assembler-mips.cc 91.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
33
// Copyright 2012 the V8 project authors. All rights reserved.
34

35 36
#include "src/mips/assembler-mips.h"

37
#if V8_TARGET_ARCH_MIPS
38

39
#include "src/base/bits.h"
40
#include "src/base/cpu.h"
41
#include "src/mips/assembler-mips-inl.h"
42 43 44 45

namespace v8 {
namespace internal {

46 47 48 49
// Get the CPU features enabled by the build. For cross compilation the
// preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
// can be defined to enable FPU instructions when building the
// snapshot.
50 51
static unsigned CpuFeaturesImpliedByCompiler() {
  unsigned answer = 0;
52
#ifdef CAN_USE_FPU_INSTRUCTIONS
53
  answer |= 1u << FPU;
54 55 56 57 58
#endif  // def CAN_USE_FPU_INSTRUCTIONS

  // If the compiler is allowed to use FPU then we can use FPU too in our code
  // generation even when generating snapshots.  This won't work for cross
  // compilation.
59 60 61
#if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
  answer |= 1u << FPU;
#endif
62 63 64 65 66

  return answer;
}


67 68
void CpuFeatures::ProbeImpl(bool cross_compile) {
  supported_ |= CpuFeaturesImpliedByCompiler();
69

70 71
  // Only use statically determined features for cross compile (snapshot).
  if (cross_compile) return;
72

73 74
  // If the compiler is allowed to use fpu then we can use fpu too in our
  // code generation.
75
#ifndef __mips__
76
  // For the simulator build, use FPU.
77
  supported_ |= 1u << FPU;
78 79 80 81 82 83 84
#if defined(_MIPS_ARCH_MIPS32R6)
  // FP64 mode is implied on r6.
  supported_ |= 1u << FP64FPU;
#endif
#if defined(FPU_MODE_FP64)
  supported_ |= 1u << FP64FPU;
#endif
85
#else
86
  // Probe for additional features at runtime.
87
  base::CPU cpu;
88
  if (cpu.has_fpu()) supported_ |= 1u << FPU;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
#if defined(FPU_MODE_FPXX)
  if (cpu.is_fp64_mode()) supported_ |= 1u << FP64FPU;
#elif defined(FPU_MODE_FP64)
  supported_ |= 1u << FP64FPU;
#endif
#if defined(_MIPS_ARCH_MIPS32RX)
  if (cpu.architecture() == 6) {
    supported_ |= 1u << MIPSr6;
  } else if (cpu.architecture() == 2) {
    supported_ |= 1u << MIPSr1;
    supported_ |= 1u << MIPSr2;
  } else {
    supported_ |= 1u << MIPSr1;
  }
#endif
104 105
#endif
}
106 107


108 109 110 111
void CpuFeatures::PrintTarget() { }
void CpuFeatures::PrintFeatures() { }


112
int ToNumber(Register reg) {
113
  DCHECK(reg.is_valid());
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  const int kNumbers[] = {
    0,    // zero_reg
    1,    // at
    2,    // v0
    3,    // v1
    4,    // a0
    5,    // a1
    6,    // a2
    7,    // a3
    8,    // t0
    9,    // t1
    10,   // t2
    11,   // t3
    12,   // t4
    13,   // t5
    14,   // t6
    15,   // t7
    16,   // s0
    17,   // s1
    18,   // s2
    19,   // s3
    20,   // s4
    21,   // s5
    22,   // s6
    23,   // s7
    24,   // t8
    25,   // t9
    26,   // k0
    27,   // k1
    28,   // gp
    29,   // sp
145
    30,   // fp
146 147 148 149 150
    31,   // ra
  };
  return kNumbers[reg.code()];
}

151

152
Register ToRegister(int num) {
153
  DCHECK(num >= 0 && num < kNumRegisters);
154 155 156 157 158 159 160 161 162 163 164
  const Register kRegisters[] = {
    zero_reg,
    at,
    v0, v1,
    a0, a1, a2, a3,
    t0, t1, t2, t3, t4, t5, t6, t7,
    s0, s1, s2, s3, s4, s5, s6, s7,
    t8, t9,
    k0, k1,
    gp,
    sp,
165
    fp,
166 167 168 169 170 171 172 173 174
    ra
  };
  return kRegisters[num];
}


// -----------------------------------------------------------------------------
// Implementation of RelocInfo.

175
const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask |
176 177
                                  1 << RelocInfo::INTERNAL_REFERENCE |
                                  1 << RelocInfo::INTERNAL_REFERENCE_ENCODED;
178

179 180 181 182 183 184 185 186 187

bool RelocInfo::IsCodedSpecially() {
  // The deserializer needs to know whether a pointer is specially coded.  Being
  // specially coded on MIPS means that it is a lui/ori instruction, and that is
  // always the case inside code objects.
  return true;
}


188 189 190 191 192
bool RelocInfo::IsInConstantPool() {
  return false;
}


193 194 195 196 197
// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand.
// See assembler-mips-inl.h for inlined constructors.

Operand::Operand(Handle<Object> handle) {
198
  AllowDeferredHandleDereference using_raw_address;
199 200 201 202
  rm_ = no_reg;
  // Verify all Objects referred by code are NOT in new space.
  Object* obj = *handle;
  if (obj->IsHeapObject()) {
203
    DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
204 205 206 207 208
    imm32_ = reinterpret_cast<intptr_t>(handle.location());
    rmode_ = RelocInfo::EMBEDDED_OBJECT;
  } else {
    // No relocation needed.
    imm32_ = reinterpret_cast<intptr_t>(obj);
209
    rmode_ = RelocInfo::NONE32;
210 211 212
  }
}

213 214

MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
215 216 217 218
  offset_ = offset;
}


plind44@gmail.com's avatar
plind44@gmail.com committed
219 220 221 222 223 224
MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
                       OffsetAddend offset_addend) : Operand(rm) {
  offset_ = unit * multiplier + offset_addend;
}


225
// -----------------------------------------------------------------------------
226 227 228 229 230
// Specific instructions, constants, and masks.

static const int kNegOffset = 0x00008000;
// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
231 232 233
const Instr kPopInstruction = ADDIU | (Register::kCode_sp << kRsShift) |
                              (Register::kCode_sp << kRtShift) |
                              (kPointerSize & kImm16Mask);  // NOLINT
234
// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
235 236 237
const Instr kPushInstruction = ADDIU | (Register::kCode_sp << kRsShift) |
                               (Register::kCode_sp << kRtShift) |
                               (-kPointerSize & kImm16Mask);  // NOLINT
238
// sw(r, MemOperand(sp, 0))
239 240
const Instr kPushRegPattern =
    SW | (Register::kCode_sp << kRsShift) | (0 & kImm16Mask);  // NOLINT
241
//  lw(r, MemOperand(sp, 0))
242 243
const Instr kPopRegPattern =
    LW | (Register::kCode_sp << kRsShift) | (0 & kImm16Mask);  // NOLINT
244

245 246
const Instr kLwRegFpOffsetPattern =
    LW | (Register::kCode_fp << kRsShift) | (0 & kImm16Mask);  // NOLINT
247

248 249
const Instr kSwRegFpOffsetPattern =
    SW | (Register::kCode_fp << kRsShift) | (0 & kImm16Mask);  // NOLINT
250

251 252
const Instr kLwRegFpNegOffsetPattern = LW | (Register::kCode_fp << kRsShift) |
                                       (kNegOffset & kImm16Mask);  // NOLINT
253

254 255
const Instr kSwRegFpNegOffsetPattern = SW | (Register::kCode_fp << kRsShift) |
                                       (kNegOffset & kImm16Mask);  // NOLINT
256 257 258 259 260 261 262
// A mask for the Rt register for push, pop, lw, sw instructions.
const Instr kRtMask = kRtFieldMask;
const Instr kLwSwInstrTypeMask = 0xffe00000;
const Instr kLwSwInstrArgumentMask  = ~kLwSwInstrTypeMask;
const Instr kLwSwOffsetMask = kImm16Mask;


263 264
Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    : AssemblerBase(isolate, buffer, buffer_size),
265
      recorded_ast_id_(TypeFeedbackId::None()),
266
      positions_recorder_(this) {
267
  reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
268 269 270 271

  last_trampoline_pool_end_ = 0;
  no_trampoline_pool_before_ = 0;
  trampoline_pool_blocked_nesting_ = 0;
272 273
  // We leave space (16 * kTrampolineSlotsSize)
  // for BlockTrampolinePoolScope buffer.
274 275
  next_buffer_check_ = FLAG_force_long_branches
      ? kMaxInt : kMaxBranchOffset - kTrampolineSlotsSize * 16;
276
  internal_trampoline_exception_ = false;
277
  last_bound_pos_ = 0;
278

279
  trampoline_emitted_ = FLAG_force_long_branches;
280 281 282
  unbound_labels_count_ = 0;
  block_buffer_growth_ = false;

283
  ClearRecordedAstId();
284 285 286 287
}


void Assembler::GetCode(CodeDesc* desc) {
288
  EmitForbiddenSlotInstruction();
289
  DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
290
  // Set up code descriptor.
291 292 293 294
  desc->buffer = buffer_;
  desc->buffer_size = buffer_size_;
  desc->instr_size = pc_offset();
  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
295
  desc->origin = this;
296
  desc->constant_pool_size = 0;
297 298 299
}


300
void Assembler::Align(int m) {
301
  DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
302
  EmitForbiddenSlotInstruction();
303 304 305 306 307 308 309 310 311 312 313 314 315
  while ((pc_offset() & (m - 1)) != 0) {
    nop();
  }
}


void Assembler::CodeTargetAlign() {
  // No advantage to aligning branch/call targets to more than
  // single instruction, that I am aware of.
  Align(4);
}


316
Register Assembler::GetRtReg(Instr instr) {
317
  Register rt;
318
  rt.reg_code = (instr & kRtFieldMask) >> kRtShift;
319 320 321 322
  return rt;
}


323 324
Register Assembler::GetRsReg(Instr instr) {
  Register rs;
325
  rs.reg_code = (instr & kRsFieldMask) >> kRsShift;
326 327 328 329 330 331
  return rs;
}


Register Assembler::GetRdReg(Instr instr) {
  Register rd;
332
  rd.reg_code = (instr & kRdFieldMask) >> kRdShift;
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  return rd;
}


uint32_t Assembler::GetRt(Instr instr) {
  return (instr & kRtFieldMask) >> kRtShift;
}


uint32_t Assembler::GetRtField(Instr instr) {
  return instr & kRtFieldMask;
}


uint32_t Assembler::GetRs(Instr instr) {
  return (instr & kRsFieldMask) >> kRsShift;
}


uint32_t Assembler::GetRsField(Instr instr) {
  return instr & kRsFieldMask;
}


uint32_t Assembler::GetRd(Instr instr) {
  return  (instr & kRdFieldMask) >> kRdShift;
}


uint32_t Assembler::GetRdField(Instr instr) {
  return  instr & kRdFieldMask;
}


uint32_t Assembler::GetSa(Instr instr) {
  return (instr & kSaFieldMask) >> kSaShift;
}


uint32_t Assembler::GetSaField(Instr instr) {
  return instr & kSaFieldMask;
}


uint32_t Assembler::GetOpcodeField(Instr instr) {
  return instr & kOpcodeMask;
}


382 383 384 385 386 387 388 389 390 391
uint32_t Assembler::GetFunction(Instr instr) {
  return (instr & kFunctionFieldMask) >> kFunctionShift;
}


uint32_t Assembler::GetFunctionField(Instr instr) {
  return instr & kFunctionFieldMask;
}


392 393 394 395 396 397 398 399 400 401
uint32_t Assembler::GetImmediate16(Instr instr) {
  return instr & kImm16Mask;
}


uint32_t Assembler::GetLabelConst(Instr instr) {
  return instr & ~kImm16Mask;
}


402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
bool Assembler::IsPop(Instr instr) {
  return (instr & ~kRtMask) == kPopRegPattern;
}


bool Assembler::IsPush(Instr instr) {
  return (instr & ~kRtMask) == kPushRegPattern;
}


bool Assembler::IsSwRegFpOffset(Instr instr) {
  return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
}


bool Assembler::IsLwRegFpOffset(Instr instr) {
  return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
}


bool Assembler::IsSwRegFpNegOffset(Instr instr) {
  return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
          kSwRegFpNegOffsetPattern);
}


bool Assembler::IsLwRegFpNegOffset(Instr instr) {
  return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
          kLwRegFpNegOffsetPattern);
}


434 435 436 437 438 439 440 441 442 443
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.

444 445 446 447
// The link chain is terminated by a value in the instruction of -1,
// which is an otherwise illegal value (branch -1 is inf loop).
// The instruction 16-bit offset field addresses 32-bit words, but in
// code is conv to an 18-bit value addressing bytes, hence the -4 value.
448 449

const int kEndOfChain = -4;
450 451
// Determines the end of the Jump chain (a subset of the label link chain).
const int kEndOfJumpChain = 0;
452

453 454

bool Assembler::IsBranch(Instr instr) {
455 456 457
  uint32_t opcode   = GetOpcodeField(instr);
  uint32_t rt_field = GetRtField(instr);
  uint32_t rs_field = GetRsField(instr);
458
  // Checks if the instruction is a branch.
459 460 461
  bool isBranch =
      opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
      opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
462 463
      (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
                            rt_field == BLTZAL || rt_field == BGEZAL)) ||
464 465 466
      (opcode == COP1 && rs_field == BC1) ||  // Coprocessor branch.
      (opcode == COP1 && rs_field == BC1EQZ) ||
      (opcode == COP1 && rs_field == BC1NEZ);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  if (!isBranch && IsMipsArchVariant(kMips32r6)) {
    // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
    // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
    isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
                opcode == BALC ||
                (opcode == POP66 && rs_field != 0) ||  // BEQZC
                (opcode == POP76 && rs_field != 0);    // BNEZC
  }
  return isBranch;
}


bool Assembler::IsBc(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  // Checks if the instruction is a BC or BALC.
  return opcode == BC || opcode == BALC;
}


bool Assembler::IsBzc(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  // Checks if the instruction is BEQZC or BNEZC.
  return (opcode == POP66 && GetRsField(instr) != 0) ||
         (opcode == POP76 && GetRsField(instr) != 0);
491 492
}

493

494 495 496 497
bool Assembler::IsEmittedConstant(Instr instr) {
  uint32_t label_constant = GetLabelConst(instr);
  return label_constant == 0;  // Emitted label const in reg-exp engine.
}
498

499

500 501 502 503 504 505 506 507 508 509
bool Assembler::IsBeq(Instr instr) {
  return GetOpcodeField(instr) == BEQ;
}


bool Assembler::IsBne(Instr instr) {
  return GetOpcodeField(instr) == BNE;
}


510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
bool Assembler::IsBeqzc(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  return opcode == POP66 && GetRsField(instr) != 0;
}


bool Assembler::IsBnezc(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  return opcode == POP76 && GetRsField(instr) != 0;
}


bool Assembler::IsBeqc(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  uint32_t rs = GetRsField(instr);
  uint32_t rt = GetRtField(instr);
  return opcode == POP10 && rs != 0 && rs < rt;  // && rt != 0
}


bool Assembler::IsBnec(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  uint32_t rs = GetRsField(instr);
  uint32_t rt = GetRtField(instr);
  return opcode == POP30 && rs != 0 && rs < rt;  // && rt != 0
}

537 538 539 540 541
bool Assembler::IsJicOrJialc(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  uint32_t rs = GetRsField(instr);
  return (opcode == POP66 || opcode == POP76) && rs == 0;
}
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
bool Assembler::IsJump(Instr instr) {
  uint32_t opcode   = GetOpcodeField(instr);
  uint32_t rt_field = GetRtField(instr);
  uint32_t rd_field = GetRdField(instr);
  uint32_t function_field = GetFunctionField(instr);
  // Checks if the instruction is a jump.
  return opcode == J || opcode == JAL ||
      (opcode == SPECIAL && rt_field == 0 &&
      ((function_field == JALR) || (rd_field == 0 && (function_field == JR))));
}

bool Assembler::IsJ(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  // Checks if the instruction is a jump.
  return opcode == J;
}


561 562 563 564
bool Assembler::IsJal(Instr instr) {
  return GetOpcodeField(instr) == JAL;
}

565

566
bool Assembler::IsJr(Instr instr) {
567 568 569 570 571 572
  if (!IsMipsArchVariant(kMips32r6))  {
    return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
  } else {
    return GetOpcodeField(instr) == SPECIAL &&
        GetRdField(instr) == 0  && GetFunctionField(instr) == JALR;
  }
573 574
}

575

576
bool Assembler::IsJalr(Instr instr) {
577 578
  return GetOpcodeField(instr) == SPECIAL &&
         GetRdField(instr) != 0  && GetFunctionField(instr) == JALR;
579 580 581
}


582 583 584 585 586 587 588 589 590 591 592 593 594 595
bool Assembler::IsLui(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  // Checks if the instruction is a load upper immediate.
  return opcode == LUI;
}


bool Assembler::IsOri(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  // Checks if the instruction is a load upper immediate.
  return opcode == ORI;
}


596 597
bool Assembler::IsNop(Instr instr, unsigned int type) {
  // See Assembler::nop(type).
598
  DCHECK(type < 32);
599
  uint32_t opcode = GetOpcodeField(instr);
600
  uint32_t function = GetFunctionField(instr);
601
  uint32_t rt = GetRt(instr);
602
  uint32_t rd = GetRd(instr);
603
  uint32_t sa = GetSa(instr);
604

605 606 607 608
  // Traditional mips nop == sll(zero_reg, zero_reg, 0)
  // When marking non-zero type, use sll(zero_reg, at, type)
  // to avoid use of mips ssnop and ehb special encodings
  // of the sll instruction.
609

610 611 612 613
  Register nop_rt_reg = (type == 0) ? zero_reg : at;
  bool ret = (opcode == SPECIAL && function == SLL &&
              rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
              rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) &&
614 615 616 617 618 619 620
              sa == type);

  return ret;
}


int32_t Assembler::GetBranchOffset(Instr instr) {
621
  DCHECK(IsBranch(instr));
622
  return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
623 624 625 626
}


bool Assembler::IsLw(Instr instr) {
627
  return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
628 629 630 631
}


int16_t Assembler::GetLwOffset(Instr instr) {
632
  DCHECK(IsLw(instr));
633 634 635 636 637
  return ((instr & kImm16Mask));
}


Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
638
  DCHECK(IsLw(instr));
639 640 641 642 643 644 645 646 647 648

  // We actually create a new lw instruction based on the original one.
  Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask)
      | (offset & kImm16Mask);

  return temp_instr;
}


bool Assembler::IsSw(Instr instr) {
649
  return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
650 651 652 653
}


Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
654
  DCHECK(IsSw(instr));
655 656 657 658 659 660 661 662 663 664
  return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
}


bool Assembler::IsAddImmediate(Instr instr) {
  return ((instr & kOpcodeMask) == ADDIU);
}


Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
665
  DCHECK(IsAddImmediate(instr));
666
  return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
667 668 669
}


670 671 672 673 674
bool Assembler::IsAndImmediate(Instr instr) {
  return GetOpcodeField(instr) == ANDI;
}


675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
  if (IsMipsArchVariant(kMips32r6)) {
    if (Assembler::IsBc(instr)) {
      return Assembler::OffsetSize::kOffset26;
    } else if (Assembler::IsBzc(instr)) {
      return Assembler::OffsetSize::kOffset21;
    }
  }
  return Assembler::OffsetSize::kOffset16;
}


static inline int32_t AddBranchOffset(int pos, Instr instr) {
  int bits = OffsetSizeInBits(instr);
  const int32_t mask = (1 << bits) - 1;
  bits = 32 - bits;

  // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
  // the compiler uses arithmetic shifts for signed integers.
  int32_t imm = ((instr & mask) << bits) >> (bits - 2);

  if (imm == kEndOfChain) {
    // EndOfChain sentinel is returned directly, not relative to pc or pos.
    return kEndOfChain;
  } else {
    return pos + Assembler::kBranchPCOffset + imm;
  }
}

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
uint32_t Assembler::CreateTargetAddress(Instr instr_lui, Instr instr_jic) {
  DCHECK(IsLui(instr_lui) && IsJicOrJialc(instr_jic));
  int16_t jic_offset = GetImmediate16(instr_jic);
  int16_t lui_offset = GetImmediate16(instr_lui);

  if (jic_offset < 0) {
    lui_offset += kImm16Mask;
  }
  uint32_t lui_offset_u = (static_cast<uint32_t>(lui_offset)) << kLuiShift;
  uint32_t jic_offset_u = static_cast<uint32_t>(jic_offset) & kImm16Mask;

  return lui_offset_u | jic_offset_u;
}

// Use just lui and jic instructions. Insert lower part of the target address in
// jic offset part. Since jic sign-extends offset and then add it with register,
// before that addition, difference between upper part of the target address and
// upper part of the sign-extended offset (0xffff or 0x0000), will be inserted
// in jic register with lui instruction.
void Assembler::UnpackTargetAddress(uint32_t address, int16_t& lui_offset,
                                    int16_t& jic_offset) {
  lui_offset = (address & kHiMask) >> kLuiShift;
  jic_offset = address & kLoMask;

  if (jic_offset < 0) {
    lui_offset -= kImm16Mask;
  }
}

void Assembler::UnpackTargetAddressUnsigned(uint32_t address,
                                            uint32_t& lui_offset,
                                            uint32_t& jic_offset) {
  int16_t lui_offset16 = (address & kHiMask) >> kLuiShift;
  int16_t jic_offset16 = address & kLoMask;

  if (jic_offset16 < 0) {
    lui_offset16 -= kImm16Mask;
  }
  lui_offset = static_cast<uint32_t>(lui_offset16) & kImm16Mask;
  jic_offset = static_cast<uint32_t>(jic_offset16) & kImm16Mask;
}
745

746
int Assembler::target_at(int pos, bool is_internal) {
747
  Instr instr = instr_at(pos);
748 749 750 751 752
  if (is_internal) {
    if (instr == 0) {
      return kEndOfChain;
    } else {
      int32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
753
      int delta = static_cast<int>(instr_address - instr);
754 755 756 757
      DCHECK(pos > delta);
      return pos - delta;
    }
  }
758 759
  if ((instr & ~kImm16Mask) == 0) {
    // Emitted label constant, not part of a branch.
760 761 762 763 764 765
    if (instr == 0) {
       return kEndOfChain;
     } else {
       int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
       return (imm18 + pos);
     }
766
  }
767
  // Check we have a branch or jump instruction.
768
  DCHECK(IsBranch(instr) || IsLui(instr));
769
  if (IsBranch(instr)) {
770 771
    return AddBranchOffset(pos, instr);
  } else {
772 773 774 775 776 777 778 779 780 781
    Instr instr1 = instr_at(pos + 0 * Assembler::kInstrSize);
    Instr instr2 = instr_at(pos + 1 * Assembler::kInstrSize);
    DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
    int32_t imm;
    if (IsJicOrJialc(instr2)) {
      imm = CreateTargetAddress(instr1, instr2);
    } else {
      imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
      imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
    }
782 783 784 785 786 787 788

    if (imm == kEndOfJumpChain) {
      // EndOfChain sentinel is returned directly, not relative to pc or pos.
      return kEndOfChain;
    } else {
      uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
      int32_t delta = instr_address - imm;
789
      DCHECK(pos > delta);
790 791
      return pos - delta;
    }
792
  }
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
  return 0;
}


static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
                                    Instr instr) {
  int32_t bits = OffsetSizeInBits(instr);
  int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
  DCHECK((imm & 3) == 0);
  imm >>= 2;

  const int32_t mask = (1 << bits) - 1;
  instr &= ~mask;
  DCHECK(is_intn(imm, bits));

  return instr | (imm & mask);
809 810 811
}


812 813
void Assembler::target_at_put(int32_t pos, int32_t target_pos,
                              bool is_internal) {
814
  Instr instr = instr_at(pos);
815 816 817 818 819 820

  if (is_internal) {
    uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
    instr_at_put(pos, imm);
    return;
  }
821
  if ((instr & ~kImm16Mask) == 0) {
822
    DCHECK(target_pos == kEndOfChain || target_pos >= 0);
823 824 825 826 827 828
    // Emitted label constant, not part of a branch.
    // Make label relative to Code* of generated Code object.
    instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
    return;
  }

829
  DCHECK(IsBranch(instr) || IsLui(instr));
830
  if (IsBranch(instr)) {
831 832 833
    instr = SetBranchOffset(pos, target_pos, instr);
    instr_at_put(pos, instr);
  } else {
834 835 836
    Instr instr1 = instr_at(pos + 0 * Assembler::kInstrSize);
    Instr instr2 = instr_at(pos + 1 * Assembler::kInstrSize);
    DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
837
    uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
838
    DCHECK((imm & 3) == 0);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    DCHECK(IsLui(instr1) && (IsJicOrJialc(instr2) || IsOri(instr2)));
    instr1 &= ~kImm16Mask;
    instr2 &= ~kImm16Mask;

    if (IsJicOrJialc(instr2)) {
      uint32_t lui_offset_u, jic_offset_u;
      UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
      instr_at_put(pos + 0 * Assembler::kInstrSize, instr1 | lui_offset_u);
      instr_at_put(pos + 1 * Assembler::kInstrSize, instr2 | jic_offset_u);
    } else {
      instr_at_put(pos + 0 * Assembler::kInstrSize,
                   instr1 | ((imm & kHiMask) >> kLuiShift));
      instr_at_put(pos + 1 * Assembler::kInstrSize,
                   instr2 | (imm & kImm16Mask));
    }
854
  }
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
}


void Assembler::print(Label* L) {
  if (L->is_unused()) {
    PrintF("unused label\n");
  } else if (L->is_bound()) {
    PrintF("bound label to %d\n", L->pos());
  } else if (L->is_linked()) {
    Label l = *L;
    PrintF("unbound label");
    while (l.is_linked()) {
      PrintF("@ %d ", l.pos());
      Instr instr = instr_at(l.pos());
      if ((instr & ~kImm16Mask) == 0) {
        PrintF("value\n");
      } else {
        PrintF("%d\n", instr);
      }
874 875
      next(&l, internal_reference_positions_.find(l.pos()) !=
                   internal_reference_positions_.end());
876 877 878 879 880 881 882 883
    }
  } else {
    PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
  }
}


void Assembler::bind_to(Label* L, int pos) {
884
  DCHECK(0 <= pos && pos <= pc_offset());  // Must have valid binding position.
885
  int32_t trampoline_pos = kInvalidSlotPos;
886
  bool is_internal = false;
887 888 889 890 891
  if (L->is_linked() && !trampoline_emitted_) {
    unbound_labels_count_--;
    next_buffer_check_ += kTrampolineSlotsSize;
  }

892 893
  while (L->is_linked()) {
    int32_t fixup_pos = L->pos();
894
    int32_t dist = pos - fixup_pos;
895 896 897 898
    is_internal = internal_reference_positions_.find(fixup_pos) !=
                  internal_reference_positions_.end();
    next(L, is_internal);  // Call next before overwriting link with target at
                           // fixup_pos.
899
    Instr instr = instr_at(fixup_pos);
900 901
    if (is_internal) {
      target_at_put(fixup_pos, pos, is_internal);
902 903
    } else {
      if (IsBranch(instr)) {
904 905
        int branch_offset = BranchOffset(instr);
        if (dist > branch_offset) {
906 907 908 909
          if (trampoline_pos == kInvalidSlotPos) {
            trampoline_pos = get_trampoline_entry(fixup_pos);
            CHECK(trampoline_pos != kInvalidSlotPos);
          }
910
          CHECK((trampoline_pos - fixup_pos) <= branch_offset);
911 912 913
          target_at_put(fixup_pos, trampoline_pos, false);
          fixup_pos = trampoline_pos;
          dist = pos - fixup_pos;
914
        }
915 916 917
        target_at_put(fixup_pos, pos, false);
      } else {
        target_at_put(fixup_pos, pos, false);
918 919
      }
    }
920 921 922 923 924 925 926 927 928 929 930
  }
  L->bind_to(pos);

  // Keep track of the last bound label so we don't eliminate any instructions
  // before a bound label.
  if (pos > last_bound_pos_)
    last_bound_pos_ = pos;
}


void Assembler::bind(Label* L) {
931
  DCHECK(!L->is_bound());  // Label can only be bound once.
932 933 934 935
  bind_to(L, pc_offset());
}


936
void Assembler::next(Label* L, bool is_internal) {
937
  DCHECK(L->is_linked());
938
  int link = target_at(L->pos(), is_internal);
939
  if (link == kEndOfChain) {
940
    L->Unuse();
941
  } else {
942
    DCHECK(link >= 0);
943
    L->link_to(link);
944 945 946
  }
}

947

948
bool Assembler::is_near(Label* L) {
949
  DCHECK(L->is_bound());
950
  return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
951 952 953 954 955
}


bool Assembler::is_near(Label* L, OffsetSize bits) {
  if (L == nullptr || !L->is_bound()) return true;
956
  return pc_offset() - L->pos() < (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize;
957 958 959 960 961
}


bool Assembler::is_near_branch(Label* L) {
  DCHECK(L->is_bound());
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
  return IsMipsArchVariant(kMips32r6) ? is_near_r6(L) : is_near_pre_r6(L);
}


int Assembler::BranchOffset(Instr instr) {
  // At pre-R6 and for other R6 branches the offset is 16 bits.
  int bits = OffsetSize::kOffset16;

  if (IsMipsArchVariant(kMips32r6)) {
    uint32_t opcode = GetOpcodeField(instr);
    switch (opcode) {
      // Checks BC or BALC.
      case BC:
      case BALC:
        bits = OffsetSize::kOffset26;
        break;

      // Checks BEQZC or BNEZC.
      case POP66:
      case POP76:
        if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
        break;
      default:
        break;
    }
  }

  return (1 << (bits + 2 - 1)) - 1;
990
}
991

992

993 994 995 996
// We have to use a temporary register for things that can be relocated even
// if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
// space.  There is no guarantee that the relocated location can be similarly
// encoded.
997
bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
998
  return !RelocInfo::IsNone(rmode);
999 1000 1001 1002 1003 1004 1005 1006
}

void Assembler::GenInstrRegister(Opcode opcode,
                                 Register rs,
                                 Register rt,
                                 Register rd,
                                 uint16_t sa,
                                 SecondaryField func) {
1007
  DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1008 1009 1010 1011 1012 1013
  Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
      | (rd.code() << kRdShift) | (sa << kSaShift) | func;
  emit(instr);
}


1014 1015 1016 1017 1018 1019
void Assembler::GenInstrRegister(Opcode opcode,
                                 Register rs,
                                 Register rt,
                                 uint16_t msb,
                                 uint16_t lsb,
                                 SecondaryField func) {
1020
  DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1021 1022 1023 1024 1025 1026
  Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
      | (msb << kRdShift) | (lsb << kSaShift) | func;
  emit(instr);
}


1027 1028 1029 1030 1031 1032
void Assembler::GenInstrRegister(Opcode opcode,
                                 SecondaryField fmt,
                                 FPURegister ft,
                                 FPURegister fs,
                                 FPURegister fd,
                                 SecondaryField func) {
1033
  DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1034 1035
  Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift)
      | (fd.code() << kFdShift) | func;
1036 1037 1038 1039
  emit(instr);
}


1040 1041 1042 1043 1044 1045
void Assembler::GenInstrRegister(Opcode opcode,
                                 FPURegister fr,
                                 FPURegister ft,
                                 FPURegister fs,
                                 FPURegister fd,
                                 SecondaryField func) {
1046
  DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1047 1048 1049 1050 1051 1052
  Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift)
      | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
  emit(instr);
}


1053 1054 1055 1056 1057 1058
void Assembler::GenInstrRegister(Opcode opcode,
                                 SecondaryField fmt,
                                 Register rt,
                                 FPURegister fs,
                                 FPURegister fd,
                                 SecondaryField func) {
1059
  DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1060
  Instr instr = opcode | fmt | (rt.code() << kRtShift)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
      | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
  emit(instr);
}


void Assembler::GenInstrRegister(Opcode opcode,
                                 SecondaryField fmt,
                                 Register rt,
                                 FPUControlRegister fs,
                                 SecondaryField func) {
1071
  DCHECK(fs.is_valid() && rt.is_valid());
1072 1073
  Instr instr =
      opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1074 1075 1076 1077 1078 1079
  emit(instr);
}


// Instructions with immediate value.
// Registers are in the order of the instruction encoding, from left to right.
1080 1081 1082
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
                                  int32_t j,
                                  CompactBranchType is_compact_branch) {
1083
  DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1084 1085
  Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
      | (j & kImm16Mask);
1086
  emit(instr, is_compact_branch);
1087 1088 1089
}


1090 1091 1092
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
                                  int32_t j,
                                  CompactBranchType is_compact_branch) {
1093
  DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1094
  Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1095
  emit(instr, is_compact_branch);
1096 1097 1098
}


1099 1100 1101
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
                                  int32_t j,
                                  CompactBranchType is_compact_branch) {
1102
  DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1103 1104
  Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift)
      | (j & kImm16Mask);
1105
  emit(instr, is_compact_branch);
1106 1107 1108
}


1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
                                  CompactBranchType is_compact_branch) {
  DCHECK(rs.is_valid() && (is_int21(offset21)));
  Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
  emit(instr, is_compact_branch);
}


void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
                                  uint32_t offset21) {
  DCHECK(rs.is_valid() && (is_uint21(offset21)));
  Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1121 1122 1123 1124
  emit(instr);
}


1125 1126
void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
                                  CompactBranchType is_compact_branch) {
1127 1128
  DCHECK(is_int26(offset26));
  Instr instr = opcode | (offset26 & kImm26Mask);
1129
  emit(instr, is_compact_branch);
1130 1131 1132
}


1133
void Assembler::GenInstrJump(Opcode opcode,
1134
                             uint32_t address) {
1135
  BlockTrampolinePoolScope block_trampoline_pool(this);
1136
  DCHECK(is_uint26(address));
1137 1138
  Instr instr = opcode | address;
  emit(instr);
1139 1140 1141 1142
  BlockTrampolinePoolFor(1);  // For associated delay slot.
}


1143 1144 1145
// Returns the next free trampoline entry.
int32_t Assembler::get_trampoline_entry(int32_t pos) {
  int32_t trampoline_entry = kInvalidSlotPos;
1146

1147 1148 1149
  if (!internal_trampoline_exception_) {
    if (trampoline_.start() > pos) {
     trampoline_entry = trampoline_.take_slot();
1150
    }
1151 1152 1153

    if (kInvalidSlotPos == trampoline_entry) {
      internal_trampoline_exception_ = true;
1154 1155
    }
  }
1156
  return trampoline_entry;
1157 1158 1159
}


1160 1161
uint32_t Assembler::jump_address(Label* L) {
  int32_t target_pos;
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171
  if (L->is_bound()) {
    target_pos = L->pos();
  } else {
    if (L->is_linked()) {
      target_pos = L->pos();  // L's link.
      L->link_to(pc_offset());
    } else {
      L->link_to(pc_offset());
      return kEndOfJumpChain;
1172
    }
1173
  }
1174

1175
  uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
1176
  DCHECK((imm & 3) == 0);
1177 1178

  return imm;
1179 1180 1181
}


1182
int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1183
  int32_t target_pos;
1184
  int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1185 1186 1187 1188 1189 1190

  if (L->is_bound()) {
    target_pos = L->pos();
  } else {
    if (L->is_linked()) {
      target_pos = L->pos();
1191
      L->link_to(pc_offset() + pad);
1192
    } else {
1193
      L->link_to(pc_offset() + pad);
1194 1195 1196 1197 1198 1199 1200 1201
      if (!trampoline_emitted_) {
        unbound_labels_count_++;
        next_buffer_check_ -= kTrampolineSlotsSize;
      }
      return kEndOfChain;
    }
  }

1202 1203
  int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
  DCHECK(is_intn(offset, bits + 2));
1204 1205 1206 1207 1208 1209
  DCHECK((offset & 3) == 0);

  return offset;
}


1210 1211 1212 1213
void Assembler::label_at_put(Label* L, int at_offset) {
  int target_pos;
  if (L->is_bound()) {
    target_pos = L->pos();
1214
    instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1215 1216
  } else {
    if (L->is_linked()) {
1217 1218
      target_pos = L->pos();  // L's link.
      int32_t imm18 = target_pos - at_offset;
1219
      DCHECK((imm18 & 3) == 0);
1220
      int32_t imm16 = imm18 >> 2;
1221
      DCHECK(is_int16(imm16));
1222
      instr_at_put(at_offset, (imm16 & kImm16Mask));
1223 1224
    } else {
      target_pos = kEndOfChain;
1225
      instr_at_put(at_offset, 0);
1226 1227 1228 1229
      if (!trampoline_emitted_) {
        unbound_labels_count_++;
        next_buffer_check_ -= kTrampolineSlotsSize;
      }
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    }
    L->link_to(at_offset);
  }
}


//------- Branch and jump instructions --------

void Assembler::b(int16_t offset) {
  beq(zero_reg, zero_reg, offset);
}


void Assembler::bal(int16_t offset) {
1244
  positions_recorder()->WriteRecordedPositions();
1245 1246 1247 1248
  bgezal(zero_reg, offset);
}


1249 1250
void Assembler::bc(int32_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1251
  GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1252 1253 1254 1255 1256 1257
}


void Assembler::balc(int32_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  positions_recorder()->WriteRecordedPositions();
1258
  GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1259 1260 1261
}


1262
void Assembler::beq(Register rs, Register rt, int16_t offset) {
1263
  BlockTrampolinePoolScope block_trampoline_pool(this);
1264
  GenInstrImmediate(BEQ, rs, rt, offset);
1265
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1266 1267 1268 1269
}


void Assembler::bgez(Register rs, int16_t offset) {
1270
  BlockTrampolinePoolScope block_trampoline_pool(this);
1271
  GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1272
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1273 1274 1275
}


1276 1277 1278
void Assembler::bgezc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1279
  GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1280 1281 1282 1283 1284 1285 1286 1287
}


void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rs.is(zero_reg)));
  DCHECK(!(rt.is(zero_reg)));
  DCHECK(rs.code() != rt.code());
1288
  GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1289 1290 1291 1292 1293 1294 1295 1296
}


void Assembler::bgec(Register rs, Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rs.is(zero_reg)));
  DCHECK(!(rt.is(zero_reg)));
  DCHECK(rs.code() != rt.code());
1297
  GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1298 1299 1300
}


1301
void Assembler::bgezal(Register rs, int16_t offset) {
1302
  DCHECK(!IsMipsArchVariant(kMips32r6) || rs.is(zero_reg));
1303 1304
  BlockTrampolinePoolScope block_trampoline_pool(this);
  positions_recorder()->WriteRecordedPositions();
1305
  GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1306
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1307 1308 1309 1310
}


void Assembler::bgtz(Register rs, int16_t offset) {
1311
  BlockTrampolinePoolScope block_trampoline_pool(this);
1312
  GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1313
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1314 1315 1316
}


1317 1318 1319
void Assembler::bgtzc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1320 1321
  GenInstrImmediate(BGTZL, zero_reg, rt, offset,
                    CompactBranchType::COMPACT_BRANCH);
1322 1323 1324
}


1325
void Assembler::blez(Register rs, int16_t offset) {
1326
  BlockTrampolinePoolScope block_trampoline_pool(this);
1327
  GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1328
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1329 1330 1331
}


1332 1333 1334
void Assembler::blezc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1335 1336
  GenInstrImmediate(BLEZL, zero_reg, rt, offset,
                    CompactBranchType::COMPACT_BRANCH);
1337 1338 1339 1340 1341
}


void Assembler::bltzc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1342 1343
  DCHECK(!rt.is(zero_reg));
  GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1344 1345 1346 1347 1348 1349 1350 1351
}


void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rs.is(zero_reg)));
  DCHECK(!(rt.is(zero_reg)));
  DCHECK(rs.code() != rt.code());
1352
  GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1353 1354 1355 1356 1357
}


void Assembler::bltc(Register rs, Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1358 1359
  DCHECK(!rs.is(zero_reg));
  DCHECK(!rt.is(zero_reg));
1360
  DCHECK(rs.code() != rt.code());
1361
  GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1362 1363 1364
}


1365
void Assembler::bltz(Register rs, int16_t offset) {
1366
  BlockTrampolinePoolScope block_trampoline_pool(this);
1367
  GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1368
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1369 1370 1371 1372
}


void Assembler::bltzal(Register rs, int16_t offset) {
1373
  DCHECK(!IsMipsArchVariant(kMips32r6) || rs.is(zero_reg));
1374 1375
  BlockTrampolinePoolScope block_trampoline_pool(this);
  positions_recorder()->WriteRecordedPositions();
1376
  GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1377
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1378 1379 1380 1381
}


void Assembler::bne(Register rs, Register rt, int16_t offset) {
1382
  BlockTrampolinePoolScope block_trampoline_pool(this);
1383
  GenInstrImmediate(BNE, rs, rt, offset);
1384
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1385 1386 1387
}


1388 1389
void Assembler::bovc(Register rs, Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1390 1391 1392 1393 1394 1395
  DCHECK(!rs.is(zero_reg));
  if (rs.code() >= rt.code()) {
    GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
  } else {
    GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
  }
1396 1397 1398 1399 1400
}


void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1401 1402 1403 1404 1405 1406
  DCHECK(!rs.is(zero_reg));
  if (rs.code() >= rt.code()) {
    GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
  } else {
    GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
  }
1407 1408 1409 1410 1411 1412
}


void Assembler::blezalc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1413 1414 1415
  positions_recorder()->WriteRecordedPositions();
  GenInstrImmediate(BLEZ, zero_reg, rt, offset,
                    CompactBranchType::COMPACT_BRANCH);
1416 1417 1418 1419 1420 1421
}


void Assembler::bgezalc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1422 1423
  positions_recorder()->WriteRecordedPositions();
  GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1424 1425 1426 1427
}


void Assembler::bgezall(Register rs, int16_t offset) {
1428
  DCHECK(!IsMipsArchVariant(kMips32r6));
1429
  DCHECK(!(rs.is(zero_reg)));
1430
  BlockTrampolinePoolScope block_trampoline_pool(this);
1431
  positions_recorder()->WriteRecordedPositions();
1432
  GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1433
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1434 1435 1436 1437 1438 1439
}


void Assembler::bltzalc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1440 1441
  positions_recorder()->WriteRecordedPositions();
  GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1442 1443 1444 1445 1446 1447
}


void Assembler::bgtzalc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1448 1449 1450
  positions_recorder()->WriteRecordedPositions();
  GenInstrImmediate(BGTZ, zero_reg, rt, offset,
                    CompactBranchType::COMPACT_BRANCH);
1451 1452 1453 1454 1455 1456
}


void Assembler::beqzalc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1457 1458 1459
  positions_recorder()->WriteRecordedPositions();
  GenInstrImmediate(ADDI, zero_reg, rt, offset,
                    CompactBranchType::COMPACT_BRANCH);
1460 1461 1462 1463 1464 1465
}


void Assembler::bnezalc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rt.is(zero_reg)));
1466 1467 1468
  positions_recorder()->WriteRecordedPositions();
  GenInstrImmediate(DADDI, zero_reg, rt, offset,
                    CompactBranchType::COMPACT_BRANCH);
1469 1470 1471 1472 1473
}


void Assembler::beqc(Register rs, Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1474 1475 1476 1477 1478 1479
  DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
  if (rs.code() < rt.code()) {
    GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
  } else {
    GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
  }
1480 1481 1482 1483 1484 1485
}


void Assembler::beqzc(Register rs, int32_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rs.is(zero_reg)));
1486
  GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1487 1488 1489 1490 1491
}


void Assembler::bnec(Register rs, Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1492 1493 1494 1495 1496 1497
  DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
  if (rs.code() < rt.code()) {
    GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
  } else {
    GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
  }
1498 1499 1500 1501 1502 1503
}


void Assembler::bnezc(Register rs, int32_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(!(rs.is(zero_reg)));
1504
  GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1505 1506 1507
}


1508
void Assembler::j(int32_t target) {
1509 1510 1511
#if DEBUG
  // Get pc of delay slot.
  uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
Ilija.Pavlovic's avatar
Ilija.Pavlovic committed
1512 1513
  bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
                   (kImm26Bits + kImmFieldShift)) == 0;
1514
  DCHECK(in_range && ((target & 3) == 0));
1515
#endif
1516
  BlockTrampolinePoolScope block_trampoline_pool(this);
Ilija.Pavlovic's avatar
Ilija.Pavlovic committed
1517
  GenInstrJump(J, (target >> 2) & kImm26Mask);
1518
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1519 1520 1521 1522
}


void Assembler::jr(Register rs) {
1523 1524 1525 1526 1527 1528 1529 1530 1531
  if (!IsMipsArchVariant(kMips32r6)) {
    BlockTrampolinePoolScope block_trampoline_pool(this);
    if (rs.is(ra)) {
      positions_recorder()->WriteRecordedPositions();
    }
    GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
    BlockTrampolinePoolFor(1);  // For associated delay slot.
  } else {
    jalr(rs, zero_reg);
1532
  }
1533 1534 1535 1536
}


void Assembler::jal(int32_t target) {
1537 1538 1539
#ifdef DEBUG
  // Get pc of delay slot.
  uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
Ilija.Pavlovic's avatar
Ilija.Pavlovic committed
1540 1541
  bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
                   (kImm26Bits + kImmFieldShift)) == 0;
1542
  DCHECK(in_range && ((target & 3) == 0));
1543
#endif
1544
  BlockTrampolinePoolScope block_trampoline_pool(this);
1545
  positions_recorder()->WriteRecordedPositions();
Ilija.Pavlovic's avatar
Ilija.Pavlovic committed
1546
  GenInstrJump(JAL, (target >> 2) & kImm26Mask);
1547
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1548 1549 1550 1551
}


void Assembler::jalr(Register rs, Register rd) {
1552
  DCHECK(rs.code() != rd.code());
1553 1554
  BlockTrampolinePoolScope block_trampoline_pool(this);
  positions_recorder()->WriteRecordedPositions();
1555
  GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1556
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1557 1558 1559
}


1560 1561
void Assembler::jic(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1562
  GenInstrImmediate(POP66, zero_reg, rt, offset);
1563 1564 1565
}


1566 1567 1568
void Assembler::jialc(Register rt, int16_t offset) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  positions_recorder()->WriteRecordedPositions();
1569
  GenInstrImmediate(POP76, zero_reg, rt, offset);
1570 1571 1572
}


1573
// -------Data-processing-instructions---------
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

// Arithmetic.

void Assembler::addu(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
}


void Assembler::addiu(Register rd, Register rs, int32_t j) {
  GenInstrImmediate(ADDIU, rs, rd, j);
}


void Assembler::subu(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
}


void Assembler::mul(Register rd, Register rs, Register rt) {
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
  if (!IsMipsArchVariant(kMips32r6)) {
    GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
  } else {
    GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
  }
}


void Assembler::mulu(Register rd, Register rs, Register rt) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
}


void Assembler::muh(Register rd, Register rs, Register rt) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
}


void Assembler::muhu(Register rd, Register rs, Register rt) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
}


void Assembler::mod(Register rd, Register rs, Register rt) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
}


void Assembler::modu(Register rd, Register rs, Register rt) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
}


void Assembler::mult(Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
}


void Assembler::multu(Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
}


void Assembler::div(Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
}


1646 1647 1648 1649 1650 1651
void Assembler::div(Register rd, Register rs, Register rt) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
}


1652 1653 1654 1655 1656
void Assembler::divu(Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
}


1657 1658 1659 1660 1661 1662
void Assembler::divu(Register rd, Register rs, Register rt) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
}


1663 1664 1665 1666 1667 1668 1669 1670
// Logical.

void Assembler::and_(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
}


void Assembler::andi(Register rt, Register rs, int32_t j) {
1671
  DCHECK(is_uint16(j));
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
  GenInstrImmediate(ANDI, rs, rt, j);
}


void Assembler::or_(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
}


void Assembler::ori(Register rt, Register rs, int32_t j) {
1682
  DCHECK(is_uint16(j));
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
  GenInstrImmediate(ORI, rs, rt, j);
}


void Assembler::xor_(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
}


void Assembler::xori(Register rt, Register rs, int32_t j) {
1693
  DCHECK(is_uint16(j));
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
  GenInstrImmediate(XORI, rs, rt, j);
}


void Assembler::nor(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
}


// Shifts.
1704 1705 1706 1707 1708 1709 1710 1711
void Assembler::sll(Register rd,
                    Register rt,
                    uint16_t sa,
                    bool coming_from_nop) {
  // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
  // generated using the sll instruction. They must be generated using
  // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo
  // instructions.
1712
  DCHECK(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg)));
1713
  GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1714 1715 1716 1717 1718 1719 1720 1721 1722
}


void Assembler::sllv(Register rd, Register rt, Register rs) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
}


void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1723
  GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1724 1725 1726 1727 1728 1729 1730 1731 1732
}


void Assembler::srlv(Register rd, Register rt, Register rs) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
}


void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1733
  GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1734 1735 1736 1737 1738 1739 1740 1741
}


void Assembler::srav(Register rd, Register rt, Register rs) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
}


1742 1743
void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
  // Should be called via MacroAssembler::Ror.
1744
  DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1745
  DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
1746 1747 1748 1749 1750 1751 1752 1753
  Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
      | (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
  emit(instr);
}


void Assembler::rotrv(Register rd, Register rt, Register rs) {
  // Should be called via MacroAssembler::Ror.
1754
  DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1755
  DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
1756 1757 1758 1759 1760 1761
  Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
     | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
  emit(instr);
}


1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
  DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
  DCHECK(sa < 5 && sa > 0);
  DCHECK(IsMipsArchVariant(kMips32r6));
  Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
                (rd.code() << kRdShift) | (sa - 1) << kSaShift | LSA;
  emit(instr);
}


1772
// ------------Memory-instructions-------------
1773

1774 1775
// Helper for base-reg + offset, when offset is larger than int16.
void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) {
1776
  DCHECK(!src.rm().is(at));
1777
  lui(at, (src.offset_ >> kLuiShift) & kImm16Mask);
1778 1779 1780 1781 1782
  ori(at, at, src.offset_ & kImm16Mask);  // Load 32-bit offset.
  addu(at, at, src.rm());  // Add base register.
}


1783
void Assembler::lb(Register rd, const MemOperand& rs) {
1784 1785 1786 1787 1788 1789
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LB, at, rd, 0);  // Equiv to lb(rd, MemOperand(at, 0));
  }
1790 1791 1792 1793
}


void Assembler::lbu(Register rd, const MemOperand& rs) {
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LBU, at, rd, 0);  // Equiv to lbu(rd, MemOperand(at, 0));
  }
}


void Assembler::lh(Register rd, const MemOperand& rs) {
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LH, at, rd, 0);  // Equiv to lh(rd, MemOperand(at, 0));
  }
}


void Assembler::lhu(Register rd, const MemOperand& rs) {
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LHU, at, rd, 0);  // Equiv to lhu(rd, MemOperand(at, 0));
  }
1820 1821 1822 1823
}


void Assembler::lw(Register rd, const MemOperand& rs) {
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LW, at, rd, 0);  // Equiv to lw(rd, MemOperand(at, 0));
  }
}


void Assembler::lwl(Register rd, const MemOperand& rs) {
  GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
}


void Assembler::lwr(Register rd, const MemOperand& rs) {
  GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
1840 1841 1842 1843
}


void Assembler::sb(Register rd, const MemOperand& rs) {
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to store.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(SB, at, rd, 0);  // Equiv to sb(rd, MemOperand(at, 0));
  }
}


void Assembler::sh(Register rd, const MemOperand& rs) {
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to store.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(SH, at, rd, 0);  // Equiv to sh(rd, MemOperand(at, 0));
  }
1860 1861 1862 1863
}


void Assembler::sw(Register rd, const MemOperand& rs) {
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to store.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(SW, at, rd, 0);  // Equiv to sw(rd, MemOperand(at, 0));
  }
}


void Assembler::swl(Register rd, const MemOperand& rs) {
  GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
}


void Assembler::swr(Register rd, const MemOperand& rs) {
  GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
1880 1881 1882 1883
}


void Assembler::lui(Register rd, int32_t j) {
1884
  DCHECK(is_uint16(j));
1885 1886 1887 1888
  GenInstrImmediate(LUI, zero_reg, rd, j);
}


1889
void Assembler::aui(Register rt, Register rs, int32_t j) {
1890 1891
  // This instruction uses same opcode as 'lui'. The difference in encoding is
  // 'lui' has zero reg. for rs field.
1892
  DCHECK(!(rs.is(zero_reg)));
1893 1894 1895 1896 1897
  DCHECK(is_uint16(j));
  GenInstrImmediate(LUI, rs, rt, j);
}


1898 1899 1900 1901 1902
// ---------PC-Relative instructions-----------

void Assembler::addiupc(Register rs, int32_t imm19) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(rs.is_valid() && is_int19(imm19));
1903
  uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
1904 1905 1906 1907 1908 1909 1910
  GenInstrImmediate(PCREL, rs, imm21);
}


void Assembler::lwpc(Register rs, int32_t offset19) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(rs.is_valid() && is_int19(offset19));
1911
  uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
1912 1913 1914 1915 1916 1917
  GenInstrImmediate(PCREL, rs, imm21);
}


void Assembler::auipc(Register rs, int16_t imm16) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1918
  DCHECK(rs.is_valid());
1919
  uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
1920 1921 1922 1923 1924 1925
  GenInstrImmediate(PCREL, rs, imm21);
}


void Assembler::aluipc(Register rs, int16_t imm16) {
  DCHECK(IsMipsArchVariant(kMips32r6));
1926
  DCHECK(rs.is_valid());
1927
  uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
1928 1929 1930 1931
  GenInstrImmediate(PCREL, rs, imm21);
}


1932
// -------------Misc-instructions--------------
1933 1934

// Break / Trap instructions.
1935
void Assembler::break_(uint32_t code, bool break_as_stop) {
1936
  DCHECK((code & ~0xfffff) == 0);
1937 1938 1939
  // We need to invalidate breaks that could be stops as well because the
  // simulator expects a char pointer after the stop instruction.
  // See constants-mips.h for explanation.
1940
  DCHECK((break_as_stop &&
1941 1942 1943 1944 1945
          code <= kMaxStopCode &&
          code > kMaxWatchpointCode) ||
         (!break_as_stop &&
          (code > kMaxStopCode ||
           code <= kMaxWatchpointCode)));
1946 1947 1948 1949 1950
  Instr break_instr = SPECIAL | BREAK | (code << 6);
  emit(break_instr);
}


1951
void Assembler::stop(const char* msg, uint32_t code) {
1952 1953
  DCHECK(code > kMaxWatchpointCode);
  DCHECK(code <= kMaxStopCode);
1954
#if V8_HOST_ARCH_MIPS
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
  break_(0x54321);
#else  // V8_HOST_ARCH_MIPS
  BlockTrampolinePoolFor(2);
  // The Simulator will handle the stop instruction and get the message address.
  // On MIPS stop() is just a special kind of break_().
  break_(code, true);
  emit(reinterpret_cast<Instr>(msg));
#endif
}


1966
void Assembler::tge(Register rs, Register rt, uint16_t code) {
1967
  DCHECK(is_uint10(code));
1968 1969 1970 1971 1972 1973 1974
  Instr instr = SPECIAL | TGE | rs.code() << kRsShift
      | rt.code() << kRtShift | code << 6;
  emit(instr);
}


void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
1975
  DCHECK(is_uint10(code));
1976 1977 1978 1979 1980 1981 1982
  Instr instr = SPECIAL | TGEU | rs.code() << kRsShift
      | rt.code() << kRtShift | code << 6;
  emit(instr);
}


void Assembler::tlt(Register rs, Register rt, uint16_t code) {
1983
  DCHECK(is_uint10(code));
1984 1985 1986 1987 1988 1989 1990
  Instr instr =
      SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
  emit(instr);
}


void Assembler::tltu(Register rs, Register rt, uint16_t code) {
1991
  DCHECK(is_uint10(code));
1992 1993 1994
  Instr instr =
      SPECIAL | TLTU | rs.code() << kRsShift
      | rt.code() << kRtShift | code << 6;
1995 1996 1997 1998 1999
  emit(instr);
}


void Assembler::teq(Register rs, Register rt, uint16_t code) {
2000
  DCHECK(is_uint10(code));
2001 2002 2003 2004 2005 2006 2007
  Instr instr =
      SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
  emit(instr);
}


void Assembler::tne(Register rs, Register rt, uint16_t code) {
2008
  DCHECK(is_uint10(code));
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
  Instr instr =
      SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
  emit(instr);
}


// Move from HI/LO register.

void Assembler::mfhi(Register rd) {
  GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
}


void Assembler::mflo(Register rd) {
  GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
}


// Set on less than instructions.
void Assembler::slt(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
}


void Assembler::sltu(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
}


void Assembler::slti(Register rt, Register rs, int32_t j) {
  GenInstrImmediate(SLTI, rs, rt, j);
}


void Assembler::sltiu(Register rt, Register rs, int32_t j) {
  GenInstrImmediate(SLTIU, rs, rt, j);
}


2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
// Conditional move.
void Assembler::movz(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
}


void Assembler::movn(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
}


void Assembler::movt(Register rd, Register rs, uint16_t cc) {
  Register rt;
2061
  rt.reg_code = (cc & 0x0007) << 2 | 1;
2062 2063 2064 2065 2066 2067
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}


void Assembler::movf(Register rd, Register rs, uint16_t cc) {
  Register rt;
2068
  rt.reg_code = (cc & 0x0007) << 2 | 0;
2069 2070 2071 2072
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}


2073
void Assembler::seleqz(Register rd, Register rs, Register rt) {
2074 2075 2076 2077 2078
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
}


2079 2080
// Bit twiddling.
void Assembler::clz(Register rd, Register rs) {
2081 2082 2083 2084 2085 2086
  if (!IsMipsArchVariant(kMips32r6)) {
    // Clz instr requires same GPR number in 'rd' and 'rt' fields.
    GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
  } else {
    GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
  }
2087 2088 2089 2090 2091 2092
}


void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
  // Should be called via MacroAssembler::Ins.
  // Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2093
  DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2094 2095 2096 2097 2098 2099 2100
  GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
}


void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
  // Should be called via MacroAssembler::Ext.
  // Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
2101
  DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2102 2103 2104 2105
  GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
}


2106
void Assembler::bitswap(Register rd, Register rt) {
2107 2108
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2109 2110 2111
}


plind44@gmail.com's avatar
plind44@gmail.com committed
2112
void Assembler::pref(int32_t hint, const MemOperand& rs) {
2113
  DCHECK(!IsMipsArchVariant(kLoongson));
2114
  DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
plind44@gmail.com's avatar
plind44@gmail.com committed
2115 2116 2117 2118 2119 2120
  Instr instr = PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift)
      | (rs.offset_);
  emit(instr);
}


2121 2122 2123 2124 2125 2126 2127 2128
void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK(is_uint3(bp));
  uint16_t sa = (ALIGN << kBp2Bits) | bp;
  GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
}


2129
// --------Coprocessor-instructions----------------
2130 2131 2132

// Load, store, move.
void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2133 2134 2135 2136 2137 2138
  if (is_int16(src.offset_)) {
    GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(src);
    GenInstrImmediate(LWC1, at, fd, 0);
  }
2139 2140 2141 2142
}


void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
2143 2144
  // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
  // load to two 32-bit loads.
2145
  DCHECK(!src.rm().is(at));
2146
  if (IsFp32Mode()) {  // fp32 mode.
2147 2148 2149
    if (is_int16(src.offset_) && is_int16(src.offset_ + kIntSize)) {
      GenInstrImmediate(LWC1, src.rm(), fd,
                        src.offset_ + Register::kMantissaOffset);
2150 2151 2152
      FPURegister nextfpreg;
      nextfpreg.setcode(fd.code() + 1);
      GenInstrImmediate(LWC1, src.rm(), nextfpreg,
2153 2154 2155 2156
                        src.offset_ + Register::kExponentOffset);
    } else {  // Offset > 16 bits, use multiple instructions to load.
      LoadRegPlusOffsetToAt(src);
      GenInstrImmediate(LWC1, at, fd, Register::kMantissaOffset);
2157 2158 2159
      FPURegister nextfpreg;
      nextfpreg.setcode(fd.code() + 1);
      GenInstrImmediate(LWC1, at, nextfpreg, Register::kExponentOffset);
2160
    }
2161 2162 2163 2164
  } else {
    DCHECK(IsFp64Mode() || IsFpxxMode());
    // Currently we support FPXX and FP64 on Mips32r2 and Mips32r6
    DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2165 2166 2167
    if (is_int16(src.offset_) && is_int16(src.offset_ + kIntSize)) {
      GenInstrImmediate(LWC1, src.rm(), fd,
                        src.offset_ + Register::kMantissaOffset);
2168
      GenInstrImmediate(LW, src.rm(), at,
2169
                        src.offset_ + Register::kExponentOffset);
2170
      mthc1(at, fd);
2171 2172 2173
    } else {  // Offset > 16 bits, use multiple instructions to load.
      LoadRegPlusOffsetToAt(src);
      GenInstrImmediate(LWC1, at, fd, Register::kMantissaOffset);
2174 2175
      GenInstrImmediate(LW, at, at, Register::kExponentOffset);
      mthc1(at, fd);
2176
    }
2177
  }
2178 2179 2180 2181
}


void Assembler::swc1(FPURegister fd, const MemOperand& src) {
2182 2183 2184 2185 2186 2187
  if (is_int16(src.offset_)) {
    GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(src);
    GenInstrImmediate(SWC1, at, fd, 0);
  }
2188 2189 2190 2191
}


void Assembler::sdc1(FPURegister fd, const MemOperand& src) {
2192 2193
  // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
  // store to two 32-bit stores.
2194 2195
  DCHECK(!src.rm().is(at));
  DCHECK(!src.rm().is(t8));
2196
  if (IsFp32Mode()) {  // fp32 mode.
2197 2198 2199
    if (is_int16(src.offset_) && is_int16(src.offset_ + kIntSize)) {
      GenInstrImmediate(SWC1, src.rm(), fd,
                        src.offset_ + Register::kMantissaOffset);
2200 2201 2202
      FPURegister nextfpreg;
      nextfpreg.setcode(fd.code() + 1);
      GenInstrImmediate(SWC1, src.rm(), nextfpreg,
2203 2204 2205 2206
                        src.offset_ + Register::kExponentOffset);
    } else {  // Offset > 16 bits, use multiple instructions to load.
      LoadRegPlusOffsetToAt(src);
      GenInstrImmediate(SWC1, at, fd, Register::kMantissaOffset);
2207 2208 2209
      FPURegister nextfpreg;
      nextfpreg.setcode(fd.code() + 1);
      GenInstrImmediate(SWC1, at, nextfpreg, Register::kExponentOffset);
2210
    }
2211 2212 2213 2214
  } else {
    DCHECK(IsFp64Mode() || IsFpxxMode());
    // Currently we support FPXX and FP64 on Mips32r2 and Mips32r6
    DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2215 2216 2217
    if (is_int16(src.offset_) && is_int16(src.offset_ + kIntSize)) {
      GenInstrImmediate(SWC1, src.rm(), fd,
                        src.offset_ + Register::kMantissaOffset);
2218 2219
      mfhc1(at, fd);
      GenInstrImmediate(SW, src.rm(), at,
2220 2221 2222 2223
                        src.offset_ + Register::kExponentOffset);
    } else {  // Offset > 16 bits, use multiple instructions to load.
      LoadRegPlusOffsetToAt(src);
      GenInstrImmediate(SWC1, at, fd, Register::kMantissaOffset);
2224 2225
      mfhc1(t8, fd);
      GenInstrImmediate(SW, at, t8, Register::kExponentOffset);
2226
    }
2227
  }
2228 2229 2230
}


2231
void Assembler::mtc1(Register rt, FPURegister fs) {
2232 2233 2234 2235
  GenInstrRegister(COP1, MTC1, rt, fs, f0);
}


2236 2237 2238 2239 2240
void Assembler::mthc1(Register rt, FPURegister fs) {
  GenInstrRegister(COP1, MTHC1, rt, fs, f0);
}


2241 2242
void Assembler::mfc1(Register rt, FPURegister fs) {
  GenInstrRegister(COP1, MFC1, rt, fs, f0);
2243 2244 2245
}


2246 2247 2248 2249 2250
void Assembler::mfhc1(Register rt, FPURegister fs) {
  GenInstrRegister(COP1, MFHC1, rt, fs, f0);
}


2251 2252 2253 2254 2255 2256 2257 2258 2259
void Assembler::ctc1(Register rt, FPUControlRegister fs) {
  GenInstrRegister(COP1, CTC1, rt, fs);
}


void Assembler::cfc1(Register rt, FPUControlRegister fs) {
  GenInstrRegister(COP1, CFC1, rt, fs);
}

2260

2261 2262
void Assembler::DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
  uint64_t i;
2263
  memcpy(&i, &d, 8);
2264 2265 2266 2267

  *lo = i & 0xffffffff;
  *hi = i >> 32;
}
2268

2269

2270
void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2271
  DCHECK(!IsMipsArchVariant(kMips32r6));
2272 2273 2274 2275 2276
  GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
}


void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2277
  DCHECK(!IsMipsArchVariant(kMips32r6));
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
  GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
}


void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
                    FPURegister ft) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK((fmt == D) || (fmt == S));

  GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
}


void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
  sel(S, fd, fs, ft);
}


void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  sel(D, fd, fs, ft);
}


void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
                       FPURegister ft) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK((fmt == D) || (fmt == S));
  GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
}


void Assembler::selnez(Register rd, Register rs, Register rt) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
}


void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
                       FPURegister ft) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK((fmt == D) || (fmt == S));
  GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
}


void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  seleqz(D, fd, fs, ft);
}


void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
  seleqz(S, fd, fs, ft);
}


void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  selnez(D, fd, fs, ft);
}


void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
  selnez(S, fd, fs, ft);
}


void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2344
  DCHECK(!IsMipsArchVariant(kMips32r6));
2345 2346 2347 2348 2349
  GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
}


void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2350
  DCHECK(!IsMipsArchVariant(kMips32r6));
2351 2352 2353 2354 2355
  GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
}


void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2356
  DCHECK(!IsMipsArchVariant(kMips32r6));
2357
  FPURegister ft;
2358
  ft.reg_code = (cc & 0x0007) << 2 | 1;
2359 2360 2361 2362 2363
  GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
}


void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2364
  DCHECK(!IsMipsArchVariant(kMips32r6));
2365
  FPURegister ft;
2366
  ft.reg_code = (cc & 0x0007) << 2 | 1;
2367 2368 2369 2370 2371
  GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
}


void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2372
  DCHECK(!IsMipsArchVariant(kMips32r6));
2373
  FPURegister ft;
2374
  ft.reg_code = (cc & 0x0007) << 2 | 0;
2375 2376 2377 2378 2379
  GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
}


void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2380
  DCHECK(!IsMipsArchVariant(kMips32r6));
2381
  FPURegister ft;
2382
  ft.reg_code = (cc & 0x0007) << 2 | 0;
2383 2384 2385 2386
  GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
}


2387 2388
// Arithmetic.

2389
void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2390
  GenInstrRegister(COP1, S, ft, fs, fd, ADD_S);
2391 2392 2393
}


2394 2395 2396 2397 2398
void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
}


2399
void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2400
  GenInstrRegister(COP1, S, ft, fs, fd, SUB_S);
2401 2402 2403
}


2404 2405 2406 2407 2408
void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
}


2409
void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2410
  GenInstrRegister(COP1, S, ft, fs, fd, MUL_S);
2411 2412 2413
}


2414 2415 2416 2417 2418
void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
}


2419 2420
void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
    FPURegister ft) {
2421
  DCHECK(IsMipsArchVariant(kMips32r2));
2422 2423 2424 2425
  GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D);
}


2426
void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2427
  GenInstrRegister(COP1, S, ft, fs, fd, DIV_S);
2428 2429 2430
}


2431 2432 2433 2434 2435
void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
}


2436
void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2437
  GenInstrRegister(COP1, S, f0, fs, fd, ABS_S);
2438 2439 2440
}


2441 2442
void Assembler::abs_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2443 2444 2445
}


2446
void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2447
  GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2448 2449 2450 2451
}


void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2452
  GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2453 2454 2455
}


2456
void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2457
  GenInstrRegister(COP1, S, f0, fs, fd, NEG_S);
2458 2459 2460
}


2461 2462 2463 2464 2465
void Assembler::neg_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
}


2466
void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2467
  GenInstrRegister(COP1, S, f0, fs, fd, SQRT_S);
2468 2469 2470
}


2471 2472
void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2473 2474 2475
}


2476
void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2477
  DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2478 2479 2480 2481 2482
  GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
}


void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2483
  DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2484 2485 2486 2487 2488
  GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
}


void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2489
  DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2490 2491 2492 2493 2494
  GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
}


void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2495
  DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2496 2497 2498 2499
  GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
}


2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
// Conversions.

void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
}


void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
}


2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
}


void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
}


void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
}


void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
}


void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
}


void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
}


void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
}


void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
}


2552 2553 2554 2555 2556
void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }


void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
  DCHECK(IsMipsArchVariant(kMips32r6));
2557
  DCHECK((fmt == D) || (fmt == S));
2558 2559 2560 2561 2562 2563 2564
  GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
}


void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }


2565
void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2566 2567
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2568 2569 2570 2571 2572
  GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
}


void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2573 2574
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2575 2576 2577 2578
  GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
}


2579
void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2580 2581
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2582 2583 2584 2585 2586
  GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
}


void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2587 2588
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2589 2590 2591 2592 2593
  GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
}


void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
2594 2595
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2596 2597 2598 2599 2600
  GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
}


void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
2601 2602
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2603 2604 2605 2606 2607
  GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
}


void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
2608 2609
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2610 2611 2612 2613 2614
  GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
}


void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
2615 2616
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2617 2618 2619 2620 2621
  GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
}


void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
2622 2623
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2624 2625 2626 2627 2628
  GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
}


void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
2629 2630
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2631 2632 2633 2634
  GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
}


2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
void Assembler::class_s(FPURegister fd, FPURegister fs) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
}


void Assembler::class_d(FPURegister fd, FPURegister fs) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
}


2647 2648
void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
                    FPURegister ft) {
2649 2650 2651 2652 2653 2654
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK((fmt == D) || (fmt == S));
  GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
}


2655 2656
void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
                     FPURegister ft) {
2657 2658 2659 2660 2661 2662
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK((fmt == D) || (fmt == S));
  GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
}


2663 2664
void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
                    FPURegister ft) {
2665 2666 2667 2668 2669 2670
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK((fmt == D) || (fmt == S));
  GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
}


2671 2672
void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
                     FPURegister ft) {
2673 2674 2675 2676 2677 2678
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK((fmt == D) || (fmt == S));
  GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
}


2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
  min(S, fd, fs, ft);
}


void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  min(D, fd, fs, ft);
}


void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
  max(S, fd, fs, ft);
}


void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  max(D, fd, fs, ft);
}


void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
  mina(S, fd, fs, ft);
}


void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  mina(D, fd, fs, ft);
}


void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
  maxa(S, fd, fs, ft);
}


void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  maxa(D, fd, fs, ft);
}


2719 2720 2721 2722 2723 2724
void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
}


void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
2725 2726
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
  GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
}


void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
}


void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
}


void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
2742 2743
  DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
         IsFp64Mode());
2744 2745 2746 2747 2748 2749 2750 2751 2752
  GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
}


void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
}


2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
// Conditions for >= MIPSr6.
void Assembler::cmp(FPUCondition cond, SecondaryField fmt,
    FPURegister fd, FPURegister fs, FPURegister ft) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  DCHECK((fmt & ~(31 << kRsShift)) == 0);
  Instr instr = COP1 | fmt | ft.code() << kFtShift |
      fs.code() << kFsShift | fd.code() << kFdShift | (0 << 5) | cond;
  emit(instr);
}


2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
                      FPURegister ft) {
  cmp(cond, W, fd, fs, ft);
}

void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
                      FPURegister ft) {
  cmp(cond, L, fd, fs, ft);
}


2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
  emit(instr);
}


void Assembler::bc1nez(int16_t offset, FPURegister ft) {
  DCHECK(IsMipsArchVariant(kMips32r6));
  Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
  emit(instr);
}


// Conditions for < MIPSr6.
2790
void Assembler::c(FPUCondition cond, SecondaryField fmt,
2791
    FPURegister fs, FPURegister ft, uint16_t cc) {
2792
  DCHECK(is_uint3(cc));
2793
  DCHECK(fmt == S || fmt == D);
2794
  DCHECK((fmt & ~(31 << kRsShift)) == 0);
2795 2796 2797 2798 2799 2800
  Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift
      | cc << 8 | 3 << 4 | cond;
  emit(instr);
}


2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
                    uint16_t cc) {
  c(cond, S, fs, ft, cc);
}


void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
                    uint16_t cc) {
  c(cond, D, fs, ft, cc);
}


2813 2814
void Assembler::fcmp(FPURegister src1, const double src2,
      FPUCondition cond) {
2815
  DCHECK(src2 == 0.0);
2816 2817 2818 2819 2820 2821
  mtc1(zero_reg, f14);
  cvt_d_w(f14, f14);
  c(cond, D, src1, f14, 0);
}


2822
void Assembler::bc1f(int16_t offset, uint16_t cc) {
2823
  DCHECK(is_uint3(cc));
2824 2825 2826 2827 2828 2829
  Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
  emit(instr);
}


void Assembler::bc1t(int16_t offset, uint16_t cc) {
2830
  DCHECK(is_uint3(cc));
2831 2832 2833 2834 2835
  Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
  emit(instr);
}


2836 2837
int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
                                         intptr_t pc_delta) {
2838
  Instr instr = instr_at(pc);
2839

2840
  if (RelocInfo::IsInternalReference(rmode)) {
2841
    int32_t* p = reinterpret_cast<int32_t*>(pc);
2842
    if (*p == 0) {
2843
      return 0;  // Number of instructions patched.
2844
    }
2845 2846
    *p += pc_delta;
    return 1;  // Number of instructions patched.
2847 2848 2849
  } else {
    DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
    if (IsLui(instr)) {
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
      Instr instr1 = instr_at(pc + 0 * Assembler::kInstrSize);
      Instr instr2 = instr_at(pc + 1 * Assembler::kInstrSize);
      DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
      int32_t imm;
      if (IsJicOrJialc(instr2)) {
        imm = CreateTargetAddress(instr1, instr2);
      } else {
        imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
        imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
      }

2861 2862 2863 2864 2865
      if (imm == kEndOfJumpChain) {
        return 0;  // Number of instructions patched.
      }
      imm += pc_delta;
      DCHECK((imm & 3) == 0);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
      instr1 &= ~kImm16Mask;
      instr2 &= ~kImm16Mask;

      if (IsJicOrJialc(instr2)) {
        uint32_t lui_offset_u, jic_offset_u;
        Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
        instr_at_put(pc + 0 * Assembler::kInstrSize, instr1 | lui_offset_u);
        instr_at_put(pc + 1 * Assembler::kInstrSize, instr2 | jic_offset_u);
      } else {
        instr_at_put(pc + 0 * Assembler::kInstrSize,
                     instr1 | ((imm >> kLuiShift) & kImm16Mask));
        instr_at_put(pc + 1 * Assembler::kInstrSize,
                     instr2 | (imm & kImm16Mask));
      }
2880 2881 2882 2883 2884
      return 2;  // Number of instructions patched.
    } else {
      UNREACHABLE();
      return 0;
    }
2885 2886 2887 2888
  }
}


2889 2890 2891 2892
void Assembler::GrowBuffer() {
  if (!own_buffer_) FATAL("external code buffer is too small");

  // Compute new buffer size.
2893
  CodeDesc desc;  // The new buffer.
2894
  if (buffer_size_ < 1 * MB) {
2895 2896 2897 2898
    desc.buffer_size = 2*buffer_size_;
  } else {
    desc.buffer_size = buffer_size_ + 1*MB;
  }
2899
  CHECK_GT(desc.buffer_size, 0);  // No overflow.
2900

2901
  // Set up new buffer.
2902
  desc.buffer = NewArray<byte>(desc.buffer_size);
jochen's avatar
jochen committed
2903
  desc.origin = this;
2904 2905 2906 2907 2908 2909 2910

  desc.instr_size = pc_offset();
  desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();

  // Copy the data.
  int pc_delta = desc.buffer - buffer_;
  int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2911 2912 2913
  MemMove(desc.buffer, buffer_, desc.instr_size);
  MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
          desc.reloc_size);
2914 2915 2916 2917 2918 2919 2920 2921 2922

  // Switch buffers.
  DeleteArray(buffer_);
  buffer_ = desc.buffer;
  buffer_size_ = desc.buffer_size;
  pc_ += pc_delta;
  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
                               reloc_info_writer.last_pc() + pc_delta);

2923 2924 2925
  // Relocate runtime entries.
  for (RelocIterator it(desc); !it.done(); it.next()) {
    RelocInfo::Mode rmode = it.rinfo()->rmode();
2926 2927
    if (rmode == RelocInfo::INTERNAL_REFERENCE_ENCODED ||
        rmode == RelocInfo::INTERNAL_REFERENCE) {
2928
      byte* p = reinterpret_cast<byte*>(it.rinfo()->pc());
2929
      RelocateInternalReference(rmode, p, pc_delta);
2930 2931
    }
  }
2932
  DCHECK(!overflow());
2933 2934 2935
}


2936
void Assembler::db(uint8_t data) {
2937 2938
  CheckForEmitInForbiddenSlot();
  EmitHelper(data);
2939 2940 2941 2942
}


void Assembler::dd(uint32_t data) {
2943 2944
  CheckForEmitInForbiddenSlot();
  EmitHelper(data);
2945 2946 2947
}


2948
void Assembler::dq(uint64_t data) {
2949 2950
  CheckForEmitInForbiddenSlot();
  EmitHelper(data);
2951 2952 2953
}


2954
void Assembler::dd(Label* label) {
2955
  uint32_t data;
2956
  CheckForEmitInForbiddenSlot();
2957
  if (label->is_bound()) {
2958
    data = reinterpret_cast<uint32_t>(buffer_ + label->pos());
2959
  } else {
2960
    data = jump_address(label);
2961
    internal_reference_positions_.insert(label->pos());
2962
  }
2963 2964
  RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
  EmitHelper(data);
2965 2966 2967
}


2968
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2969
  // We do not try to reuse pool constants.
jochen's avatar
jochen committed
2970
  RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
2971
  if (rmode >= RelocInfo::COMMENT &&
2972
      rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_CALL) {
2973
    // Adjust code for new modes.
2974
    DCHECK(RelocInfo::IsDebugBreakSlot(rmode)
2975 2976 2977 2978
           || RelocInfo::IsComment(rmode)
           || RelocInfo::IsPosition(rmode));
    // These modes do not need an entry in the constant pool.
  }
2979
  if (!RelocInfo::IsNone(rinfo.rmode())) {
2980
    // Don't record external references unless the heap will be serialized.
2981 2982 2983
    if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
        !serializer_enabled() && !emit_debug_code()) {
      return;
2984
    }
2985
    DCHECK(buffer_space() >= kMaxRelocSize);  // Too late to grow buffer here.
2986
    if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
jochen's avatar
jochen committed
2987 2988
      RelocInfo reloc_info_with_ast_id(isolate(), pc_, rmode,
                                       RecordedAstId().ToInt(), NULL);
2989
      ClearRecordedAstId();
2990 2991 2992 2993
      reloc_info_writer.Write(&reloc_info_with_ast_id);
    } else {
      reloc_info_writer.Write(&rinfo);
    }
2994 2995 2996 2997
  }
}


2998
void Assembler::BlockTrampolinePoolFor(int instructions) {
2999
  CheckTrampolinePoolQuick(instructions);
3000 3001 3002 3003
  BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
}


3004
void Assembler::CheckTrampolinePool() {
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
  // Some small sequences of instructions must not be broken up by the
  // insertion of a trampoline pool; such sequences are protected by setting
  // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
  // which are both checked here. Also, recursive calls to CheckTrampolinePool
  // are blocked by trampoline_pool_blocked_nesting_.
  if ((trampoline_pool_blocked_nesting_ > 0) ||
      (pc_offset() < no_trampoline_pool_before_)) {
    // Emission is currently blocked; make sure we try again as soon as
    // possible.
    if (trampoline_pool_blocked_nesting_ > 0) {
      next_buffer_check_ = pc_offset() + kInstrSize;
    } else {
      next_buffer_check_ = no_trampoline_pool_before_;
    }
    return;
  }

3022 3023
  DCHECK(!trampoline_emitted_);
  DCHECK(unbound_labels_count_ >= 0);
3024 3025 3026 3027
  if (unbound_labels_count_ > 0) {
    // First we emit jump (2 instructions), then we emit trampoline pool.
    { BlockTrampolinePoolScope block_trampoline_pool(this);
      Label after_pool;
3028 3029 3030 3031 3032 3033
      if (IsMipsArchVariant(kMips32r6)) {
        bc(&after_pool);
      } else {
        b(&after_pool);
        nop();
      }
3034 3035

      int pool_start = pc_offset();
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
      if (IsMipsArchVariant(kMips32r6)) {
        for (int i = 0; i < unbound_labels_count_; i++) {
          uint32_t imm32;
          imm32 = jump_address(&after_pool);
          uint32_t lui_offset, jic_offset;
          UnpackTargetAddressUnsigned(imm32, lui_offset, jic_offset);
          {
            BlockGrowBufferScope block_buf_growth(this);
            // Buffer growth (and relocation) must be blocked for internal
            // references until associated instructions are emitted and
            // available to be patched.
            RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
            lui(at, lui_offset);
            jic(at, jic_offset);
          }
          CheckBuffer();
        }
      } else {
        for (int i = 0; i < unbound_labels_count_; i++) {
          uint32_t imm32;
          imm32 = jump_address(&after_pool);
          {
            BlockGrowBufferScope block_buf_growth(this);
            // Buffer growth (and relocation) must be blocked for internal
            // references until associated instructions are emitted and
            // available to be patched.
            RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
            lui(at, (imm32 & kHiMask) >> kLuiShift);
            ori(at, at, (imm32 & kImm16Mask));
          }
          CheckBuffer();
          jr(at);
          nop();
3069 3070 3071 3072 3073 3074 3075 3076 3077
        }
      }
      bind(&after_pool);
      trampoline_ = Trampoline(pool_start, unbound_labels_count_);

      trampoline_emitted_ = true;
      // As we are only going to emit trampoline once, we need to prevent any
      // further emission.
      next_buffer_check_ = kMaxInt;
3078
    }
3079 3080 3081 3082 3083
  } else {
    // Number of branches to unbound label at this point is zero, so we can
    // move next buffer check to maximum.
    next_buffer_check_ = pc_offset() +
        kMaxBranchOffset - kTrampolineSlotsSize * 16;
3084 3085 3086 3087 3088
  }
  return;
}


3089 3090 3091
Address Assembler::target_address_at(Address pc) {
  Instr instr1 = instr_at(pc);
  Instr instr2 = instr_at(pc + kInstrSize);
3092
  // Interpret 2 instructions generated by li: lui/ori
3093
  if (IsLui(instr1) && IsOri(instr2)) {
3094
    // Assemble the 32 bit value.
3095 3096
    return reinterpret_cast<Address>((GetImmediate16(instr1) << kLuiShift) |
                                     GetImmediate16(instr2));
3097 3098
  }

3099
  // We should never get here, force a bad address if we do.
3100 3101 3102 3103 3104
  UNREACHABLE();
  return (Address)0x0;
}


3105 3106 3107 3108
// MIPS and ia32 use opposite encoding for qNaN and sNaN, such that ia32
// qNaN is a MIPS sNaN, and ia32 sNaN is MIPS qNaN. If running from a heap
// snapshot generated on ia32, the resulting MIPS sNaN must be quieted.
// OS::nan_value() returns a qNaN.
3109
void Assembler::QuietNaN(HeapObject* object) {
3110
  HeapNumber::cast(object)->set_value(std::numeric_limits<double>::quiet_NaN());
3111 3112 3113
}


3114 3115 3116
// On Mips, a target address is stored in a lui/ori instruction pair, each
// of which load 16 bits of the 32-bit address to a register.
// Patching the address must replace both instr, and flush the i-cache.
3117 3118
// On r6, target address is stored in a lui/jic pair, and both instr have to be
// patched.
3119 3120 3121 3122
//
// There is an optimization below, which emits a nop when the address
// fits in just 16 bits. This is unlikely to help, and should be benchmarked,
// and possibly removed.
3123
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
3124 3125
                                      Address target,
                                      ICacheFlushMode icache_flush_mode) {
3126
  Instr instr2 = instr_at(pc + kInstrSize);
3127 3128 3129 3130
  uint32_t rt_code = GetRtField(instr2);
  uint32_t* p = reinterpret_cast<uint32_t*>(pc);
  uint32_t itarget = reinterpret_cast<uint32_t>(target);

3131
#ifdef DEBUG
3132
  // Check we have the result from a li macro-instruction, using instr pair.
3133
  Instr instr1 = instr_at(pc);
3134
  CHECK(IsLui(instr1) && (IsOri(instr2) || IsJicOrJialc(instr2)));
3135 3136
#endif

3137 3138 3139 3140
  if (IsJicOrJialc(instr2)) {
    // Must use 2 instructions to insure patchable code => use lui and jic
    uint32_t lui_offset, jic_offset;
    Assembler::UnpackTargetAddressUnsigned(itarget, lui_offset, jic_offset);
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
    *p &= ~kImm16Mask;
    *(p + 1) &= ~kImm16Mask;

    *p |= lui_offset;
    *(p + 1) |= jic_offset;

  } else {
    // Must use 2 instructions to insure patchable code => just use lui and ori.
    // lui rt, upper-16.
    // ori rt rt, lower-16.
    *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift);
    *(p + 1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask);
  }
3155

3156
  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3157
    Assembler::FlushICache(isolate, pc, 2 * sizeof(int32_t));
3158
  }
3159 3160
}

3161 3162
}  // namespace internal
}  // namespace v8
3163

3164
#endif  // V8_TARGET_ARCH_MIPS