d8.cc 150 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include <errno.h>
6
#include <stdlib.h>
7
#include <string.h>
8
#include <sys/stat.h>
9

10
#include <algorithm>
11
#include <fstream>
12
#include <iomanip>
13 14
#include <iterator>
#include <string>
15
#include <tuple>
16
#include <unordered_map>
17
#include <utility>
binji's avatar
binji committed
18
#include <vector>
19

20
#ifdef ENABLE_VTUNE_JIT_INTERFACE
21
#include "src/third_party/vtune/v8-vtune.h"
22 23
#endif

24
#include "include/libplatform/libplatform.h"
25
#include "include/libplatform/v8-tracing.h"
26
#include "include/v8-inspector.h"
27
#include "include/v8-profiler.h"
28
#include "src/api/api-inl.h"
29 30 31
#include "src/base/cpu.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
32
#include "src/base/platform/time.h"
33
#include "src/base/sys-info.h"
34 35 36
#include "src/d8/d8-console.h"
#include "src/d8/d8-platforms.h"
#include "src/d8/d8.h"
37
#include "src/debug/debug-interface.h"
38
#include "src/deoptimizer/deoptimizer.h"
39
#include "src/diagnostics/basic-block-profiler.h"
40
#include "src/execution/vm-state-inl.h"
41
#include "src/flags/flags.h"
42
#include "src/handles/maybe-handles.h"
43
#include "src/init/v8.h"
44
#include "src/interpreter/interpreter.h"
45
#include "src/logging/counters.h"
46
#include "src/objects/managed.h"
47 48
#include "src/objects/objects-inl.h"
#include "src/objects/objects.h"
49 50 51
#include "src/parsing/parse-info.h"
#include "src/parsing/parsing.h"
#include "src/parsing/scanner-character-streams.h"
52
#include "src/profiler/profile-generator.h"
53
#include "src/sanitizer/msan.h"
54
#include "src/snapshot/snapshot.h"
55
#include "src/tasks/cancelable-task.h"
eholk's avatar
eholk committed
56
#include "src/trap-handler/trap-handler.h"
57 58
#include "src/utils/ostreams.h"
#include "src/utils/utils.h"
59
#include "src/wasm/wasm-engine.h"
60

61 62 63 64
#ifdef V8_FUZZILLI
#include "src/d8/cov.h"
#endif  // V8_FUZZILLI

65 66 67 68
#ifdef V8_USE_PERFETTO
#include "perfetto/tracing.h"
#endif  // V8_USE_PERFETTO

69 70 71 72
#ifdef V8_INTL_SUPPORT
#include "unicode/locid.h"
#endif  // V8_INTL_SUPPORT

73 74 75 76
#ifdef V8_OS_LINUX
#include <sys/mman.h>  // For MultiMappedAllocator.
#endif

77
#if !defined(_WIN32) && !defined(_WIN64)
78
#include <unistd.h>  // NOLINT
79 80
#else
#include <windows.h>  // NOLINT
81
#endif                // !defined(_WIN32) && !defined(_WIN64)
82

83 84
#ifndef DCHECK
#define DCHECK(condition) assert(condition)
Yang Guo's avatar
Yang Guo committed
85 86 87 88
#endif

#ifndef CHECK
#define CHECK(condition) assert(condition)
89
#endif
90

91 92 93 94 95
#define TRACE_BS(...)                                     \
  do {                                                    \
    if (i::FLAG_trace_backing_store) PrintF(__VA_ARGS__); \
  } while (false)

96
namespace v8 {
97

98
namespace {
99

100
const int kMB = 1024 * 1024;
101

102 103 104 105 106 107 108 109 110 111 112 113 114
#ifdef V8_FUZZILLI
// REPRL = read-eval-print-loop
// These file descriptors are being opened when Fuzzilli uses fork & execve to
// run V8.
#define REPRL_CRFD 100  // Control read file decriptor
#define REPRL_CWFD 101  // Control write file decriptor
#define REPRL_DRFD 102  // Data read file decriptor
#define REPRL_DWFD 103  // Data write file decriptor
bool fuzzilli_reprl = true;
#else
bool fuzzilli_reprl = false;
#endif  // V8_FUZZILLI

115 116
const int kMaxSerializerMemoryUsage =
    1 * kMB;  // Arbitrary maximum for testing.
117

118 119
// Base class for shell ArrayBuffer allocators. It forwards all opertions to
// the default v8 allocator.
120 121 122
class ArrayBufferAllocatorBase : public v8::ArrayBuffer::Allocator {
 public:
  void* Allocate(size_t length) override {
123
    return allocator_->Allocate(length);
124
  }
125

126
  void* AllocateUninitialized(size_t length) override {
127
    return allocator_->AllocateUninitialized(length);
128
  }
129

130
  void Free(void* data, size_t length) override {
131
    allocator_->Free(data, length);
132
  }
133 134 135 136 137 138

 private:
  std::unique_ptr<Allocator> allocator_ =
      std::unique_ptr<Allocator>(NewDefaultAllocator());
};

139
// ArrayBuffer allocator that can use virtual memory to improve performance.
140 141
class ShellArrayBufferAllocator : public ArrayBufferAllocatorBase {
 public:
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  void* Allocate(size_t length) override {
    if (length >= kVMThreshold) return AllocateVM(length);
    return ArrayBufferAllocatorBase::Allocate(length);
  }

  void* AllocateUninitialized(size_t length) override {
    if (length >= kVMThreshold) return AllocateVM(length);
    return ArrayBufferAllocatorBase::AllocateUninitialized(length);
  }

  void Free(void* data, size_t length) override {
    if (length >= kVMThreshold) {
      FreeVM(data, length);
    } else {
      ArrayBufferAllocatorBase::Free(data, length);
    }
  }

160
 private:
161 162 163 164
  static constexpr size_t kVMThreshold = 65536;

  void* AllocateVM(size_t length) {
    DCHECK_LE(kVMThreshold, length);
165 166
    v8::PageAllocator* page_allocator = i::GetPlatformPageAllocator();
    size_t page_size = page_allocator->AllocatePageSize();
167
    size_t allocated = RoundUp(length, page_size);
168
    return i::AllocatePages(page_allocator, nullptr, allocated, page_size,
169
                            PageAllocator::kReadWrite);
170 171 172
  }

  void FreeVM(void* data, size_t length) {
173 174
    v8::PageAllocator* page_allocator = i::GetPlatformPageAllocator();
    size_t page_size = page_allocator->AllocatePageSize();
175
    size_t allocated = RoundUp(length, page_size);
176
    CHECK(i::FreePages(page_allocator, data, allocated));
177
  }
178 179
};

180
// ArrayBuffer allocator that never allocates over 10MB.
181
class MockArrayBufferAllocator : public ArrayBufferAllocatorBase {
182
 protected:
183 184 185 186 187 188 189 190 191 192 193 194
  void* Allocate(size_t length) override {
    return ArrayBufferAllocatorBase::Allocate(Adjust(length));
  }

  void* AllocateUninitialized(size_t length) override {
    return ArrayBufferAllocatorBase::AllocateUninitialized(Adjust(length));
  }

  void Free(void* data, size_t length) override {
    return ArrayBufferAllocatorBase::Free(data, Adjust(length));
  }

195
 private:
196
  size_t Adjust(size_t length) {
197
    const size_t kAllocationLimit = 10 * kMB;
198
    return length > kAllocationLimit ? i::AllocatePageSize() : length;
199
  }
200 201
};

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
// ArrayBuffer allocator that can be equipped with a limit to simulate system
// OOM.
class MockArrayBufferAllocatiorWithLimit : public MockArrayBufferAllocator {
 public:
  explicit MockArrayBufferAllocatiorWithLimit(size_t allocation_limit)
      : space_left_(allocation_limit) {}

 protected:
  void* Allocate(size_t length) override {
    if (length > space_left_) {
      return nullptr;
    }
    space_left_ -= length;
    return MockArrayBufferAllocator::Allocate(length);
  }

  void* AllocateUninitialized(size_t length) override {
    if (length > space_left_) {
      return nullptr;
    }
    space_left_ -= length;
    return MockArrayBufferAllocator::AllocateUninitialized(length);
  }

  void Free(void* data, size_t length) override {
    space_left_ += length;
    return MockArrayBufferAllocator::Free(data, length);
  }

 private:
  std::atomic<size_t> space_left_;
};

235 236 237 238 239 240 241 242 243 244 245 246 247
#ifdef V8_OS_LINUX

// This is a mock allocator variant that provides a huge virtual allocation
// backed by a small real allocation that is repeatedly mapped. If you create an
// array on memory allocated by this allocator, you will observe that elements
// will alias each other as if their indices were modulo-divided by the real
// allocation length.
// The purpose is to allow stability-testing of huge (typed) arrays without
// actually consuming huge amounts of physical memory.
// This is currently only available on Linux because it relies on {mremap}.
class MultiMappedAllocator : public ArrayBufferAllocatorBase {
 protected:
  void* Allocate(size_t length) override {
248 249 250
    if (length < kChunkSize) {
      return ArrayBufferAllocatorBase::Allocate(length);
    }
251 252 253 254 255
    // We use mmap, which initializes pages to zero anyway.
    return AllocateUninitialized(length);
  }

  void* AllocateUninitialized(size_t length) override {
256 257 258
    if (length < kChunkSize) {
      return ArrayBufferAllocatorBase::AllocateUninitialized(length);
    }
259 260 261
    size_t rounded_length = RoundUp(length, kChunkSize);
    int prot = PROT_READ | PROT_WRITE;
    // We have to specify MAP_SHARED to make {mremap} below do what we want.
262
    int flags = MAP_SHARED | MAP_ANONYMOUS;
263
    void* real_alloc = mmap(nullptr, kChunkSize, prot, flags, -1, 0);
264
    if (reinterpret_cast<intptr_t>(real_alloc) == -1) {
265 266 267 268 269 270
      // If we ran into some limit (physical or virtual memory, or number
      // of mappings, etc), return {nullptr}, which callers can handle.
      if (errno == ENOMEM) {
        return nullptr;
      }
      // Other errors may be bugs which we want to learn about.
271 272
      FATAL("mmap (real) failed with error %d: %s", errno, strerror(errno));
    }
273 274
    void* virtual_alloc =
        mmap(nullptr, rounded_length, prot, flags | MAP_NORESERVE, -1, 0);
275
    if (reinterpret_cast<intptr_t>(virtual_alloc) == -1) {
276 277 278 279 280 281
      if (errno == ENOMEM) {
        // Undo earlier, successful mappings.
        munmap(real_alloc, kChunkSize);
        return nullptr;
      }
      FATAL("mmap (virtual) failed with error %d: %s", errno, strerror(errno));
282
    }
283 284 285 286 287 288 289 290 291 292
    i::Address virtual_base = reinterpret_cast<i::Address>(virtual_alloc);
    i::Address virtual_end = virtual_base + rounded_length;
    for (i::Address to_map = virtual_base; to_map < virtual_end;
         to_map += kChunkSize) {
      // Specifying 0 as the "old size" causes the existing map entry to not
      // get deleted, which is important so that we can remap it again in the
      // next iteration of this loop.
      void* result =
          mremap(real_alloc, 0, kChunkSize, MREMAP_MAYMOVE | MREMAP_FIXED,
                 reinterpret_cast<void*>(to_map));
293
      if (reinterpret_cast<intptr_t>(result) == -1) {
294 295 296 297 298 299
        if (errno == ENOMEM) {
          // Undo earlier, successful mappings.
          munmap(real_alloc, kChunkSize);
          munmap(virtual_alloc, (to_map - virtual_base));
          return nullptr;
        }
300 301
        FATAL("mremap failed with error %d: %s", errno, strerror(errno));
      }
302
    }
303
    base::MutexGuard lock_guard(&regions_mutex_);
304 305 306 307 308
    regions_[virtual_alloc] = real_alloc;
    return virtual_alloc;
  }

  void Free(void* data, size_t length) override {
309 310 311
    if (length < kChunkSize) {
      return ArrayBufferAllocatorBase::Free(data, length);
    }
312
    base::MutexGuard lock_guard(&regions_mutex_);
313 314 315 316 317 318 319 320 321 322 323 324
    void* real_alloc = regions_[data];
    munmap(real_alloc, kChunkSize);
    size_t rounded_length = RoundUp(length, kChunkSize);
    munmap(data, rounded_length);
    regions_.erase(data);
  }

 private:
  // Aiming for a "Huge Page" (2M on Linux x64) to go easy on the TLB.
  static constexpr size_t kChunkSize = 2 * 1024 * 1024;

  std::unordered_map<void*, void*> regions_;
325
  base::Mutex regions_mutex_;
326 327 328 329
};

#endif  // V8_OS_LINUX

330
v8::Platform* g_default_platform;
331 332
std::unique_ptr<v8::Platform> g_platform;

333 334
static Local<Value> Throw(Isolate* isolate, const char* message) {
  return isolate->ThrowException(
335
      String::NewFromUtf8(isolate, message).ToLocalChecked());
336 337
}

338 339 340 341
static MaybeLocal<Value> TryGetValue(v8::Isolate* isolate,
                                     Local<Context> context,
                                     Local<v8::Object> object,
                                     const char* property) {
342
  Local<String> v8_str =
343
      String::NewFromUtf8(isolate, property).FromMaybe(Local<String>());
344 345 346 347 348 349 350
  if (v8_str.IsEmpty()) return Local<Value>();
  return object->Get(context, v8_str);
}

static Local<Value> GetValue(v8::Isolate* isolate, Local<Context> context,
                             Local<v8::Object> object, const char* property) {
  return TryGetValue(isolate, context, object, property).ToLocalChecked();
351 352
}

353 354
std::shared_ptr<Worker> GetWorkerFromInternalField(Isolate* isolate,
                                                   Local<Object> object) {
355 356
  if (object->InternalFieldCount() != 1) {
    Throw(isolate, "this is not a Worker");
357
    return nullptr;
358
  }
359

360 361
  i::Handle<i::Object> handle = Utils::OpenHandle(*object->GetInternalField(0));
  if (handle->IsSmi()) {
362
    Throw(isolate, "Worker is defunct because main thread is terminating");
363
    return nullptr;
364
  }
365
  auto managed = i::Handle<i::Managed<Worker>>::cast(handle);
366
  return managed->get();
367 368
}

369 370 371 372 373
base::Thread::Options GetThreadOptions(const char* name) {
  // On some systems (OSX 10.6) the stack size default is 0.5Mb or less
  // which is not enough to parse the big literal expressions used in tests.
  // The stack size should be at least StackGuard::kLimitSize + some
  // OS-specific padding for thread startup code.  2Mbytes seems to be enough.
374
  return base::Thread::Options(name, 2 * kMB);
375
}
376

377 378
}  // namespace

379 380 381 382
namespace tracing {

namespace {

383
static constexpr char kIncludedCategoriesParam[] = "included_categories";
384 385 386 387 388 389 390 391 392 393 394 395

class TraceConfigParser {
 public:
  static void FillTraceConfig(v8::Isolate* isolate,
                              platform::tracing::TraceConfig* trace_config,
                              const char* json_str) {
    HandleScope outer_scope(isolate);
    Local<Context> context = Context::New(isolate);
    Context::Scope context_scope(context);
    HandleScope inner_scope(isolate);

    Local<String> source =
396
        String::NewFromUtf8(isolate, json_str).ToLocalChecked();
397 398 399
    Local<Value> result = JSON::Parse(context, source).ToLocalChecked();
    Local<v8::Object> trace_config_object = Local<v8::Object>::Cast(result);

400 401
    UpdateIncludedCategoriesList(isolate, context, trace_config_object,
                                 trace_config);
402 403 404
  }

 private:
405
  static int UpdateIncludedCategoriesList(
406
      v8::Isolate* isolate, Local<Context> context, Local<v8::Object> object,
407 408 409
      platform::tracing::TraceConfig* trace_config) {
    Local<Value> value =
        GetValue(isolate, context, object, kIncludedCategoriesParam);
410 411 412 413 414 415 416
    if (value->IsArray()) {
      Local<Array> v8_array = Local<Array>::Cast(value);
      for (int i = 0, length = v8_array->Length(); i < length; ++i) {
        Local<Value> v = v8_array->Get(context, i)
                             .ToLocalChecked()
                             ->ToString(context)
                             .ToLocalChecked();
417
        String::Utf8Value str(isolate, v->ToString(context).ToLocalChecked());
418
        trace_config->AddIncludedCategory(*str);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
      }
      return v8_array->Length();
    }
    return 0;
  }
};

}  // namespace

static platform::tracing::TraceConfig* CreateTraceConfigFromJSON(
    v8::Isolate* isolate, const char* json_str) {
  platform::tracing::TraceConfig* trace_config =
      new platform::tracing::TraceConfig();
  TraceConfigParser::FillTraceConfig(isolate, trace_config, json_str);
  return trace_config;
}

}  // namespace tracing
437

438 439 440
class ExternalOwningOneByteStringResource
    : public String::ExternalOneByteStringResource {
 public:
441
  ExternalOwningOneByteStringResource() = default;
442 443 444 445 446 447 448
  ExternalOwningOneByteStringResource(
      std::unique_ptr<base::OS::MemoryMappedFile> file)
      : file_(std::move(file)) {}
  const char* data() const override {
    return static_cast<char*>(file_->memory());
  }
  size_t length() const override { return file_->size(); }
449 450

 private:
451
  std::unique_ptr<base::OS::MemoryMappedFile> file_;
452
};
453

454
CounterMap* Shell::counter_map_;
455
base::OS::MemoryMappedFile* Shell::counters_file_ = nullptr;
456 457
CounterCollection Shell::local_counters_;
CounterCollection* Shell::counters_ = &local_counters_;
458
base::LazyMutex Shell::context_mutex_;
459 460
const base::TimeTicks Shell::kInitialTicks =
    base::TimeTicks::HighResolutionNow();
yangguo's avatar
yangguo committed
461
Global<Function> Shell::stringify_function_;
462
base::LazyMutex Shell::workers_mutex_;
463
bool Shell::allow_new_workers_ = true;
464
std::unordered_set<std::shared_ptr<Worker>> Shell::running_workers_;
465
std::atomic<bool> Shell::script_executed_{false};
466 467
base::LazyMutex Shell::isolate_status_lock_;
std::map<v8::Isolate*, bool> Shell::isolate_status_;
468
std::map<v8::Isolate*, int> Shell::isolate_running_streaming_tasks_;
469
base::LazyMutex Shell::cached_code_mutex_;
470 471
std::map<std::string, std::unique_ptr<ScriptCompiler::CachedData>>
    Shell::cached_code_map_;
472
std::atomic<int> Shell::unhandled_promise_rejections_{0};
473

474
Global<Context> Shell::evaluation_context_;
475
ArrayBuffer::Allocator* Shell::array_buffer_allocator;
476
ShellOptions Shell::options;
477
base::OnceType Shell::quit_once_ = V8_ONCE_INIT;
478

479 480
ScriptCompiler::CachedData* Shell::LookupCodeCache(Isolate* isolate,
                                                   Local<Value> source) {
481
  base::MutexGuard lock_guard(cached_code_mutex_.Pointer());
482 483 484 485 486 487 488 489 490 491 492
  CHECK(source->IsString());
  v8::String::Utf8Value key(isolate, source);
  DCHECK(*key);
  auto entry = cached_code_map_.find(*key);
  if (entry != cached_code_map_.end() && entry->second) {
    int length = entry->second->length;
    uint8_t* cache = new uint8_t[length];
    memcpy(cache, entry->second->data, length);
    ScriptCompiler::CachedData* cached_data = new ScriptCompiler::CachedData(
        cache, length, ScriptCompiler::CachedData::BufferOwned);
    return cached_data;
493
  }
494
  return nullptr;
495 496
}

497 498
void Shell::StoreInCodeCache(Isolate* isolate, Local<Value> source,
                             const ScriptCompiler::CachedData* cache_data) {
499
  base::MutexGuard lock_guard(cached_code_mutex_.Pointer());
500 501 502 503 504 505 506 507 508 509
  CHECK(source->IsString());
  if (cache_data == nullptr) return;
  v8::String::Utf8Value key(isolate, source);
  DCHECK(*key);
  int length = cache_data->length;
  uint8_t* cache = new uint8_t[length];
  memcpy(cache, cache_data->data, length);
  cached_code_map_[*key] = std::unique_ptr<ScriptCompiler::CachedData>(
      new ScriptCompiler::CachedData(cache, length,
                                     ScriptCompiler::CachedData::BufferOwned));
510 511
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
// Dummy external source stream which returns the whole source in one go.
// TODO(leszeks): Also test chunking the data.
class DummySourceStream : public v8::ScriptCompiler::ExternalSourceStream {
 public:
  explicit DummySourceStream(Local<String> source) : done_(false) {
    source_buffer_ = Utils::OpenHandle(*source)->ToCString(
        i::ALLOW_NULLS, i::FAST_STRING_TRAVERSAL, &source_length_);
  }

  size_t GetMoreData(const uint8_t** src) override {
    if (done_) {
      return 0;
    }
    *src = reinterpret_cast<uint8_t*>(source_buffer_.release());
    done_ = true;

    return source_length_;
  }

 private:
  int source_length_;
  std::unique_ptr<char[]> source_buffer_;
  bool done_;
};

class StreamingCompileTask final : public v8::Task {
 public:
  StreamingCompileTask(Isolate* isolate,
                       v8::ScriptCompiler::StreamedSource* streamed_source)
      : isolate_(isolate),
        script_streaming_task_(v8::ScriptCompiler::StartStreamingScript(
            isolate, streamed_source)) {
    Shell::NotifyStartStreamingTask(isolate_);
  }

  void Run() override {
    script_streaming_task_->Run();
    // Signal that the task has finished using the task runner to wake the
    // message loop.
    Shell::PostForegroundTask(isolate_, std::make_unique<FinishTask>(isolate_));
  }

 private:
  class FinishTask final : public v8::Task {
   public:
    explicit FinishTask(Isolate* isolate) : isolate_(isolate) {}
    void Run() final { Shell::NotifyFinishStreamingTask(isolate_); }
    Isolate* isolate_;
  };

  Isolate* isolate_;
  std::unique_ptr<v8::ScriptCompiler::ScriptStreamingTask>
      script_streaming_task_;
};

567
// Executes a string within the current v8 context.
568
bool Shell::ExecuteString(Isolate* isolate, Local<String> source,
569 570 571
                          Local<Value> name, PrintResult print_result,
                          ReportExceptions report_exceptions,
                          ProcessMessageQueue process_message_queue) {
572 573 574 575 576 577
  if (i::FLAG_parse_only) {
    i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
    i::VMState<PARSER> state(i_isolate);
    i::Handle<i::String> str = Utils::OpenHandle(*(source));

    // Set up ParseInfo.
578 579
    i::UnoptimizedCompileState compile_state(i_isolate);

580 581 582 583 584
    i::UnoptimizedCompileFlags flags =
        i::UnoptimizedCompileFlags::ForToplevelCompile(
            i_isolate, true, i::construct_language_mode(i::FLAG_use_strict),
            i::REPLMode::kNo);

585 586 587 588
    if (options.compile_options == v8::ScriptCompiler::kEagerCompile) {
      flags.set_is_eager(true);
    }

589
    i::ParseInfo parse_info(i_isolate, flags, &compile_state);
590 591

    i::Handle<i::Script> script = parse_info.CreateScript(
592
        i_isolate, str, i::kNullMaybeHandle, ScriptOriginOptions());
593 594 595 596 597 598
    if (!i::parsing::ParseProgram(&parse_info, script, i_isolate,
                                  i::parsing::ReportStatisticsMode::kYes)) {
      parse_info.pending_error_handler()->PrepareErrors(
          i_isolate, parse_info.ast_value_factory());
      parse_info.pending_error_handler()->ReportErrors(i_isolate, script);

599 600 601 602 603 604
      fprintf(stderr, "Failed parsing\n");
      return false;
    }
    return true;
  }

605
  HandleScope handle_scope(isolate);
606
  TryCatch try_catch(isolate);
607
  try_catch.SetVerbose(report_exceptions == kReportExceptions);
608

609
  MaybeLocal<Value> maybe_result;
610
  bool success = true;
611
  {
612 613
    PerIsolateData* data = PerIsolateData::Get(isolate);
    Local<Context> realm =
614
        Local<Context>::New(isolate, data->realms_[data->realm_current_]);
615
    Context::Scope context_scope(realm);
616
    MaybeLocal<Script> maybe_script;
617 618 619
    Local<Context> context(isolate->GetCurrentContext());
    ScriptOrigin origin(name);

620
    if (options.compile_options == ScriptCompiler::kConsumeCodeCache) {
621 622 623 624 625 626 627 628 629 630 631 632
      ScriptCompiler::CachedData* cached_code =
          LookupCodeCache(isolate, source);
      if (cached_code != nullptr) {
        ScriptCompiler::Source script_source(source, origin, cached_code);
        maybe_script = ScriptCompiler::Compile(context, &script_source,
                                               options.compile_options);
        CHECK(!cached_code->rejected);
      } else {
        ScriptCompiler::Source script_source(source, origin);
        maybe_script = ScriptCompiler::Compile(
            context, &script_source, ScriptCompiler::kNoCompileOptions);
      }
633 634 635 636 637 638 639 640 641 642 643 644 645
    } else if (options.streaming_compile) {
      v8::ScriptCompiler::StreamedSource streamed_source(
          std::make_unique<DummySourceStream>(source),
          v8::ScriptCompiler::StreamedSource::UTF8);

      PostBlockingBackgroundTask(
          std::make_unique<StreamingCompileTask>(isolate, &streamed_source));

      // Pump the loop until the streaming task completes.
      Shell::CompleteMessageLoop(isolate);

      maybe_script =
          ScriptCompiler::Compile(context, &streamed_source, source, origin);
646
    } else {
647
      ScriptCompiler::Source script_source(source, origin);
648 649
      maybe_script = ScriptCompiler::Compile(context, &script_source,
                                             options.compile_options);
650 651
    }

652
    Local<Script> script;
653
    if (!maybe_script.ToLocal(&script)) {
654
      return false;
655
    }
656

657 658 659 660
    if (options.code_cache_options ==
        ShellOptions::CodeCacheOptions::kProduceCache) {
      // Serialize and store it in memory for the next execution.
      ScriptCompiler::CachedData* cached_data =
661
          ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
662 663 664
      StoreInCodeCache(isolate, source, cached_data);
      delete cached_data;
    }
665
    maybe_result = script->Run(realm);
666 667
    if (options.code_cache_options ==
        ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute) {
668 669
      // Serialize and store it in memory for the next execution.
      ScriptCompiler::CachedData* cached_data =
670
          ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
671 672 673
      StoreInCodeCache(isolate, source, cached_data);
      delete cached_data;
    }
674 675 676 677
    if (process_message_queue) {
      if (!EmptyMessageQueues(isolate)) success = false;
      if (!HandleUnhandledPromiseRejections(isolate)) success = false;
    }
678 679
    data->realm_current_ = data->realm_switch_;
  }
680 681
  Local<Value> result;
  if (!maybe_result.ToLocal(&result)) {
682 683 684
    DCHECK(try_catch.HasCaught());
    return false;
  }
685
  // It's possible that a FinalizationRegistry cleanup task threw an error.
686
  if (try_catch.HasCaught()) success = false;
687 688 689 690 691
  if (print_result) {
    if (options.test_shell) {
      if (!result->IsUndefined()) {
        // If all went well and the result wasn't undefined then print
        // the returned value.
692
        v8::String::Utf8Value str(isolate, result);
693 694
        fwrite(*str, sizeof(**str), str.length(), stdout);
        printf("\n");
695
      }
696
    } else {
697
      v8::String::Utf8Value str(isolate, Stringify(isolate, result));
698 699
      fwrite(*str, sizeof(**str), str.length(), stdout);
      printf("\n");
700 701
    }
  }
702
  return success;
703 704
}

705 706
namespace {

707 708
std::string ToSTLString(Isolate* isolate, Local<String> v8_str) {
  String::Utf8Value utf8(isolate, v8_str);
709 710 711 712 713 714
  // Should not be able to fail since the input is a String.
  CHECK(*utf8);
  return *utf8;
}

bool IsAbsolutePath(const std::string& path) {
715 716 717
#if defined(_WIN32) || defined(_WIN64)
  // TODO(adamk): This is an incorrect approximation, but should
  // work for all our test-running cases.
718
  return path.find(':') != std::string::npos;
719 720 721 722 723 724 725 726 727 728
#else
  return path[0] == '/';
#endif
}

std::string GetWorkingDirectory() {
#if defined(_WIN32) || defined(_WIN64)
  char system_buffer[MAX_PATH];
  // TODO(adamk): Support Unicode paths.
  DWORD len = GetCurrentDirectoryA(MAX_PATH, system_buffer);
729
  CHECK_GT(len, 0);
730 731 732 733 734 735 736 737
  return system_buffer;
#else
  char curdir[PATH_MAX];
  CHECK_NOT_NULL(getcwd(curdir, PATH_MAX));
  return curdir;
#endif
}

738
// Returns the directory part of path, without the trailing '/'.
739
std::string DirName(const std::string& path) {
740 741
  DCHECK(IsAbsolutePath(path));
  size_t last_slash = path.find_last_of('/');
742
  DCHECK(last_slash != std::string::npos);
743 744 745
  return path.substr(0, last_slash);
}

746 747 748 749 750
// Resolves path to an absolute path if necessary, and does some
// normalization (eliding references to the current directory
// and replacing backslashes with slashes).
std::string NormalizePath(const std::string& path,
                          const std::string& dir_name) {
751
  std::string absolute_path;
752
  if (IsAbsolutePath(path)) {
753
    absolute_path = path;
754
  } else {
755 756 757 758 759 760 761 762 763 764 765 766
    absolute_path = dir_name + '/' + path;
  }
  std::replace(absolute_path.begin(), absolute_path.end(), '\\', '/');
  std::vector<std::string> segments;
  std::istringstream segment_stream(absolute_path);
  std::string segment;
  while (std::getline(segment_stream, segment, '/')) {
    if (segment == "..") {
      segments.pop_back();
    } else if (segment != ".") {
      segments.push_back(segment);
    }
767
  }
768 769 770 771 772 773
  // Join path segments.
  std::ostringstream os;
  std::copy(segments.begin(), segments.end() - 1,
            std::ostream_iterator<std::string>(os, "/"));
  os << *segments.rbegin();
  return os.str();
774 775
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
// Per-context Module data, allowing sharing of module maps
// across top-level module loads.
class ModuleEmbedderData {
 private:
  class ModuleGlobalHash {
   public:
    explicit ModuleGlobalHash(Isolate* isolate) : isolate_(isolate) {}
    size_t operator()(const Global<Module>& module) const {
      return module.Get(isolate_)->GetIdentityHash();
    }

   private:
    Isolate* isolate_;
  };

 public:
  explicit ModuleEmbedderData(Isolate* isolate)
793
      : module_to_specifier_map(10, ModuleGlobalHash(isolate)) {}
794 795 796

  // Map from normalized module specifier to Module.
  std::unordered_map<std::string, Global<Module>> specifier_to_module_map;
797
  // Map from Module to its URL as defined in the ScriptOrigin
798
  std::unordered_map<Global<Module>, std::string, ModuleGlobalHash>
799
      module_to_specifier_map;
800 801
};

802
enum { kModuleEmbedderDataIndex, kInspectorClientIndex };
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

void InitializeModuleEmbedderData(Local<Context> context) {
  context->SetAlignedPointerInEmbedderData(
      kModuleEmbedderDataIndex, new ModuleEmbedderData(context->GetIsolate()));
}

ModuleEmbedderData* GetModuleDataFromContext(Local<Context> context) {
  return static_cast<ModuleEmbedderData*>(
      context->GetAlignedPointerFromEmbedderData(kModuleEmbedderDataIndex));
}

void DisposeModuleEmbedderData(Local<Context> context) {
  delete GetModuleDataFromContext(context);
  context->SetAlignedPointerInEmbedderData(kModuleEmbedderDataIndex, nullptr);
}

819 820
MaybeLocal<Module> ResolveModuleCallback(Local<Context> context,
                                         Local<String> specifier,
821
                                         Local<Module> referrer) {
822
  Isolate* isolate = context->GetIsolate();
823
  ModuleEmbedderData* d = GetModuleDataFromContext(context);
824 825 826 827 828
  auto specifier_it =
      d->module_to_specifier_map.find(Global<Module>(isolate, referrer));
  CHECK(specifier_it != d->module_to_specifier_map.end());
  std::string absolute_path = NormalizePath(ToSTLString(isolate, specifier),
                                            DirName(specifier_it->second));
829 830 831
  auto module_it = d->specifier_to_module_map.find(absolute_path);
  CHECK(module_it != d->specifier_to_module_map.end());
  return module_it->second.Get(isolate);
832 833 834 835
}

}  // anonymous namespace

836 837
MaybeLocal<Module> Shell::FetchModuleTree(Local<Context> context,
                                          const std::string& file_name) {
838
  DCHECK(IsAbsolutePath(file_name));
839
  Isolate* isolate = context->GetIsolate();
840
  Local<String> source_text = ReadFile(isolate, file_name.c_str());
841 842 843 844 845 846 847 848
  if (source_text.IsEmpty() && options.fuzzy_module_file_extensions) {
    std::string fallback_file_name = file_name + ".js";
    source_text = ReadFile(isolate, fallback_file_name.c_str());
    if (source_text.IsEmpty()) {
      fallback_file_name = file_name + ".mjs";
      source_text = ReadFile(isolate, fallback_file_name.c_str());
    }
  }
849
  if (source_text.IsEmpty()) {
850 851 852
    std::string msg = "Error reading: " + file_name;
    Throw(isolate, msg.c_str());
    return MaybeLocal<Module>();
853 854
  }
  ScriptOrigin origin(
855
      String::NewFromUtf8(isolate, file_name.c_str()).ToLocalChecked(),
856 857
      Local<Integer>(), Local<Integer>(), Local<Boolean>(), Local<Integer>(),
      Local<Value>(), Local<Boolean>(), Local<Boolean>(), True(isolate));
858 859 860 861 862
  ScriptCompiler::Source source(source_text, origin);
  Local<Module> module;
  if (!ScriptCompiler::CompileModule(isolate, &source).ToLocal(&module)) {
    return MaybeLocal<Module>();
  }
863 864 865 866 867

  ModuleEmbedderData* d = GetModuleDataFromContext(context);
  CHECK(d->specifier_to_module_map
            .insert(std::make_pair(file_name, Global<Module>(isolate, module)))
            .second);
868 869 870
  CHECK(d->module_to_specifier_map
            .insert(std::make_pair(Global<Module>(isolate, module), file_name))
            .second);
871 872 873

  std::string dir_name = DirName(file_name);

874 875
  for (int i = 0, length = module->GetModuleRequestsLength(); i < length; ++i) {
    Local<String> name = module->GetModuleRequest(i);
876 877
    std::string absolute_path =
        NormalizePath(ToSTLString(isolate, name), dir_name);
878 879 880
    if (d->specifier_to_module_map.count(absolute_path)) continue;
    if (FetchModuleTree(context, absolute_path).IsEmpty()) {
      return MaybeLocal<Module>();
881 882 883 884 885 886
    }
  }

  return module;
}

887 888 889 890 891
namespace {

struct DynamicImportData {
  DynamicImportData(Isolate* isolate_, Local<String> referrer_,
                    Local<String> specifier_,
892
                    Local<Promise::Resolver> resolver_)
893 894 895
      : isolate(isolate_) {
    referrer.Reset(isolate, referrer_);
    specifier.Reset(isolate, specifier_);
896
    resolver.Reset(isolate, resolver_);
897 898 899 900 901
  }

  Isolate* isolate;
  Global<String> referrer;
  Global<String> specifier;
902
  Global<Promise::Resolver> resolver;
903 904
};

905 906 907 908 909 910 911 912 913 914 915 916 917
struct ModuleResolutionData {
  ModuleResolutionData(Isolate* isolate_, Local<Value> module_namespace_,
                       Local<Promise::Resolver> resolver_)
      : isolate(isolate_) {
    module_namespace.Reset(isolate, module_namespace_);
    resolver.Reset(isolate, resolver_);
  }

  Isolate* isolate;
  Global<Value> module_namespace;
  Global<Promise::Resolver> resolver;
};

918
}  // namespace
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
void Shell::ModuleResolutionSuccessCallback(
    const FunctionCallbackInfo<Value>& info) {
  std::unique_ptr<ModuleResolutionData> module_resolution_data(
      static_cast<ModuleResolutionData*>(
          info.Data().As<v8::External>()->Value()));
  Isolate* isolate(module_resolution_data->isolate);
  HandleScope handle_scope(isolate);

  Local<Promise::Resolver> resolver(
      module_resolution_data->resolver.Get(isolate));
  Local<Value> module_namespace(
      module_resolution_data->module_namespace.Get(isolate));

  PerIsolateData* data = PerIsolateData::Get(isolate);
  Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
  Context::Scope context_scope(realm);

  resolver->Resolve(realm, module_namespace).ToChecked();
}

void Shell::ModuleResolutionFailureCallback(
    const FunctionCallbackInfo<Value>& info) {
  std::unique_ptr<ModuleResolutionData> module_resolution_data(
      static_cast<ModuleResolutionData*>(
          info.Data().As<v8::External>()->Value()));
  Isolate* isolate(module_resolution_data->isolate);
  HandleScope handle_scope(isolate);

  Local<Promise::Resolver> resolver(
      module_resolution_data->resolver.Get(isolate));

  PerIsolateData* data = PerIsolateData::Get(isolate);
  Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
  Context::Scope context_scope(realm);

  DCHECK_EQ(info.Length(), 1);
  resolver->Reject(realm, info[0]).ToChecked();
}

959
MaybeLocal<Promise> Shell::HostImportModuleDynamically(
960 961
    Local<Context> context, Local<ScriptOrModule> referrer,
    Local<String> specifier) {
962
  Isolate* isolate = context->GetIsolate();
963 964 965 966 967

  MaybeLocal<Promise::Resolver> maybe_resolver =
      Promise::Resolver::New(context);
  Local<Promise::Resolver> resolver;
  if (maybe_resolver.ToLocal(&resolver)) {
968 969 970
    DynamicImportData* data = new DynamicImportData(
        isolate, Local<String>::Cast(referrer->GetResourceName()), specifier,
        resolver);
971 972 973 974 975
    isolate->EnqueueMicrotask(Shell::DoHostImportModuleDynamically, data);
    return resolver->GetPromise();
  }

  return MaybeLocal<Promise>();
976 977
}

978 979 980 981 982 983 984 985 986 987 988 989
void Shell::HostInitializeImportMetaObject(Local<Context> context,
                                           Local<Module> module,
                                           Local<Object> meta) {
  Isolate* isolate = context->GetIsolate();
  HandleScope handle_scope(isolate);

  ModuleEmbedderData* d = GetModuleDataFromContext(context);
  auto specifier_it =
      d->module_to_specifier_map.find(Global<Module>(isolate, module));
  CHECK(specifier_it != d->module_to_specifier_map.end());

  Local<String> url_key =
990
      String::NewFromUtf8Literal(isolate, "url", NewStringType::kInternalized);
991
  Local<String> url = String::NewFromUtf8(isolate, specifier_it->second.c_str())
992 993 994 995
                          .ToLocalChecked();
  meta->CreateDataProperty(context, url_key, url).ToChecked();
}

996 997 998 999 1000 1001 1002 1003
void Shell::DoHostImportModuleDynamically(void* import_data) {
  std::unique_ptr<DynamicImportData> import_data_(
      static_cast<DynamicImportData*>(import_data));
  Isolate* isolate(import_data_->isolate);
  HandleScope handle_scope(isolate);

  Local<String> referrer(import_data_->referrer.Get(isolate));
  Local<String> specifier(import_data_->specifier.Get(isolate));
1004
  Local<Promise::Resolver> resolver(import_data_->resolver.Get(isolate));
1005 1006 1007 1008 1009

  PerIsolateData* data = PerIsolateData::Get(isolate);
  Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
  Context::Scope context_scope(realm);

1010
  std::string source_url = ToSTLString(isolate, referrer);
1011
  std::string dir_name =
1012
      DirName(NormalizePath(source_url, GetWorkingDirectory()));
1013
  std::string file_name = ToSTLString(isolate, specifier);
1014
  std::string absolute_path = NormalizePath(file_name, dir_name);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

  TryCatch try_catch(isolate);
  try_catch.SetVerbose(true);

  ModuleEmbedderData* d = GetModuleDataFromContext(realm);
  Local<Module> root_module;
  auto module_it = d->specifier_to_module_map.find(absolute_path);
  if (module_it != d->specifier_to_module_map.end()) {
    root_module = module_it->second.Get(isolate);
  } else if (!FetchModuleTree(realm, absolute_path).ToLocal(&root_module)) {
    CHECK(try_catch.HasCaught());
1026
    resolver->Reject(realm, try_catch.Exception()).ToChecked();
1027 1028 1029 1030
    return;
  }

  MaybeLocal<Value> maybe_result;
1031 1032
  if (root_module->InstantiateModule(realm, ResolveModuleCallback)
          .FromMaybe(false)) {
1033
    maybe_result = root_module->Evaluate(realm);
1034
    CHECK_IMPLIES(i::FLAG_harmony_top_level_await, !maybe_result.IsEmpty());
1035 1036 1037
    EmptyMessageQueues(isolate);
  }

1038 1039
  Local<Value> result;
  if (!maybe_result.ToLocal(&result)) {
1040
    DCHECK(try_catch.HasCaught());
1041
    resolver->Reject(realm, try_catch.Exception()).ToChecked();
1042 1043 1044
    return;
  }

1045
  Local<Value> module_namespace = root_module->GetModuleNamespace();
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
  if (i::FLAG_harmony_top_level_await) {
    Local<Promise> result_promise(Local<Promise>::Cast(result));
    if (result_promise->State() == Promise::kRejected) {
      resolver->Reject(realm, result_promise->Result()).ToChecked();
      return;
    }

    // Setup callbacks, and then chain them to the result promise.
    // ModuleResolutionData will be deleted by the callbacks.
    auto module_resolution_data =
        new ModuleResolutionData(isolate, module_namespace, resolver);
    Local<v8::External> edata = External::New(isolate, module_resolution_data);
    Local<Function> callback_success;
    CHECK(Function::New(realm, ModuleResolutionSuccessCallback, edata)
              .ToLocal(&callback_success));
    Local<Function> callback_failure;
    CHECK(Function::New(realm, ModuleResolutionFailureCallback, edata)
              .ToLocal(&callback_failure));
    result_promise->Then(realm, callback_success, callback_failure)
        .ToLocalChecked();
  } else {
Camillo Bruni's avatar
Camillo Bruni committed
1067
    // TODO(cbruni): Clean up exception handling after introducing new
1068 1069 1070 1071
    // API for evaluating async modules.
    DCHECK(!try_catch.HasCaught());
    resolver->Resolve(realm, module_namespace).ToChecked();
  }
1072 1073
}

1074 1075 1076
bool Shell::ExecuteModule(Isolate* isolate, const char* file_name) {
  HandleScope handle_scope(isolate);

1077 1078 1079 1080
  PerIsolateData* data = PerIsolateData::Get(isolate);
  Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
  Context::Scope context_scope(realm);

1081
  std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
1082

1083 1084 1085 1086
  // Use a non-verbose TryCatch and report exceptions manually using
  // Shell::ReportException, because some errors (such as file errors) are
  // thrown without entering JS and thus do not trigger
  // isolate->ReportPendingMessages().
1087 1088
  TryCatch try_catch(isolate);

1089
  Local<Module> root_module;
1090

1091
  if (!FetchModuleTree(realm, absolute_path).ToLocal(&root_module)) {
1092 1093
    CHECK(try_catch.HasCaught());
    ReportException(isolate, &try_catch);
1094 1095 1096 1097
    return false;
  }

  MaybeLocal<Value> maybe_result;
1098 1099
  if (root_module->InstantiateModule(realm, ResolveModuleCallback)
          .FromMaybe(false)) {
1100
    maybe_result = root_module->Evaluate(realm);
1101
    CHECK_IMPLIES(i::FLAG_harmony_top_level_await, !maybe_result.IsEmpty());
1102
    EmptyMessageQueues(isolate);
1103 1104 1105 1106 1107 1108 1109
  }
  Local<Value> result;
  if (!maybe_result.ToLocal(&result)) {
    DCHECK(try_catch.HasCaught());
    ReportException(isolate, &try_catch);
    return false;
  }
1110 1111
  if (i::FLAG_harmony_top_level_await) {
    // Loop until module execution finishes
Camillo Bruni's avatar
Camillo Bruni committed
1112
    // TODO(cbruni): This is a bit wonky. "Real" engines would not be
1113 1114 1115
    // able to just busy loop waiting for execution to finish.
    Local<Promise> result_promise(Local<Promise>::Cast(result));
    while (result_promise->State() == Promise::kPending) {
1116
      isolate->PerformMicrotaskCheckpoint();
1117 1118 1119 1120 1121
    }

    if (result_promise->State() == Promise::kRejected) {
      // If the exception has been caught by the promise pipeline, we rethrow
      // here in order to ReportException.
Camillo Bruni's avatar
Camillo Bruni committed
1122
      // TODO(cbruni): Clean this up after we create a new API for the case
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
      // where TLA is enabled.
      if (!try_catch.HasCaught()) {
        isolate->ThrowException(result_promise->Result());
      } else {
        DCHECK_EQ(try_catch.Exception(), result_promise->Result());
      }
      ReportException(isolate, &try_catch);
      return false;
    }
  }

1134 1135 1136
  DCHECK(!try_catch.HasCaught());
  return true;
}
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
PerIsolateData::PerIsolateData(Isolate* isolate)
    : isolate_(isolate), realms_(nullptr) {
  isolate->SetData(0, this);
  if (i::FLAG_expose_async_hooks) {
    async_hooks_wrapper_ = new AsyncHooks(isolate);
  }
}

PerIsolateData::~PerIsolateData() {
  isolate_->SetData(0, nullptr);  // Not really needed, just to be sure...
  if (i::FLAG_expose_async_hooks) {
    delete async_hooks_wrapper_;  // This uses the isolate
  }
}

void PerIsolateData::SetTimeout(Local<Function> callback,
                                Local<Context> context) {
  set_timeout_callbacks_.emplace(isolate_, callback);
  set_timeout_contexts_.emplace(isolate_, context);
}

MaybeLocal<Function> PerIsolateData::GetTimeoutCallback() {
  if (set_timeout_callbacks_.empty()) return MaybeLocal<Function>();
  Local<Function> result = set_timeout_callbacks_.front().Get(isolate_);
  set_timeout_callbacks_.pop();
  return result;
}

MaybeLocal<Context> PerIsolateData::GetTimeoutContext() {
  if (set_timeout_contexts_.empty()) return MaybeLocal<Context>();
  Local<Context> result = set_timeout_contexts_.front().Get(isolate_);
  set_timeout_contexts_.pop();
  return result;
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
void PerIsolateData::RemoveUnhandledPromise(Local<Promise> promise) {
  // Remove handled promises from the list
  DCHECK_EQ(promise->GetIsolate(), isolate_);
  for (auto it = unhandled_promises_.begin(); it != unhandled_promises_.end();
       ++it) {
    v8::Local<v8::Promise> unhandled_promise = std::get<0>(*it).Get(isolate_);
    if (unhandled_promise == promise) {
      unhandled_promises_.erase(it--);
    }
  }
}

void PerIsolateData::AddUnhandledPromise(Local<Promise> promise,
                                         Local<Message> message,
                                         Local<Value> exception) {
  DCHECK_EQ(promise->GetIsolate(), isolate_);
1189 1190 1191
  unhandled_promises_.emplace_back(v8::Global<v8::Promise>(isolate_, promise),
                                   v8::Global<v8::Message>(isolate_, message),
                                   v8::Global<v8::Value>(isolate_, exception));
1192 1193 1194 1195 1196 1197 1198 1199
}

size_t PerIsolateData::GetUnhandledPromiseCount() {
  return unhandled_promises_.size();
}

int PerIsolateData::HandleUnhandledPromiseRejections() {
  v8::HandleScope scope(isolate_);
1200 1201 1202 1203
  // Ignore promises that get added during error reporting.
  size_t unhandled_promises_count = unhandled_promises_.size();
  for (size_t i = 0; i < unhandled_promises_count; i++) {
    const auto& tuple = unhandled_promises_[i];
1204 1205 1206 1207 1208
    Local<v8::Message> message = std::get<1>(tuple).Get(isolate_);
    Local<v8::Value> value = std::get<2>(tuple).Get(isolate_);
    Shell::ReportException(isolate_, message, value);
  }
  unhandled_promises_.clear();
1209
  return static_cast<int>(unhandled_promises_count);
1210 1211
}

1212 1213 1214 1215
PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) {
  data_->realm_count_ = 1;
  data_->realm_current_ = 0;
  data_->realm_switch_ = 0;
1216
  data_->realms_ = new Global<Context>[1];
1217
  data_->realms_[0].Reset(data_->isolate_,
1218
                          data_->isolate_->GetEnteredOrMicrotaskContext());
1219 1220 1221
}

PerIsolateData::RealmScope::~RealmScope() {
1222 1223 1224 1225
  // Drop realms to avoid keeping them alive. We don't dispose the
  // module embedder data for the first realm here, but instead do
  // it in RunShell or in RunMain, if not running in interactive mode
  for (int i = 1; i < data_->realm_count_; ++i) {
1226 1227 1228 1229
    Global<Context>& realm = data_->realms_[i];
    if (realm.IsEmpty()) continue;
    DisposeModuleEmbedderData(realm.Get(data_->isolate_));
  }
1230
  data_->realm_count_ = 0;
1231 1232 1233
  delete[] data_->realms_;
}

1234
int PerIsolateData::RealmFind(Local<Context> context) {
1235 1236 1237 1238 1239 1240
  for (int i = 0; i < realm_count_; ++i) {
    if (realms_[i] == context) return i;
  }
  return -1;
}

1241
int PerIsolateData::RealmIndexOrThrow(
1242
    const v8::FunctionCallbackInfo<v8::Value>& args, int arg_offset) {
1243 1244 1245 1246
  if (args.Length() < arg_offset || !args[arg_offset]->IsNumber()) {
    Throw(args.GetIsolate(), "Invalid argument");
    return -1;
  }
1247 1248 1249 1250
  int index = args[arg_offset]
                  ->Int32Value(args.GetIsolate()->GetCurrentContext())
                  .FromMaybe(-1);
  if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) {
1251 1252 1253 1254 1255 1256
    Throw(args.GetIsolate(), "Invalid realm index");
    return -1;
  }
  return index;
}

1257
// performance.now() returns a time stamp as double, measured in milliseconds.
1258 1259
// When FLAG_verify_predictable mode is enabled it returns result of
// v8::Platform::MonotonicallyIncreasingTime().
1260
void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& args) {
1261
  if (i::FLAG_verify_predictable) {
1262
    args.GetReturnValue().Set(g_platform->MonotonicallyIncreasingTime());
1263
  } else {
1264 1265
    base::TimeDelta delta =
        base::TimeTicks::HighResolutionNow() - kInitialTicks;
1266 1267
    args.GetReturnValue().Set(delta.InMillisecondsF());
  }
1268 1269
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
// performance.measureMemory() implements JavaScript Memory API proposal.
// See https://github.com/ulan/javascript-agent-memory/blob/master/explainer.md.
void Shell::PerformanceMeasureMemory(
    const v8::FunctionCallbackInfo<v8::Value>& args) {
  v8::MeasureMemoryMode mode = v8::MeasureMemoryMode::kSummary;
  v8::Isolate* isolate = args.GetIsolate();
  Local<Context> context = isolate->GetCurrentContext();
  if (args.Length() >= 1 && args[0]->IsObject()) {
    Local<Object> object = args[0].As<Object>();
    Local<Value> value = TryGetValue(isolate, context, object, "detailed")
                             .FromMaybe(Local<Value>());
    if (!value.IsEmpty() && value->IsBoolean() &&
        value->BooleanValue(isolate)) {
      mode = v8::MeasureMemoryMode::kDetailed;
    }
  }
1286 1287 1288 1289 1290 1291 1292
  Local<v8::Promise::Resolver> promise_resolver =
      v8::Promise::Resolver::New(context).ToLocalChecked();
  args.GetIsolate()->MeasureMemory(
      v8::MeasureMemoryDelegate::Default(isolate, context, promise_resolver,
                                         mode),
      v8::MeasureMemoryExecution::kEager);
  args.GetReturnValue().Set(promise_resolver->GetPromise());
1293 1294
}

1295
// Realm.current() returns the index of the currently active realm.
1296
void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& args) {
1297 1298
  Isolate* isolate = args.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
1299
  int index = data->RealmFind(isolate->GetEnteredOrMicrotaskContext());
1300 1301
  if (index == -1) return;
  args.GetReturnValue().Set(index);
1302 1303 1304
}

// Realm.owner(o) returns the index of the realm that created o.
1305
void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& args) {
1306 1307 1308
  Isolate* isolate = args.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
  if (args.Length() < 1 || !args[0]->IsObject()) {
1309
    Throw(args.GetIsolate(), "Invalid argument");
1310
    return;
1311
  }
1312 1313 1314 1315
  int index = data->RealmFind(args[0]
                                  ->ToObject(isolate->GetCurrentContext())
                                  .ToLocalChecked()
                                  ->CreationContext());
1316 1317
  if (index == -1) return;
  args.GetReturnValue().Set(index);
1318 1319 1320 1321
}

// Realm.global(i) returns the global object of realm i.
// (Note that properties of global objects cannot be read/written cross-realm.)
1322
void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
1323
  PerIsolateData* data = PerIsolateData::Get(args.GetIsolate());
1324 1325
  int index = data->RealmIndexOrThrow(args, 0);
  if (index == -1) return;
1326 1327
  args.GetReturnValue().Set(
      Local<Context>::New(args.GetIsolate(), data->realms_[index])->Global());
1328 1329
}

1330
MaybeLocal<Context> Shell::CreateRealm(
1331 1332
    const v8::FunctionCallbackInfo<v8::Value>& args, int index,
    v8::MaybeLocal<Value> global_object) {
1333
  Isolate* isolate = args.GetIsolate();
1334
  TryCatch try_catch(isolate);
1335
  PerIsolateData* data = PerIsolateData::Get(isolate);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
  if (index < 0) {
    Global<Context>* old_realms = data->realms_;
    index = data->realm_count_;
    data->realms_ = new Global<Context>[++data->realm_count_];
    for (int i = 0; i < index; ++i) {
      data->realms_[i].Reset(isolate, old_realms[i]);
      old_realms[i].Reset();
    }
    delete[] old_realms;
  }
1346
  Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
1347
  Local<Context> context =
1348
      Context::New(isolate, nullptr, global_template, global_object);
1349 1350
  DCHECK(!try_catch.HasCaught());
  if (context.IsEmpty()) return MaybeLocal<Context>();
1351
  InitializeModuleEmbedderData(context);
1352
  data->realms_[index].Reset(isolate, context);
1353
  args.GetReturnValue().Set(index);
1354
  return context;
1355 1356
}

1357 1358 1359 1360
void Shell::DisposeRealm(const v8::FunctionCallbackInfo<v8::Value>& args,
                         int index) {
  Isolate* isolate = args.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
1361 1362
  Local<Context> context = data->realms_[index].Get(isolate);
  DisposeModuleEmbedderData(context);
1363
  data->realms_[index].Reset();
1364 1365
  // ContextDisposedNotification expects the disposed context to be entered.
  v8::Context::Scope scope(context);
1366
  isolate->ContextDisposedNotification();
1367
  isolate->IdleNotificationDeadline(g_platform->MonotonicallyIncreasingTime());
1368 1369
}

1370 1371 1372
// Realm.create() creates a new realm with a distinct security token
// and returns its index.
void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& args) {
1373
  CreateRealm(args, -1, v8::MaybeLocal<Value>());
1374 1375 1376 1377 1378 1379 1380
}

// Realm.createAllowCrossRealmAccess() creates a new realm with the same
// security token as the current realm.
void Shell::RealmCreateAllowCrossRealmAccess(
    const v8::FunctionCallbackInfo<v8::Value>& args) {
  Local<Context> context;
1381
  if (CreateRealm(args, -1, v8::MaybeLocal<Value>()).ToLocal(&context)) {
1382
    context->SetSecurityToken(
1383
        args.GetIsolate()->GetEnteredOrMicrotaskContext()->GetSecurityToken());
1384 1385
  }
}
1386

1387 1388 1389 1390 1391 1392 1393
// Realm.navigate(i) creates a new realm with a distinct security token
// in place of realm i.
void Shell::RealmNavigate(const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
  int index = data->RealmIndexOrThrow(args, 0);
  if (index == -1) return;
1394 1395 1396 1397 1398
  if (index == 0 || index == data->realm_current_ ||
      index == data->realm_switch_) {
    Throw(args.GetIsolate(), "Invalid realm index");
    return;
  }
1399 1400 1401

  Local<Context> context = Local<Context>::New(isolate, data->realms_[index]);
  v8::MaybeLocal<Value> global_object = context->Global();
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

  // Context::Global doesn't return JSGlobalProxy if DetachGlobal is called in
  // advance.
  if (!global_object.IsEmpty()) {
    HandleScope scope(isolate);
    if (!Utils::OpenHandle(*global_object.ToLocalChecked())
             ->IsJSGlobalProxy()) {
      global_object = v8::MaybeLocal<Value>();
    }
  }

1413 1414 1415 1416
  DisposeRealm(args, index);
  CreateRealm(args, index, global_object);
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
// Realm.detachGlobal(i) detaches the global objects of realm i from realm i.
void Shell::RealmDetachGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
  int index = data->RealmIndexOrThrow(args, 0);
  if (index == -1) return;
  if (index == 0 || index == data->realm_current_ ||
      index == data->realm_switch_) {
    Throw(args.GetIsolate(), "Invalid realm index");
    return;
  }

  HandleScope scope(isolate);
  Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
  realm->DetachGlobal();
}

1434
// Realm.dispose(i) disposes the reference to the realm i.
1435
void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& args) {
1436 1437
  Isolate* isolate = args.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
1438 1439
  int index = data->RealmIndexOrThrow(args, 0);
  if (index == -1) return;
1440 1441
  if (index == 0 || index == data->realm_current_ ||
      index == data->realm_switch_) {
1442
    Throw(args.GetIsolate(), "Invalid realm index");
1443
    return;
1444
  }
1445
  DisposeRealm(args, index);
1446 1447 1448
}

// Realm.switch(i) switches to the realm i for consecutive interactive inputs.
1449
void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& args) {
1450 1451
  Isolate* isolate = args.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
1452 1453
  int index = data->RealmIndexOrThrow(args, 0);
  if (index == -1) return;
1454 1455 1456 1457
  data->realm_switch_ = index;
}

// Realm.eval(i, s) evaluates s in realm i and returns the result.
1458
void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& args) {
1459 1460
  Isolate* isolate = args.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
1461 1462 1463
  int index = data->RealmIndexOrThrow(args, 0);
  if (index == -1) return;
  if (args.Length() < 2 || !args[1]->IsString()) {
1464
    Throw(args.GetIsolate(), "Invalid argument");
1465
    return;
1466
  }
1467 1468
  ScriptOrigin origin(String::NewFromUtf8Literal(isolate, "(d8)",
                                                 NewStringType::kInternalized));
1469
  ScriptCompiler::Source script_source(
1470
      args[1]->ToString(isolate->GetCurrentContext()).ToLocalChecked(), origin);
1471 1472 1473 1474 1475
  Local<UnboundScript> script;
  if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source)
           .ToLocal(&script)) {
    return;
  }
1476
  Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
1477
  realm->Enter();
1478 1479
  int previous_index = data->realm_current_;
  data->realm_current_ = data->realm_switch_ = index;
1480 1481 1482
  Local<Value> result;
  if (!script->BindToCurrentContext()->Run(realm).ToLocal(&result)) {
    realm->Exit();
1483
    data->realm_current_ = data->realm_switch_ = previous_index;
1484 1485
    return;
  }
1486
  realm->Exit();
1487
  data->realm_current_ = data->realm_switch_ = previous_index;
1488
  args.GetReturnValue().Set(result);
1489 1490 1491
}

// Realm.shared is an accessor for a single shared value across realms.
1492 1493
void Shell::RealmSharedGet(Local<String> property,
                           const PropertyCallbackInfo<Value>& info) {
1494 1495
  Isolate* isolate = info.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
1496 1497
  if (data->realm_shared_.IsEmpty()) return;
  info.GetReturnValue().Set(data->realm_shared_);
1498 1499
}

1500
void Shell::RealmSharedSet(Local<String> property, Local<Value> value,
1501
                           const PropertyCallbackInfo<void>& info) {
1502 1503
  Isolate* isolate = info.GetIsolate();
  PerIsolateData* data = PerIsolateData::Get(isolate);
1504
  data->realm_shared_.Reset(isolate, value);
1505 1506
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
// async_hooks.createHook() registers functions to be called for different
// lifetime events of each async operation.
void Shell::AsyncHooksCreateHook(
    const v8::FunctionCallbackInfo<v8::Value>& args) {
  Local<Object> wrap =
      PerIsolateData::Get(args.GetIsolate())->GetAsyncHooks()->CreateHook(args);
  args.GetReturnValue().Set(wrap);
}

// async_hooks.executionAsyncId() returns the asyncId of the current execution
// context.
void Shell::AsyncHooksExecutionAsyncId(
    const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  HandleScope handle_scope(isolate);
  args.GetReturnValue().Set(v8::Number::New(
      isolate,
      PerIsolateData::Get(isolate)->GetAsyncHooks()->GetExecutionAsyncId()));
}

void Shell::AsyncHooksTriggerAsyncId(
    const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  HandleScope handle_scope(isolate);
  args.GetReturnValue().Set(v8::Number::New(
      isolate,
      PerIsolateData::Get(isolate)->GetAsyncHooks()->GetTriggerAsyncId()));
}

1536
void WriteToFile(FILE* file, const v8::FunctionCallbackInfo<v8::Value>& args) {
1537
  for (int i = 0; i < args.Length(); i++) {
1538
    HandleScope handle_scope(args.GetIsolate());
1539
    if (i != 0) {
1540
      fprintf(file, " ");
1541
    }
1542 1543

    // Explicitly catch potential exceptions in toString().
1544
    v8::TryCatch try_catch(args.GetIsolate());
1545
    Local<Value> arg = args[i];
1546
    Local<String> str_obj;
1547 1548

    if (arg->IsSymbol()) {
1549
      arg = Local<Symbol>::Cast(arg)->Description();
1550 1551
    }
    if (!arg->ToString(args.GetIsolate()->GetCurrentContext())
1552
             .ToLocal(&str_obj)) {
1553 1554 1555
      try_catch.ReThrow();
      return;
    }
1556

1557
    v8::String::Utf8Value str(args.GetIsolate(), str_obj);
1558
    int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), file));
1559 1560
    if (n != str.length()) {
      printf("Error in fwrite\n");
1561
      base::OS::ExitProcess(1);
1562
    }
1563 1564 1565
  }
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
void WriteAndFlush(FILE* file,
                   const v8::FunctionCallbackInfo<v8::Value>& args) {
  WriteToFile(file, args);
  fprintf(file, "\n");
  fflush(file);
}

void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& args) {
  WriteAndFlush(stdout, args);
}

void Shell::PrintErr(const v8::FunctionCallbackInfo<v8::Value>& args) {
  WriteAndFlush(stderr, args);
}

void Shell::Write(const v8::FunctionCallbackInfo<v8::Value>& args) {
  WriteToFile(stdout, args);
}
1584

1585
void Shell::Read(const v8::FunctionCallbackInfo<v8::Value>& args) {
1586
  String::Utf8Value file(args.GetIsolate(), args[0]);
1587
  if (*file == nullptr) {
1588
    Throw(args.GetIsolate(), "Error loading file");
1589
    return;
1590
  }
1591
  if (args.Length() == 2) {
1592
    String::Utf8Value format(args.GetIsolate(), args[1]);
1593 1594 1595 1596 1597
    if (*format && std::strcmp(*format, "binary") == 0) {
      ReadBuffer(args);
      return;
    }
  }
1598
  Local<String> source = ReadFile(args.GetIsolate(), *file);
1599
  if (source.IsEmpty()) {
1600
    Throw(args.GetIsolate(), "Error loading file");
1601
    return;
1602
  }
1603
  args.GetReturnValue().Set(source);
1604 1605
}

1606
Local<String> Shell::ReadFromStdin(Isolate* isolate) {
1607 1608
  static const int kBufferSize = 256;
  char buffer[kBufferSize];
1609
  Local<String> accumulator = String::NewFromUtf8Literal(isolate, "");
1610
  int length;
1611 1612 1613 1614
  while (true) {
    // Continue reading if the line ends with an escape '\\' or the line has
    // not been fully read into the buffer yet (does not end with '\n').
    // If fgets gets an error, just give up.
1615
    char* input = nullptr;
1616
    input = fgets(buffer, kBufferSize, stdin);
1617
    if (input == nullptr) return Local<String>();
1618
    length = static_cast<int>(strlen(buffer));
1619 1620
    if (length == 0) {
      return accumulator;
1621
    } else if (buffer[length - 1] != '\n') {
1622
      accumulator = String::Concat(
1623
          isolate, accumulator,
1624 1625
          String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length)
              .ToLocalChecked());
1626 1627
    } else if (length > 1 && buffer[length - 2] == '\\') {
      buffer[length - 2] = '\n';
1628 1629 1630 1631 1632
      accumulator =
          String::Concat(isolate, accumulator,
                         String::NewFromUtf8(isolate, buffer,
                                             NewStringType::kNormal, length - 1)
                             .ToLocalChecked());
1633
    } else {
1634
      return String::Concat(
1635
          isolate, accumulator,
1636
          String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
1637 1638
                              length - 1)
              .ToLocalChecked());
1639 1640
    }
  }
1641 1642
}

1643
void Shell::Load(const v8::FunctionCallbackInfo<v8::Value>& args) {
1644
  for (int i = 0; i < args.Length(); i++) {
1645
    HandleScope handle_scope(args.GetIsolate());
1646
    String::Utf8Value file(args.GetIsolate(), args[i]);
1647
    if (*file == nullptr) {
1648
      Throw(args.GetIsolate(), "Error loading file");
1649
      return;
1650
    }
1651
    Local<String> source = ReadFile(args.GetIsolate(), *file);
1652
    if (source.IsEmpty()) {
1653
      Throw(args.GetIsolate(), "Error loading file");
1654
      return;
1655
    }
1656 1657
    if (!ExecuteString(
            args.GetIsolate(), source,
1658
            String::NewFromUtf8(args.GetIsolate(), *file).ToLocalChecked(),
1659 1660 1661
            kNoPrintResult,
            options.quiet_load ? kNoReportExceptions : kReportExceptions,
            kNoProcessMessageQueue)) {
1662
      Throw(args.GetIsolate(), "Error executing file");
1663
      return;
1664 1665 1666 1667
    }
  }
}

1668 1669 1670 1671 1672 1673 1674 1675
void Shell::SetTimeout(const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  args.GetReturnValue().Set(v8::Number::New(isolate, 0));
  if (args.Length() == 0 || !args[0]->IsFunction()) return;
  Local<Function> callback = Local<Function>::Cast(args[0]);
  Local<Context> context = isolate->GetCurrentContext();
  PerIsolateData::Get(isolate)->SetTimeout(callback, context);
}
1676

1677 1678 1679
void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  HandleScope handle_scope(isolate);
1680 1681
  if (args.Length() < 1 || !args[0]->IsString()) {
    Throw(args.GetIsolate(), "1st argument must be string");
1682 1683 1684
    return;
  }

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
  // d8 honors `options={type: string}`, which means the first argument is
  // not a filename but string of script to be run.
  bool load_from_file = true;
  if (args.Length() > 1 && args[1]->IsObject()) {
    Local<Object> object = args[1].As<Object>();
    Local<Context> context = isolate->GetCurrentContext();
    Local<Value> value = GetValue(args.GetIsolate(), context, object, "type");
    if (value->IsString()) {
      Local<String> worker_type = value->ToString(context).ToLocalChecked();
      String::Utf8Value str(isolate, worker_type);
      if (strcmp("string", *str) == 0) {
        load_from_file = false;
      } else if (strcmp("classic", *str) == 0) {
        load_from_file = true;
      } else {
        Throw(args.GetIsolate(), "Unsupported worker type");
        return;
      }
    }
  }

  Local<Value> source;
  if (load_from_file) {
    String::Utf8Value filename(args.GetIsolate(), args[0]);
    source = ReadFile(args.GetIsolate(), *filename);
    if (source.IsEmpty()) {
      Throw(args.GetIsolate(), "Error loading worker script");
      return;
    }
  } else {
    source = args[0];
  }

1718 1719 1720 1721 1722
  if (!args.IsConstructCall()) {
    Throw(args.GetIsolate(), "Worker must be constructed with new");
    return;
  }

1723 1724 1725 1726 1727
  // Initialize the embedder field to 0; if we return early without
  // creating a new Worker (because the main thread is terminating) we can
  // early-out from the instance calls.
  args.Holder()->SetInternalField(0, v8::Integer::New(isolate, 0));

1728
  {
1729 1730
    // Don't allow workers to create more workers if the main thread
    // is waiting for existing running workers to terminate.
1731
    base::MutexGuard lock_guard(workers_mutex_.Pointer());
1732 1733
    if (!allow_new_workers_) return;

1734
    String::Utf8Value script(args.GetIsolate(), source);
1735 1736
    if (!*script) {
      Throw(args.GetIsolate(), "Can't get worker script");
1737 1738
      return;
    }
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

    // The C++ worker object's lifetime is shared between the Managed<Worker>
    // object on the heap, which the JavaScript object points to, and an
    // internal std::shared_ptr in the worker thread itself.
    auto worker = std::make_shared<Worker>(*script);
    i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
    const size_t kWorkerSizeEstimate = 4 * 1024 * 1024;  // stack + heap.
    i::Handle<i::Object> managed = i::Managed<Worker>::FromSharedPtr(
        i_isolate, kWorkerSizeEstimate, worker);
    args.Holder()->SetInternalField(0, Utils::ToLocal(managed));
    if (!Worker::StartWorkerThread(std::move(worker))) {
      Throw(args.GetIsolate(), "Can't start thread");
      return;
    }
1753
  }
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
}

void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  HandleScope handle_scope(isolate);

  if (args.Length() < 1) {
    Throw(isolate, "Invalid argument");
    return;
  }

1765 1766 1767
  std::shared_ptr<Worker> worker =
      GetWorkerFromInternalField(isolate, args.Holder());
  if (!worker.get()) {
1768 1769 1770
    return;
  }

1771
  Local<Value> message = args[0];
1772 1773 1774 1775 1776 1777
  Local<Value> transfer =
      args.Length() >= 2 ? args[1] : Local<Value>::Cast(Undefined(isolate));
  std::unique_ptr<SerializationData> data =
      Shell::SerializeValue(isolate, message, transfer);
  if (data) {
    worker->PostMessage(std::move(data));
1778 1779 1780 1781 1782 1783
  }
}

void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  HandleScope handle_scope(isolate);
1784 1785 1786
  std::shared_ptr<Worker> worker =
      GetWorkerFromInternalField(isolate, args.Holder());
  if (!worker.get()) {
1787 1788 1789
    return;
  }

1790
  std::unique_ptr<SerializationData> data = worker->GetMessage();
1791
  if (data) {
1792 1793 1794
    Local<Value> value;
    if (Shell::DeserializeValue(isolate, std::move(data)).ToLocal(&value)) {
      args.GetReturnValue().Set(value);
1795 1796 1797 1798 1799 1800 1801
    }
  }
}

void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  HandleScope handle_scope(isolate);
1802 1803 1804
  std::shared_ptr<Worker> worker =
      GetWorkerFromInternalField(isolate, args.Holder());
  if (!worker.get()) {
1805 1806 1807 1808 1809 1810
    return;
  }

  worker->Terminate();
}

1811
void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* args) {
1812 1813 1814
  int exit_code = (*args)[0]
                      ->Int32Value(args->GetIsolate()->GetCurrentContext())
                      .FromMaybe(0);
1815
  WaitForRunningWorkers();
1816
  args->GetIsolate()->Exit();
1817
  OnExit(args->GetIsolate());
1818
  base::OS::ExitProcess(exit_code);
1819 1820
}

1821 1822 1823 1824 1825
void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& args) {
  base::CallOnce(&quit_once_, &QuitOnce,
                 const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&args));
}

1826 1827 1828 1829 1830 1831 1832
void Shell::WaitUntilDone(const v8::FunctionCallbackInfo<v8::Value>& args) {
  SetWaitUntilDone(args.GetIsolate(), true);
}

void Shell::NotifyDone(const v8::FunctionCallbackInfo<v8::Value>& args) {
  SetWaitUntilDone(args.GetIsolate(), false);
}
1833

1834
void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& args) {
1835 1836 1837
  args.GetReturnValue().Set(
      String::NewFromUtf8(args.GetIsolate(), V8::GetVersion())
          .ToLocalChecked());
1838 1839
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
#ifdef V8_FUZZILLI

// We have to assume that the fuzzer will be able to call this function e.g. by
// enumerating the properties of the global object and eval'ing them. As such
// this function is implemented in a way that requires passing some magic value
// as first argument (with the idea being that the fuzzer won't be able to
// generate this value) which then also acts as a selector for the operation
// to perform.
void Shell::Fuzzilli(const v8::FunctionCallbackInfo<v8::Value>& args) {
  HandleScope handle_scope(args.GetIsolate());

  String::Utf8Value operation(args.GetIsolate(), args[0]);
  if (*operation == nullptr) {
    return;
  }

  if (strcmp(*operation, "FUZZILLI_CRASH") == 0) {
    auto arg = args[1]
                   ->Int32Value(args.GetIsolate()->GetCurrentContext())
                   .FromMaybe(0);
    switch (arg) {
      case 0:
        V8_IMMEDIATE_CRASH();
        break;
      case 1:
        CHECK(0);
        break;
      default:
        DCHECK(false);
        break;
    }
  } else if (strcmp(*operation, "FUZZILLI_PRINT") == 0) {
    static FILE* fzliout = fdopen(REPRL_DWFD, "w");
    if (!fzliout) {
      fprintf(
          stderr,
          "Fuzzer output channel not available, printing to stdout instead\n");
      fzliout = stdout;
    }

    String::Utf8Value string(args.GetIsolate(), args[1]);
    if (*string == nullptr) {
      return;
    }
    fprintf(fzliout, "%s\n", *string);
    fflush(fzliout);
  }
}

#endif  // V8_FUZZILLI

1891 1892
void Shell::ReportException(Isolate* isolate, Local<v8::Message> message,
                            Local<v8::Value> exception_obj) {
1893
  HandleScope handle_scope(isolate);
1894 1895
  Local<Context> context = isolate->GetCurrentContext();
  bool enter_context = context.IsEmpty();
1896
  if (enter_context) {
yangguo's avatar
yangguo committed
1897 1898
    context = Local<Context>::New(isolate, evaluation_context_);
    context->Enter();
1899
  }
1900 1901 1902 1903 1904
  // Converts a V8 value to a C string.
  auto ToCString = [](const v8::String::Utf8Value& value) {
    return *value ? *value : "<string conversion failed>";
  };

1905
  v8::String::Utf8Value exception(isolate, exception_obj);
1906
  const char* exception_string = ToCString(exception);
1907 1908 1909
  if (message.IsEmpty()) {
    // V8 didn't provide any extra information about this error; just
    // print the exception.
1910
    printf("%s\n", exception_string);
1911
  } else if (message->GetScriptOrigin().Options().IsWasm()) {
1912
    // Print wasm-function[(function index)]:(offset): (message).
1913
    int function_index = message->GetWasmFunctionIndex();
1914
    int offset = message->GetStartColumn(context).FromJust();
1915
    printf("wasm-function[%d]:0x%x: %s\n", function_index, offset,
1916
           exception_string);
1917 1918
  } else {
    // Print (filename):(line number): (message).
1919 1920
    v8::String::Utf8Value filename(isolate,
                                   message->GetScriptOrigin().ResourceName());
1921
    const char* filename_string = ToCString(filename);
1922
    int linenum = message->GetLineNumber(context).FromMaybe(-1);
1923
    printf("%s:%i: %s\n", filename_string, linenum, exception_string);
1924
    Local<String> sourceline;
1925
    if (message->GetSourceLine(context).ToLocal(&sourceline)) {
1926
      // Print line of source code.
1927
      v8::String::Utf8Value sourcelinevalue(isolate, sourceline);
1928
      const char* sourceline_string = ToCString(sourcelinevalue);
1929 1930
      printf("%s\n", sourceline_string);
      // Print wavy underline (GetUnderline is deprecated).
1931
      int start = message->GetStartColumn(context).FromJust();
1932 1933 1934
      for (int i = 0; i < start; i++) {
        printf(" ");
      }
1935
      int end = message->GetEndColumn(context).FromJust();
1936 1937 1938 1939
      for (int i = start; i < end; i++) {
        printf("^");
      }
      printf("\n");
1940
    }
1941 1942
  }
  Local<Value> stack_trace_string;
1943 1944
  if (v8::TryCatch::StackTrace(context, exception_obj)
          .ToLocal(&stack_trace_string) &&
1945
      stack_trace_string->IsString()) {
1946 1947
    v8::String::Utf8Value stack_trace(isolate,
                                      Local<String>::Cast(stack_trace_string));
1948
    printf("%s\n", ToCString(stack_trace));
1949
  }
1950
  printf("\n");
yangguo's avatar
yangguo committed
1951
  if (enter_context) context->Exit();
1952 1953
}

1954 1955 1956 1957
void Shell::ReportException(v8::Isolate* isolate, v8::TryCatch* try_catch) {
  ReportException(isolate, try_catch->Message(), try_catch->Exception());
}

1958
int32_t* Counter::Bind(const char* name, bool is_histogram) {
1959 1960 1961 1962
  int i;
  for (i = 0; i < kMaxNameSize - 1 && name[i]; i++)
    name_[i] = static_cast<char>(name[i]);
  name_[i] = '\0';
1963 1964 1965 1966 1967 1968 1969
  is_histogram_ = is_histogram;
  return ptr();
}

void Counter::AddSample(int32_t sample) {
  count_++;
  sample_total_ += sample;
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
}

CounterCollection::CounterCollection() {
  magic_number_ = 0xDEADFACE;
  max_counters_ = kMaxCounters;
  max_name_size_ = Counter::kMaxNameSize;
  counters_in_use_ = 0;
}

Counter* CounterCollection::GetNextCounter() {
1980
  if (counters_in_use_ == kMaxCounters) return nullptr;
1981 1982 1983
  return &counters_[counters_in_use_++];
}

1984
void Shell::MapCounters(v8::Isolate* isolate, const char* name) {
1985
  counters_file_ = base::OS::MemoryMappedFile::create(
1986
      name, sizeof(CounterCollection), &local_counters_);
1987 1988 1989
  void* memory =
      (counters_file_ == nullptr) ? nullptr : counters_file_->memory();
  if (memory == nullptr) {
1990
    printf("Could not map counters file %s\n", name);
1991
    base::OS::ExitProcess(1);
1992 1993
  }
  counters_ = static_cast<CounterCollection*>(memory);
1994 1995 1996
  isolate->SetCounterFunction(LookupCounter);
  isolate->SetCreateHistogramFunction(CreateHistogram);
  isolate->SetAddHistogramSampleFunction(AddHistogramSample);
1997 1998
}

1999
Counter* Shell::GetCounter(const char* name, bool is_histogram) {
2000 2001 2002
  auto map_entry = counter_map_->find(name);
  Counter* counter =
      map_entry != counter_map_->end() ? map_entry->second : nullptr;
2003

2004
  if (counter == nullptr) {
2005
    counter = counters_->GetNextCounter();
2006
    if (counter != nullptr) {
2007
      (*counter_map_)[name] = counter;
2008 2009 2010
      counter->Bind(name, is_histogram);
    }
  } else {
2011
    DCHECK(counter->is_histogram() == is_histogram);
2012 2013 2014 2015 2016 2017 2018
  }
  return counter;
}

int* Shell::LookupCounter(const char* name) {
  Counter* counter = GetCounter(name, false);

2019
  if (counter != nullptr) {
2020
    return counter->ptr();
2021
  } else {
2022
    return nullptr;
2023
  }
2024 2025
}

2026
void* Shell::CreateHistogram(const char* name, int min, int max,
2027 2028 2029 2030 2031 2032 2033
                             size_t buckets) {
  return GetCounter(name, true);
}

void Shell::AddHistogramSample(void* histogram, int sample) {
  Counter* counter = reinterpret_cast<Counter*>(histogram);
  counter->AddSample(sample);
2034 2035
}

yangguo's avatar
yangguo committed
2036 2037 2038
// Turn a value into a human-readable string.
Local<String> Shell::Stringify(Isolate* isolate, Local<Value> value) {
  v8::Local<v8::Context> context =
2039
      v8::Local<v8::Context>::New(isolate, evaluation_context_);
yangguo's avatar
yangguo committed
2040 2041
  if (stringify_function_.IsEmpty()) {
    Local<String> source =
2042
        String::NewFromUtf8(isolate, stringify_source_).ToLocalChecked();
2043
    Local<String> name = String::NewFromUtf8Literal(isolate, "d8-stringify");
yangguo's avatar
yangguo committed
2044 2045 2046 2047 2048 2049 2050 2051 2052
    ScriptOrigin origin(name);
    Local<Script> script =
        Script::Compile(context, source, &origin).ToLocalChecked();
    stringify_function_.Reset(
        isolate, script->Run(context).ToLocalChecked().As<Function>());
  }
  Local<Function> fun = Local<Function>::New(isolate, stringify_function_);
  Local<Value> argv[1] = {value};
  v8::TryCatch try_catch(isolate);
2053
  MaybeLocal<Value> result = fun->Call(context, Undefined(isolate), 1, argv);
yangguo's avatar
yangguo committed
2054 2055
  if (result.IsEmpty()) return String::Empty(isolate);
  return result.ToLocalChecked().As<String>();
2056
}
2057

2058 2059
Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
  Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
  global_template->Set(isolate, "print", FunctionTemplate::New(isolate, Print));
  global_template->Set(isolate, "printErr",
                       FunctionTemplate::New(isolate, PrintErr));
  global_template->Set(isolate, "write", FunctionTemplate::New(isolate, Write));
  global_template->Set(isolate, "read", FunctionTemplate::New(isolate, Read));
  global_template->Set(isolate, "readbuffer",
                       FunctionTemplate::New(isolate, ReadBuffer));
  global_template->Set(isolate, "readline",
                       FunctionTemplate::New(isolate, ReadLine));
  global_template->Set(isolate, "load", FunctionTemplate::New(isolate, Load));
  global_template->Set(isolate, "setTimeout",
                       FunctionTemplate::New(isolate, SetTimeout));
2072 2073 2074 2075
  // Some Emscripten-generated code tries to call 'quit', which in turn would
  // call C's exit(). This would lead to memory leaks, because there is no way
  // we can terminate cleanly then, so we need a way to hide 'quit'.
  if (!options.omit_quit) {
2076
    global_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
2077
  }
2078
  Local<ObjectTemplate> test_template = ObjectTemplate::New(isolate);
2079 2080 2081 2082 2083
  global_template->Set(isolate, "testRunner", test_template);
  test_template->Set(isolate, "notifyDone",
                     FunctionTemplate::New(isolate, NotifyDone));
  test_template->Set(isolate, "waitUntilDone",
                     FunctionTemplate::New(isolate, WaitUntilDone));
2084 2085 2086
  // Reliable access to quit functionality. The "quit" method function
  // installed on the global object can be hidden with the --omit-quit flag
  // (e.g. on asan bots).
2087 2088 2089 2090 2091
  test_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));

  global_template->Set(isolate, "version",
                       FunctionTemplate::New(isolate, Version));
  global_template->Set(Symbol::GetToStringTag(isolate),
2092
                       String::NewFromUtf8Literal(isolate, "global"));
2093

2094
  // Bind the Realm object.
2095
  Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate);
2096 2097 2098 2099 2100 2101 2102 2103
  realm_template->Set(isolate, "current",
                      FunctionTemplate::New(isolate, RealmCurrent));
  realm_template->Set(isolate, "owner",
                      FunctionTemplate::New(isolate, RealmOwner));
  realm_template->Set(isolate, "global",
                      FunctionTemplate::New(isolate, RealmGlobal));
  realm_template->Set(isolate, "create",
                      FunctionTemplate::New(isolate, RealmCreate));
2104
  realm_template->Set(
2105
      isolate, "createAllowCrossRealmAccess",
2106
      FunctionTemplate::New(isolate, RealmCreateAllowCrossRealmAccess));
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
  realm_template->Set(isolate, "navigate",
                      FunctionTemplate::New(isolate, RealmNavigate));
  realm_template->Set(isolate, "detachGlobal",
                      FunctionTemplate::New(isolate, RealmDetachGlobal));
  realm_template->Set(isolate, "dispose",
                      FunctionTemplate::New(isolate, RealmDispose));
  realm_template->Set(isolate, "switch",
                      FunctionTemplate::New(isolate, RealmSwitch));
  realm_template->Set(isolate, "eval",
                      FunctionTemplate::New(isolate, RealmEval));
2117 2118
  realm_template->SetAccessor(String::NewFromUtf8Literal(isolate, "shared"),
                              RealmSharedGet, RealmSharedSet);
2119
  global_template->Set(isolate, "Realm", realm_template);
2120

2121
  Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate);
2122 2123
  performance_template->Set(isolate, "now",
                            FunctionTemplate::New(isolate, PerformanceNow));
2124
  performance_template->Set(
2125
      isolate, "measureMemory",
2126
      FunctionTemplate::New(isolate, PerformanceMeasureMemory));
2127
  global_template->Set(isolate, "performance", performance_template);
2128 2129

  Local<FunctionTemplate> worker_fun_template =
2130
      FunctionTemplate::New(isolate, WorkerNew);
2131 2132 2133
  Local<Signature> worker_signature =
      Signature::New(isolate, worker_fun_template);
  worker_fun_template->SetClassName(
2134
      String::NewFromUtf8Literal(isolate, "Worker"));
2135
  worker_fun_template->ReadOnlyPrototype();
2136
  worker_fun_template->PrototypeTemplate()->Set(
2137
      isolate, "terminate",
2138 2139
      FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(),
                            worker_signature));
2140
  worker_fun_template->PrototypeTemplate()->Set(
2141
      isolate, "postMessage",
2142 2143
      FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(),
                            worker_signature));
2144
  worker_fun_template->PrototypeTemplate()->Set(
2145
      isolate, "getMessage",
2146 2147
      FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(),
                            worker_signature));
2148
  worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1);
2149
  global_template->Set(isolate, "Worker", worker_fun_template);
2150

2151
  Local<ObjectTemplate> os_templ = ObjectTemplate::New(isolate);
2152
  AddOSMethods(isolate, os_templ);
2153
  global_template->Set(isolate, "os", os_templ);
2154

2155 2156 2157 2158 2159 2160 2161
#ifdef V8_FUZZILLI
  global_template->Set(
      String::NewFromUtf8(isolate, "fuzzilli", NewStringType::kNormal)
          .ToLocalChecked(),
      FunctionTemplate::New(isolate, Fuzzilli), PropertyAttribute::DontEnum);
#endif  // V8_FUZZILLI

2162 2163 2164
  if (i::FLAG_expose_async_hooks) {
    Local<ObjectTemplate> async_hooks_templ = ObjectTemplate::New(isolate);
    async_hooks_templ->Set(
2165
        isolate, "createHook",
2166 2167
        FunctionTemplate::New(isolate, AsyncHooksCreateHook));
    async_hooks_templ->Set(
2168
        isolate, "executionAsyncId",
2169 2170
        FunctionTemplate::New(isolate, AsyncHooksExecutionAsyncId));
    async_hooks_templ->Set(
2171
        isolate, "triggerAsyncId",
2172
        FunctionTemplate::New(isolate, AsyncHooksTriggerAsyncId));
2173
    global_template->Set(isolate, "async_hooks", async_hooks_templ);
2174 2175
  }

2176 2177 2178
  return global_template;
}

2179
static void PrintMessageCallback(Local<Message> message, Local<Value> error) {
2180 2181 2182 2183 2184 2185 2186 2187 2188
  switch (message->ErrorLevel()) {
    case v8::Isolate::kMessageWarning:
    case v8::Isolate::kMessageLog:
    case v8::Isolate::kMessageInfo:
    case v8::Isolate::kMessageDebug: {
      break;
    }

    case v8::Isolate::kMessageError: {
2189
      Shell::ReportException(message->GetIsolate(), message, error);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
      return;
    }

    default: {
      UNREACHABLE();
    }
  }
  // Converts a V8 value to a C string.
  auto ToCString = [](const v8::String::Utf8Value& value) {
    return *value ? *value : "<string conversion failed>";
  };
2201
  Isolate* isolate = message->GetIsolate();
2202
  v8::String::Utf8Value msg(isolate, message->Get());
2203 2204
  const char* msg_string = ToCString(msg);
  // Print (filename):(line number): (message).
2205 2206
  v8::String::Utf8Value filename(isolate,
                                 message->GetScriptOrigin().ResourceName());
2207 2208 2209 2210
  const char* filename_string = ToCString(filename);
  Maybe<int> maybeline = message->GetLineNumber(isolate->GetCurrentContext());
  int linenum = maybeline.IsJust() ? maybeline.FromJust() : -1;
  printf("%s:%i: %s\n", filename_string, linenum, msg_string);
2211
}
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
void Shell::PromiseRejectCallback(v8::PromiseRejectMessage data) {
  if (options.ignore_unhandled_promises) return;
  if (data.GetEvent() == v8::kPromiseRejectAfterResolved ||
      data.GetEvent() == v8::kPromiseResolveAfterResolved) {
    // Ignore reject/resolve after resolved.
    return;
  }
  v8::Local<v8::Promise> promise = data.GetPromise();
  v8::Isolate* isolate = promise->GetIsolate();
  PerIsolateData* isolate_data = PerIsolateData::Get(isolate);

  if (data.GetEvent() == v8::kPromiseHandlerAddedAfterReject) {
    isolate_data->RemoveUnhandledPromise(promise);
    return;
  }

  i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
  bool capture_exceptions =
      i_isolate->get_capture_stack_trace_for_uncaught_exceptions();
  isolate->SetCaptureStackTraceForUncaughtExceptions(true);
  v8::Local<Value> exception = data.GetValue();
  v8::Local<Message> message;
  // Assume that all objects are stack-traces.
  if (exception->IsObject()) {
    message = v8::Exception::CreateMessage(isolate, exception);
  }
  if (!exception->IsNativeError() &&
      (message.IsEmpty() || message->GetStackTrace().IsEmpty())) {
    // If there is no real Error object, manually throw and catch a stack trace.
    v8::TryCatch try_catch(isolate);
    try_catch.SetVerbose(true);
    isolate->ThrowException(v8::Exception::Error(
        v8::String::NewFromUtf8Literal(isolate, "Unhandled Promise.")));
    message = try_catch.Message();
    exception = try_catch.Exception();
  }
  isolate->SetCaptureStackTraceForUncaughtExceptions(capture_exceptions);

  isolate_data->AddUnhandledPromise(promise, message, exception);
}

2254 2255
void Shell::Initialize(Isolate* isolate, D8Console* console,
                       bool isOnMainThread) {
2256
  isolate->SetPromiseRejectCallback(PromiseRejectCallback);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
  if (isOnMainThread) {
    // Set up counters
    if (i::FLAG_map_counters[0] != '\0') {
      MapCounters(isolate, i::FLAG_map_counters);
    }
    // Disable default message reporting.
    isolate->AddMessageListenerWithErrorLevel(
        PrintMessageCallback,
        v8::Isolate::kMessageError | v8::Isolate::kMessageWarning |
            v8::Isolate::kMessageInfo | v8::Isolate::kMessageDebug |
            v8::Isolate::kMessageLog);
2268
  }
2269 2270 2271 2272 2273 2274

  isolate->SetHostImportModuleDynamicallyCallback(
      Shell::HostImportModuleDynamically);
  isolate->SetHostInitializeImportMetaObjectCallback(
      Shell::HostInitializeImportMetaObject);

2275 2276
#ifdef V8_FUZZILLI
  // Let the parent process (Fuzzilli) know we are ready.
2277 2278 2279 2280 2281 2282
  if (options.fuzzilli_enable_builtins_coverage) {
    cov_init_builtins_edges(static_cast<uint32_t>(
        i::BasicBlockProfiler::Get()
            ->GetCoverageBitmap(reinterpret_cast<i::Isolate*>(isolate))
            .size()));
  }
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
  char helo[] = "HELO";
  if (write(REPRL_CWFD, helo, 4) != 4 || read(REPRL_CRFD, helo, 4) != 4) {
    fuzzilli_reprl = false;
  }

  if (memcmp(helo, "HELO", 4) != 0) {
    fprintf(stderr, "Invalid response from parent\n");
    _exit(-1);
  }
#endif  // V8_FUZZILLI

2294
  debug::SetConsoleDelegate(isolate, console);
2295 2296
}

2297
Local<Context> Shell::CreateEvaluationContext(Isolate* isolate) {
2298
  // This needs to be a critical section since this is not thread-safe
2299
  base::MutexGuard lock_guard(context_mutex_.Pointer());
2300
  // Initialize the global objects
2301
  Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
2302
  EscapableHandleScope handle_scope(isolate);
2303
  Local<Context> context = Context::New(isolate, nullptr, global_template);
2304
  DCHECK(!context.IsEmpty());
2305
  if (i::FLAG_perf_prof_annotate_wasm || i::FLAG_vtune_prof_annotate_wasm) {
2306 2307
    isolate->SetWasmLoadSourceMapCallback(ReadFile);
  }
2308
  InitializeModuleEmbedderData(context);
2309 2310 2311 2312
  if (options.include_arguments) {
    Context::Scope scope(context);
    const std::vector<const char*>& args = options.arguments;
    int size = static_cast<int>(args.size());
2313 2314 2315
    Local<Array> array = Array::New(isolate, size);
    for (int i = 0; i < size; i++) {
      Local<String> arg =
2316
          v8::String::NewFromUtf8(isolate, args[i]).ToLocalChecked();
2317 2318 2319
      Local<Number> index = v8::Number::New(isolate, i);
      array->Set(context, index, arg).FromJust();
    }
2320 2321
    Local<String> name = String::NewFromUtf8Literal(
        isolate, "arguments", NewStringType::kInternalized);
2322 2323
    context->Global()->Set(context, name, array).FromJust();
  }
2324
  return handle_scope.Escape(context);
2325 2326
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
void Shell::WriteIgnitionDispatchCountersFile(v8::Isolate* isolate) {
  HandleScope handle_scope(isolate);
  Local<Context> context = Context::New(isolate);
  Context::Scope context_scope(context);

  Local<Object> dispatch_counters = reinterpret_cast<i::Isolate*>(isolate)
                                        ->interpreter()
                                        ->GetDispatchCountersObject();
  std::ofstream dispatch_counters_stream(
      i::FLAG_trace_ignition_dispatches_output_file);
  dispatch_counters_stream << *String::Utf8Value(
2338
      isolate, JSON::Stringify(context, dispatch_counters).ToLocalChecked());
2339 2340
}

2341 2342 2343 2344 2345 2346
namespace {
int LineFromOffset(Local<debug::Script> script, int offset) {
  debug::Location location = script->GetSourceLocation(offset);
  return location.GetLineNumber();
}

2347 2348
void WriteLcovDataForRange(std::vector<uint32_t>* lines, int start_line,
                           int end_line, uint32_t count) {
2349
  // Ensure space in the array.
2350
  lines->resize(std::max(static_cast<size_t>(end_line + 1), lines->size()), 0);
2351 2352
  // Boundary lines could be shared between two functions with different
  // invocation counts. Take the maximum.
2353 2354
  (*lines)[start_line] = std::max((*lines)[start_line], count);
  (*lines)[end_line] = std::max((*lines)[end_line], count);
2355
  // Invocation counts for non-boundary lines are overwritten.
2356
  for (int k = start_line + 1; k < end_line; k++) (*lines)[k] = count;
2357 2358
}

2359 2360 2361 2362
void WriteLcovDataForNamedRange(std::ostream& sink,
                                std::vector<uint32_t>* lines,
                                const std::string& name, int start_line,
                                int end_line, uint32_t count) {
2363 2364 2365 2366 2367 2368
  WriteLcovDataForRange(lines, start_line, end_line, count);
  sink << "FN:" << start_line + 1 << "," << name << std::endl;
  sink << "FNDA:" << count << "," << name << std::endl;
}
}  // namespace

2369 2370 2371 2372
// Write coverage data in LCOV format. See man page for geninfo(1).
void Shell::WriteLcovData(v8::Isolate* isolate, const char* file) {
  if (!file) return;
  HandleScope handle_scope(isolate);
2373
  debug::Coverage coverage = debug::Coverage::CollectPrecise(isolate);
2374
  std::ofstream sink(file, std::ofstream::app);
2375
  for (size_t i = 0; i < coverage.ScriptCount(); i++) {
2376 2377
    debug::Coverage::ScriptData script_data = coverage.GetScriptData(i);
    Local<debug::Script> script = script_data.GetScript();
2378
    // Skip unnamed scripts.
2379 2380
    Local<String> name;
    if (!script->Name().ToLocal(&name)) continue;
2381
    std::string file_name = ToSTLString(isolate, name);
2382 2383 2384 2385 2386
    // Skip scripts not backed by a file.
    if (!std::ifstream(file_name).good()) continue;
    sink << "SF:";
    sink << NormalizePath(file_name, GetWorkingDirectory()) << std::endl;
    std::vector<uint32_t> lines;
2387 2388 2389
    for (size_t j = 0; j < script_data.FunctionCount(); j++) {
      debug::Coverage::FunctionData function_data =
          script_data.GetFunctionData(j);
2390

2391
      // Write function stats.
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
      {
        debug::Location start =
            script->GetSourceLocation(function_data.StartOffset());
        debug::Location end =
            script->GetSourceLocation(function_data.EndOffset());
        int start_line = start.GetLineNumber();
        int end_line = end.GetLineNumber();
        uint32_t count = function_data.Count();

        Local<String> name;
        std::stringstream name_stream;
        if (function_data.Name().ToLocal(&name)) {
2404
          name_stream << ToSTLString(isolate, name);
2405 2406 2407 2408 2409
        } else {
          name_stream << "<" << start_line + 1 << "-";
          name_stream << start.GetColumnNumber() << ">";
        }

2410
        WriteLcovDataForNamedRange(sink, &lines, name_stream.str(), start_line,
2411 2412 2413 2414 2415 2416 2417
                                   end_line, count);
      }

      // Process inner blocks.
      for (size_t k = 0; k < function_data.BlockCount(); k++) {
        debug::Coverage::BlockData block_data = function_data.GetBlockData(k);
        int start_line = LineFromOffset(script, block_data.StartOffset());
2418
        int end_line = LineFromOffset(script, block_data.EndOffset() - 1);
2419
        uint32_t count = block_data.Count();
2420
        WriteLcovDataForRange(&lines, start_line, end_line, count);
2421 2422
      }
    }
2423 2424 2425 2426 2427 2428 2429
    // Write per-line coverage. LCOV uses 1-based line numbers.
    for (size_t i = 0; i < lines.size(); i++) {
      sink << "DA:" << (i + 1) << "," << lines[i] << std::endl;
    }
    sink << "end_of_record" << std::endl;
  }
}
2430

2431
void Shell::OnExit(v8::Isolate* isolate) {
2432 2433
  isolate->Dispose();

2434
  if (i::FLAG_dump_counters || i::FLAG_dump_counters_nvp) {
2435 2436 2437
    std::vector<std::pair<std::string, Counter*>> counters(
        counter_map_->begin(), counter_map_->end());
    std::sort(counters.begin(), counters.end());
2438 2439 2440

    if (i::FLAG_dump_counters_nvp) {
      // Dump counters as name-value pairs.
2441
      for (const auto& pair : counters) {
2442 2443
        std::string key = pair.first;
        Counter* counter = pair.second;
2444
        if (counter->is_histogram()) {
2445 2446 2447
          std::cout << "\"c:" << key << "\"=" << counter->count() << "\n";
          std::cout << "\"t:" << key << "\"=" << counter->sample_total()
                    << "\n";
2448
        } else {
2449
          std::cout << "\"" << key << "\"=" << counter->count() << "\n";
2450 2451 2452 2453
        }
      }
    } else {
      // Dump counters in formatted boxes.
2454 2455 2456 2457 2458 2459 2460 2461
      constexpr int kNameBoxSize = 64;
      constexpr int kValueBoxSize = 13;
      std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
                << std::string(kValueBoxSize, '-') << "+\n";
      std::cout << "| Name" << std::string(kNameBoxSize - 5, ' ') << "| Value"
                << std::string(kValueBoxSize - 6, ' ') << "|\n";
      std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
                << std::string(kValueBoxSize, '-') << "+\n";
2462
      for (const auto& pair : counters) {
2463 2464
        std::string key = pair.first;
        Counter* counter = pair.second;
2465
        if (counter->is_histogram()) {
2466 2467 2468 2469 2470 2471
          std::cout << "| c:" << std::setw(kNameBoxSize - 4) << std::left << key
                    << " | " << std::setw(kValueBoxSize - 2) << std::right
                    << counter->count() << " |\n";
          std::cout << "| t:" << std::setw(kNameBoxSize - 4) << std::left << key
                    << " | " << std::setw(kValueBoxSize - 2) << std::right
                    << counter->sample_total() << " |\n";
2472
        } else {
2473 2474 2475
          std::cout << "| " << std::setw(kNameBoxSize - 2) << std::left << key
                    << " | " << std::setw(kValueBoxSize - 2) << std::right
                    << counter->count() << " |\n";
2476
        }
2477
      }
2478 2479
      std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
                << std::string(kValueBoxSize, '-') << "+\n";
2480 2481
    }
  }
2482

2483 2484
  delete counters_file_;
  delete counter_map_;
2485 2486
}

2487
static FILE* FOpen(const char* path, const char* mode) {
2488
#if defined(_MSC_VER) && (defined(_WIN32) || defined(_WIN64))
2489 2490
  FILE* result;
  if (fopen_s(&result, path, mode) == 0) {
2491
    return result;
2492
  } else {
2493
    return nullptr;
2494 2495 2496
  }
#else
  FILE* file = fopen(path, mode);
2497
  if (file == nullptr) return nullptr;
2498
  struct stat file_stat;
2499
  if (fstat(fileno(file), &file_stat) != 0) return nullptr;
2500 2501 2502
  bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0);
  if (is_regular_file) return file;
  fclose(file);
2503
  return nullptr;
2504 2505
#endif
}
2506

2507
static char* ReadChars(const char* name, int* size_out) {
2508 2509 2510 2511
  if (Shell::options.read_from_tcp_port >= 0) {
    return Shell::ReadCharsFromTcpPort(name, size_out);
  }

2512
  FILE* file = FOpen(name, "rb");
2513
  if (file == nullptr) return nullptr;
2514 2515

  fseek(file, 0, SEEK_END);
2516
  size_t size = ftell(file);
2517 2518 2519 2520
  rewind(file);

  char* chars = new char[size + 1];
  chars[size] = '\0';
2521 2522 2523 2524 2525 2526 2527
  for (size_t i = 0; i < size;) {
    i += fread(&chars[i], 1, size - i, file);
    if (ferror(file)) {
      fclose(file);
      delete[] chars;
      return nullptr;
    }
2528 2529
  }
  fclose(file);
2530
  *size_out = static_cast<int>(size);
2531 2532 2533
  return chars;
}

2534
void Shell::ReadBuffer(const v8::FunctionCallbackInfo<v8::Value>& args) {
2535 2536
  static_assert(sizeof(char) == sizeof(uint8_t),
                "char and uint8_t should both have 1 byte");
2537
  Isolate* isolate = args.GetIsolate();
2538 2539
  String::Utf8Value filename(isolate, args[0]);
  int length;
2540
  if (*filename == nullptr) {
2541
    Throw(isolate, "Error loading file");
2542
    return;
2543
  }
2544

2545 2546
  uint8_t* data = reinterpret_cast<uint8_t*>(ReadChars(*filename, &length));
  if (data == nullptr) {
2547
    Throw(isolate, "Error reading file");
2548
    return;
2549
  }
2550 2551 2552 2553 2554 2555 2556 2557 2558
  std::unique_ptr<v8::BackingStore> backing_store =
      ArrayBuffer::NewBackingStore(
          data, length,
          [](void* data, size_t length, void*) {
            delete[] reinterpret_cast<uint8_t*>(data);
          },
          nullptr);
  Local<v8::ArrayBuffer> buffer =
      ArrayBuffer::New(isolate, std::move(backing_store));
2559

2560
  args.GetReturnValue().Set(buffer);
2561 2562
}

2563
// Reads a file into a v8 string.
2564
Local<String> Shell::ReadFile(Isolate* isolate, const char* name) {
2565
  std::unique_ptr<base::OS::MemoryMappedFile> file(
2566 2567
      base::OS::MemoryMappedFile::open(
          name, base::OS::MemoryMappedFile::FileMode::kReadOnly));
2568 2569 2570 2571
  if (!file) return Local<String>();

  int size = static_cast<int>(file->size());
  char* chars = static_cast<char*>(file->memory());
2572
  Local<String> result;
2573
  if (i::FLAG_use_external_strings && i::String::IsAscii(chars, size)) {
2574
    String::ExternalOneByteStringResource* resource =
2575
        new ExternalOwningOneByteStringResource(std::move(file));
2576 2577 2578 2579 2580
    result = String::NewExternalOneByte(isolate, resource).ToLocalChecked();
  } else {
    result = String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size)
                 .ToLocalChecked();
  }
2581 2582 2583
  return result;
}

2584
void Shell::RunShell(Isolate* isolate) {
2585
  HandleScope outer_scope(isolate);
2586 2587 2588
  v8::Local<v8::Context> context =
      v8::Local<v8::Context>::New(isolate, evaluation_context_);
  v8::Context::Scope context_scope(context);
2589
  PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
2590
  Local<String> name = String::NewFromUtf8Literal(isolate, "(d8)");
2591
  printf("V8 version %s\n", V8::GetVersion());
2592
  while (true) {
2593
    HandleScope inner_scope(isolate);
2594
    printf("d8> ");
2595
    Local<String> input = Shell::ReadFromStdin(isolate);
2596
    if (input.IsEmpty()) break;
2597 2598
    ExecuteString(isolate, input, name, kPrintResult, kReportExceptions,
                  kProcessMessageQueue);
2599 2600
  }
  printf("\n");
2601 2602 2603
  // We need to explicitly clean up the module embedder data for
  // the interative shell context.
  DisposeModuleEmbedderData(context);
2604 2605
}

2606 2607 2608 2609 2610 2611
class InspectorFrontend final : public v8_inspector::V8Inspector::Channel {
 public:
  explicit InspectorFrontend(Local<Context> context) {
    isolate_ = context->GetIsolate();
    context_.Reset(isolate_, context);
  }
2612
  ~InspectorFrontend() override = default;
2613 2614

 private:
2615 2616 2617 2618 2619 2620 2621 2622
  void sendResponse(
      int callId,
      std::unique_ptr<v8_inspector::StringBuffer> message) override {
    Send(message->string());
  }
  void sendNotification(
      std::unique_ptr<v8_inspector::StringBuffer> message) override {
    Send(message->string());
2623 2624 2625 2626
  }
  void flushProtocolNotifications() override {}

  void Send(const v8_inspector::StringView& string) {
2627
    v8::Isolate::AllowJavascriptExecutionScope allow_script(isolate_);
2628
    v8::HandleScope handle_scope(isolate_);
2629
    int length = static_cast<int>(string.length());
2630
    DCHECK_LT(length, v8::String::kMaxLength);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
    Local<String> message =
        (string.is8Bit()
             ? v8::String::NewFromOneByte(
                   isolate_,
                   reinterpret_cast<const uint8_t*>(string.characters8()),
                   v8::NewStringType::kNormal, length)
             : v8::String::NewFromTwoByte(
                   isolate_,
                   reinterpret_cast<const uint16_t*>(string.characters16()),
                   v8::NewStringType::kNormal, length))
            .ToLocalChecked();
2642 2643
    Local<String> callback_name = v8::String::NewFromUtf8Literal(
        isolate_, "receive", NewStringType::kInternalized);
2644 2645 2646 2647 2648 2649
    Local<Context> context = context_.Get(isolate_);
    Local<Value> callback =
        context->Global()->Get(context, callback_name).ToLocalChecked();
    if (callback->IsFunction()) {
      v8::TryCatch try_catch(isolate_);
      Local<Value> args[] = {message};
2650 2651
      USE(Local<Function>::Cast(callback)->Call(context, Undefined(isolate_), 1,
                                                args));
2652 2653 2654
#ifdef DEBUG
      if (try_catch.HasCaught()) {
        Local<Object> exception = Local<Object>::Cast(try_catch.Exception());
2655 2656 2657 2658
        Local<String> key = v8::String::NewFromUtf8Literal(
            isolate_, "message", NewStringType::kInternalized);
        Local<String> expected = v8::String::NewFromUtf8Literal(
            isolate_, "Maximum call stack size exceeded");
2659
        Local<Value> value = exception->Get(context, key).ToLocalChecked();
2660
        DCHECK(value->StrictEquals(expected));
2661 2662
      }
#endif
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
    }
  }

  Isolate* isolate_;
  Global<Context> context_;
};

class InspectorClient : public v8_inspector::V8InspectorClient {
 public:
  InspectorClient(Local<Context> context, bool connect) {
    if (!connect) return;
    isolate_ = context->GetIsolate();
    channel_.reset(new InspectorFrontend(context));
    inspector_ = v8_inspector::V8Inspector::create(isolate_, this);
    session_ =
        inspector_->connect(1, channel_.get(), v8_inspector::StringView());
    context->SetAlignedPointerInEmbedderData(kInspectorClientIndex, this);
    inspector_->contextCreated(v8_inspector::V8ContextInfo(
        context, kContextGroupId, v8_inspector::StringView()));

    Local<Value> function =
        FunctionTemplate::New(isolate_, SendInspectorMessage)
            ->GetFunction(context)
            .ToLocalChecked();
2687 2688
    Local<String> function_name = String::NewFromUtf8Literal(
        isolate_, "send", NewStringType::kInternalized);
2689 2690 2691 2692 2693
    CHECK(context->Global()->Set(context, function_name, function).FromJust());

    context_.Reset(isolate_, context);
  }

2694 2695 2696
  void runMessageLoopOnPause(int contextGroupId) override {
    v8::Isolate::AllowJavascriptExecutionScope allow_script(isolate_);
    v8::HandleScope handle_scope(isolate_);
2697 2698
    Local<String> callback_name = v8::String::NewFromUtf8Literal(
        isolate_, "handleInspectorMessage", NewStringType::kInternalized);
2699 2700 2701 2702 2703 2704
    Local<Context> context = context_.Get(isolate_);
    Local<Value> callback =
        context->Global()->Get(context, callback_name).ToLocalChecked();
    if (!callback->IsFunction()) return;

    v8::TryCatch try_catch(isolate_);
2705
    try_catch.SetVerbose(true);
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
    is_paused = true;

    while (is_paused) {
      USE(Local<Function>::Cast(callback)->Call(context, Undefined(isolate_), 0,
                                                {}));
      if (try_catch.HasCaught()) {
        is_paused = false;
      }
    }
  }

  void quitMessageLoopOnPause() override { is_paused = false; }

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
 private:
  static v8_inspector::V8InspectorSession* GetSession(Local<Context> context) {
    InspectorClient* inspector_client = static_cast<InspectorClient*>(
        context->GetAlignedPointerFromEmbedderData(kInspectorClientIndex));
    return inspector_client->session_.get();
  }

  Local<Context> ensureDefaultContextInGroup(int group_id) override {
    DCHECK(isolate_);
    DCHECK_EQ(kContextGroupId, group_id);
    return context_.Get(isolate_);
  }

  static void SendInspectorMessage(
      const v8::FunctionCallbackInfo<v8::Value>& args) {
    Isolate* isolate = args.GetIsolate();
    v8::HandleScope handle_scope(isolate);
    Local<Context> context = isolate->GetCurrentContext();
    args.GetReturnValue().Set(Undefined(isolate));
    Local<String> message = args[0]->ToString(context).ToLocalChecked();
    v8_inspector::V8InspectorSession* session =
        InspectorClient::GetSession(context);
    int length = message->Length();
2742
    std::unique_ptr<uint16_t[]> buffer(new uint16_t[length]);
2743
    message->Write(isolate, buffer.get(), 0, length);
2744
    v8_inspector::StringView message_view(buffer.get(), length);
2745 2746 2747 2748
    {
      v8::SealHandleScope seal_handle_scope(isolate);
      session->dispatchProtocolMessage(message_view);
    }
2749 2750 2751 2752 2753 2754 2755 2756
    args.GetReturnValue().Set(True(isolate));
  }

  static const int kContextGroupId = 1;

  std::unique_ptr<v8_inspector::V8Inspector> inspector_;
  std::unique_ptr<v8_inspector::V8InspectorSession> session_;
  std::unique_ptr<v8_inspector::V8Inspector::Channel> channel_;
2757
  bool is_paused = false;
2758 2759 2760
  Global<Context> context_;
  Isolate* isolate_;
};
2761

2762 2763
SourceGroup::~SourceGroup() {
  delete thread_;
2764
  thread_ = nullptr;
2765 2766
}

2767 2768 2769 2770 2771 2772 2773 2774
bool ends_with(const char* input, const char* suffix) {
  size_t input_length = strlen(input);
  size_t suffix_length = strlen(suffix);
  if (suffix_length <= input_length) {
    return strcmp(input + input_length - suffix_length, suffix) == 0;
  }
  return false;
}
2775

2776 2777
bool SourceGroup::Execute(Isolate* isolate) {
  bool success = true;
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
#ifdef V8_FUZZILLI
  HandleScope handle_scope(isolate);
  Local<String> file_name =
      String::NewFromUtf8(isolate, "fuzzcode.js", NewStringType::kNormal)
          .ToLocalChecked();

  size_t script_size;
  CHECK_EQ(read(REPRL_CRFD, &script_size, 8), 8);
  char* buffer = new char[script_size + 1];
  char* ptr = buffer;
  size_t remaining = script_size;
  while (remaining > 0) {
    ssize_t rv = read(REPRL_DRFD, ptr, remaining);
    CHECK_GE(rv, 0);
    remaining -= rv;
    ptr += rv;
  }
  buffer[script_size] = 0;

  Local<String> source =
      String::NewFromUtf8(isolate, buffer, NewStringType::kNormal)
          .ToLocalChecked();
  delete[] buffer;
  Shell::set_script_executed();
  if (!Shell::ExecuteString(isolate, source, file_name, Shell::kNoPrintResult,
                            Shell::kReportExceptions,
                            Shell::kNoProcessMessageQueue)) {
    return false;
  }
#endif  // V8_FUZZILLI
2808 2809 2810 2811
  for (int i = begin_offset_; i < end_offset_; ++i) {
    const char* arg = argv_[i];
    if (strcmp(arg, "-e") == 0 && i + 1 < end_offset_) {
      // Execute argument given to -e option directly.
2812
      HandleScope handle_scope(isolate);
2813
      Local<String> file_name = String::NewFromUtf8Literal(isolate, "unnamed");
2814
      Local<String> source =
2815
          String::NewFromUtf8(isolate, argv_[i + 1]).ToLocalChecked();
2816
      Shell::set_script_executed();
2817 2818 2819
      if (!Shell::ExecuteString(isolate, source, file_name,
                                Shell::kNoPrintResult, Shell::kReportExceptions,
                                Shell::kNoProcessMessageQueue)) {
2820
        success = false;
2821
        break;
2822 2823
      }
      ++i;
2824
      continue;
2825
    } else if (ends_with(arg, ".mjs")) {
2826
      Shell::set_script_executed();
2827
      if (!Shell::ExecuteModule(isolate, arg)) {
2828
        success = false;
2829 2830 2831
        break;
      }
      continue;
2832 2833 2834
    } else if (strcmp(arg, "--module") == 0 && i + 1 < end_offset_) {
      // Treat the next file as a module.
      arg = argv_[++i];
2835
      Shell::set_script_executed();
2836
      if (!Shell::ExecuteModule(isolate, arg)) {
2837
        success = false;
2838 2839 2840
        break;
      }
      continue;
2841 2842
    } else if (arg[0] == '-') {
      // Ignore other options. They have been parsed already.
2843 2844 2845 2846 2847
      continue;
    }

    // Use all other arguments as names of files to load and run.
    HandleScope handle_scope(isolate);
2848
    Local<String> file_name =
2849
        String::NewFromUtf8(isolate, arg).ToLocalChecked();
2850
    Local<String> source = ReadFile(isolate, arg);
2851 2852
    if (source.IsEmpty()) {
      printf("Error reading '%s'\n", arg);
2853
      base::OS::ExitProcess(1);
2854
    }
2855
    Shell::set_script_executed();
2856 2857 2858
    if (!Shell::ExecuteString(isolate, source, file_name, Shell::kNoPrintResult,
                              Shell::kReportExceptions,
                              Shell::kProcessMessageQueue)) {
2859
      success = false;
2860
      break;
2861
    }
2862
  }
2863
  return success;
2864
}
2865

2866 2867 2868 2869
Local<String> SourceGroup::ReadFile(Isolate* isolate, const char* name) {
  return Shell::ReadFile(isolate, name);
}

2870 2871
SourceGroup::IsolateThread::IsolateThread(SourceGroup* group)
    : base::Thread(GetThreadOptions("IsolateThread")), group_(group) {}
2872 2873

void SourceGroup::ExecuteInThread() {
2874
  Isolate::CreateParams create_params;
2875
  create_params.array_buffer_allocator = Shell::array_buffer_allocator;
2876
  Isolate* isolate = Isolate::New(create_params);
2877
  Shell::SetWaitUntilDone(isolate, false);
2878
  D8Console console(isolate);
2879 2880
  Shell::Initialize(isolate, &console, false);

binji's avatar
binji committed
2881
  for (int i = 0; i < Shell::options.stress_runs; ++i) {
2882
    next_semaphore_.Wait();
2883 2884
    {
      Isolate::Scope iscope(isolate);
2885
      PerIsolateData data(isolate);
2886
      {
2887 2888 2889 2890
        HandleScope scope(isolate);
        Local<Context> context = Shell::CreateEvaluationContext(isolate);
        {
          Context::Scope cscope(context);
2891 2892
          InspectorClient inspector_client(context,
                                           Shell::options.enable_inspector);
2893 2894
          PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
          Execute(isolate);
2895
          Shell::CompleteMessageLoop(isolate);
2896
        }
2897
        DisposeModuleEmbedderData(context);
2898
      }
2899
      Shell::CollectGarbage(isolate);
2900
    }
2901
    done_semaphore_.Signal();
binji's avatar
binji committed
2902
  }
2903

2904 2905 2906 2907
  isolate->Dispose();
}

void SourceGroup::StartExecuteInThread() {
2908
  if (thread_ == nullptr) {
2909
    thread_ = new IsolateThread(this);
2910
    CHECK(thread_->Start());
2911
  }
2912
  next_semaphore_.Signal();
2913 2914 2915
}

void SourceGroup::WaitForThread() {
2916
  if (thread_ == nullptr) return;
binji's avatar
binji committed
2917 2918 2919 2920
  done_semaphore_.Wait();
}

void SourceGroup::JoinThread() {
2921
  if (thread_ == nullptr) return;
binji's avatar
binji committed
2922
  thread_->Join();
2923
}
2924

2925
void SerializationDataQueue::Enqueue(std::unique_ptr<SerializationData> data) {
2926
  base::MutexGuard lock_guard(&mutex_);
2927
  data_.push_back(std::move(data));
2928 2929
}

2930 2931 2932
bool SerializationDataQueue::Dequeue(
    std::unique_ptr<SerializationData>* out_data) {
  out_data->reset();
2933
  base::MutexGuard lock_guard(&mutex_);
2934 2935 2936 2937
  if (data_.empty()) return false;
  *out_data = std::move(data_[0]);
  data_.erase(data_.begin());
  return true;
2938 2939
}

2940
bool SerializationDataQueue::IsEmpty() {
2941
  base::MutexGuard lock_guard(&mutex_);
2942
  return data_.empty();
2943 2944
}

2945 2946 2947
void SerializationDataQueue::Clear() {
  base::MutexGuard lock_guard(&mutex_);
  data_.clear();
2948
}
2949

2950 2951 2952
Worker::Worker(const char* script) : script_(i::StrDup(script)) {
  running_.store(false);
}
2953

2954
Worker::~Worker() {
2955 2956
  DCHECK_NULL(isolate_);

2957
  delete thread_;
2958
  thread_ = nullptr;
2959
  delete[] script_;
2960
  script_ = nullptr;
2961
}
2962

2963
bool Worker::StartWorkerThread(std::shared_ptr<Worker> worker) {
2964
  worker->running_.store(true);
2965 2966 2967
  auto thread = new WorkerThread(worker);
  worker->thread_ = thread;
  if (thread->Start()) {
2968 2969
    // Wait until the worker is ready to receive messages.
    worker->started_semaphore_.Wait();
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
    Shell::AddRunningWorker(std::move(worker));
    return true;
  }
  return false;
}

void Worker::WorkerThread::Run() {
  // Prevent a lifetime cycle from Worker -> WorkerThread -> Worker.
  // We must clear the worker_ field of the thread, but we keep the
  // worker alive via a stack root until the thread finishes execution
  // and removes itself from the running set. Thereafter the only
  // remaining reference can be from a JavaScript object via a Managed.
  auto worker = std::move(worker_);
  worker_ = nullptr;
  worker->ExecuteInThread();
  Shell::RemoveRunningWorker(worker);
2986 2987
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
class ProcessMessageTask : public i::CancelableTask {
 public:
  ProcessMessageTask(i::CancelableTaskManager* task_manager,
                     std::shared_ptr<Worker> worker,
                     std::unique_ptr<SerializationData> data)
      : i::CancelableTask(task_manager),
        worker_(worker),
        data_(std::move(data)) {}

  void RunInternal() override { worker_->ProcessMessage(std::move(data_)); }

 private:
  std::shared_ptr<Worker> worker_;
  std::unique_ptr<SerializationData> data_;
};

3004
void Worker::PostMessage(std::unique_ptr<SerializationData> data) {
3005 3006 3007 3008 3009 3010 3011 3012 3013
  // Hold the worker_mutex_ so that the worker thread can't delete task_runner_
  // after we've checked running_.
  base::MutexGuard lock_guard(&worker_mutex_);
  if (!running_.load()) {
    return;
  }
  std::unique_ptr<v8::Task> task(new ProcessMessageTask(
      task_manager_, shared_from_this(), std::move(data)));
  task_runner_->PostNonNestableTask(std::move(task));
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
class TerminateTask : public i::CancelableTask {
 public:
  TerminateTask(i::CancelableTaskManager* task_manager,
                std::shared_ptr<Worker> worker)
      : i::CancelableTask(task_manager), worker_(worker) {}

  void RunInternal() override {
    // Make sure the worker doesn't enter the task loop after processing this
    // task.
    worker_->running_.store(false);
  }

 private:
  std::shared_ptr<Worker> worker_;
};

3032
std::unique_ptr<SerializationData> Worker::GetMessage() {
3033 3034 3035 3036
  std::unique_ptr<SerializationData> result;
  while (!out_queue_.Dequeue(&result)) {
    // If the worker is no longer running, and there are no messages in the
    // queue, don't expect any more messages from it.
3037 3038 3039
    if (!running_.load()) {
      break;
    }
3040 3041 3042
    out_semaphore_.Wait();
  }
  return result;
3043 3044 3045
}

void Worker::Terminate() {
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
  // Hold the worker_mutex_ so that the worker thread can't delete task_runner_
  // after we've checked running_.
  base::MutexGuard lock_guard(&worker_mutex_);
  if (!running_.load()) {
    return;
  }
  // Post a task to wake up the worker thread.
  std::unique_ptr<v8::Task> task(
      new TerminateTask(task_manager_, shared_from_this()));
  task_runner_->PostTask(std::move(task));
binji's avatar
binji committed
3056 3057 3058 3059
}

void Worker::WaitForThread() {
  Terminate();
3060
  thread_->Join();
3061 3062
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
void Worker::ProcessMessage(std::unique_ptr<SerializationData> data) {
  if (!running_.load()) {
    return;
  }

  DCHECK_NOT_NULL(isolate_);
  HandleScope scope(isolate_);
  Local<Context> context = context_.Get(isolate_);
  Context::Scope cscope(context);
  Local<Object> global = context->Global();

  // Get the message handler.
  Local<Value> onmessage = global
                               ->Get(context, String::NewFromUtf8Literal(
                                                  isolate_, "onmessage",
                                                  NewStringType::kInternalized))
                               .ToLocalChecked();
  if (!onmessage->IsFunction()) {
    return;
  }
  Local<Function> onmessage_fun = Local<Function>::Cast(onmessage);

  v8::TryCatch try_catch(isolate_);
  try_catch.SetVerbose(true);
  Local<Value> value;
  if (Shell::DeserializeValue(isolate_, std::move(data)).ToLocal(&value)) {
    Local<Value> argv[] = {value};
    MaybeLocal<Value> result = onmessage_fun->Call(context, global, 1, argv);
    USE(result);
  }
}

void Worker::ProcessMessages() {
  i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate_);
  i::SaveAndSwitchContext saved_context(i_isolate, i::Context());
  SealHandleScope shs(isolate_);
  while (running_.load() && v8::platform::PumpMessageLoop(
                                g_default_platform, isolate_,
                                platform::MessageLoopBehavior::kWaitForWork)) {
    if (running_.load()) {
      MicrotasksScope::PerformCheckpoint(isolate_);
    }
  }
}

3108 3109 3110
void Worker::ExecuteInThread() {
  Isolate::CreateParams create_params;
  create_params.array_buffer_allocator = Shell::array_buffer_allocator;
3111
  isolate_ = Isolate::New(create_params);
3112
  {
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
    base::MutexGuard lock_guard(&worker_mutex_);
    task_runner_ = g_default_platform->GetForegroundTaskRunner(isolate_);
    task_manager_ =
        reinterpret_cast<i::Isolate*>(isolate_)->cancelable_task_manager();
  }
  // The Worker is now ready to receive messages.
  started_semaphore_.Signal();

  D8Console console(isolate_);
  Shell::Initialize(isolate_, &console, false);
  {
    Isolate::Scope iscope(isolate_);
3125
    {
3126 3127 3128 3129
      HandleScope scope(isolate_);
      PerIsolateData data(isolate_);
      Local<Context> context = Shell::CreateEvaluationContext(isolate_);
      context_.Reset(isolate_, context);
3130 3131
      {
        Context::Scope cscope(context);
3132
        PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate_));
3133

3134
        Local<Object> global = context->Global();
3135
        Local<Value> this_value = External::New(isolate_, this);
3136
        Local<FunctionTemplate> postmessage_fun_template =
3137
            FunctionTemplate::New(isolate_, PostMessageOut, this_value);
3138

3139
        Local<Function> postmessage_fun;
3140 3141 3142 3143
        if (postmessage_fun_template->GetFunction(context).ToLocal(
                &postmessage_fun)) {
          global
              ->Set(context,
3144
                    v8::String::NewFromUtf8Literal(
3145
                        isolate_, "postMessage", NewStringType::kInternalized),
3146 3147
                    postmessage_fun)
              .FromJust();
3148 3149 3150
        }

        // First run the script
3151
        Local<String> file_name =
3152
            String::NewFromUtf8Literal(isolate_, "unnamed");
3153
        Local<String> source =
3154
            String::NewFromUtf8(isolate_, script_).ToLocalChecked();
3155
        if (Shell::ExecuteString(
3156
                isolate_, source, file_name, Shell::kNoPrintResult,
3157
                Shell::kReportExceptions, Shell::kProcessMessageQueue)) {
3158
          // Check that there's a message handler
3159
          Local<Value> onmessage =
3160
              global
3161 3162 3163
                  ->Get(context, String::NewFromUtf8Literal(
                                     isolate_, "onmessage",
                                     NewStringType::kInternalized))
3164
                  .ToLocalChecked();
3165 3166
          if (onmessage->IsFunction()) {
            // Now wait for messages
3167
            ProcessMessages();
3168 3169 3170
          }
        }
      }
3171
      DisposeModuleEmbedderData(context);
3172
    }
3173
    Shell::CollectGarbage(isolate_);
3174
  }
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
  // TODO(cbruni): Check for unhandled promises here.
  {
    // Hold the mutex to ensure running_ and task_runner_ change state
    // atomically (see Worker::PostMessage which reads them).
    base::MutexGuard lock_guard(&worker_mutex_);
    running_.store(false);
    task_runner_.reset();
    task_manager_ = nullptr;
  }
  context_.Reset();
  platform::NotifyIsolateShutdown(g_default_platform, isolate_);
  isolate_->Dispose();
  isolate_ = nullptr;
3188 3189 3190 3191

  // Post nullptr to wake the thread waiting on GetMessage() if there is one.
  out_queue_.Enqueue(nullptr);
  out_semaphore_.Signal();
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
}

void Worker::PostMessageOut(const v8::FunctionCallbackInfo<v8::Value>& args) {
  Isolate* isolate = args.GetIsolate();
  HandleScope handle_scope(isolate);

  if (args.Length() < 1) {
    Throw(isolate, "Invalid argument");
    return;
  }

3203
  Local<Value> message = args[0];
3204 3205 3206 3207
  Local<Value> transfer = Undefined(isolate);
  std::unique_ptr<SerializationData> data =
      Shell::SerializeValue(isolate, message, transfer);
  if (data) {
3208
    DCHECK(args.Data()->IsExternal());
3209
    Local<External> this_value = Local<External>::Cast(args.Data());
3210
    Worker* worker = static_cast<Worker*>(this_value->Value());
3211
    worker->out_queue_.Enqueue(std::move(data));
3212
    worker->out_semaphore_.Signal();
3213 3214
  }
}
3215

3216
bool Shell::SetOptions(int argc, char* argv[]) {
3217
  bool logfile_per_isolate = false;
3218
  for (int i = 0; i < argc; i++) {
3219 3220 3221 3222 3223 3224 3225
    if (strcmp(argv[i], "--") == 0) {
      argv[i] = nullptr;
      for (int j = i + 1; j < argc; j++) {
        options.arguments.push_back(argv[j]);
        argv[j] = nullptr;
      }
      break;
3226 3227 3228 3229
    } else if (strcmp(argv[i], "--no-arguments") == 0) {
      options.include_arguments = false;
      argv[i] = nullptr;
    } else if (strcmp(argv[i], "--stress-opt") == 0) {
3230
      options.stress_opt = true;
3231
      argv[i] = nullptr;
3232 3233
    } else if (strcmp(argv[i], "--nostress-opt") == 0 ||
               strcmp(argv[i], "--no-stress-opt") == 0) {
3234
      options.stress_opt = false;
3235
      argv[i] = nullptr;
3236 3237 3238 3239 3240 3241 3242
    } else if (strcmp(argv[i], "--stress-snapshot") == 0) {
      options.stress_snapshot = true;
      argv[i] = nullptr;
    } else if (strcmp(argv[i], "--nostress-snapshot") == 0 ||
               strcmp(argv[i], "--no-stress-snapshot") == 0) {
      options.stress_snapshot = false;
      argv[i] = nullptr;
3243 3244
    } else if (strcmp(argv[i], "--noalways-opt") == 0 ||
               strcmp(argv[i], "--no-always-opt") == 0) {
3245 3246
      // No support for stressing if we can't use --always-opt.
      options.stress_opt = false;
3247 3248
    } else if (strcmp(argv[i], "--logfile-per-isolate") == 0) {
      logfile_per_isolate = true;
3249
      argv[i] = nullptr;
3250
    } else if (strcmp(argv[i], "--shell") == 0) {
3251
      options.interactive_shell = true;
3252
      argv[i] = nullptr;
3253
    } else if (strcmp(argv[i], "--test") == 0) {
3254
      options.test_shell = true;
3255
      argv[i] = nullptr;
3256 3257 3258
    } else if (strcmp(argv[i], "--notest") == 0 ||
               strcmp(argv[i], "--no-test") == 0) {
      options.test_shell = false;
3259
      argv[i] = nullptr;
3260 3261
    } else if (strcmp(argv[i], "--send-idle-notification") == 0) {
      options.send_idle_notification = true;
3262
      argv[i] = nullptr;
3263 3264 3265 3266
    } else if (strcmp(argv[i], "--invoke-weak-callbacks") == 0) {
      options.invoke_weak_callbacks = true;
      // TODO(jochen) See issue 3351
      options.send_idle_notification = true;
3267
      argv[i] = nullptr;
3268 3269
    } else if (strcmp(argv[i], "--omit-quit") == 0) {
      options.omit_quit = true;
3270
      argv[i] = nullptr;
3271 3272 3273 3274 3275
    } else if (strcmp(argv[i], "--no-wait-for-wasm") == 0) {
      // TODO(herhut) Remove this flag once wasm compilation is fully
      // isolate-independent.
      options.wait_for_wasm = false;
      argv[i] = nullptr;
3276 3277 3278 3279
    } else if (strcmp(argv[i], "-f") == 0) {
      // Ignore any -f flags for compatibility with other stand-alone
      // JavaScript engines.
      continue;
3280 3281 3282
    } else if (strcmp(argv[i], "--ignore-unhandled-promises") == 0) {
      options.ignore_unhandled_promises = true;
      argv[i] = nullptr;
3283 3284
    } else if (strcmp(argv[i], "--isolate") == 0) {
      options.num_isolates++;
3285 3286
    } else if (strcmp(argv[i], "--throws") == 0) {
      options.expected_to_throw = true;
3287
      argv[i] = nullptr;
3288 3289
    } else if (strncmp(argv[i], "--icu-data-file=", 16) == 0) {
      options.icu_data_file = argv[i] + 16;
3290
      argv[i] = nullptr;
3291 3292 3293
    } else if (strncmp(argv[i], "--icu-locale=", 13) == 0) {
      options.icu_locale = argv[i] + 13;
      argv[i] = nullptr;
3294 3295 3296
#ifdef V8_USE_EXTERNAL_STARTUP_DATA
    } else if (strncmp(argv[i], "--snapshot_blob=", 16) == 0) {
      options.snapshot_blob = argv[i] + 16;
3297
      argv[i] = nullptr;
3298
#endif  // V8_USE_EXTERNAL_STARTUP_DATA
3299 3300 3301 3302
    } else if (strcmp(argv[i], "--cache") == 0 ||
               strncmp(argv[i], "--cache=", 8) == 0) {
      const char* value = argv[i] + 7;
      if (!*value || strncmp(value, "=code", 6) == 0) {
3303 3304 3305
        options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
        options.code_cache_options =
            ShellOptions::CodeCacheOptions::kProduceCache;
3306 3307
      } else if (strncmp(value, "=none", 6) == 0) {
        options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
        options.code_cache_options =
            ShellOptions::CodeCacheOptions::kNoProduceCache;
      } else if (strncmp(value, "=after-execute", 15) == 0) {
        options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
        options.code_cache_options =
            ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute;
      } else if (strncmp(value, "=full-code-cache", 17) == 0) {
        options.compile_options = v8::ScriptCompiler::kEagerCompile;
        options.code_cache_options =
            ShellOptions::CodeCacheOptions::kProduceCache;
3318 3319 3320 3321
      } else {
        printf("Unknown option to --cache.\n");
        return false;
      }
3322
      argv[i] = nullptr;
3323 3324 3325 3326 3327 3328 3329
    } else if (strcmp(argv[i], "--streaming-compile") == 0) {
      options.streaming_compile = true;
      argv[i] = nullptr;
    } else if ((strcmp(argv[i], "--no-streaming-compile") == 0) ||
               (strcmp(argv[i], "--nostreaming-compile") == 0)) {
      options.streaming_compile = false;
      argv[i] = nullptr;
3330 3331
    } else if (strcmp(argv[i], "--enable-tracing") == 0) {
      options.trace_enabled = true;
3332
      argv[i] = nullptr;
3333 3334 3335
    } else if (strncmp(argv[i], "--trace-path=", 13) == 0) {
      options.trace_path = argv[i] + 13;
      argv[i] = nullptr;
3336 3337
    } else if (strncmp(argv[i], "--trace-config=", 15) == 0) {
      options.trace_config = argv[i] + 15;
3338
      argv[i] = nullptr;
3339 3340
    } else if (strcmp(argv[i], "--enable-inspector") == 0) {
      options.enable_inspector = true;
3341
      argv[i] = nullptr;
3342 3343
    } else if (strncmp(argv[i], "--lcov=", 7) == 0) {
      options.lcov_file = argv[i] + 7;
3344
      argv[i] = nullptr;
3345 3346
    } else if (strcmp(argv[i], "--disable-in-process-stack-traces") == 0) {
      options.disable_in_process_stack_traces = true;
3347
      argv[i] = nullptr;
3348 3349 3350
#ifdef V8_OS_POSIX
    } else if (strncmp(argv[i], "--read-from-tcp-port=", 21) == 0) {
      options.read_from_tcp_port = atoi(argv[i] + 21);
3351
      argv[i] = nullptr;
3352
#endif  // V8_OS_POSIX
3353 3354
    } else if (strcmp(argv[i], "--enable-os-system") == 0) {
      options.enable_os_system = true;
3355
      argv[i] = nullptr;
3356 3357 3358
    } else if (strcmp(argv[i], "--quiet-load") == 0) {
      options.quiet_load = true;
      argv[i] = nullptr;
3359 3360 3361
    } else if (strncmp(argv[i], "--thread-pool-size=", 19) == 0) {
      options.thread_pool_size = atoi(argv[i] + 19);
      argv[i] = nullptr;
3362 3363 3364 3365
    } else if (strcmp(argv[i], "--stress-delay-tasks") == 0) {
      // Delay execution of tasks by 0-100ms randomly (based on --random-seed).
      options.stress_delay_tasks = true;
      argv[i] = nullptr;
3366 3367 3368 3369 3370 3371 3372
    } else if (strcmp(argv[i], "--cpu-profiler") == 0) {
      options.cpu_profiler = true;
      argv[i] = nullptr;
    } else if (strcmp(argv[i], "--cpu-profiler-print") == 0) {
      options.cpu_profiler = true;
      options.cpu_profiler_print = true;
      argv[i] = nullptr;
3373 3374 3375 3376 3377 3378 3379 3380
#ifdef V8_FUZZILLI
    } else if (strcmp(argv[i], "--no-fuzzilli-enable-builtins-coverage") == 0) {
      options.fuzzilli_enable_builtins_coverage = false;
      argv[i] = nullptr;
    } else if (strcmp(argv[i], "--fuzzilli-coverage-statistics") == 0) {
      options.fuzzilli_coverage_statistics = true;
      argv[i] = nullptr;
#endif
3381 3382 3383
    } else if (strcmp(argv[i], "--fuzzy-module-file-extensions") == 0) {
      options.fuzzy_module_file_extensions = true;
      argv[i] = nullptr;
3384
    }
3385 3386
  }

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
  const char* usage =
      "Synopsis:\n"
      "  shell [options] [--shell] [<file>...]\n"
      "  d8 [options] [-e <string>] [--shell] [[--module] <file>...]\n\n"
      "  -e        execute a string in V8\n"
      "  --shell   run an interactive JavaScript shell\n"
      "  --module  execute a file as a JavaScript module\n\n";
  using HelpOptions = i::FlagList::HelpOptions;
  i::FlagList::SetFlagsFromCommandLine(&argc, argv, true,
                                       HelpOptions(HelpOptions::kExit, usage));
3397
  options.mock_arraybuffer_allocator = i::FLAG_mock_arraybuffer_allocator;
3398 3399
  options.mock_arraybuffer_allocator_limit =
      i::FLAG_mock_arraybuffer_allocator_limit;
3400 3401 3402
#if V8_OS_LINUX
  options.multi_mapped_mock_allocator = i::FLAG_multi_mapped_mock_allocator;
#endif
3403

3404
  // Set up isolated source groups.
3405 3406 3407 3408 3409 3410 3411 3412 3413
  options.isolate_sources = new SourceGroup[options.num_isolates];
  SourceGroup* current = options.isolate_sources;
  current->Begin(argv, 1);
  for (int i = 1; i < argc; i++) {
    const char* str = argv[i];
    if (strcmp(str, "--isolate") == 0) {
      current->End(i);
      current++;
      current->Begin(argv, i + 1);
3414 3415
    } else if (strcmp(str, "--module") == 0) {
      // Pass on to SourceGroup, which understands this option.
3416 3417
    } else if (strncmp(str, "--", 2) == 0) {
      printf("Warning: unknown flag %s.\nTry --help for options\n", str);
binji's avatar
binji committed
3418
    } else if (strcmp(str, "-e") == 0 && i + 1 < argc) {
3419
      set_script_executed();
binji's avatar
binji committed
3420 3421
    } else if (strncmp(str, "-", 1) != 0) {
      // Not a flag, so it must be a script to execute.
3422
      set_script_executed();
3423 3424 3425 3426
    }
  }
  current->End(argc);

3427
  if (!logfile_per_isolate && options.num_isolates) {
3428
    V8::SetFlagsFromString("--no-logfile-per-isolate");
3429 3430
  }

3431 3432 3433
  return true;
}

3434
int Shell::RunMain(Isolate* isolate, bool last_run) {
3435 3436 3437
  for (int i = 1; i < options.num_isolates; ++i) {
    options.isolate_sources[i].StartExecuteInThread();
  }
3438
  bool success = true;
3439
  {
3440
    SetWaitUntilDone(isolate, false);
3441
    if (options.lcov_file) {
3442
      debug::Coverage::SelectMode(isolate, debug::CoverageMode::kBlockCount);
3443
    }
3444 3445
    HandleScope scope(isolate);
    Local<Context> context = CreateEvaluationContext(isolate);
3446
    bool use_existing_context = last_run && use_interactive_shell();
3447
    if (use_existing_context) {
3448 3449
      // Keep using the same context in the interactive shell.
      evaluation_context_.Reset(isolate, context);
3450
    }
3451 3452
    {
      Context::Scope cscope(context);
3453
      InspectorClient inspector_client(context, options.enable_inspector);
3454
      PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
3455 3456
      if (!options.isolate_sources[0].Execute(isolate)) success = false;
      if (!CompleteMessageLoop(isolate)) success = false;
3457
      if (!HandleUnhandledPromiseRejections(isolate)) success = false;
3458
    }
3459 3460 3461
    if (!use_existing_context) {
      DisposeModuleEmbedderData(context);
    }
3462
    WriteLcovData(isolate, options.lcov_file);
3463 3464
    if (last_run && options.stress_snapshot) {
      static constexpr bool kClearRecompilableData = true;
3465 3466
      i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
      i::Handle<i::Context> i_context = Utils::OpenHandle(*context);
3467 3468 3469
      // TODO(jgruber,v8:10500): Don't deoptimize once we support serialization
      // of optimized code.
      i::Deoptimizer::DeoptimizeAll(i_isolate);
3470 3471
      i::Snapshot::ClearReconstructableDataForSerialization(
          i_isolate, kClearRecompilableData);
3472 3473 3474
      i::Snapshot::SerializeDeserializeAndVerifyForTesting(i_isolate,
                                                           i_context);
    }
3475
  }
3476 3477
  CollectGarbage(isolate);
  for (int i = 1; i < options.num_isolates; ++i) {
binji's avatar
binji committed
3478 3479 3480 3481 3482
    if (last_run) {
      options.isolate_sources[i].JoinThread();
    } else {
      options.isolate_sources[i].WaitForThread();
    }
3483
  }
3484
  WaitForRunningWorkers();
3485 3486 3487 3488 3489
  if (Shell::unhandled_promise_rejections_.load() > 0) {
    printf("%i pending unhandled Promise rejection(s) detected.\n",
           Shell::unhandled_promise_rejections_.load());
    success = false;
  }
3490 3491
  // In order to finish successfully, success must be != expected_to_throw.
  return success == Shell::options.expected_to_throw ? 1 : 0;
3492 3493 3494
}

void Shell::CollectGarbage(Isolate* isolate) {
3495
  if (options.send_idle_notification) {
3496
    const double kLongIdlePauseInSeconds = 1.0;
3497
    isolate->ContextDisposedNotification();
3498 3499
    isolate->IdleNotificationDeadline(
        g_platform->MonotonicallyIncreasingTime() + kLongIdlePauseInSeconds);
3500
  }
3501 3502 3503 3504
  if (options.invoke_weak_callbacks) {
    // By sending a low memory notifications, we will try hard to collect all
    // garbage and will therefore also invoke all weak callbacks of actually
    // unreachable persistent handles.
3505
    isolate->LowMemoryNotification();
3506
  }
3507 3508
}

3509
void Shell::SetWaitUntilDone(Isolate* isolate, bool value) {
3510
  base::MutexGuard guard(isolate_status_lock_.Pointer());
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
  isolate_status_[isolate] = value;
}

void Shell::NotifyStartStreamingTask(Isolate* isolate) {
  DCHECK(options.streaming_compile);
  base::MutexGuard guard(isolate_status_lock_.Pointer());
  ++isolate_running_streaming_tasks_[isolate];
}

void Shell::NotifyFinishStreamingTask(Isolate* isolate) {
  DCHECK(options.streaming_compile);
  base::MutexGuard guard(isolate_status_lock_.Pointer());
  --isolate_running_streaming_tasks_[isolate];
  DCHECK_GE(isolate_running_streaming_tasks_[isolate], 0);
3525 3526
}

3527
namespace {
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
bool RunSetTimeoutCallback(Isolate* isolate, bool* did_run) {
  PerIsolateData* data = PerIsolateData::Get(isolate);
  HandleScope handle_scope(isolate);
  Local<Function> callback;
  if (!data->GetTimeoutCallback().ToLocal(&callback)) return true;
  Local<Context> context;
  if (!data->GetTimeoutContext().ToLocal(&context)) return true;
  TryCatch try_catch(isolate);
  try_catch.SetVerbose(true);
  Context::Scope context_scope(context);
  if (callback->Call(context, Undefined(isolate), 0, nullptr).IsEmpty()) {
    return false;
  }
  *did_run = true;
  return true;
}

3545 3546 3547
bool ProcessMessages(
    Isolate* isolate,
    const std::function<platform::MessageLoopBehavior()>& behavior) {
3548
  while (true) {
3549
    i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
3550
    i::SaveAndSwitchContext saved_context(i_isolate, i::Context());
3551
    SealHandleScope shs(isolate);
3552 3553
    while (v8::platform::PumpMessageLoop(g_default_platform, isolate,
                                         behavior())) {
3554
      MicrotasksScope::PerformCheckpoint(isolate);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

      if (i::FLAG_verify_predictable) {
        // In predictable mode we push all background tasks into the foreground
        // task queue of the {kProcessGlobalPredictablePlatformWorkerTaskQueue}
        // isolate. We execute the tasks after one foreground task has been
        // executed.
        while (v8::platform::PumpMessageLoop(
            g_default_platform,
            kProcessGlobalPredictablePlatformWorkerTaskQueue, behavior())) {
        }
      }
3566
    }
3567 3568
    if (g_default_platform->IdleTasksEnabled(isolate)) {
      v8::platform::RunIdleTasks(g_default_platform, isolate,
3569 3570
                                 50.0 / base::Time::kMillisecondsPerSecond);
    }
3571 3572
    bool ran_set_timeout = false;
    if (!RunSetTimeoutCallback(isolate, &ran_set_timeout)) {
3573
      return false;
3574
    }
3575

3576
    if (!ran_set_timeout) return true;
3577
  }
3578
  return true;
3579
}
3580
}  // anonymous namespace
3581

3582
bool Shell::CompleteMessageLoop(Isolate* isolate) {
3583
  auto get_waiting_behaviour = [isolate]() {
3584
    base::MutexGuard guard(isolate_status_lock_.Pointer());
3585
    DCHECK_GT(isolate_status_.count(isolate), 0);
3586
    i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
3587
    i::wasm::WasmEngine* wasm_engine = i_isolate->wasm_engine();
3588 3589
    bool should_wait = (options.wait_for_wasm &&
                        wasm_engine->HasRunningCompileJob(i_isolate)) ||
3590 3591
                       isolate_status_[isolate] ||
                       isolate_running_streaming_tasks_[isolate] > 0;
3592 3593 3594
    return should_wait ? platform::MessageLoopBehavior::kWaitForWork
                       : platform::MessageLoopBehavior::kDoNotWait;
  };
3595
  return ProcessMessages(isolate, get_waiting_behaviour);
3596 3597
}

3598
bool Shell::EmptyMessageQueues(Isolate* isolate) {
3599 3600
  return ProcessMessages(
      isolate, []() { return platform::MessageLoopBehavior::kDoNotWait; });
3601 3602
}

3603 3604 3605 3606 3607 3608 3609 3610 3611
void Shell::PostForegroundTask(Isolate* isolate, std::unique_ptr<Task> task) {
  g_default_platform->GetForegroundTaskRunner(isolate)->PostTask(
      std::move(task));
}

void Shell::PostBlockingBackgroundTask(std::unique_ptr<Task> task) {
  g_default_platform->CallBlockingTaskOnWorkerThread(std::move(task));
}

3612 3613 3614 3615 3616 3617 3618 3619 3620
bool Shell::HandleUnhandledPromiseRejections(Isolate* isolate) {
  if (options.ignore_unhandled_promises) return true;
  PerIsolateData* data = PerIsolateData::Get(isolate);
  int count = data->HandleUnhandledPromiseRejections();
  Shell::unhandled_promise_rejections_.store(
      Shell::unhandled_promise_rejections_.load() + count);
  return count == 0;
}

3621 3622 3623
class Serializer : public ValueSerializer::Delegate {
 public:
  explicit Serializer(Isolate* isolate)
3624 3625 3626
      : isolate_(isolate),
        serializer_(isolate, this),
        current_memory_usage_(0) {}
3627

3628 3629 3630 3631 3632 3633 3634
  Maybe<bool> WriteValue(Local<Context> context, Local<Value> value,
                         Local<Value> transfer) {
    bool ok;
    DCHECK(!data_);
    data_.reset(new SerializationData);
    if (!PrepareTransfer(context, transfer).To(&ok)) {
      return Nothing<bool>();
3635
    }
3636 3637 3638 3639 3640
    serializer_.WriteHeader();

    if (!serializer_.WriteValue(context, value).To(&ok)) {
      data_.reset();
      return Nothing<bool>();
3641
    }
3642 3643 3644

    if (!FinalizeTransfer().To(&ok)) {
      return Nothing<bool>();
3645 3646
    }

3647 3648 3649 3650 3651
    std::pair<uint8_t*, size_t> pair = serializer_.Release();
    data_->data_.reset(pair.first);
    data_->size_ = pair.second;
    return Just(true);
  }
3652

3653 3654
  std::unique_ptr<SerializationData> Release() { return std::move(data_); }

3655 3656 3657 3658
  void AppendBackingStoresTo(std::vector<std::shared_ptr<BackingStore>>* to) {
    to->insert(to->end(), std::make_move_iterator(backing_stores_.begin()),
               std::make_move_iterator(backing_stores_.end()));
    backing_stores_.clear();
3659 3660
  }

3661 3662 3663 3664 3665 3666 3667 3668
 protected:
  // Implements ValueSerializer::Delegate.
  void ThrowDataCloneError(Local<String> message) override {
    isolate_->ThrowException(Exception::Error(message));
  }

  Maybe<uint32_t> GetSharedArrayBufferId(
      Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer) override {
3669
    DCHECK_NOT_NULL(data_);
3670 3671 3672 3673
    for (size_t index = 0; index < shared_array_buffers_.size(); ++index) {
      if (shared_array_buffers_[index] == shared_array_buffer) {
        return Just<uint32_t>(static_cast<uint32_t>(index));
      }
3674 3675
    }

3676 3677
    size_t index = shared_array_buffers_.size();
    shared_array_buffers_.emplace_back(isolate_, shared_array_buffer);
3678 3679
    data_->sab_backing_stores_.push_back(
        shared_array_buffer->GetBackingStore());
3680 3681 3682
    return Just<uint32_t>(static_cast<uint32_t>(index));
  }

3683
  Maybe<uint32_t> GetWasmModuleTransferId(
3684
      Isolate* isolate, Local<WasmModuleObject> module) override {
3685 3686 3687 3688 3689 3690 3691 3692 3693
    DCHECK_NOT_NULL(data_);
    for (size_t index = 0; index < wasm_modules_.size(); ++index) {
      if (wasm_modules_[index] == module) {
        return Just<uint32_t>(static_cast<uint32_t>(index));
      }
    }

    size_t index = wasm_modules_.size();
    wasm_modules_.emplace_back(isolate_, module);
3694
    data_->compiled_wasm_modules_.push_back(module->GetCompiledModule());
3695 3696 3697
    return Just<uint32_t>(static_cast<uint32_t>(index));
  }

3698 3699
  void* ReallocateBufferMemory(void* old_buffer, size_t size,
                               size_t* actual_size) override {
3700 3701 3702 3703 3704
    // Not accurate, because we don't take into account reallocated buffers,
    // but this is fine for testing.
    current_memory_usage_ += size;
    if (current_memory_usage_ > kMaxSerializerMemoryUsage) return nullptr;

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
    void* result = realloc(old_buffer, size);
    *actual_size = result ? size : 0;
    return result;
  }

  void FreeBufferMemory(void* buffer) override { free(buffer); }

 private:
  Maybe<bool> PrepareTransfer(Local<Context> context, Local<Value> transfer) {
    if (transfer->IsArray()) {
      Local<Array> transfer_array = Local<Array>::Cast(transfer);
      uint32_t length = transfer_array->Length();
      for (uint32_t i = 0; i < length; ++i) {
        Local<Value> element;
        if (transfer_array->Get(context, i).ToLocal(&element)) {
          if (!element->IsArrayBuffer()) {
            Throw(isolate_, "Transfer array elements must be an ArrayBuffer");
3722
            return Nothing<bool>();
3723 3724 3725
          }

          Local<ArrayBuffer> array_buffer = Local<ArrayBuffer>::Cast(element);
3726 3727 3728 3729 3730 3731 3732 3733

          if (std::find(array_buffers_.begin(), array_buffers_.end(),
                        array_buffer) != array_buffers_.end()) {
            Throw(isolate_,
                  "ArrayBuffer occurs in the transfer array more than once");
            return Nothing<bool>();
          }

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
          serializer_.TransferArrayBuffer(
              static_cast<uint32_t>(array_buffers_.size()), array_buffer);
          array_buffers_.emplace_back(isolate_, array_buffer);
        } else {
          return Nothing<bool>();
        }
      }
      return Just(true);
    } else if (transfer->IsUndefined()) {
      return Just(true);
3744
    } else {
3745 3746
      Throw(isolate_, "Transfer list must be an Array or undefined");
      return Nothing<bool>();
3747
    }
3748 3749 3750 3751 3752 3753
  }

  Maybe<bool> FinalizeTransfer() {
    for (const auto& global_array_buffer : array_buffers_) {
      Local<ArrayBuffer> array_buffer =
          Local<ArrayBuffer>::New(isolate_, global_array_buffer);
3754
      if (!array_buffer->IsDetachable()) {
3755 3756 3757 3758
        Throw(isolate_, "ArrayBuffer could not be transferred");
        return Nothing<bool>();
      }

3759 3760
      auto backing_store = array_buffer->GetBackingStore();
      data_->backing_stores_.push_back(std::move(backing_store));
3761
      array_buffer->Detach();
3762 3763
    }

3764
    return Just(true);
3765 3766
  }

3767 3768 3769 3770 3771
  Isolate* isolate_;
  ValueSerializer serializer_;
  std::unique_ptr<SerializationData> data_;
  std::vector<Global<ArrayBuffer>> array_buffers_;
  std::vector<Global<SharedArrayBuffer>> shared_array_buffers_;
3772
  std::vector<Global<WasmModuleObject>> wasm_modules_;
3773
  std::vector<std::shared_ptr<v8::BackingStore>> backing_stores_;
3774
  size_t current_memory_usage_;
3775

3776 3777
  DISALLOW_COPY_AND_ASSIGN(Serializer);
};
3778

3779 3780 3781 3782 3783 3784 3785 3786
class Deserializer : public ValueDeserializer::Delegate {
 public:
  Deserializer(Isolate* isolate, std::unique_ptr<SerializationData> data)
      : isolate_(isolate),
        deserializer_(isolate, data->data(), data->size(), this),
        data_(std::move(data)) {
    deserializer_.SetSupportsLegacyWireFormat(true);
  }
3787

3788 3789 3790 3791
  MaybeLocal<Value> ReadValue(Local<Context> context) {
    bool read_header;
    if (!deserializer_.ReadHeader(context).To(&read_header)) {
      return MaybeLocal<Value>();
3792
    }
3793 3794

    uint32_t index = 0;
3795
    for (const auto& backing_store : data_->backing_stores()) {
3796 3797
      Local<ArrayBuffer> array_buffer =
          ArrayBuffer::New(isolate_, std::move(backing_store));
3798
      deserializer_.TransferArrayBuffer(index++, array_buffer);
3799
    }
3800

3801
    return deserializer_.ReadValue(context);
3802 3803
  }

3804 3805 3806
  MaybeLocal<SharedArrayBuffer> GetSharedArrayBufferFromId(
      Isolate* isolate, uint32_t clone_id) override {
    DCHECK_NOT_NULL(data_);
3807
    if (clone_id < data_->sab_backing_stores().size()) {
3808 3809
      return SharedArrayBuffer::New(
          isolate_, std::move(data_->sab_backing_stores().at(clone_id)));
3810 3811 3812 3813
    }
    return MaybeLocal<SharedArrayBuffer>();
  }

3814
  MaybeLocal<WasmModuleObject> GetWasmModuleFromId(
3815 3816
      Isolate* isolate, uint32_t transfer_id) override {
    DCHECK_NOT_NULL(data_);
3817 3818 3819
    if (transfer_id >= data_->compiled_wasm_modules().size()) return {};
    return WasmModuleObject::FromCompiledModule(
        isolate_, data_->compiled_wasm_modules().at(transfer_id));
3820 3821
  }

3822 3823 3824 3825 3826 3827 3828 3829
 private:
  Isolate* isolate_;
  ValueDeserializer deserializer_;
  std::unique_ptr<SerializationData> data_;

  DISALLOW_COPY_AND_ASSIGN(Deserializer);
};

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
class D8Testing {
 public:
  /**
   * Get the number of runs of a given test that is required to get the full
   * stress coverage.
   */
  static int GetStressRuns() {
    if (internal::FLAG_stress_runs != 0) return internal::FLAG_stress_runs;
#ifdef DEBUG
    // In debug mode the code runs much slower so stressing will only make two
    // runs.
    return 2;
#else
    return 5;
#endif
  }

  /**
   * Indicate the number of the run which is about to start. The value of run
   * should be between 0 and one less than the result from GetStressRuns()
   */
  static void PrepareStressRun(int run) {
    static const char* kLazyOptimizations =
        "--prepare-always-opt "
        "--max-inlined-bytecode-size=999999 "
        "--max-inlined-bytecode-size-cumulative=999999 "
        "--noalways-opt";
3857
    static const char* kForcedOptimizations = "--always-opt";
3858

3859 3860
    if (run == GetStressRuns() - 1) {
      V8::SetFlagsFromString(kForcedOptimizations);
3861
    } else {
3862
      V8::SetFlagsFromString(kLazyOptimizations);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
    }
  }

  /**
   * Force deoptimization of all functions.
   */
  static void DeoptimizeAll(Isolate* isolate) {
    i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
    i::HandleScope scope(i_isolate);
    i::Deoptimizer::DeoptimizeAll(i_isolate);
  }
};

3876 3877 3878 3879 3880
std::unique_ptr<SerializationData> Shell::SerializeValue(
    Isolate* isolate, Local<Value> value, Local<Value> transfer) {
  bool ok;
  Local<Context> context = isolate->GetCurrentContext();
  Serializer serializer(isolate);
3881
  std::unique_ptr<SerializationData> data;
3882
  if (serializer.WriteValue(context, value, transfer).To(&ok)) {
3883
    data = serializer.Release();
3884
  }
3885
  return data;
3886
}
3887

3888 3889 3890 3891 3892 3893
MaybeLocal<Value> Shell::DeserializeValue(
    Isolate* isolate, std::unique_ptr<SerializationData> data) {
  Local<Value> value;
  Local<Context> context = isolate->GetCurrentContext();
  Deserializer deserializer(isolate, std::move(data));
  return deserializer.ReadValue(context);
3894 3895
}

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
void Shell::AddRunningWorker(std::shared_ptr<Worker> worker) {
  workers_mutex_.Pointer()->AssertHeld();  // caller should hold the mutex.
  running_workers_.insert(worker);
}

void Shell::RemoveRunningWorker(const std::shared_ptr<Worker>& worker) {
  base::MutexGuard lock_guard(workers_mutex_.Pointer());
  auto it = running_workers_.find(worker);
  if (it != running_workers_.end()) running_workers_.erase(it);
}

void Shell::WaitForRunningWorkers() {
  // Make a copy of running_workers_, because we don't want to call
  // Worker::Terminate while holding the workers_mutex_ lock. Otherwise, if a
  // worker is about to create a new Worker, it would deadlock.
  std::unordered_set<std::shared_ptr<Worker>> workers_copy;
3912
  {
3913
    base::MutexGuard lock_guard(workers_mutex_.Pointer());
3914
    allow_new_workers_ = false;
3915
    workers_copy.swap(running_workers_);
3916 3917
  }

3918
  for (auto& worker : workers_copy) {
binji's avatar
binji committed
3919
    worker->WaitForThread();
3920
  }
3921 3922

  // Now that all workers are terminated, we can re-enable Worker creation.
3923
  base::MutexGuard lock_guard(workers_mutex_.Pointer());
3924
  DCHECK(running_workers_.empty());
binji's avatar
binji committed
3925
  allow_new_workers_ = true;
3926 3927
}

3928
int Shell::Main(int argc, char* argv[]) {
3929
  v8::base::EnsureConsoleOutput();
3930
  if (!SetOptions(argc, argv)) return 1;
3931

3932
  v8::V8::InitializeICUDefaultLocation(argv[0], options.icu_data_file);
3933

3934 3935 3936 3937 3938 3939 3940 3941
#ifdef V8_INTL_SUPPORT
  if (options.icu_locale != nullptr) {
    icu::Locale locale(options.icu_locale);
    UErrorCode error_code = U_ZERO_ERROR;
    icu::Locale::setDefault(locale, error_code);
  }
#endif  // V8_INTL_SUPPORT

3942 3943 3944 3945 3946
  v8::platform::InProcessStackDumping in_process_stack_dumping =
      options.disable_in_process_stack_traces
          ? v8::platform::InProcessStackDumping::kDisabled
          : v8::platform::InProcessStackDumping::kEnabled;

3947
  std::unique_ptr<platform::tracing::TracingController> tracing;
3948
  std::ofstream trace_file;
3949
  if (options.trace_enabled && !i::FLAG_verify_predictable) {
3950
    tracing = std::make_unique<platform::tracing::TracingController>();
3951 3952 3953 3954 3955 3956 3957 3958
    const char* trace_path =
        options.trace_path ? options.trace_path : "v8_trace.json";
    trace_file.open(trace_path);
    if (!trace_file.good()) {
      printf("Cannot open trace file '%s' for writing: %s.\n", trace_path,
             strerror(errno));
      return 1;
    }
3959 3960

#ifdef V8_USE_PERFETTO
3961 3962
    // Set up the in-process backend that the tracing controller will connect
    // to.
3963 3964 3965 3966
    perfetto::TracingInitArgs init_args;
    init_args.backends = perfetto::BackendType::kInProcessBackend;
    perfetto::Tracing::Initialize(init_args);

3967 3968 3969 3970 3971 3972 3973
    tracing->InitializeForPerfetto(&trace_file);
#else
    platform::tracing::TraceBuffer* trace_buffer =
        platform::tracing::TraceBuffer::CreateTraceBufferRingBuffer(
            platform::tracing::TraceBuffer::kRingBufferChunks,
            platform::tracing::TraceWriter::CreateJSONTraceWriter(trace_file));
    tracing->Initialize(trace_buffer);
3974
#endif  // V8_USE_PERFETTO
3975 3976
  }

3977
  platform::tracing::TracingController* tracing_controller = tracing.get();
3978
  g_platform = v8::platform::NewDefaultPlatform(
3979 3980
      options.thread_pool_size, v8::platform::IdleTaskSupport::kEnabled,
      in_process_stack_dumping, std::move(tracing));
3981
  g_default_platform = g_platform.get();
3982
  if (i::FLAG_verify_predictable) {
3983 3984
    g_platform = MakePredictablePlatform(std::move(g_platform));
  }
3985
  if (options.stress_delay_tasks) {
3986 3987 3988 3989 3990
    int64_t random_seed = i::FLAG_fuzzer_random_seed;
    if (!random_seed) random_seed = i::FLAG_random_seed;
    // If random_seed is still 0 here, the {DelayedTasksPlatform} will choose a
    // random seed.
    g_platform = MakeDelayedTasksPlatform(std::move(g_platform), random_seed);
3991 3992
  }

3993
  if (i::FLAG_trace_turbo_cfg_file == nullptr) {
3994
    V8::SetFlagsFromString("--trace-turbo-cfg-file=turbo.cfg");
3995 3996
  }
  if (i::FLAG_redirect_code_traces_to == nullptr) {
3997
    V8::SetFlagsFromString("--redirect-code-traces-to=code.asm");
3998
  }
3999
  v8::V8::InitializePlatform(g_platform.get());
4000
  v8::V8::Initialize();
4001 4002
  if (options.snapshot_blob) {
    v8::V8::InitializeExternalStartupDataFromFile(options.snapshot_blob);
vogelheim's avatar
vogelheim committed
4003 4004 4005
  } else {
    v8::V8::InitializeExternalStartupData(argv[0]);
  }
4006 4007
  int result = 0;
  Isolate::CreateParams create_params;
4008
  ShellArrayBufferAllocator shell_array_buffer_allocator;
4009
  MockArrayBufferAllocator mock_arraybuffer_allocator;
4010 4011 4012 4013 4014 4015
  const size_t memory_limit =
      options.mock_arraybuffer_allocator_limit * options.num_isolates;
  MockArrayBufferAllocatiorWithLimit mock_arraybuffer_allocator_with_limit(
      memory_limit >= options.mock_arraybuffer_allocator_limit
          ? memory_limit
          : std::numeric_limits<size_t>::max());
4016 4017 4018
#if V8_OS_LINUX
  MultiMappedAllocator multi_mapped_mock_allocator;
#endif  // V8_OS_LINUX
4019
  if (options.mock_arraybuffer_allocator) {
4020 4021 4022 4023 4024
    if (memory_limit) {
      Shell::array_buffer_allocator = &mock_arraybuffer_allocator_with_limit;
    } else {
      Shell::array_buffer_allocator = &mock_arraybuffer_allocator;
    }
4025 4026 4027 4028
#if V8_OS_LINUX
  } else if (options.multi_mapped_mock_allocator) {
    Shell::array_buffer_allocator = &multi_mapped_mock_allocator;
#endif  // V8_OS_LINUX
4029
  } else {
4030
    Shell::array_buffer_allocator = &shell_array_buffer_allocator;
4031
  }
4032
  create_params.array_buffer_allocator = Shell::array_buffer_allocator;
4033
#ifdef ENABLE_VTUNE_JIT_INTERFACE
4034
  create_params.code_event_handler = vTune::GetVtuneCodeEventHandler();
4035
#endif
4036 4037
  create_params.constraints.ConfigureDefaults(
      base::SysInfo::AmountOfPhysicalMemory(),
4038
      base::SysInfo::AmountOfVirtualMemory());
4039 4040

  Shell::counter_map_ = new CounterMap();
4041 4042
  if (i::FLAG_dump_counters || i::FLAG_dump_counters_nvp ||
      i::TracingFlags::is_gc_stats_enabled()) {
4043 4044 4045 4046
    create_params.counter_lookup_callback = LookupCounter;
    create_params.create_histogram_callback = CreateHistogram;
    create_params.add_histogram_sample_callback = AddHistogramSample;
  }
4047

4048
  if (V8_TRAP_HANDLER_SUPPORTED && i::FLAG_wasm_trap_handler) {
4049 4050
    constexpr bool use_default_trap_handler = true;
    if (!v8::V8::EnableWebAssemblyTrapHandler(use_default_trap_handler)) {
4051
      FATAL("Could not register trap handler");
eholk's avatar
eholk committed
4052 4053 4054
    }
  }

4055
  Isolate* isolate = Isolate::New(create_params);
4056

4057
  {
4058
    D8Console console(isolate);
4059
    Isolate::Scope scope(isolate);
4060
    Initialize(isolate, &console);
4061
    PerIsolateData data(isolate);
4062

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
    // Fuzzilli REPRL = read-eval-print-loop
    do {
#ifdef V8_FUZZILLI
      if (fuzzilli_reprl) {
        unsigned action = 0;
        ssize_t nread = read(REPRL_CRFD, &action, 4);
        if (nread != 4 || action != 'cexe') {
          fprintf(stderr, "Unknown action: %u\n", action);
          _exit(-1);
        }
      }
#endif  // V8_FUZZILLI

      result = 0;

      if (options.trace_enabled) {
        platform::tracing::TraceConfig* trace_config;
        if (options.trace_config) {
          int size = 0;
          char* trace_config_json_str = ReadChars(options.trace_config, &size);
          trace_config = tracing::CreateTraceConfigFromJSON(
              isolate, trace_config_json_str);
          delete[] trace_config_json_str;
        } else {
          trace_config =
              platform::tracing::TraceConfig::CreateDefaultTraceConfig();
        }
        tracing_controller->StartTracing(trace_config);
4091
      }
4092

4093 4094 4095 4096 4097
      CpuProfiler* cpu_profiler;
      if (options.cpu_profiler) {
        cpu_profiler = CpuProfiler::New(isolate);
        CpuProfilingOptions profile_options;
        cpu_profiler->StartProfiling(String::Empty(isolate), profile_options);
4098
      }
4099 4100 4101 4102 4103

      if (options.stress_opt) {
        options.stress_runs = D8Testing::GetStressRuns();
        for (int i = 0; i < options.stress_runs && result == 0; i++) {
          printf("============ Stress %d/%d ============\n", i + 1,
4104
                 options.stress_runs);
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
          D8Testing::PrepareStressRun(i);
          bool last_run = i == options.stress_runs - 1;
          result = RunMain(isolate, last_run);
        }
        printf("======== Full Deoptimization =======\n");
        D8Testing::DeoptimizeAll(isolate);
      } else if (i::FLAG_stress_runs > 0) {
        options.stress_runs = i::FLAG_stress_runs;
        for (int i = 0; i < options.stress_runs && result == 0; i++) {
          printf("============ Run %d/%d ============\n", i + 1,
4115
                 options.stress_runs);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
          bool last_run = i == options.stress_runs - 1;
          result = RunMain(isolate, last_run);
        }
      } else if (options.code_cache_options !=
                 ShellOptions::CodeCacheOptions::kNoProduceCache) {
        printf("============ Run: Produce code cache ============\n");
        // First run to produce the cache
        Isolate::CreateParams create_params;
        create_params.array_buffer_allocator = Shell::array_buffer_allocator;
        i::FLAG_hash_seed ^= 1337;  // Use a different hash seed.
        Isolate* isolate2 = Isolate::New(create_params);
        i::FLAG_hash_seed ^= 1337;  // Restore old hash seed.
        {
          D8Console console(isolate2);
          Initialize(isolate2, &console);
          PerIsolateData data(isolate2);
          Isolate::Scope isolate_scope(isolate2);

          result = RunMain(isolate2, false);
        }
        isolate2->Dispose();

        // Change the options to consume cache
        DCHECK(options.compile_options == v8::ScriptCompiler::kEagerCompile ||
               options.compile_options ==
                   v8::ScriptCompiler::kNoCompileOptions);
4142 4143 4144
        options.compile_options = v8::ScriptCompiler::kConsumeCodeCache;
        options.code_cache_options =
            ShellOptions::CodeCacheOptions::kNoProduceCache;
4145 4146 4147 4148

        printf("============ Run: Consume code cache ============\n");
        // Second run to consume the cache in current isolate
        result = RunMain(isolate, true);
4149
        options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
4150 4151
      } else {
        bool last_run = true;
4152
        result = RunMain(isolate, last_run);
4153
      }
4154

4155 4156 4157 4158
      // Run interactive shell if explicitly requested or if no script has been
      // executed, but never on --test
      if (use_interactive_shell()) {
        RunShell(isolate);
4159
      }
4160

4161 4162 4163 4164
      if (i::FLAG_trace_ignition_dispatches &&
          i::FLAG_trace_ignition_dispatches_output_file != nullptr) {
        WriteIgnitionDispatchCountersFile(isolate);
      }
4165

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
      if (options.cpu_profiler) {
        CpuProfile* profile =
            cpu_profiler->StopProfiling(String::Empty(isolate));
        if (options.cpu_profiler_print) {
          const internal::ProfileNode* root =
              reinterpret_cast<const internal::ProfileNode*>(
                  profile->GetTopDownRoot());
          root->Print(0);
        }
        profile->Delete();
        cpu_profiler->Dispose();
4177 4178
      }

4179 4180 4181 4182 4183 4184 4185 4186 4187
      // Shut down contexts and collect garbage.
      cached_code_map_.clear();
      evaluation_context_.Reset();
      stringify_function_.Reset();
      CollectGarbage(isolate);
#ifdef V8_FUZZILLI
      // Send result to parent (fuzzilli) and reset edge guards.
      if (fuzzilli_reprl) {
        int status = result << 8;
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
        std::vector<bool> bitmap;
        if (options.fuzzilli_enable_builtins_coverage) {
          bitmap = i::BasicBlockProfiler::Get()->GetCoverageBitmap(
              reinterpret_cast<i::Isolate*>(isolate));
          cov_update_builtins_basic_block_coverage(bitmap);
        }
        if (options.fuzzilli_coverage_statistics) {
          int tot = 0;
          for (bool b : bitmap) {
            if (b) tot++;
          }
          static int iteration_counter = 0;
          std::ofstream covlog("covlog.txt", std::ios::app);
          covlog << iteration_counter << "\t" << tot << "\t"
                 << sanitizer_cov_count_discovered_edges() << "\t"
                 << bitmap.size() << std::endl;
          iteration_counter++;
        }
4206
        CHECK_EQ(write(REPRL_CWFD, &status, 4), 4);
4207 4208 4209 4210 4211
        sanitizer_cov_reset_edgeguards();
        if (options.fuzzilli_enable_builtins_coverage) {
          i::BasicBlockProfiler::Get()->ResetCounts(
              reinterpret_cast<i::Isolate*>(isolate));
        }
4212 4213 4214
      }
#endif  // V8_FUZZILLI
    } while (fuzzilli_reprl);
4215
  }
4216
  OnExit(isolate);
4217

4218
  V8::Dispose();
4219
  V8::ShutdownPlatform();
4220

4221 4222
  // Delete the platform explicitly here to write the tracing output to the
  // tracing file.
4223 4224 4225
  if (options.trace_enabled) {
    tracing_controller->StopTracing();
  }
4226
  g_platform.reset();
4227 4228 4229
  return result;
}

4230
}  // namespace v8
4231

4232
#ifndef GOOGLE3
4233
int main(int argc, char* argv[]) { return v8::Shell::Main(argc, argv); }
4234
#endif
4235 4236 4237

#undef CHECK
#undef DCHECK
4238
#undef TRACE_BS