd128Register(1));
      break;
    }
    case kMipsS128Or: {
3093
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3094 3095 3096 3097 3098
      __ or_v(i.OutputSimd128Register(), i.InputSimd128Register(0),
              i.InputSimd128Register(1));
      break;
    }
    case kMipsS128Xor: {
3099
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3100 3101 3102 3103 3104
      __ xor_v(i.OutputSimd128Register(), i.InputSimd128Register(0),
               i.InputSimd128Register(1));
      break;
    }
    case kMipsS128Not: {
3105
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3106 3107 3108 3109
      __ nor_v(i.OutputSimd128Register(), i.InputSimd128Register(0),
               i.InputSimd128Register(0));
      break;
    }
3110
    case kMipsV128AnyTrue: {
3111
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
      Register dst = i.OutputRegister();
      Label all_false;

      __ BranchMSA(&all_false, MSA_BRANCH_V, all_zero,
                   i.InputSimd128Register(0), USE_DELAY_SLOT);
      __ li(dst, 0);  // branch delay slot
      __ li(dst, -1);
      __ bind(&all_false);
      break;
    }
3122
    case kMipsI64x2AllTrue: {
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      Register dst = i.OutputRegister();
      Label all_true;
      __ BranchMSA(&all_true, MSA_BRANCH_D, all_not_zero,
                   i.InputSimd128Register(0), USE_DELAY_SLOT);
      __ li(dst, -1);  // branch delay slot
      __ li(dst, 0);
      __ bind(&all_true);
      break;
    }
3133
    case kMipsI32x4AllTrue: {
3134
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3135 3136 3137 3138 3139 3140 3141 3142 3143
      Register dst = i.OutputRegister();
      Label all_true;
      __ BranchMSA(&all_true, MSA_BRANCH_W, all_not_zero,
                   i.InputSimd128Register(0), USE_DELAY_SLOT);
      __ li(dst, -1);  // branch delay slot
      __ li(dst, 0);
      __ bind(&all_true);
      break;
    }
3144
    case kMipsI16x8AllTrue: {
3145
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3146 3147 3148 3149 3150 3151 3152 3153 3154
      Register dst = i.OutputRegister();
      Label all_true;
      __ BranchMSA(&all_true, MSA_BRANCH_H, all_not_zero,
                   i.InputSimd128Register(0), USE_DELAY_SLOT);
      __ li(dst, -1);  // branch delay slot
      __ li(dst, 0);
      __ bind(&all_true);
      break;
    }
3155
    case kMipsI8x16AllTrue: {
3156
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
      Register dst = i.OutputRegister();
      Label all_true;
      __ BranchMSA(&all_true, MSA_BRANCH_B, all_not_zero,
                   i.InputSimd128Register(0), USE_DELAY_SLOT);
      __ li(dst, -1);  // branch delay slot
      __ li(dst, 0);
      __ bind(&all_true);
      break;
    }
    case kMipsMsaLd: {
3167
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3168 3169 3170 3171
      __ ld_b(i.OutputSimd128Register(), i.MemoryOperand());
      break;
    }
    case kMipsMsaSt: {
3172
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3173 3174 3175
      __ st_b(i.InputSimd128Register(2), i.MemoryOperand());
      break;
    }
3176
    case kMipsS32x4InterleaveRight: {
3177
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3178 3179 3180 3181 3182 3183 3184 3185 3186
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [7, 6, 5, 4], src0 = [3, 2, 1, 0]
      // dst = [5, 1, 4, 0]
      __ ilvr_w(dst, src1, src0);
      break;
    }
    case kMipsS32x4InterleaveLeft: {
3187
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3188 3189 3190 3191 3192 3193 3194 3195 3196
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [7, 6, 5, 4], src0 = [3, 2, 1, 0]
      // dst = [7, 3, 6, 2]
      __ ilvl_w(dst, src1, src0);
      break;
    }
    case kMipsS32x4PackEven: {
3197
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3198 3199 3200 3201 3202 3203 3204 3205 3206
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [7, 6, 5, 4], src0 = [3, 2, 1, 0]
      // dst = [6, 4, 2, 0]
      __ pckev_w(dst, src1, src0);
      break;
    }
    case kMipsS32x4PackOdd: {
3207
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3208 3209 3210 3211 3212 3213 3214 3215 3216
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [7, 6, 5, 4], src0 = [3, 2, 1, 0]
      // dst = [7, 5, 3, 1]
      __ pckod_w(dst, src1, src0);
      break;
    }
    case kMipsS32x4InterleaveEven: {
3217
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3218 3219 3220 3221 3222 3223 3224 3225 3226
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [7, 6, 5, 4], src0 = [3, 2, 1, 0]
      // dst = [6, 2, 4, 0]
      __ ilvev_w(dst, src1, src0);
      break;
    }
    case kMipsS32x4InterleaveOdd: {
3227
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3228 3229 3230 3231 3232 3233 3234 3235 3236
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [7, 6, 5, 4], src0 = [3, 2, 1, 0]
      // dst = [7, 3, 5, 1]
      __ ilvod_w(dst, src1, src0);
      break;
    }
    case kMipsS32x4Shuffle: {
3237
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3238 3239 3240 3241 3242 3243
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);

      int32_t shuffle = i.InputInt32(2);

3244
      if (src0 == src1) {
3245
        // Unary S32x4 shuffles are handled with shf.w instruction
3246
        unsigned lane = shuffle & 0xFF;
3247 3248 3249 3250 3251 3252 3253
        if (FLAG_debug_code) {
          // range of all four lanes, for unary instruction,
          // should belong to the same range, which can be one of these:
          // [0, 3] or [4, 7]
          if (lane >= 4) {
            int32_t shuffle_helper = shuffle;
            for (int i = 0; i < 4; ++i) {
3254
              lane = shuffle_helper & 0xFF;
3255 3256 3257 3258 3259
              CHECK_GE(lane, 4);
              shuffle_helper >>= 8;
            }
          }
        }
3260 3261
        uint32_t i8 = 0;
        for (int i = 0; i < 4; i++) {
3262
          lane = shuffle & 0xFF;
3263 3264 3265
          if (lane >= 4) {
            lane -= 4;
          }
3266
          DCHECK_GT(4, lane);
3267 3268 3269 3270 3271 3272
          i8 |= lane << (2 * i);
          shuffle >>= 8;
        }
        __ shf_w(dst, src0, i8);
      } else {
        // For binary shuffles use vshf.w instruction
3273
        if (dst == src0) {
3274 3275
          __ move_v(kSimd128ScratchReg, src0);
          src0 = kSimd128ScratchReg;
3276
        } else if (dst == src1) {
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
          __ move_v(kSimd128ScratchReg, src1);
          src1 = kSimd128ScratchReg;
        }

        __ li(kScratchReg, i.InputInt32(2));
        __ insert_w(dst, 0, kScratchReg);
        __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
        __ ilvr_b(dst, kSimd128RegZero, dst);
        __ ilvr_h(dst, kSimd128RegZero, dst);
        __ vshf_w(dst, src1, src0);
      }
      break;
    }
    case kMipsS16x8InterleaveRight: {
3291
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3292 3293 3294 3295 3296 3297 3298 3299 3300
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [15, ... 11, 10, 9, 8], src0 = [7, ... 3, 2, 1, 0]
      // dst = [11, 3, 10, 2, 9, 1, 8, 0]
      __ ilvr_h(dst, src1, src0);
      break;
    }
    case kMipsS16x8InterleaveLeft: {
3301
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3302 3303 3304 3305 3306 3307 3308 3309 3310
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [15, ... 11, 10, 9, 8], src0 = [7, ... 3, 2, 1, 0]
      // dst = [15, 7, 14, 6, 13, 5, 12, 4]
      __ ilvl_h(dst, src1, src0);
      break;
    }
    case kMipsS16x8PackEven: {
3311
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3312 3313 3314 3315 3316 3317 3318 3319 3320
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [15, ... 11, 10, 9, 8], src0 = [7, ... 3, 2, 1, 0]
      // dst = [14, 12, 10, 8, 6, 4, 2, 0]
      __ pckev_h(dst, src1, src0);
      break;
    }
    case kMipsS16x8PackOdd: {
3321
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3322 3323 3324 3325 3326 3327 3328 3329 3330
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [15, ... 11, 10, 9, 8], src0 = [7, ... 3, 2, 1, 0]
      // dst = [15, 13, 11, 9, 7, 5, 3, 1]
      __ pckod_h(dst, src1, src0);
      break;
    }
    case kMipsS16x8InterleaveEven: {
3331
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3332 3333 3334 3335 3336 3337 3338 3339 3340
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [15, ... 11, 10, 9, 8], src0 = [7, ... 3, 2, 1, 0]
      // dst = [14, 6, 12, 4, 10, 2, 8, 0]
      __ ilvev_h(dst, src1, src0);
      break;
    }
    case kMipsS16x8InterleaveOdd: {
3341
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3342 3343 3344 3345 3346 3347 3348 3349 3350
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [15, ... 11, 10, 9, 8], src0 = [7, ... 3, 2, 1, 0]
      // dst = [15, 7, ... 11, 3, 9, 1]
      __ ilvod_h(dst, src1, src0);
      break;
    }
    case kMipsS16x4Reverse: {
3351
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3352 3353 3354 3355 3356 3357
      // src = [7, 6, 5, 4, 3, 2, 1, 0], dst = [4, 5, 6, 7, 0, 1, 2, 3]
      // shf.df imm field: 0 1 2 3 = 00011011 = 0x1B
      __ shf_h(i.OutputSimd128Register(), i.InputSimd128Register(0), 0x1B);
      break;
    }
    case kMipsS16x2Reverse: {
3358
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3359 3360 3361 3362 3363 3364
      // src = [7, 6, 5, 4, 3, 2, 1, 0], dst = [6, 7, 4, 5, 3, 2, 0, 1]
      // shf.df imm field: 2 3 0 1 = 10110001 = 0xB1
      __ shf_h(i.OutputSimd128Register(), i.InputSimd128Register(0), 0xB1);
      break;
    }
    case kMipsS8x16InterleaveRight: {
3365
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3366 3367 3368 3369 3370 3371 3372 3373 3374
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [31, ... 19, 18, 17, 16], src0 = [15, ... 3, 2, 1, 0]
      // dst = [23, 7, ... 17, 1, 16, 0]
      __ ilvr_b(dst, src1, src0);
      break;
    }
    case kMipsS8x16InterleaveLeft: {
3375
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3376 3377 3378 3379 3380 3381 3382 3383 3384
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [31, ... 19, 18, 17, 16], src0 = [15, ... 3, 2, 1, 0]
      // dst = [31, 15, ... 25, 9, 24, 8]
      __ ilvl_b(dst, src1, src0);
      break;
    }
    case kMipsS8x16PackEven: {
3385
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3386 3387 3388 3389 3390 3391 3392 3393 3394
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [31, ... 19, 18, 17, 16], src0 = [15, ... 3, 2, 1, 0]
      // dst = [30, 28, ... 6, 4, 2, 0]
      __ pckev_b(dst, src1, src0);
      break;
    }
    case kMipsS8x16PackOdd: {
3395
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3396 3397 3398 3399 3400 3401 3402 3403 3404
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [31, ... 19, 18, 17, 16], src0 = [15, ... 3, 2, 1, 0]
      // dst = [31, 29, ... 7, 5, 3, 1]
      __ pckod_b(dst, src1, src0);
      break;
    }
    case kMipsS8x16InterleaveEven: {
3405
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3406 3407 3408 3409 3410 3411 3412 3413 3414
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [31, ... 19, 18, 17, 16], src0 = [15, ... 3, 2, 1, 0]
      // dst = [30, 14, ... 18, 2, 16, 0]
      __ ilvev_b(dst, src1, src0);
      break;
    }
    case kMipsS8x16InterleaveOdd: {
3415
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3416 3417 3418 3419 3420 3421 3422 3423 3424
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);
      // src1 = [31, ... 19, 18, 17, 16], src0 = [15, ... 3, 2, 1, 0]
      // dst = [31, 15, ... 19, 3, 17, 1]
      __ ilvod_b(dst, src1, src0);
      break;
    }
    case kMipsS8x16Concat: {
3425
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3426
      Simd128Register dst = i.OutputSimd128Register();
3427
      DCHECK(dst == i.InputSimd128Register(0));
3428 3429 3430
      __ sldi_b(dst, i.InputSimd128Register(1), i.InputInt4(2));
      break;
    }
3431
    case kMipsI8x16Shuffle: {
3432
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3433 3434 3435 3436
      Simd128Register dst = i.OutputSimd128Register(),
                      src0 = i.InputSimd128Register(0),
                      src1 = i.InputSimd128Register(1);

3437
      if (dst == src0) {
3438 3439
        __ move_v(kSimd128ScratchReg, src0);
        src0 = kSimd128ScratchReg;
3440
      } else if (dst == src1) {
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
        __ move_v(kSimd128ScratchReg, src1);
        src1 = kSimd128ScratchReg;
      }

      __ li(kScratchReg, i.InputInt32(2));
      __ insert_w(dst, 0, kScratchReg);
      __ li(kScratchReg, i.InputInt32(3));
      __ insert_w(dst, 1, kScratchReg);
      __ li(kScratchReg, i.InputInt32(4));
      __ insert_w(dst, 2, kScratchReg);
      __ li(kScratchReg, i.InputInt32(5));
      __ insert_w(dst, 3, kScratchReg);
      __ vshf_b(dst, src1, src0);
      break;
    }
3456
    case kMipsI8x16Swizzle: {
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
      Simd128Register dst = i.OutputSimd128Register(),
                      tbl = i.InputSimd128Register(0),
                      ctl = i.InputSimd128Register(1);
      DCHECK(dst != ctl && dst != tbl);
      Simd128Register zeroReg = i.TempSimd128Register(0);
      __ fill_w(zeroReg, zero_reg);
      __ move_v(dst, ctl);
      __ vshf_b(dst, tbl, zeroReg);
      break;
    }
3467
    case kMipsS8x8Reverse: {
3468
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3469 3470 3471 3472 3473 3474 3475 3476 3477
      // src = [15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
      // dst = [8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7]
      // [A B C D] => [B A D C]: shf.w imm: 2 3 0 1 = 10110001 = 0xB1
      // C: [7, 6, 5, 4] => A': [4, 5, 6, 7]: shf.b imm: 00011011 = 0x1B
      __ shf_w(kSimd128ScratchReg, i.InputSimd128Register(0), 0xB1);
      __ shf_b(i.OutputSimd128Register(), kSimd128ScratchReg, 0x1B);
      break;
    }
    case kMipsS8x4Reverse: {
3478
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3479 3480 3481 3482 3483 3484
      // src = [15, 14, ... 3, 2, 1, 0], dst = [12, 13, 14, 15, ... 0, 1, 2, 3]
      // shf.df imm field: 0 1 2 3 = 00011011 = 0x1B
      __ shf_b(i.OutputSimd128Register(), i.InputSimd128Register(0), 0x1B);
      break;
    }
    case kMipsS8x2Reverse: {
3485
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3486 3487 3488 3489 3490
      // src = [15, 14, ... 3, 2, 1, 0], dst = [14, 15, 12, 13, ... 2, 3, 0, 1]
      // shf.df imm field: 2 3 0 1 = 10110001 = 0xB1
      __ shf_b(i.OutputSimd128Register(), i.InputSimd128Register(0), 0xB1);
      break;
    }
3491
    case kMipsI32x4SConvertI16x8Low: {
3492
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3493 3494 3495 3496 3497 3498 3499 3500
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src = i.InputSimd128Register(0);
      __ ilvr_h(kSimd128ScratchReg, src, src);
      __ slli_w(dst, kSimd128ScratchReg, 16);
      __ srai_w(dst, dst, 16);
      break;
    }
    case kMipsI32x4SConvertI16x8High: {
3501
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3502 3503 3504 3505 3506 3507 3508 3509
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src = i.InputSimd128Register(0);
      __ ilvl_h(kSimd128ScratchReg, src, src);
      __ slli_w(dst, kSimd128ScratchReg, 16);
      __ srai_w(dst, dst, 16);
      break;
    }
    case kMipsI32x4UConvertI16x8Low: {
3510
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3511 3512 3513 3514 3515 3516
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ilvr_h(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
    case kMipsI32x4UConvertI16x8High: {
3517
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3518 3519 3520 3521 3522 3523
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ilvl_h(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
    case kMipsI16x8SConvertI8x16Low: {
3524
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3525 3526 3527 3528 3529 3530 3531 3532
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src = i.InputSimd128Register(0);
      __ ilvr_b(kSimd128ScratchReg, src, src);
      __ slli_h(dst, kSimd128ScratchReg, 8);
      __ srai_h(dst, dst, 8);
      break;
    }
    case kMipsI16x8SConvertI8x16High: {
3533
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3534 3535 3536 3537 3538 3539 3540 3541
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src = i.InputSimd128Register(0);
      __ ilvl_b(kSimd128ScratchReg, src, src);
      __ slli_h(dst, kSimd128ScratchReg, 8);
      __ srai_h(dst, dst, 8);
      break;
    }
    case kMipsI16x8SConvertI32x4: {
3542
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3543 3544 3545 3546 3547 3548 3549 3550 3551
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src0 = i.InputSimd128Register(0);
      Simd128Register src1 = i.InputSimd128Register(1);
      __ sat_s_w(kSimd128ScratchReg, src0, 15);
      __ sat_s_w(kSimd128RegZero, src1, 15);  // kSimd128RegZero as scratch
      __ pckev_h(dst, kSimd128RegZero, kSimd128ScratchReg);
      break;
    }
    case kMipsI16x8UConvertI32x4: {
3552
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3553 3554 3555 3556 3557 3558 3559 3560 3561
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src0 = i.InputSimd128Register(0);
      Simd128Register src1 = i.InputSimd128Register(1);
      __ sat_u_w(kSimd128ScratchReg, src0, 15);
      __ sat_u_w(kSimd128RegZero, src1, 15);  // kSimd128RegZero as scratch
      __ pckev_h(dst, kSimd128RegZero, kSimd128ScratchReg);
      break;
    }
    case kMipsI16x8UConvertI8x16Low: {
3562
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3563 3564 3565 3566 3567 3568
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ilvr_b(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
    case kMipsI16x8UConvertI8x16High: {
3569
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3570 3571 3572 3573 3574 3575
      __ xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero);
      __ ilvl_b(i.OutputSimd128Register(), kSimd128RegZero,
                i.InputSimd128Register(0));
      break;
    }
    case kMipsI8x16SConvertI16x8: {
3576
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3577 3578 3579 3580 3581 3582 3583 3584 3585
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src0 = i.InputSimd128Register(0);
      Simd128Register src1 = i.InputSimd128Register(1);
      __ sat_s_h(kSimd128ScratchReg, src0, 7);
      __ sat_s_h(kSimd128RegZero, src1, 7);  // kSimd128RegZero as scratch
      __ pckev_b(dst, kSimd128RegZero, kSimd128ScratchReg);
      break;
    }
    case kMipsI8x16UConvertI16x8: {
3586
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
3587 3588 3589 3590 3591 3592 3593 3594
      Simd128Register dst = i.OutputSimd128Register();
      Simd128Register src0 = i.InputSimd128Register(0);
      Simd128Register src1 = i.InputSimd128Register(1);
      __ sat_u_h(kSimd128ScratchReg, src0, 7);
      __ sat_u_h(kSimd128RegZero, src1, 7);  // kSimd128RegZero as scratch
      __ pckev_b(dst, kSimd128RegZero, kSimd128ScratchReg);
      break;
    }
3595
  }
3596
  return kSuccess;
3597
}
3598

3599
void AssembleBranchToLabels(CodeGenerator* gen, TurboAssembler* tasm,
3600 3601 3602
                            Instruction* instr, FlagsCondition condition,
                            Label* tlabel, Label* flabel, bool fallthru) {
#undef __
3603
#define __ tasm->
3604

3605 3606
  // MIPS does not have condition code flags, so compare and branch are
  // implemented differently than on the other arch's. The compare operations
3607
  // emit mips pseudo-instructions, which are handled here by branch
3608
  // instructions that do the actual comparison. Essential that the input
3609
  // registers to compare pseudo-op are not modified before this branch op, as
3610 3611
  // they are tested here.

3612
  MipsOperandConverter i(gen, instr);
3613
  if (instr->arch_opcode() == kMipsTst) {
3614
    Condition cc = FlagsConditionToConditionTst(condition);
3615
    __ Branch(tlabel, cc, kScratchReg, Operand(zero_reg));
3616 3617 3618
  } else if (instr->arch_opcode() == kMipsAddOvf ||
             instr->arch_opcode() == kMipsSubOvf) {
    // Overflow occurs if overflow register is negative
3619
    switch (condition) {
3620
      case kOverflow:
3621
        __ Branch(tlabel, lt, kScratchReg, Operand(zero_reg));
3622 3623
        break;
      case kNotOverflow:
3624
        __ Branch(tlabel, ge, kScratchReg, Operand(zero_reg));
3625 3626
        break;
      default:
3627
        UNSUPPORTED_COND(instr->arch_opcode(), condition);
3628
    }
3629
  } else if (instr->arch_opcode() == kMipsMulOvf) {
3630
    // Overflow occurs if overflow register is not zero
3631
    switch (condition) {
3632
      case kOverflow:
3633
        __ Branch(tlabel, ne, kScratchReg, Operand(zero_reg));
3634 3635
        break;
      case kNotOverflow:
3636
        __ Branch(tlabel, eq, kScratchReg, Operand(zero_reg));
3637 3638
        break;
      default:
3639
        UNSUPPORTED_COND(kMipsMulOvf, condition);
3640
    }
3641
  } else if (instr->arch_opcode() == kMipsCmp) {
3642
    Condition cc = FlagsConditionToConditionCmp(condition);
3643
    __ Branch(tlabel, cc, i.InputRegister(0), i.InputOperand(1));
3644
  } else if (instr->arch_opcode() == kArchStackPointerGreaterThan) {
3645
    Condition cc = FlagsConditionToConditionCmp(condition);
3646 3647
    DCHECK((cc == ls) || (cc == hi));
    if (cc == ls) {
3648
      __ xori(i.TempRegister(0), i.TempRegister(0), 1);
3649
    }
3650
    __ Branch(tlabel, ne, i.TempRegister(0), Operand(zero_reg));
3651 3652 3653
  } else if (instr->arch_opcode() == kMipsCmpS ||
             instr->arch_opcode() == kMipsCmpD) {
    bool predicate;
3654
    FlagsConditionToConditionCmpFPU(&predicate, condition);
3655 3656 3657 3658
    if (predicate) {
      __ BranchTrueF(tlabel);
    } else {
      __ BranchFalseF(tlabel);
3659
    }
3660 3661 3662 3663 3664
  } else {
    PrintF("AssembleArchBranch Unimplemented arch_opcode: %d\n",
           instr->arch_opcode());
    UNIMPLEMENTED();
  }
3665 3666
  if (!fallthru) __ Branch(flabel);  // no fallthru to flabel.
#undef __
3667
#define __ tasm()->
3668 3669 3670 3671 3672 3673
}

// Assembles branches after an instruction.
void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) {
  Label* tlabel = branch->true_label;
  Label* flabel = branch->false_label;
3674
  AssembleBranchToLabels(this, tasm(), instr, branch->condition, tlabel, flabel,
3675
                         branch->fallthru);
3676 3677
}

3678 3679 3680 3681
void CodeGenerator::AssembleArchDeoptBranch(Instruction* instr,
                                            BranchInfo* branch) {
  AssembleArchBranch(instr, branch);
}
3682

3683 3684 3685
void CodeGenerator::AssembleArchJumpRegardlessOfAssemblyOrder(
    RpoNumber target) {
  __ Branch(GetLabel(target));
3686 3687
}

3688
#if V8_ENABLE_WEBASSEMBLY
3689 3690
void CodeGenerator::AssembleArchTrap(Instruction* instr,
                                     FlagsCondition condition) {
3691 3692
  class OutOfLineTrap final : public OutOfLineCode {
   public:
3693 3694
    OutOfLineTrap(CodeGenerator* gen, Instruction* instr)
        : OutOfLineCode(gen), instr_(instr), gen_(gen) {}
3695 3696 3697

    void Generate() final {
      MipsOperandConverter i(gen_, instr_);
3698 3699
      TrapId trap_id =
          static_cast<TrapId>(i.InputInt32(instr_->InputCount() - 1));
3700 3701 3702 3703
      GenerateCallToTrap(trap_id);
    }

   private:
3704 3705
    void GenerateCallToTrap(TrapId trap_id) {
      if (trap_id == TrapId::kInvalid) {
3706 3707 3708 3709 3710
        // We cannot test calls to the runtime in cctest/test-run-wasm.
        // Therefore we emit a call to C here instead of a call to the runtime.
        // We use the context register as the scratch register, because we do
        // not have a context here.
        __ PrepareCallCFunction(0, 0, cp);
3711 3712
        __ CallCFunction(
            ExternalReference::wasm_call_trap_callback_for_testing(), 0);
3713
        __ LeaveFrame(StackFrame::WASM);
3714
        auto call_descriptor = gen_->linkage()->GetIncomingDescriptor();
3715
        int pop_count = static_cast<int>(call_descriptor->ParameterSlotCount());
3716
        __ Drop(pop_count);
3717
        __ Ret();
3718 3719
      } else {
        gen_->AssembleSourcePosition(instr_);
3720
        // A direct call to a wasm runtime stub defined in this module.
3721 3722
        // Just encode the stub index. This will be patched when the code
        // is added to the native module and copied into wasm code space.
3723
        __ Call(static_cast<Address>(trap_id), RelocInfo::WASM_STUB_CALL);
3724
        ReferenceMap* reference_map =
3725
            gen_->zone()->New<ReferenceMap>(gen_->zone());
3726
        gen_->RecordSafepoint(reference_map);
3727
        if (FLAG_debug_code) {
3728
          __ stop();
3729
        }
3730 3731 3732 3733 3734 3735
      }
    }

    Instruction* instr_;
    CodeGenerator* gen_;
  };
3736
  auto ool = zone()->New<OutOfLineTrap>(this, instr);
3737
  Label* tlabel = ool->entry();
3738
  AssembleBranchToLabels(this, tasm(), instr, condition, tlabel, nullptr, true);
3739
}
3740
#endif  // V8_ENABLE_WEBASSEMBLY
3741

3742 3743 3744 3745 3746 3747 3748
// Assembles boolean materializations after an instruction.
void CodeGenerator::AssembleArchBoolean(Instruction* instr,
                                        FlagsCondition condition) {
  MipsOperandConverter i(this, instr);

  // Materialize a full 32-bit 1 or 0 value. The result register is always the
  // last output of the instruction.
3749
  DCHECK_NE(0u, instr->OutputCount());
3750 3751 3752
  Register result = i.OutputRegister(instr->OutputCount() - 1);
  // MIPS does not have condition code flags, so compare and branch are
  // implemented differently than on the other arch's. The compare operations
3753
  // emit mips pseudo-instructions, which are checked and handled here.
3754 3755

  if (instr->arch_opcode() == kMipsTst) {
3756
    Condition cc = FlagsConditionToConditionTst(condition);
3757 3758
    if (cc == eq) {
      __ Sltu(result, kScratchReg, 1);
3759
    } else {
3760
      __ Sltu(result, zero_reg, kScratchReg);
3761 3762
    }
    return;
3763
  } else if (instr->arch_opcode() == kMipsAddOvf ||
3764 3765 3766 3767 3768 3769
             instr->arch_opcode() == kMipsSubOvf) {
    // Overflow occurs if overflow register is negative
    __ slt(result, kScratchReg, zero_reg);
  } else if (instr->arch_opcode() == kMipsMulOvf) {
    // Overflow occurs if overflow register is not zero
    __ Sgtu(result, kScratchReg, zero_reg);
3770
  } else if (instr->arch_opcode() == kMipsCmp) {
3771
    Condition cc = FlagsConditionToConditionCmp(condition);
3772 3773 3774 3775 3776
    switch (cc) {
      case eq:
      case ne: {
        Register left = i.InputRegister(0);
        Operand right = i.InputOperand(1);
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
        if (instr->InputAt(1)->IsImmediate()) {
          if (is_int16(-right.immediate())) {
            if (right.immediate() == 0) {
              if (cc == eq) {
                __ Sltu(result, left, 1);
              } else {
                __ Sltu(result, zero_reg, left);
              }
            } else {
              __ Addu(result, left, -right.immediate());
              if (cc == eq) {
                __ Sltu(result, result, 1);
              } else {
                __ Sltu(result, zero_reg, result);
              }
            }
          } else {
            if (is_uint16(right.immediate())) {
              __ Xor(result, left, right);
            } else {
              __ li(kScratchReg, right);
              __ Xor(result, left, kScratchReg);
            }
            if (cc == eq) {
              __ Sltu(result, result, 1);
            } else {
              __ Sltu(result, zero_reg, result);
            }
          }
3806
        } else {
3807 3808 3809 3810 3811 3812
          __ Xor(result, left, right);
          if (cc == eq) {
            __ Sltu(result, result, 1);
          } else {
            __ Sltu(result, zero_reg, result);
          }
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
        }
      } break;
      case lt:
      case ge: {
        Register left = i.InputRegister(0);
        Operand right = i.InputOperand(1);
        __ Slt(result, left, right);
        if (cc == ge) {
          __ xori(result, result, 1);
        }
      } break;
      case gt:
      case le: {
        Register left = i.InputRegister(1);
        Operand right = i.InputOperand(0);
        __ Slt(result, left, right);
        if (cc == le) {
          __ xori(result, result, 1);
        }
      } break;
      case lo:
      case hs: {
        Register left = i.InputRegister(0);
        Operand right = i.InputOperand(1);
        __ Sltu(result, left, right);
        if (cc == hs) {
          __ xori(result, result, 1);
        }
      } break;
      case hi:
      case ls: {
        Register left = i.InputRegister(1);
        Operand right = i.InputOperand(0);
        __ Sltu(result, left, right);
        if (cc == ls) {
          __ xori(result, result, 1);
        }
      } break;
      default:
        UNREACHABLE();
    }
    return;
3855 3856
  } else if (instr->arch_opcode() == kMipsCmpD ||
             instr->arch_opcode() == kMipsCmpS) {
3857 3858
    FPURegister left = i.InputOrZeroDoubleRegister(0);
    FPURegister right = i.InputOrZeroDoubleRegister(1);
3859
    if ((left == kDoubleRegZero || right == kDoubleRegZero) &&
3860 3861 3862
        !__ IsDoubleZeroRegSet()) {
      __ Move(kDoubleRegZero, 0.0);
    }
3863
    bool predicate;
3864
    FlagsConditionToConditionCmpFPU(&predicate, condition);
3865 3866 3867 3868 3869 3870 3871 3872
    if (!IsMipsArchVariant(kMips32r6)) {
      __ li(result, Operand(1));
      if (predicate) {
        __ Movf(result, zero_reg);
      } else {
        __ Movt(result, zero_reg);
      }
    } else {
3873
      __ mfc1(result, kDoubleCompareReg);
3874 3875 3876 3877 3878
      if (predicate) {
        __ And(result, result, 1);  // cmp returns all 1's/0's, use only LSB.
      } else {
        __ Addu(result, result, 1);  // Toggle result for not equal.
      }
3879 3880
    }
    return;
3881
  } else if (instr->arch_opcode() == kArchStackPointerGreaterThan) {
3882
    Condition cc = FlagsConditionToConditionCmp(condition);
3883 3884
    DCHECK((cc == ls) || (cc == hi));
    if (cc == ls) {
3885
      __ xori(i.OutputRegister(), i.TempRegister(0), 1);
3886 3887
    }
    return;
3888
  } else {
3889
    PrintF("AssembleArchBoolean Unimplemented arch_opcode is : %d\n",
3890 3891 3892 3893 3894 3895
           instr->arch_opcode());
    TRACE_UNIMPL();
    UNIMPLEMENTED();
  }
}

3896 3897 3898
void CodeGenerator::AssembleArchBinarySearchSwitch(Instruction* instr) {
  MipsOperandConverter i(this, instr);
  Register input = i.InputRegister(0);
3899
  std::vector<std::pair<int32_t, Label*>> cases;
3900
  for (size_t index = 2; index < instr->InputCount(); index += 2) {
3901
    cases.push_back({i.InputInt32(index + 0), GetLabel(i.InputRpo(index + 1))});
3902 3903 3904 3905
  }
  AssembleArchBinarySearchSwitchRange(input, i.InputRpo(1), cases.data(),
                                      cases.data() + cases.size());
}
3906

3907 3908 3909 3910 3911
void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) {
  MipsOperandConverter i(this, instr);
  Register input = i.InputRegister(0);
  size_t const case_count = instr->InputCount() - 2;
  __ Branch(GetLabel(i.InputRpo(1)), hs, input, Operand(case_count));
3912 3913 3914
  __ GenerateSwitchTable(input, case_count, [&i, this](size_t index) {
    return GetLabel(i.InputRpo(index + 2));
  });
3915 3916
}

3917 3918 3919 3920 3921
void CodeGenerator::AssembleArchSelect(Instruction* instr,
                                       FlagsCondition condition) {
  UNIMPLEMENTED();
}

3922
void CodeGenerator::FinishFrame(Frame* frame) {
3923
  auto call_descriptor = linkage()->GetIncomingDescriptor();
3924

3925
  const DoubleRegList saves_fpu = call_descriptor->CalleeSavedFPRegisters();
3926
  if (!saves_fpu.is_empty()) {
3927 3928 3929
    frame->AlignSavedCalleeRegisterSlots();
  }

3930 3931
  if (!saves_fpu.is_empty()) {
    int count = saves_fpu.Count();
3932
    DCHECK_EQ(kNumCalleeSavedFPU, count);
3933
    frame->AllocateSavedCalleeRegisterSlots(count *
3934
                                            (kDoubleSize / kSystemPointerSize));
3935 3936
  }

3937
  const RegList saves = call_descriptor->CalleeSavedRegisters();
3938 3939
  if (!saves.is_empty()) {
    int count = saves.Count();
3940 3941 3942 3943 3944
    frame->AllocateSavedCalleeRegisterSlots(count);
  }
}

void CodeGenerator::AssembleConstructFrame() {
3945
  auto call_descriptor = linkage()->GetIncomingDescriptor();
3946
  if (frame_access_state()->has_frame()) {
3947
    if (call_descriptor->IsCFunctionCall()) {
3948
#if V8_ENABLE_WEBASSEMBLY
3949
      if (info()->GetOutputStackFrameType() == StackFrame::C_WASM_ENTRY) {
3950 3951 3952
        __ StubPrologue(StackFrame::C_WASM_ENTRY);
        // Reserve stack space for saving the c_entry_fp later.
        __ Subu(sp, sp, Operand(kSystemPointerSize));
3953
#else
3954 3955
      // For balance.
      if (false) {
3956
#endif  // V8_ENABLE_WEBASSEMBLY
3957 3958 3959 3960
      } else {
        __ Push(ra, fp);
        __ mov(fp, sp);
      }
3961
    } else if (call_descriptor->IsJSFunctionCall()) {
3962
      __ Prologue();
3963 3964
    } else {
      __ StubPrologue(info()->GetOutputStackFrameType());
3965
#if V8_ENABLE_WEBASSEMBLY
3966 3967 3968
      if (call_descriptor->IsWasmFunctionCall() ||
          call_descriptor->IsWasmImportWrapper() ||
          call_descriptor->IsWasmCapiFunction()) {
3969
        __ Push(kWasmInstanceRegister);
3970 3971 3972 3973
      }
      if (call_descriptor->IsWasmCapiFunction()) {
        // Reserve space for saving the PC later.
        __ Subu(sp, sp, Operand(kSystemPointerSize));
3974
      }
3975
#endif  // V8_ENABLE_WEBASSEMBLY
3976
    }
3977
  }
3978

3979 3980
  int required_slots =
      frame()->GetTotalFrameSlotCount() - frame()->GetFixedSlotCount();
3981

3982 3983
  if (info()->is_osr()) {
    // TurboFan OSR-compiled functions cannot be entered directly.
3984
    __ Abort(AbortReason::kShouldNotDirectlyEnterOsrFunction);
3985 3986 3987 3988 3989

    // Unoptimized code jumps directly to this entrypoint while the unoptimized
    // frame is still on the stack. Optimized code uses OSR values directly from
    // the unoptimized frame. Thus, all that needs to be done is to allocate the
    // remaining stack slots.
3990
    __ RecordComment("-- OSR entrypoint --");
3991
    osr_pc_offset_ = __ pc_offset();
3992
    required_slots -= osr_helper()->UnoptimizedFrameSlots();
3993 3994
  }

3995
  const RegList saves = call_descriptor->CalleeSavedRegisters();
3996
  const DoubleRegList saves_fpu = call_descriptor->CalleeSavedFPRegisters();
3997 3998 3999

  if (required_slots > 0) {
    DCHECK(frame_access_state()->has_frame());
4000
#if V8_ENABLE_WEBASSEMBLY
4001
    if (info()->IsWasm() && required_slots * kSystemPointerSize > 4 * KB) {
4002 4003 4004 4005 4006 4007 4008 4009 4010
      // For WebAssembly functions with big frames we have to do the stack
      // overflow check before we construct the frame. Otherwise we may not
      // have enough space on the stack to call the runtime for the stack
      // overflow.
      Label done;

      // If the frame is bigger than the stack, we throw the stack overflow
      // exception unconditionally. Thereby we can avoid the integer overflow
      // check in the condition code.
4011
      if (required_slots * kSystemPointerSize < FLAG_stack_size * KB) {
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
        __ Lw(
             kScratchReg,
             FieldMemOperand(kWasmInstanceRegister,
                             WasmInstanceObject::kRealStackLimitAddressOffset));
        __ Lw(kScratchReg, MemOperand(kScratchReg));
        __ Addu(kScratchReg, kScratchReg,
                      Operand(required_slots * kSystemPointerSize));
        __ Branch(&done, uge, sp, Operand(kScratchReg));
      }

      __ Call(wasm::WasmCode::kWasmStackOverflow, RelocInfo::WASM_STUB_CALL);
4023 4024
      // The call does not return, hence we can ignore any references and just
      // define an empty safepoint.
4025
      ReferenceMap* reference_map = zone()->New<ReferenceMap>(zone());
4026
      RecordSafepoint(reference_map);
4027
      if (FLAG_debug_code) __ stop();
4028 4029 4030

      __ bind(&done);
    }
4031
#endif  // V8_ENABLE_WEBASSEMBLY
4032 4033
  }

4034
  const int returns = frame()->GetReturnSlotCount();
4035

4036
  // Skip callee-saved and return slots, which are pushed below.
4037
  required_slots -= saves.Count();
4038
  required_slots -= 2 * saves_fpu.Count();
4039 4040 4041
  required_slots -= returns;
  if (required_slots > 0) {
    __ Subu(sp, sp, Operand(required_slots * kSystemPointerSize));
4042 4043 4044
  }

  // Save callee-saved FPU registers.
4045
  if (!saves_fpu.is_empty()) {
4046
    __ MultiPushFPU(saves_fpu);
4047 4048
  }

4049
  if (!saves.is_empty()) {
4050 4051
    // Save callee-saved registers.
    __ MultiPush(saves);
4052
  }
4053 4054 4055

  if (returns != 0) {
    // Create space for returns.
4056
    __ Subu(sp, sp, Operand(returns * kSystemPointerSize));
4057
  }
4058 4059
}

4060
void CodeGenerator::AssembleReturn(InstructionOperand* additional_pop_count) {
4061
  auto call_descriptor = linkage()->GetIncomingDescriptor();
4062

4063 4064
  const int returns = frame()->GetReturnSlotCount();
  if (returns != 0) {
4065
    __ Addu(sp, sp, Operand(returns * kSystemPointerSize));
4066 4067
  }

4068
  // Restore GP registers.
4069
  const RegList saves = call_descriptor->CalleeSavedRegisters();
4070
  if (!saves.is_empty()) {
4071 4072 4073 4074
    __ MultiPop(saves);
  }

  // Restore FPU registers.
4075
  const DoubleRegList saves_fpu = call_descriptor->CalleeSavedFPRegisters();
4076
  if (!saves_fpu.is_empty()) {
4077 4078 4079
    __ MultiPopFPU(saves_fpu);
  }

4080
  MipsOperandConverter g(this, nullptr);
4081 4082
  const int parameter_slots =
      static_cast<int>(call_descriptor->ParameterSlotCount());
4083

4084
  // {aditional_pop_count} is only greater than zero if {parameter_slots = 0}.
4085
  // Check RawMachineAssembler::PopAndReturn.
4086
  if (parameter_slots != 0) {
4087 4088
    if (additional_pop_count->IsImmediate()) {
      DCHECK_EQ(g.ToConstant(additional_pop_count).ToInt32(), 0);
4089
    } else if (FLAG_debug_code) {
4090 4091 4092 4093 4094 4095
      __ Assert(eq, AbortReason::kUnexpectedAdditionalPopValue,
                g.ToRegister(additional_pop_count),
                Operand(static_cast<int64_t>(0)));
    }
  }
  // Functions with JS linkage have at least one parameter (the receiver).
4096
  // If {parameter_slots} == 0, it means it is a builtin with
4097 4098 4099 4100
  // kDontAdaptArgumentsSentinel, which takes care of JS arguments popping
  // itself.
  const bool drop_jsargs = frame_access_state()->has_frame() &&
                           call_descriptor->IsJSFunctionCall() &&
4101
                           parameter_slots != 0;
4102

4103
  if (call_descriptor->IsCFunctionCall()) {
4104 4105
    AssembleDeconstructFrame();
  } else if (frame_access_state()->has_frame()) {
4106 4107
    // Canonicalize JSFunction return sites for now unless they have an variable
    // number of stack slot pops.
4108 4109
    if (additional_pop_count->IsImmediate() &&
        g.ToConstant(additional_pop_count).ToInt32() == 0) {
4110 4111 4112 4113 4114 4115
      if (return_label_.is_bound()) {
        __ Branch(&return_label_);
        return;
      } else {
        __ bind(&return_label_);
      }
4116
    }
4117 4118 4119 4120 4121
    if (drop_jsargs) {
      // Get the actual argument count
      __ Lw(t0, MemOperand(fp, StandardFrameConstants::kArgCOffset));
    }
    AssembleDeconstructFrame();
4122
  }
4123 4124 4125

  if (drop_jsargs) {
    // We must pop all arguments from the stack (including the receiver). This
4126 4127 4128
    // number of arguments is given by max(1 + argc_reg, parameter_slots).
    if (parameter_slots > 1) {
      __ li(kScratchReg, parameter_slots);
4129 4130 4131
      __ slt(kScratchReg2, t0, kScratchReg);
      __ movn(t0, kScratchReg, kScratchReg2);
    }
4132
    __ Lsa(sp, sp, t0, kSystemPointerSizeLog2, t0);
4133 4134 4135
  } else if (additional_pop_count->IsImmediate()) {
    DCHECK_EQ(Constant::kInt32, g.ToConstant(additional_pop_count).type());
    int additional_count = g.ToConstant(additional_pop_count).ToInt32();
4136
    __ Drop(parameter_slots + additional_count);
4137
  } else {
4138
    Register pop_reg = g.ToRegister(additional_pop_count);
4139
    __ Drop(parameter_slots);
4140
    __ Lsa(sp, sp, pop_reg, kSystemPointerSizeLog2, pop_reg);
4141
  }
4142
  __ Ret();
4143 4144
}

4145
void CodeGenerator::FinishCode() {}
4146

4147 4148
void CodeGenerator::PrepareForDeoptimizationExits(
    ZoneDeque<DeoptimizationExit*>* exits) {}
4149

4150 4151
void CodeGenerator::AssembleMove(InstructionOperand* source,
                                 InstructionOperand* destination) {
4152
  MipsOperandConverter g(this, nullptr);
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
  // Dispatch on the source and destination operand kinds.  Not all
  // combinations are possible.
  if (source->IsRegister()) {
    DCHECK(destination->IsRegister() || destination->IsStackSlot());
    Register src = g.ToRegister(source);
    if (destination->IsRegister()) {
      __ mov(g.ToRegister(destination), src);
    } else {
      __ sw(src, g.ToMemOperand(destination));
    }
  } else if (source->IsStackSlot()) {
    DCHECK(destination->IsRegister() || destination->IsStackSlot());
    MemOperand src = g.ToMemOperand(source);
    if (destination->IsRegister()) {
      __ lw(g.ToRegister(destination), src);
    } else {
      Register temp = kScratchReg;
      __ lw(temp, src);
      __ sw(temp, g.ToMemOperand(destination));
    }
  } else if (source->IsConstant()) {
    Constant src = g.ToConstant(source);
    if (destination->IsRegister() || destination->IsStackSlot()) {
      Register dst =
          destination->IsRegister() ? g.ToRegister(destination) : kScratchReg;
      switch (src.type()) {
        case Constant::kInt32:
4180 4181
#if V8_ENABLE_WEBASSEMBLY
          if (RelocInfo::IsWasmReference(src.rmode()))
4182
            __ li(dst, Operand(src.ToInt32(), src.rmode()));
4183 4184
          else
#endif  // V8_ENABLE_WEBASSEMBLY
4185
            __ li(dst, Operand(src.ToInt32()));
4186 4187
          break;
        case Constant::kFloat32:
4188
          __ li(dst, Operand::EmbeddedNumber(src.ToFloat32()));
4189 4190 4191 4192
          break;
        case Constant::kInt64:
          UNREACHABLE();
        case Constant::kFloat64:
4193
          __ li(dst, Operand::EmbeddedNumber(src.ToFloat64().value()));
4194 4195
          break;
        case Constant::kExternalReference:
4196
          __ li(dst, src.ToExternalReference());
4197
          break;
4198 4199 4200
        case Constant::kDelayedStringConstant:
          __ li(dst, src.ToDelayedStringConstant());
          break;
4201 4202
        case Constant::kHeapObject: {
          Handle<HeapObject> src_object = src.ToHeapObject();
4203
          RootIndex index;
4204
          if (IsMaterializableFromRoot(src_object, &index)) {
4205
            __ LoadRoot(dst, index);
4206 4207 4208
          } else {
            __ li(dst, src_object);
          }
4209
          break;
4210
        }
4211 4212
        case Constant::kCompressedHeapObject:
          UNREACHABLE();
4213 4214
        case Constant::kRpoNumber:
          UNREACHABLE();  // TODO(titzer): loading RPO numbers on mips.
4215 4216 4217
      }
      if (destination->IsStackSlot()) __ sw(dst, g.ToMemOperand(destination));
    } else if (src.type() == Constant::kFloat32) {
4218
      if (destination->IsFPStackSlot()) {
4219
        MemOperand dst = g.ToMemOperand(destination);
4220
        if (base::bit_cast<int32_t>(src.ToFloat32()) == 0) {
4221 4222
          __ sw(zero_reg, dst);
        } else {
4223
          __ li(kScratchReg, Operand(base::bit_cast<int32_t>(src.ToFloat32())));
4224
          __ sw(kScratchReg, dst);
4225
        }
4226
      } else {
4227
        DCHECK(destination->IsFPRegister());
4228 4229
        FloatRegister dst = g.ToSingleRegister(destination);
        __ Move(dst, src.ToFloat32());
4230 4231 4232
      }
    } else {
      DCHECK_EQ(Constant::kFloat64, src.type());
4233
      DoubleRegister dst = destination->IsFPRegister()
4234 4235
                               ? g.ToDoubleRegister(destination)
                               : kScratchDoubleReg;
4236
      __ Move(dst, src.ToFloat64().value());
4237
      if (destination->IsFPStackSlot()) {
4238
        __ Sdc1(dst, g.ToMemOperand(destination));
4239 4240
      }
    }
4241
  } else if (source->IsFPRegister()) {
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
    MachineRepresentation rep = LocationOperand::cast(source)->representation();
    if (rep == MachineRepresentation::kSimd128) {
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      MSARegister src = g.ToSimd128Register(source);
      if (destination->IsSimd128Register()) {
        MSARegister dst = g.ToSimd128Register(destination);
        __ move_v(dst, src);
      } else {
        DCHECK(destination->IsSimd128StackSlot());
        __ st_b(src, g.ToMemOperand(destination));
      }
4253
    } else {
4254 4255 4256 4257
      FPURegister src = g.ToDoubleRegister(source);
      if (destination->IsFPRegister()) {
        FPURegister dst = g.ToDoubleRegister(destination);
        __ Move(dst, src);
4258
      } else {
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
        DCHECK(destination->IsFPStackSlot());
        MachineRepresentation rep =
            LocationOperand::cast(source)->representation();
        if (rep == MachineRepresentation::kFloat64) {
          __ Sdc1(src, g.ToMemOperand(destination));
        } else if (rep == MachineRepresentation::kFloat32) {
          __ swc1(src, g.ToMemOperand(destination));
        } else {
          UNREACHABLE();
        }
4269
      }
4270
    }
4271 4272
  } else if (source->IsFPStackSlot()) {
    DCHECK(destination->IsFPRegister() || destination->IsFPStackSlot());
4273
    MemOperand src = g.ToMemOperand(source);
4274
    MachineRepresentation rep = LocationOperand::cast(source)->representation();
4275
    if (destination->IsFPRegister()) {
4276
      if (rep == MachineRepresentation::kFloat64) {
4277
        __ Ldc1(g.ToDoubleRegister(destination), src);
4278
      } else if (rep == MachineRepresentation::kFloat32) {
4279
        __ lwc1(g.ToDoubleRegister(destination), src);
4280 4281
      } else {
        DCHECK_EQ(MachineRepresentation::kSimd128, rep);
4282 4283
        CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
        __ ld_b(g.ToSimd128Register(destination), src);
4284
      }
4285 4286
    } else {
      FPURegister temp = kScratchDoubleReg;
4287
      if (rep == MachineRepresentation::kFloat64) {
4288 4289
        __ Ldc1(temp, src);
        __ Sdc1(temp, g.ToMemOperand(destination));
4290 4291 4292 4293 4294
      } else if (rep == MachineRepresentation::kFloat32) {
        __ lwc1(temp, src);
        __ swc1(temp, g.ToMemOperand(destination));
      } else {
        DCHECK_EQ(MachineRepresentation::kSimd128, rep);
4295 4296 4297 4298
        CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
        MSARegister temp = kSimd128ScratchReg;
        __ ld_b(temp, src);
        __ st_b(temp, g.ToMemOperand(destination));
4299
      }
4300 4301 4302 4303 4304 4305 4306 4307
    }
  } else {
    UNREACHABLE();
  }
}

void CodeGenerator::AssembleSwap(InstructionOperand* source,
                                 InstructionOperand* destination) {
4308
  MipsOperandConverter g(this, nullptr);
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
  // Dispatch on the source and destination operand kinds.  Not all
  // combinations are possible.
  if (source->IsRegister()) {
    // Register-register.
    Register temp = kScratchReg;
    Register src = g.ToRegister(source);
    if (destination->IsRegister()) {
      Register dst = g.ToRegister(destination);
      __ Move(temp, src);
      __ Move(src, dst);
      __ Move(dst, temp);
    } else {
      DCHECK(destination->IsStackSlot());
      MemOperand dst = g.ToMemOperand(destination);
      __ mov(temp, src);
      __ lw(src, dst);
      __ sw(temp, dst);
    }
  } else if (source->IsStackSlot()) {
    DCHECK(destination->IsStackSlot());
    Register temp_0 = kScratchReg;
4330
    Register temp_1 = kScratchReg2;
4331 4332 4333 4334 4335 4336
    MemOperand src = g.ToMemOperand(source);
    MemOperand dst = g.ToMemOperand(destination);
    __ lw(temp_0, src);
    __ lw(temp_1, dst);
    __ sw(temp_0, dst);
    __ sw(temp_1, src);
4337 4338
  } else if (source->IsFPRegister()) {
    if (destination->IsFPRegister()) {
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
      MachineRepresentation rep =
          LocationOperand::cast(source)->representation();
      if (rep == MachineRepresentation::kSimd128) {
        CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
        MSARegister temp = kSimd128ScratchReg;
        MSARegister src = g.ToSimd128Register(source);
        MSARegister dst = g.ToSimd128Register(destination);
        __ move_v(temp, src);
        __ move_v(src, dst);
        __ move_v(dst, temp);
      } else {
        FPURegister temp = kScratchDoubleReg;
        FPURegister src = g.ToDoubleRegister(source);
        FPURegister dst = g.ToDoubleRegister(destination);
        __ Move(temp, src);
        __ Move(src, dst);
        __ Move(dst, temp);
      }
4357
    } else {
4358
      DCHECK(destination->IsFPStackSlot());
4359
      MemOperand dst = g.ToMemOperand(destination);
4360 4361 4362
      MachineRepresentation rep =
          LocationOperand::cast(source)->representation();
      if (rep == MachineRepresentation::kFloat64) {
4363 4364
        FPURegister temp = kScratchDoubleReg;
        FPURegister src = g.ToDoubleRegister(source);
4365
        __ Move(temp, src);
4366 4367
        __ Ldc1(src, dst);
        __ Sdc1(temp, dst);
4368
      } else if (rep == MachineRepresentation::kFloat32) {
4369 4370
        FPURegister temp = kScratchDoubleReg;
        FPURegister src = g.ToFloatRegister(source);
4371 4372 4373 4374 4375
        __ Move(temp, src);
        __ lwc1(src, dst);
        __ swc1(temp, dst);
      } else {
        DCHECK_EQ(MachineRepresentation::kSimd128, rep);
4376 4377 4378 4379 4380 4381
        CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
        MSARegister temp = kSimd128ScratchReg;
        MSARegister src = g.ToSimd128Register(source);
        __ move_v(temp, src);
        __ ld_b(src, dst);
        __ st_b(temp, dst);
4382
      }
4383
    }
4384 4385
  } else if (source->IsFPStackSlot()) {
    DCHECK(destination->IsFPStackSlot());
4386 4387 4388 4389
    Register temp_0 = kScratchReg;
    FPURegister temp_1 = kScratchDoubleReg;
    MemOperand src0 = g.ToMemOperand(source);
    MemOperand dst0 = g.ToMemOperand(destination);
4390 4391 4392 4393
    MachineRepresentation rep = LocationOperand::cast(source)->representation();
    if (rep == MachineRepresentation::kFloat64) {
      MemOperand src1(src0.rm(), src0.offset() + kIntSize);
      MemOperand dst1(dst0.rm(), dst0.offset() + kIntSize);
4394
      __ Ldc1(temp_1, dst0);  // Save destination in temp_1.
4395 4396 4397 4398
      __ lw(temp_0, src0);    // Then use temp_0 to copy source to destination.
      __ sw(temp_0, dst0);
      __ lw(temp_0, src1);
      __ sw(temp_0, dst1);
4399
      __ Sdc1(temp_1, src0);
4400 4401 4402 4403 4404 4405 4406
    } else if (rep == MachineRepresentation::kFloat32) {
      __ lwc1(temp_1, dst0);  // Save destination in temp_1.
      __ lw(temp_0, src0);    // Then use temp_0 to copy source to destination.
      __ sw(temp_0, dst0);
      __ swc1(temp_1, src0);
    } else {
      DCHECK_EQ(MachineRepresentation::kSimd128, rep);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
      MemOperand src1(src0.rm(), src0.offset() + kIntSize);
      MemOperand dst1(dst0.rm(), dst0.offset() + kIntSize);
      MemOperand src2(src0.rm(), src0.offset() + 2 * kIntSize);
      MemOperand dst2(dst0.rm(), dst0.offset() + 2 * kIntSize);
      MemOperand src3(src0.rm(), src0.offset() + 3 * kIntSize);
      MemOperand dst3(dst0.rm(), dst0.offset() + 3 * kIntSize);
      CpuFeatureScope msa_scope(tasm(), MIPS_SIMD);
      MSARegister temp_1 = kSimd128ScratchReg;
      __ ld_b(temp_1, dst0);  // Save destination in temp_1.
      __ lw(temp_0, src0);    // Then use temp_0 to copy source to destination.
      __ sw(temp_0, dst0);
      __ lw(temp_0, src1);
      __ sw(temp_0, dst1);
      __ lw(temp_0, src2);
      __ sw(temp_0, dst2);
      __ lw(temp_0, src3);
      __ sw(temp_0, dst3);
      __ st_b(temp_1, src0);
4425
    }
4426 4427 4428 4429 4430 4431
  } else {
    // No other combinations are possible.
    UNREACHABLE();
  }
}

4432 4433 4434 4435 4436
void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) {
  // On 32-bit MIPS we emit the jump tables inline.
  UNREACHABLE();
}

4437
#undef __
4438 4439
#undef ASSEMBLE_F64X2_ARITHMETIC_BINOP
#undef ASSEMBLE_SIMD_EXTENDED_MULTIPLY
4440 4441 4442 4443

}  // namespace compiler
}  // namespace internal
}  // namespace v8