disasm-x64.cc 92.3 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#include <assert.h>
#include <stdarg.h>
7
#include <stdio.h>
8

9
#if V8_TARGET_ARCH_X64
10

jfb's avatar
jfb committed
11
#include "src/base/compiler-specific.h"
12
#include "src/base/lazy-instance.h"
13
#include "src/base/v8-fallthrough.h"
14
#include "src/disasm.h"
15
#include "src/x64/sse-instr.h"
16 17 18

namespace disasm {

19 20 21 22 23 24 25 26 27
enum OperandType {
  UNSET_OP_ORDER = 0,
  // Operand size decides between 16, 32 and 64 bit operands.
  REG_OPER_OP_ORDER = 1,  // Register destination, operand source.
  OPER_REG_OP_ORDER = 2,  // Operand destination, register source.
  // Fixed 8-bit operands.
  BYTE_SIZE_OPERAND_FLAG = 4,
  BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
  BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG
28 29
};

30

31 32 33 34 35
//------------------------------------------------------------------
// Tables
//------------------------------------------------------------------
struct ByteMnemonic {
  int b;  // -1 terminates, otherwise must be in range (0..255)
36
  OperandType op_order_;
37 38 39 40
  const char* mnem;
};


41
static const ByteMnemonic two_operands_instr[] = {
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  { 0x00, BYTE_OPER_REG_OP_ORDER, "add" },
  { 0x01, OPER_REG_OP_ORDER,      "add" },
  { 0x02, BYTE_REG_OPER_OP_ORDER, "add" },
  { 0x03, REG_OPER_OP_ORDER,      "add" },
  { 0x08, BYTE_OPER_REG_OP_ORDER, "or" },
  { 0x09, OPER_REG_OP_ORDER,      "or" },
  { 0x0A, BYTE_REG_OPER_OP_ORDER, "or" },
  { 0x0B, REG_OPER_OP_ORDER,      "or" },
  { 0x10, BYTE_OPER_REG_OP_ORDER, "adc" },
  { 0x11, OPER_REG_OP_ORDER,      "adc" },
  { 0x12, BYTE_REG_OPER_OP_ORDER, "adc" },
  { 0x13, REG_OPER_OP_ORDER,      "adc" },
  { 0x18, BYTE_OPER_REG_OP_ORDER, "sbb" },
  { 0x19, OPER_REG_OP_ORDER,      "sbb" },
  { 0x1A, BYTE_REG_OPER_OP_ORDER, "sbb" },
  { 0x1B, REG_OPER_OP_ORDER,      "sbb" },
  { 0x20, BYTE_OPER_REG_OP_ORDER, "and" },
  { 0x21, OPER_REG_OP_ORDER,      "and" },
  { 0x22, BYTE_REG_OPER_OP_ORDER, "and" },
  { 0x23, REG_OPER_OP_ORDER,      "and" },
  { 0x28, BYTE_OPER_REG_OP_ORDER, "sub" },
  { 0x29, OPER_REG_OP_ORDER,      "sub" },
  { 0x2A, BYTE_REG_OPER_OP_ORDER, "sub" },
  { 0x2B, REG_OPER_OP_ORDER,      "sub" },
  { 0x30, BYTE_OPER_REG_OP_ORDER, "xor" },
  { 0x31, OPER_REG_OP_ORDER,      "xor" },
  { 0x32, BYTE_REG_OPER_OP_ORDER, "xor" },
  { 0x33, REG_OPER_OP_ORDER,      "xor" },
  { 0x38, BYTE_OPER_REG_OP_ORDER, "cmp" },
  { 0x39, OPER_REG_OP_ORDER,      "cmp" },
  { 0x3A, BYTE_REG_OPER_OP_ORDER, "cmp" },
  { 0x3B, REG_OPER_OP_ORDER,      "cmp" },
74
  { 0x63, REG_OPER_OP_ORDER,      "movsxl" },
75 76 77 78 79 80 81 82
  { 0x84, BYTE_REG_OPER_OP_ORDER, "test" },
  { 0x85, REG_OPER_OP_ORDER,      "test" },
  { 0x86, BYTE_REG_OPER_OP_ORDER, "xchg" },
  { 0x87, REG_OPER_OP_ORDER,      "xchg" },
  { 0x88, BYTE_OPER_REG_OP_ORDER, "mov" },
  { 0x89, OPER_REG_OP_ORDER,      "mov" },
  { 0x8A, BYTE_REG_OPER_OP_ORDER, "mov" },
  { 0x8B, REG_OPER_OP_ORDER,      "mov" },
83
  { 0x8D, REG_OPER_OP_ORDER,      "lea" },
84 85 86 87
  { -1, UNSET_OP_ORDER, "" }
};


88
static const ByteMnemonic zero_operands_instr[] = {
89 90 91
  { 0xC3, UNSET_OP_ORDER, "ret" },
  { 0xC9, UNSET_OP_ORDER, "leave" },
  { 0xF4, UNSET_OP_ORDER, "hlt" },
92
  { 0xFC, UNSET_OP_ORDER, "cld" },
93 94 95 96 97 98 99 100
  { 0xCC, UNSET_OP_ORDER, "int3" },
  { 0x60, UNSET_OP_ORDER, "pushad" },
  { 0x61, UNSET_OP_ORDER, "popad" },
  { 0x9C, UNSET_OP_ORDER, "pushfd" },
  { 0x9D, UNSET_OP_ORDER, "popfd" },
  { 0x9E, UNSET_OP_ORDER, "sahf" },
  { 0x99, UNSET_OP_ORDER, "cdq" },
  { 0x9B, UNSET_OP_ORDER, "fwait" },
101 102 103 104
  { 0xA4, UNSET_OP_ORDER, "movs" },
  { 0xA5, UNSET_OP_ORDER, "movs" },
  { 0xA6, UNSET_OP_ORDER, "cmps" },
  { 0xA7, UNSET_OP_ORDER, "cmps" },
105 106 107 108
  { -1, UNSET_OP_ORDER, "" }
};


109
static const ByteMnemonic call_jump_instr[] = {
110 111 112 113 114 115
  { 0xE8, UNSET_OP_ORDER, "call" },
  { 0xE9, UNSET_OP_ORDER, "jmp" },
  { -1, UNSET_OP_ORDER, "" }
};


116
static const ByteMnemonic short_immediate_instr[] = {
117 118 119
  { 0x05, UNSET_OP_ORDER, "add" },
  { 0x0D, UNSET_OP_ORDER, "or" },
  { 0x15, UNSET_OP_ORDER, "adc" },
120
  { 0x1D, UNSET_OP_ORDER, "sbb" },
121 122 123 124 125 126 127 128
  { 0x25, UNSET_OP_ORDER, "and" },
  { 0x2D, UNSET_OP_ORDER, "sub" },
  { 0x35, UNSET_OP_ORDER, "xor" },
  { 0x3D, UNSET_OP_ORDER, "cmp" },
  { -1, UNSET_OP_ORDER, "" }
};


129
static const char* const conditional_code_suffix[] = {
130
  "o", "no", "c", "nc", "z", "nz", "na", "a",
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  "s", "ns", "pe", "po", "l", "ge", "le", "g"
};


enum InstructionType {
  NO_INSTR,
  ZERO_OPERANDS_INSTR,
  TWO_OPERANDS_INSTR,
  JUMP_CONDITIONAL_SHORT_INSTR,
  REGISTER_INSTR,
  PUSHPOP_INSTR,  // Has implicit 64-bit operand size.
  MOVE_REG_INSTR,
  CALL_JUMP_INSTR,
  SHORT_IMMEDIATE_INSTR
};

147 148 149 150
enum Prefixes {
  ESCAPE_PREFIX = 0x0F,
  OPERAND_SIZE_OVERRIDE_PREFIX = 0x66,
  ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67,
151 152
  VEX3_PREFIX = 0xC4,
  VEX2_PREFIX = 0xC5,
153
  LOCK_PREFIX = 0xF0,
154 155 156 157 158
  REPNE_PREFIX = 0xF2,
  REP_PREFIX = 0xF3,
  REPEQ_PREFIX = REP_PREFIX
};

159 160 161
struct InstructionDesc {
  const char* mnem;
  InstructionType type;
162 163
  OperandType op_order_;
  bool byte_size_operation;  // Fixed 8-bit operation.
164 165 166 167 168 169 170 171 172 173 174 175 176 177
};


class InstructionTable {
 public:
  InstructionTable();
  const InstructionDesc& Get(byte x) const {
    return instructions_[x];
  }

 private:
  InstructionDesc instructions_[256];
  void Clear();
  void Init();
178
  void CopyTable(const ByteMnemonic bm[], InstructionType type);
179
  void SetTableRange(InstructionType type, byte start, byte end, bool byte_size,
180 181 182 183 184 185 186 187 188 189 190 191 192
                     const char* mnem);
  void AddJumpConditionalShort();
};


InstructionTable::InstructionTable() {
  Clear();
  Init();
}


void InstructionTable::Clear() {
  for (int i = 0; i < 256; i++) {
193
    instructions_[i].mnem = "(bad)";
194 195
    instructions_[i].type = NO_INSTR;
    instructions_[i].op_order_ = UNSET_OP_ORDER;
196
    instructions_[i].byte_size_operation = false;
197 198 199 200 201 202 203 204 205 206
  }
}


void InstructionTable::Init() {
  CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
  CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
  CopyTable(call_jump_instr, CALL_JUMP_INSTR);
  CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
  AddJumpConditionalShort();
207 208 209
  SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push");
  SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop");
  SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov");
210 211 212
}


213 214
void InstructionTable::CopyTable(const ByteMnemonic bm[],
                                 InstructionType type) {
215 216 217
  for (int i = 0; bm[i].b >= 0; i++) {
    InstructionDesc* id = &instructions_[bm[i].b];
    id->mnem = bm[i].mnem;
218 219 220
    OperandType op_order = bm[i].op_order_;
    id->op_order_ =
        static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG);
221
    DCHECK_EQ(NO_INSTR, id->type);  // Information not already entered
222
    id->type = type;
223
    id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0);
224 225 226 227
  }
}


228 229 230 231 232
void InstructionTable::SetTableRange(InstructionType type,
                                     byte start,
                                     byte end,
                                     bool byte_size,
                                     const char* mnem) {
233 234
  for (byte b = start; b <= end; b++) {
    InstructionDesc* id = &instructions_[b];
235
    DCHECK_EQ(NO_INSTR, id->type);  // Information not already entered
236 237
    id->mnem = mnem;
    id->type = type;
238
    id->byte_size_operation = byte_size;
239 240 241 242 243 244 245
  }
}


void InstructionTable::AddJumpConditionalShort() {
  for (byte b = 0x70; b <= 0x7F; b++) {
    InstructionDesc* id = &instructions_[b];
246
    DCHECK_EQ(NO_INSTR, id->type);  // Information not already entered
247
    id->mnem = nullptr;             // Computed depending on condition code.
248 249 250 251 252
    id->type = JUMP_CONDITIONAL_SHORT_INSTR;
  }
}


253
static v8::base::LazyInstance<InstructionTable>::type instruction_table =
254
    LAZY_INSTANCE_INITIALIZER;
255

256

257
static const InstructionDesc cmov_instructions[16] = {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}
};
275

276

277 278 279
//------------------------------------------------------------------------------
// DisassemblerX64 implementation.

280 281 282 283 284
enum UnimplementedOpcodeAction {
  CONTINUE_ON_UNIMPLEMENTED_OPCODE,
  ABORT_ON_UNIMPLEMENTED_OPCODE
};

285

286 287
// A new DisassemblerX64 object is created to disassemble each instruction.
// The object can only disassemble a single instruction.
288 289 290 291 292 293 294
class DisassemblerX64 {
 public:
  DisassemblerX64(const NameConverter& converter,
                  UnimplementedOpcodeAction unimplemented_action =
                      ABORT_ON_UNIMPLEMENTED_OPCODE)
      : converter_(converter),
        tmp_buffer_pos_(0),
295 296
        abort_on_unimplemented_(unimplemented_action ==
                                ABORT_ON_UNIMPLEMENTED_OPCODE),
297
        rex_(0),
298
        operand_size_(0),
299
        group_1_prefix_(0),
300 301 302
        vex_byte0_(0),
        vex_byte1_(0),
        vex_byte2_(0),
303 304
        byte_size_operand_(false),
        instruction_table_(instruction_table.Pointer()) {
305 306 307 308 309 310 311 312 313 314 315
    tmp_buffer_[0] = '\0';
  }

  virtual ~DisassemblerX64() {
  }

  // Writes one disassembled instruction into 'buffer' (0-terminated).
  // Returns the length of the disassembled machine instruction in bytes.
  int InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction);

 private:
316
  enum OperandSize {
317 318 319 320
    OPERAND_BYTE_SIZE = 0,
    OPERAND_WORD_SIZE = 1,
    OPERAND_DOUBLEWORD_SIZE = 2,
    OPERAND_QUADWORD_SIZE = 3
321
  };
322 323 324 325 326 327 328

  const NameConverter& converter_;
  v8::internal::EmbeddedVector<char, 128> tmp_buffer_;
  unsigned int tmp_buffer_pos_;
  bool abort_on_unimplemented_;
  // Prefixes parsed
  byte rex_;
329 330
  byte operand_size_;  // 0x66 or (if no group 3 prefix is present) 0x0.
  byte group_1_prefix_;  // 0xF2, 0xF3, or (if no group 1 prefix is present) 0.
331
  byte vex_byte0_;       // 0xC4 or 0xC5
332 333
  byte vex_byte1_;
  byte vex_byte2_;  // only for 3 bytes vex prefix
334 335
  // Byte size operand override.
  bool byte_size_operand_;
336
  const InstructionTable* const instruction_table_;
337 338

  void setRex(byte rex) {
339
    DCHECK_EQ(0x40, rex & 0xF0);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    rex_ = rex;
  }

  bool rex() { return rex_ != 0; }

  bool rex_b() { return (rex_ & 0x01) != 0; }

  // Actual number of base register given the low bits and the rex.b state.
  int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); }

  bool rex_x() { return (rex_ & 0x02) != 0; }

  bool rex_r() { return (rex_ & 0x04) != 0; }

  bool rex_w() { return (rex_ & 0x08) != 0; }

356 357 358 359 360
  bool vex_w() {
    DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
    return vex_byte0_ == VEX3_PREFIX ? (vex_byte2_ & 0x80) != 0 : false;
  }

361 362 363
  bool vex_128() {
    DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
    byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
364
    return (checked & 4) == 0;
365 366
  }

367 368 369 370 371 372
  bool vex_none() {
    DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
    byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
    return (checked & 3) == 0;
  }

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
  bool vex_66() {
    DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
    byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
    return (checked & 3) == 1;
  }

  bool vex_f3() {
    DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
    byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
    return (checked & 3) == 2;
  }

  bool vex_f2() {
    DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
    byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
    return (checked & 3) == 3;
  }

  bool vex_0f() {
    if (vex_byte0_ == VEX2_PREFIX) return true;
    return (vex_byte1_ & 3) == 1;
  }

  bool vex_0f38() {
397
    if (vex_byte0_ == VEX2_PREFIX) return false;
398 399 400 401
    return (vex_byte1_ & 3) == 2;
  }

  bool vex_0f3a() {
402
    if (vex_byte0_ == VEX2_PREFIX) return false;
403 404 405 406 407 408
    return (vex_byte1_ & 3) == 3;
  }

  int vex_vreg() {
    DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
    byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
409
    return ~(checked >> 3) & 0xF;
410 411
  }

412
  OperandSize operand_size() {
413 414 415 416
    if (byte_size_operand_) return OPERAND_BYTE_SIZE;
    if (rex_w()) return OPERAND_QUADWORD_SIZE;
    if (operand_size_ != 0) return OPERAND_WORD_SIZE;
    return OPERAND_DOUBLEWORD_SIZE;
417 418 419
  }

  char operand_size_code() {
420
    return "bwlq"[operand_size()];
421 422
  }

423 424
  char float_size_code() { return "sd"[rex_w()]; }

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  const char* NameOfCPURegister(int reg) const {
    return converter_.NameOfCPURegister(reg);
  }

  const char* NameOfByteCPURegister(int reg) const {
    return converter_.NameOfByteCPURegister(reg);
  }

  const char* NameOfXMMRegister(int reg) const {
    return converter_.NameOfXMMRegister(reg);
  }

  const char* NameOfAddress(byte* addr) const {
    return converter_.NameOfAddress(addr);
  }

  // Disassembler helper functions.
  void get_modrm(byte data,
                 int* mod,
                 int* regop,
                 int* rm) {
    *mod = (data >> 6) & 3;
    *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0);
    *rm = (data & 7) | (rex_b() ? 8 : 0);
  }

  void get_sib(byte data,
               int* scale,
               int* index,
               int* base) {
    *scale = (data >> 6) & 3;
    *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0);
457
    *base = (data & 7) | (rex_b() ? 8 : 0);
458 459 460 461 462 463 464 465
  }

  typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const;

  int PrintRightOperandHelper(byte* modrmp,
                              RegisterNameMapping register_name);
  int PrintRightOperand(byte* modrmp);
  int PrintRightByteOperand(byte* modrmp);
466
  int PrintRightXMMOperand(byte* modrmp);
467
  int PrintOperands(const char* mnem,
468
                    OperandType op_order,
469
                    byte* data);
470
  int PrintImmediate(byte* data, OperandSize size);
471
  int PrintImmediateOp(byte* data);
472 473
  const char* TwoByteMnemonic(byte opcode);
  int TwoByteOpcodeInstruction(byte* data);
474
  int F6F7Instruction(byte* data);
475
  int ShiftInstruction(byte* data);
476 477 478 479 480
  int JumpShort(byte* data);
  int JumpConditional(byte* data);
  int JumpConditionalShort(byte* data);
  int SetCC(byte* data);
  int FPUInstruction(byte* data);
481 482
  int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start);
  int RegisterFPUInstruction(int escape_opcode, byte modrm_byte);
483
  int AVXInstruction(byte* data);
jfb's avatar
jfb committed
484
  PRINTF_FORMAT(2, 3) void AppendToBuffer(const char* format, ...);
485 486 487

  void UnimplementedInstruction() {
    if (abort_on_unimplemented_) {
488
      FATAL("'Unimplemented Instruction'");
489 490 491 492 493 494 495 496 497 498 499
    } else {
      AppendToBuffer("'Unimplemented Instruction'");
    }
  }
};


void DisassemblerX64::AppendToBuffer(const char* format, ...) {
  v8::internal::Vector<char> buf = tmp_buffer_ + tmp_buffer_pos_;
  va_list args;
  va_start(args, format);
500
  int result = v8::internal::VSNPrintF(buf, format, args);
501 502 503 504 505 506 507
  va_end(args);
  tmp_buffer_pos_ += result;
}


int DisassemblerX64::PrintRightOperandHelper(
    byte* modrmp,
508
    RegisterNameMapping direct_register_name) {
509 510
  int mod, regop, rm;
  get_modrm(*modrmp, &mod, &regop, &rm);
511 512
  RegisterNameMapping register_name = (mod == 3) ? direct_register_name :
      &DisassemblerX64::NameOfCPURegister;
513 514 515 516
  switch (mod) {
    case 0:
      if ((rm & 7) == 5) {
        int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1);
517
        AppendToBuffer("[rip+0x%x]", disp);
518 519 520 521 522 523 524 525 526
        return 5;
      } else if ((rm & 7) == 4) {
        // Codes for SIB byte.
        byte sib = *(modrmp + 1);
        int scale, index, base;
        get_sib(sib, &scale, &index, &base);
        if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
          // index == rsp means no index. Only use sib byte with no index for
          // rsp and r12 base.
527
          AppendToBuffer("[%s]", NameOfCPURegister(base));
528 529 530 531
          return 2;
        } else if (base == 5) {
          // base == rbp means no base register (when mod == 0).
          int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2);
532
          AppendToBuffer("[%s*%d%s0x%x]",
533
                         NameOfCPURegister(index),
534 535 536
                         1 << scale,
                         disp < 0 ? "-" : "+",
                         disp < 0 ? -disp : disp);
537 538 539 540
          return 6;
        } else if (index != 4 && base != 5) {
          // [base+index*scale]
          AppendToBuffer("[%s+%s*%d]",
541 542
                         NameOfCPURegister(base),
                         NameOfCPURegister(index),
543 544 545 546 547 548 549
                         1 << scale);
          return 2;
        } else {
          UnimplementedInstruction();
          return 1;
        }
      } else {
550
        AppendToBuffer("[%s]", NameOfCPURegister(rm));
551 552 553 554 555 556 557 558 559 560
        return 1;
      }
      break;
    case 1:  // fall through
    case 2:
      if ((rm & 7) == 4) {
        byte sib = *(modrmp + 1);
        int scale, index, base;
        get_sib(sib, &scale, &index, &base);
        int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2)
561
                              : *reinterpret_cast<int8_t*>(modrmp + 2);
562
        if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
563 564 565 566
          AppendToBuffer("[%s%s0x%x]",
                         NameOfCPURegister(base),
                         disp < 0 ? "-" : "+",
                         disp < 0 ? -disp : disp);
567
        } else {
568 569 570 571 572 573
          AppendToBuffer("[%s+%s*%d%s0x%x]",
                         NameOfCPURegister(base),
                         NameOfCPURegister(index),
                         1 << scale,
                         disp < 0 ? "-" : "+",
                         disp < 0 ? -disp : disp);
574 575 576 577 578
        }
        return mod == 2 ? 6 : 3;
      } else {
        // No sib.
        int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1)
579 580 581 582 583
                              : *reinterpret_cast<int8_t*>(modrmp + 1);
        AppendToBuffer("[%s%s0x%x]",
                       NameOfCPURegister(rm),
                       disp < 0 ? "-" : "+",
                       disp < 0 ? -disp : disp);
584 585 586 587 588 589 590 591 592 593 594 595 596 597
        return (mod == 2) ? 5 : 2;
      }
      break;
    case 3:
      AppendToBuffer("%s", (this->*register_name)(rm));
      return 1;
    default:
      UnimplementedInstruction();
      return 1;
  }
  UNREACHABLE();
}


598 599 600 601
int DisassemblerX64::PrintImmediate(byte* data, OperandSize size) {
  int64_t value;
  int count;
  switch (size) {
602
    case OPERAND_BYTE_SIZE:
603 604 605
      value = *data;
      count = 1;
      break;
606
    case OPERAND_WORD_SIZE:
607 608 609
      value = *reinterpret_cast<int16_t*>(data);
      count = 2;
      break;
610
    case OPERAND_DOUBLEWORD_SIZE:
611 612 613
      value = *reinterpret_cast<uint32_t*>(data);
      count = 4;
      break;
614
    case OPERAND_QUADWORD_SIZE:
615 616 617 618 619 620
      value = *reinterpret_cast<int32_t*>(data);
      count = 4;
      break;
    default:
      UNREACHABLE();
  }
jfb's avatar
jfb committed
621
  AppendToBuffer("%" PRIx64, value);
622 623 624 625
  return count;
}


626 627 628 629 630 631 632 633 634
int DisassemblerX64::PrintRightOperand(byte* modrmp) {
  return PrintRightOperandHelper(modrmp,
                                 &DisassemblerX64::NameOfCPURegister);
}


int DisassemblerX64::PrintRightByteOperand(byte* modrmp) {
  return PrintRightOperandHelper(modrmp,
                                 &DisassemblerX64::NameOfByteCPURegister);
635
}
636 637


638 639 640 641 642 643
int DisassemblerX64::PrintRightXMMOperand(byte* modrmp) {
  return PrintRightOperandHelper(modrmp,
                                 &DisassemblerX64::NameOfXMMRegister);
}


644 645 646
// Returns number of bytes used including the current *data.
// Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
int DisassemblerX64::PrintOperands(const char* mnem,
647
                                   OperandType op_order,
648 649 650 651 652
                                   byte* data) {
  byte modrm = *data;
  int mod, regop, rm;
  get_modrm(modrm, &mod, &regop, &rm);
  int advance = 0;
653 654 655
  const char* register_name =
      byte_size_operand_ ? NameOfByteCPURegister(regop)
                         : NameOfCPURegister(regop);
656 657 658 659 660
  switch (op_order) {
    case REG_OPER_OP_ORDER: {
      AppendToBuffer("%s%c %s,",
                     mnem,
                     operand_size_code(),
661 662 663
                     register_name);
      advance = byte_size_operand_ ? PrintRightByteOperand(data)
                                   : PrintRightOperand(data);
664 665 666 667
      break;
    }
    case OPER_REG_OP_ORDER: {
      AppendToBuffer("%s%c ", mnem, operand_size_code());
668 669 670
      advance = byte_size_operand_ ? PrintRightByteOperand(data)
                                   : PrintRightOperand(data);
      AppendToBuffer(",%s", register_name);
671 672 673 674 675 676 677
      break;
    }
    default:
      UNREACHABLE();
      break;
  }
  return advance;
678
}
679 680


681 682 683
// Returns number of bytes used by machine instruction, including *data byte.
// Writes immediate instructions to 'tmp_buffer_'.
int DisassemblerX64::PrintImmediateOp(byte* data) {
684
  bool byte_size_immediate = (*data & 0x02) != 0;
685 686 687 688 689 690 691 692 693 694 695 696 697 698
  byte modrm = *(data + 1);
  int mod, regop, rm;
  get_modrm(modrm, &mod, &regop, &rm);
  const char* mnem = "Imm???";
  switch (regop) {
    case 0:
      mnem = "add";
      break;
    case 1:
      mnem = "or";
      break;
    case 2:
      mnem = "adc";
      break;
699 700 701
    case 3:
      mnem = "sbb";
      break;
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    case 4:
      mnem = "and";
      break;
    case 5:
      mnem = "sub";
      break;
    case 6:
      mnem = "xor";
      break;
    case 7:
      mnem = "cmp";
      break;
    default:
      UnimplementedInstruction();
  }
717
  AppendToBuffer("%s%c ", mnem, operand_size_code());
718
  int count = PrintRightOperand(data + 1);
719
  AppendToBuffer(",0x");
720 721
  OperandSize immediate_size =
      byte_size_immediate ? OPERAND_BYTE_SIZE : operand_size();
722 723
  count += PrintImmediate(data + 1 + count, immediate_size);
  return 1 + count;
724 725 726 727
}


// Returns number of bytes used, including *data.
728
int DisassemblerX64::F6F7Instruction(byte* data) {
729
  DCHECK(*data == 0xF7 || *data == 0xF6);
730 731 732 733
  byte modrm = *(data + 1);
  int mod, regop, rm;
  get_modrm(modrm, &mod, &regop, &rm);
  if (mod == 3 && regop != 0) {
734
    const char* mnem = nullptr;
735 736 737 738 739 740 741 742 743 744
    switch (regop) {
      case 2:
        mnem = "not";
        break;
      case 3:
        mnem = "neg";
        break;
      case 4:
        mnem = "mul";
        break;
745 746 747
      case 5:
        mnem = "imul";
        break;
748 749 750
      case 6:
        mnem = "div";
        break;
751 752 753 754 755 756 757 758 759 760 761 762 763
      case 7:
        mnem = "idiv";
        break;
      default:
        UnimplementedInstruction();
    }
    AppendToBuffer("%s%c %s",
                   mnem,
                   operand_size_code(),
                   NameOfCPURegister(rm));
    return 2;
  } else if (regop == 0) {
    AppendToBuffer("test%c ", operand_size_code());
764 765 766 767
    int count = PrintRightOperand(data + 1);  // Use name of 64-bit register.
    AppendToBuffer(",0x");
    count += PrintImmediate(data + 1 + count, operand_size());
    return 1 + count;
768 769 770 771 772 773 774
  } else {
    UnimplementedInstruction();
    return 2;
  }
}


775 776
int DisassemblerX64::ShiftInstruction(byte* data) {
  byte op = *data & (~1);
777
  int count = 1;
778 779
  if (op != 0xD0 && op != 0xD2 && op != 0xC0) {
    UnimplementedInstruction();
780
    return count;
781
  }
782 783 784 785 786 787
  // Print mneumonic.
  {
    byte modrm = *(data + count);
    int mod, regop, rm;
    get_modrm(modrm, &mod, &regop, &rm);
    regop &= 0x7;  // The REX.R bit does not affect the operation.
788
    const char* mnem = nullptr;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    switch (regop) {
      case 0:
        mnem = "rol";
        break;
      case 1:
        mnem = "ror";
        break;
      case 2:
        mnem = "rcl";
        break;
      case 3:
        mnem = "rcr";
        break;
      case 4:
        mnem = "shl";
        break;
      case 5:
        mnem = "shr";
        break;
      case 7:
        mnem = "sar";
        break;
      default:
        UnimplementedInstruction();
        return count + 1;
    }
815
    DCHECK_NOT_NULL(mnem);
816
    AppendToBuffer("%s%c ", mnem, operand_size_code());
817
  }
818
  count += PrintRightOperand(data + count);
819
  if (op == 0xD2) {
820
    AppendToBuffer(", cl");
821
  } else {
822 823 824 825 826 827 828 829 830
    int imm8 = -1;
    if (op == 0xD0) {
      imm8 = 1;
    } else {
      DCHECK_EQ(0xC0, op);
      imm8 = *(data + count);
      count++;
    }
    AppendToBuffer(", %d", imm8);
831
  }
832
  return count;
833 834 835 836 837
}


// Returns number of bytes used, including *data.
int DisassemblerX64::JumpShort(byte* data) {
838
  DCHECK_EQ(0xEB, *data);
839 840 841 842 843 844 845 846 847
  byte b = *(data + 1);
  byte* dest = data + static_cast<int8_t>(b) + 2;
  AppendToBuffer("jmp %s", NameOfAddress(dest));
  return 2;
}


// Returns number of bytes used, including *data.
int DisassemblerX64::JumpConditional(byte* data) {
848
  DCHECK_EQ(0x0F, *data);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
  byte cond = *(data + 1) & 0x0F;
  byte* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6;
  const char* mnem = conditional_code_suffix[cond];
  AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
  return 6;  // includes 0x0F
}


// Returns number of bytes used, including *data.
int DisassemblerX64::JumpConditionalShort(byte* data) {
  byte cond = *data & 0x0F;
  byte b = *(data + 1);
  byte* dest = data + static_cast<int8_t>(b) + 2;
  const char* mnem = conditional_code_suffix[cond];
  AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
  return 2;
}


// Returns number of bytes used, including *data.
int DisassemblerX64::SetCC(byte* data) {
870
  DCHECK_EQ(0x0F, *data);
871 872 873 874 875 876 877
  byte cond = *(data + 1) & 0x0F;
  const char* mnem = conditional_code_suffix[cond];
  AppendToBuffer("set%s%c ", mnem, operand_size_code());
  PrintRightByteOperand(data + 2);
  return 3;  // includes 0x0F
}

878
const char* sf_str[4] = {"", "rl", "ra", "ll"};
879

880 881 882
int DisassemblerX64::AVXInstruction(byte* data) {
  byte opcode = *data;
  byte* current = data + 1;
883
  if (vex_66() && vex_0f38()) {
884 885 886 887 888 889 890 891
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
      case 0x99:
        AppendToBuffer("vfmadd132s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
892
      case 0xA9:
893 894 895 896
        AppendToBuffer("vfmadd213s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
897
      case 0xB9:
898 899 900 901
        AppendToBuffer("vfmadd231s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
902
      case 0x9B:
903 904 905 906
        AppendToBuffer("vfmsub132s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
907
      case 0xAB:
908 909 910 911
        AppendToBuffer("vfmsub213s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
912
      case 0xBB:
913 914 915 916
        AppendToBuffer("vfmsub231s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
917
      case 0x9D:
918 919 920 921
        AppendToBuffer("vfnmadd132s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
922
      case 0xAD:
923 924 925 926
        AppendToBuffer("vfnmadd213s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
927
      case 0xBD:
928 929 930 931
        AppendToBuffer("vfnmadd231s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
932
      case 0x9F:
933 934 935 936
        AppendToBuffer("vfnmsub132s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
937
      case 0xAF:
938 939 940 941
        AppendToBuffer("vfnmsub213s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
942
      case 0xBF:
943 944 945 946
        AppendToBuffer("vfnmsub231s%c %s,%s,", float_size_code(),
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
947
      case 0xF7:
948 949 950 951 952
        AppendToBuffer("shlx%c %s,", operand_size_code(),
                       NameOfCPURegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(",%s", NameOfCPURegister(vvvv));
        break;
953 954 955 956 957 958 959 960 961 962 963 964
#define DECLARE_SSE_AVX_DIS_CASE(instruction, notUsed1, notUsed2, notUsed3, \
                                 opcode)                                    \
  case 0x##opcode: {                                                        \
    AppendToBuffer("v" #instruction " %s,%s,", NameOfXMMRegister(regop),    \
                   NameOfXMMRegister(vvvv));                                \
    current += PrintRightXMMOperand(current);                               \
    break;                                                                  \
  }

        SSSE3_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
        SSE4_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
#undef DECLARE_SSE_AVX_DIS_CASE
965 966 967
      default:
        UnimplementedInstruction();
    }
968 969 970 971
  } else if (vex_66() && vex_0f3a()) {
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
972
      case 0x0A:
973 974 975 976 977
        AppendToBuffer("vroundss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",0x%x", *current++);
        break;
978
      case 0x0B:
979 980 981 982 983
        AppendToBuffer("vroundsd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",0x%x", *current++);
        break;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
      case 0x14:
        AppendToBuffer("vpextrb ");
        current += PrintRightByteOperand(current);
        AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
        break;
      case 0x15:
        AppendToBuffer("vpextrw ");
        current += PrintRightOperand(current);
        AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
        break;
      case 0x16:
        AppendToBuffer("vpextrd ");
        current += PrintRightOperand(current);
        AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
        break;
      case 0x20:
        AppendToBuffer("vpinsrb %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightByteOperand(current);
        AppendToBuffer(",0x%x", *current++);
        break;
      case 0x22:
        AppendToBuffer("vpinsrd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightOperand(current);
        AppendToBuffer(",0x%x", *current++);
        break;
1011 1012 1013
      default:
        UnimplementedInstruction();
    }
1014 1015 1016 1017
  } else if (vex_f3() && vex_0f()) {
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
1018 1019
      case 0x10:
        AppendToBuffer("vmovss %s,", NameOfXMMRegister(regop));
1020 1021 1022
        if (mod == 3) {
          AppendToBuffer("%s,", NameOfXMMRegister(vvvv));
        }
1023 1024 1025 1026 1027
        current += PrintRightXMMOperand(current);
        break;
      case 0x11:
        AppendToBuffer("vmovss ");
        current += PrintRightXMMOperand(current);
1028 1029 1030
        if (mod == 3) {
          AppendToBuffer(",%s", NameOfXMMRegister(vvvv));
        }
1031 1032
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
        break;
1033
      case 0x2A:
1034 1035 1036 1037
        AppendToBuffer("%s %s,%s,", vex_w() ? "vcvtqsi2ss" : "vcvtlsi2ss",
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
        current += PrintRightOperand(current);
        break;
1038
      case 0x2C:
1039 1040 1041 1042
        AppendToBuffer("vcvttss2si%s %s,", vex_w() ? "q" : "",
                       NameOfCPURegister(regop));
        current += PrintRightXMMOperand(current);
        break;
1043 1044 1045 1046 1047
      case 0x51:
        AppendToBuffer("vsqrtss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
      case 0x58:
        AppendToBuffer("vaddss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
      case 0x59:
        AppendToBuffer("vmulss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1058
      case 0x5A:
1059 1060 1061 1062
        AppendToBuffer("vcvtss2sd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1063
      case 0x5C:
1064 1065 1066 1067
        AppendToBuffer("vsubss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1068
      case 0x5D:
1069 1070 1071 1072
        AppendToBuffer("vminss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1073
      case 0x5E:
1074 1075 1076 1077
        AppendToBuffer("vdivss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1078
      case 0x5F:
1079 1080 1081 1082 1083 1084 1085
        AppendToBuffer("vmaxss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
      default:
        UnimplementedInstruction();
    }
1086 1087 1088 1089
  } else if (vex_f2() && vex_0f()) {
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
1090 1091
      case 0x10:
        AppendToBuffer("vmovsd %s,", NameOfXMMRegister(regop));
1092 1093 1094
        if (mod == 3) {
          AppendToBuffer("%s,", NameOfXMMRegister(vvvv));
        }
1095 1096 1097 1098 1099
        current += PrintRightXMMOperand(current);
        break;
      case 0x11:
        AppendToBuffer("vmovsd ");
        current += PrintRightXMMOperand(current);
1100 1101 1102
        if (mod == 3) {
          AppendToBuffer(",%s", NameOfXMMRegister(vvvv));
        }
1103 1104
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
        break;
1105
      case 0x2A:
1106 1107
        AppendToBuffer("%s %s,%s,", vex_w() ? "vcvtqsi2sd" : "vcvtlsi2sd",
                       NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
1108 1109
        current += PrintRightOperand(current);
        break;
1110
      case 0x2C:
1111 1112 1113 1114
        AppendToBuffer("vcvttsd2si%s %s,", vex_w() ? "q" : "",
                       NameOfCPURegister(regop));
        current += PrintRightXMMOperand(current);
        break;
1115
      case 0x2D:
1116 1117 1118 1119
        AppendToBuffer("vcvtsd2si%s %s,", vex_w() ? "q" : "",
                       NameOfCPURegister(regop));
        current += PrintRightXMMOperand(current);
        break;
1120 1121 1122 1123 1124
      case 0x51:
        AppendToBuffer("vsqrtsd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
      case 0x58:
        AppendToBuffer("vaddsd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
      case 0x59:
        AppendToBuffer("vmulsd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1135
      case 0x5A:
1136 1137 1138 1139
        AppendToBuffer("vcvtsd2ss %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1140
      case 0x5C:
1141 1142 1143 1144
        AppendToBuffer("vsubsd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1145
      case 0x5D:
1146 1147 1148 1149
        AppendToBuffer("vminsd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1150
      case 0x5E:
1151 1152 1153 1154
        AppendToBuffer("vdivsd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1155
      case 0x5F:
1156 1157 1158 1159
        AppendToBuffer("vmaxsd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1160
      case 0xF0:
1161 1162 1163
        AppendToBuffer("vlddqu %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        break;
1164 1165 1166 1167 1168
      case 0x7C:
        AppendToBuffer("vhaddps %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1169 1170
      default:
        UnimplementedInstruction();
1171
    }
1172 1173 1174 1175 1176
  } else if (vex_none() && vex_0f38()) {
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    const char* mnem = "?";
    switch (opcode) {
1177
      case 0xF2:
1178 1179 1180 1181
        AppendToBuffer("andn%c %s,%s,", operand_size_code(),
                       NameOfCPURegister(regop), NameOfCPURegister(vvvv));
        current += PrintRightOperand(current);
        break;
1182
      case 0xF5:
1183 1184 1185 1186 1187
        AppendToBuffer("bzhi%c %s,", operand_size_code(),
                       NameOfCPURegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(",%s", NameOfCPURegister(vvvv));
        break;
1188
      case 0xF7:
1189 1190 1191 1192 1193
        AppendToBuffer("bextr%c %s,", operand_size_code(),
                       NameOfCPURegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(",%s", NameOfCPURegister(vvvv));
        break;
1194
      case 0xF3:
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
        switch (regop) {
          case 1:
            mnem = "blsr";
            break;
          case 2:
            mnem = "blsmsk";
            break;
          case 3:
            mnem = "blsi";
            break;
          default:
            UnimplementedInstruction();
        }
        AppendToBuffer("%s%c %s,", mnem, operand_size_code(),
                       NameOfCPURegister(vvvv));
        current += PrintRightOperand(current);
        mnem = "?";
        break;
      default:
        UnimplementedInstruction();
    }
  } else if (vex_f2() && vex_0f38()) {
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
1220
      case 0xF5:
1221 1222 1223 1224
        AppendToBuffer("pdep%c %s,%s,", operand_size_code(),
                       NameOfCPURegister(regop), NameOfCPURegister(vvvv));
        current += PrintRightOperand(current);
        break;
1225
      case 0xF6:
1226 1227 1228 1229
        AppendToBuffer("mulx%c %s,%s,", operand_size_code(),
                       NameOfCPURegister(regop), NameOfCPURegister(vvvv));
        current += PrintRightOperand(current);
        break;
1230
      case 0xF7:
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        AppendToBuffer("shrx%c %s,", operand_size_code(),
                       NameOfCPURegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(",%s", NameOfCPURegister(vvvv));
        break;
      default:
        UnimplementedInstruction();
    }
  } else if (vex_f3() && vex_0f38()) {
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
1243
      case 0xF5:
1244 1245 1246 1247
        AppendToBuffer("pext%c %s,%s,", operand_size_code(),
                       NameOfCPURegister(regop), NameOfCPURegister(vvvv));
        current += PrintRightOperand(current);
        break;
1248
      case 0xF7:
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        AppendToBuffer("sarx%c %s,", operand_size_code(),
                       NameOfCPURegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(",%s", NameOfCPURegister(vvvv));
        break;
      default:
        UnimplementedInstruction();
    }
  } else if (vex_f2() && vex_0f3a()) {
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
1261
      case 0xF0:
1262 1263 1264 1265 1266
        AppendToBuffer("rorx%c %s,", operand_size_code(),
                       NameOfCPURegister(regop));
        current += PrintRightOperand(current);
        switch (operand_size()) {
          case OPERAND_DOUBLEWORD_SIZE:
1267
            AppendToBuffer(",%d", *current & 0x1F);
1268 1269
            break;
          case OPERAND_QUADWORD_SIZE:
1270
            AppendToBuffer(",%d", *current & 0x3F);
1271 1272 1273 1274 1275 1276 1277 1278 1279
            break;
          default:
            UnimplementedInstruction();
        }
        current += 1;
        break;
      default:
        UnimplementedInstruction();
    }
1280 1281 1282 1283
  } else if (vex_none() && vex_0f()) {
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
1284 1285 1286 1287 1288 1289 1290 1291 1292
      case 0x10:
        AppendToBuffer("vmovups %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        break;
      case 0x11:
        AppendToBuffer("vmovups ");
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
        break;
1293 1294 1295 1296 1297 1298 1299 1300 1301
      case 0x28:
        AppendToBuffer("vmovaps %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        break;
      case 0x29:
        AppendToBuffer("vmovaps ");
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
        break;
1302
      case 0x2E:
1303 1304 1305
        AppendToBuffer("vucomiss %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        break;
1306 1307 1308 1309
      case 0x50:
        AppendToBuffer("vmovmskps %s,", NameOfCPURegister(regop));
        current += PrintRightXMMOperand(current);
        break;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
      case 0x54:
        AppendToBuffer("vandps %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
      case 0x57:
        AppendToBuffer("vxorps %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
      case 0xC2: {
        AppendToBuffer("vcmpps %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        const char* const pseudo_op[] = {"eq",  "lt",  "le",  "unord",
                                         "neq", "nlt", "nle", "ord"};
        AppendToBuffer(", (%s)", pseudo_op[*current]);
        current += 1;
        break;
      }
1330 1331 1332 1333 1334 1335 1336
      default:
        UnimplementedInstruction();
    }
  } else if (vex_66() && vex_0f()) {
    int mod, regop, rm, vvvv = vex_vreg();
    get_modrm(*current, &mod, &regop, &rm);
    switch (opcode) {
1337 1338 1339 1340 1341 1342 1343 1344 1345
      case 0x10:
        AppendToBuffer("vmovupd %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        break;
      case 0x11:
        AppendToBuffer("vmovupd ");
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
        break;
1346 1347 1348 1349 1350 1351 1352 1353 1354
      case 0x28:
        AppendToBuffer("vmovapd %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        break;
      case 0x29:
        AppendToBuffer("vmovapd ");
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
        break;
1355
      case 0x2E:
1356 1357 1358
        AppendToBuffer("vucomisd %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        break;
1359 1360 1361 1362
      case 0x50:
        AppendToBuffer("vmovmskpd %s,", NameOfCPURegister(regop));
        current += PrintRightXMMOperand(current);
        break;
1363 1364 1365 1366 1367
      case 0x54:
        AppendToBuffer("vandpd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1368 1369 1370 1371 1372
      case 0x56:
        AppendToBuffer("vorpd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1373 1374 1375 1376 1377
      case 0x57:
        AppendToBuffer("vxorpd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        break;
1378
      case 0x6E:
1379 1380 1381 1382
        AppendToBuffer("vmov%c %s,", vex_w() ? 'q' : 'd',
                       NameOfXMMRegister(regop));
        current += PrintRightOperand(current);
        break;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
      case 0x70:
        AppendToBuffer("vpshufd %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",0x%x", *current++);
        break;
      case 0x71:
        AppendToBuffer("vps%sw %s,", sf_str[regop / 2],
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",%u", *current++);
        break;
      case 0x72:
        AppendToBuffer("vps%sd %s,", sf_str[regop / 2],
1396 1397 1398 1399
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",%u", *current++);
        break;
1400 1401
      case 0x73:
        AppendToBuffer("vps%sq %s,", sf_str[regop / 2],
1402 1403
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
1404
        AppendToBuffer(",%u", *current++);
1405
        break;
1406
      case 0x7E:
1407 1408 1409 1410
        AppendToBuffer("vmov%c ", vex_w() ? 'q' : 'd');
        current += PrintRightOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
        break;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
      case 0xC2: {
        AppendToBuffer("vcmppd %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightXMMOperand(current);
        const char* const pseudo_op[] = {"eq",  "lt",  "le",  "unord",
                                         "neq", "nlt", "nle", "ord"};
        AppendToBuffer(", (%s)", pseudo_op[*current]);
        current += 1;
        break;
      }
1421
      case 0xC4:
1422 1423 1424 1425 1426
        AppendToBuffer("vpinsrw %s,%s,", NameOfXMMRegister(regop),
                       NameOfXMMRegister(vvvv));
        current += PrintRightOperand(current);
        AppendToBuffer(",0x%x", *current++);
        break;
1427
      case 0xC5:
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        AppendToBuffer("vpextrw %s,", NameOfCPURegister(regop));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",0x%x", *current++);
        break;
#define DECLARE_SSE_AVX_DIS_CASE(instruction, notUsed1, notUsed2, opcode) \
  case 0x##opcode: {                                                      \
    AppendToBuffer("v" #instruction " %s,%s,", NameOfXMMRegister(regop),  \
                   NameOfXMMRegister(vvvv));                              \
    current += PrintRightXMMOperand(current);                             \
    break;                                                                \
  }

        SSE2_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
#undef DECLARE_SSE_AVX_DIS_CASE
1442 1443 1444 1445
      default:
        UnimplementedInstruction();
    }

1446
  } else {
1447
    UnimplementedInstruction();
1448 1449 1450 1451 1452
  }

  return static_cast<int>(current - data);
}

1453 1454
// Returns number of bytes used, including *data.
int DisassemblerX64::FPUInstruction(byte* data) {
1455
  byte escape_opcode = *data;
1456
  DCHECK_EQ(0xD8, escape_opcode & 0xF8);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
  byte modrm_byte = *(data+1);

  if (modrm_byte >= 0xC0) {
    return RegisterFPUInstruction(escape_opcode, modrm_byte);
  } else {
    return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1);
  }
}

int DisassemblerX64::MemoryFPUInstruction(int escape_opcode,
                                           int modrm_byte,
                                           byte* modrm_start) {
  const char* mnem = "?";
  int regop = (modrm_byte >> 3) & 0x7;  // reg/op field of modrm byte.
  switch (escape_opcode) {
    case 0xD9: switch (regop) {
        case 0: mnem = "fld_s"; break;
        case 3: mnem = "fstp_s"; break;
        case 7: mnem = "fstcw"; break;
        default: UnimplementedInstruction();
1477
      }
1478 1479 1480 1481 1482 1483 1484 1485
      break;

    case 0xDB: switch (regop) {
        case 0: mnem = "fild_s"; break;
        case 1: mnem = "fisttp_s"; break;
        case 2: mnem = "fist_s"; break;
        case 3: mnem = "fistp_s"; break;
        default: UnimplementedInstruction();
1486
      }
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
      break;

    case 0xDD: switch (regop) {
        case 0: mnem = "fld_d"; break;
        case 3: mnem = "fstp_d"; break;
        default: UnimplementedInstruction();
      }
      break;

    case 0xDF: switch (regop) {
        case 5: mnem = "fild_d"; break;
        case 7: mnem = "fistp_d"; break;
        default: UnimplementedInstruction();
      }
      break;

    default: UnimplementedInstruction();
  }
  AppendToBuffer("%s ", mnem);
  int count = PrintRightOperand(modrm_start);
  return count + 1;
}

int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
                                             byte modrm_byte) {
  bool has_register = false;  // Is the FPU register encoded in modrm_byte?
  const char* mnem = "?";

  switch (escape_opcode) {
    case 0xD8:
      UnimplementedInstruction();
      break;

    case 0xD9:
      switch (modrm_byte & 0xF8) {
1522 1523 1524 1525
        case 0xC0:
          mnem = "fld";
          has_register = true;
          break;
1526 1527 1528
        case 0xC8:
          mnem = "fxch";
          has_register = true;
1529 1530
          break;
        default:
1531 1532 1533
          switch (modrm_byte) {
            case 0xE0: mnem = "fchs"; break;
            case 0xE1: mnem = "fabs"; break;
1534
            case 0xE3: mnem = "fninit"; break;
1535 1536
            case 0xE4: mnem = "ftst"; break;
            case 0xE8: mnem = "fld1"; break;
1537
            case 0xEB: mnem = "fldpi"; break;
1538
            case 0xED: mnem = "fldln2"; break;
1539
            case 0xEE: mnem = "fldz"; break;
1540
            case 0xF0: mnem = "f2xm1"; break;
1541
            case 0xF1: mnem = "fyl2x"; break;
1542
            case 0xF2: mnem = "fptan"; break;
1543 1544 1545
            case 0xF5: mnem = "fprem1"; break;
            case 0xF7: mnem = "fincstp"; break;
            case 0xF8: mnem = "fprem"; break;
1546
            case 0xFC: mnem = "frndint"; break;
1547
            case 0xFD: mnem = "fscale"; break;
1548 1549 1550 1551
            case 0xFE: mnem = "fsin"; break;
            case 0xFF: mnem = "fcos"; break;
            default: UnimplementedInstruction();
          }
1552
      }
1553 1554 1555 1556 1557 1558
      break;

    case 0xDA:
      if (modrm_byte == 0xE9) {
        mnem = "fucompp";
      } else {
1559
        UnimplementedInstruction();
1560 1561 1562 1563 1564 1565 1566 1567 1568
      }
      break;

    case 0xDB:
      if ((modrm_byte & 0xF8) == 0xE8) {
        mnem = "fucomi";
        has_register = true;
      } else if (modrm_byte  == 0xE2) {
        mnem = "fclex";
1569 1570
      } else if (modrm_byte == 0xE3) {
        mnem = "fninit";
1571
      } else {
1572
        UnimplementedInstruction();
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
      }
      break;

    case 0xDC:
      has_register = true;
      switch (modrm_byte & 0xF8) {
        case 0xC0: mnem = "fadd"; break;
        case 0xE8: mnem = "fsub"; break;
        case 0xC8: mnem = "fmul"; break;
        case 0xF8: mnem = "fdiv"; break;
        default: UnimplementedInstruction();
      }
      break;

    case 0xDD:
      has_register = true;
      switch (modrm_byte & 0xF8) {
        case 0xC0: mnem = "ffree"; break;
        case 0xD8: mnem = "fstp"; break;
        default: UnimplementedInstruction();
      }
      break;

    case 0xDE:
      if (modrm_byte  == 0xD9) {
        mnem = "fcompp";
      } else {
        has_register = true;
        switch (modrm_byte & 0xF8) {
          case 0xC0: mnem = "faddp"; break;
          case 0xE8: mnem = "fsubp"; break;
          case 0xC8: mnem = "fmulp"; break;
          case 0xF8: mnem = "fdivp"; break;
          default: UnimplementedInstruction();
        }
      }
      break;

    case 0xDF:
      if (modrm_byte == 0xE0) {
        mnem = "fnstsw_ax";
      } else if ((modrm_byte & 0xF8) == 0xE8) {
        mnem = "fucomip";
        has_register = true;
      }
      break;

    default: UnimplementedInstruction();
  }

  if (has_register) {
    AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7);
  } else {
1626 1627 1628 1629 1630
    AppendToBuffer("%s", mnem);
  }
  return 2;
}

1631

1632

1633 1634 1635 1636 1637 1638 1639 1640
// Handle all two-byte opcodes, which start with 0x0F.
// These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix.
// We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A.
int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) {
  byte opcode = *(data + 1);
  byte* current = data + 2;
  // At return, "current" points to the start of the next instruction.
  const char* mnemonic = TwoByteMnemonic(opcode);
1641 1642 1643
  if (operand_size_ == 0x66) {
    // 0x66 0x0F prefix.
    int mod, regop, rm;
1644 1645 1646
    if (opcode == 0x38) {
      byte third_byte = *current;
      current = data + 3;
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
      get_modrm(*current, &mod, &regop, &rm);
      switch (third_byte) {
#define SSE34_DIS_CASE(instruction, notUsed1, notUsed2, notUsed3, opcode) \
  case 0x##opcode: {                                                      \
    AppendToBuffer(#instruction " %s,", NameOfXMMRegister(regop));        \
    current += PrintRightXMMOperand(current);                             \
    break;                                                                \
  }

        SSSE3_INSTRUCTION_LIST(SSE34_DIS_CASE)
        SSE4_INSTRUCTION_LIST(SSE34_DIS_CASE)
#undef SSE34_DIS_CASE
        default:
          UnimplementedInstruction();
1661 1662
      }
    } else if (opcode == 0x3A) {
1663 1664 1665 1666 1667 1668
      byte third_byte = *current;
      current = data + 3;
      if (third_byte == 0x17) {
        get_modrm(*current, &mod, &regop, &rm);
        AppendToBuffer("extractps ");  // reg/m32, xmm, imm8
        current += PrintRightOperand(current);
1669
        AppendToBuffer(",%s,%d", NameOfXMMRegister(regop), (*current) & 3);
1670
        current += 1;
1671
      } else if (third_byte == 0x0A) {
1672 1673 1674 1675 1676
        get_modrm(*current, &mod, &regop, &rm);
        AppendToBuffer("roundss %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",0x%x", (*current) & 3);
        current += 1;
1677
      } else if (third_byte == 0x0B) {
1678 1679
        get_modrm(*current, &mod, &regop, &rm);
         // roundsd xmm, xmm/m64, imm8
1680 1681
        AppendToBuffer("roundsd %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
1682
        AppendToBuffer(",0x%x", (*current) & 3);
1683
        current += 1;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
      } else if (third_byte == 0x14) {
        get_modrm(*current, &mod, &regop, &rm);
        AppendToBuffer("pextrb ");  // reg/m32, xmm, imm8
        current += PrintRightOperand(current);
        AppendToBuffer(",%s,%d", NameOfXMMRegister(regop), (*current) & 3);
        current += 1;
      } else if (third_byte == 0x15) {
        get_modrm(*current, &mod, &regop, &rm);
        AppendToBuffer("pextrw ");  // reg/m32, xmm, imm8
        current += PrintRightOperand(current);
1694
        AppendToBuffer(",%s,%d", NameOfXMMRegister(regop), (*current) & 7);
1695
        current += 1;
1696
      } else if (third_byte == 0x16) {
1697
        get_modrm(*current, &mod, &regop, &rm);
1698 1699 1700 1701
        AppendToBuffer("pextrd ");  // reg/m32, xmm, imm8
        current += PrintRightOperand(current);
        AppendToBuffer(",%s,%d", NameOfXMMRegister(regop), (*current) & 3);
        current += 1;
1702 1703 1704 1705 1706 1707 1708
      } else if (third_byte == 0x20) {
        get_modrm(*current, &mod, &regop, &rm);
        AppendToBuffer("pinsrd ");  // xmm, reg/m32, imm8
        AppendToBuffer(" %s,", NameOfXMMRegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(",%d", (*current) & 3);
        current += 1;
1709 1710 1711 1712 1713 1714 1715
      } else if (third_byte == 0x21) {
        get_modrm(*current, &mod, &regop, &rm);
        // insertps xmm, xmm/m32, imm8
        AppendToBuffer("insertps %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",0x%x", (*current) & 3);
        current += 1;
1716 1717 1718 1719 1720 1721 1722
      } else if (third_byte == 0x22) {
        get_modrm(*current, &mod, &regop, &rm);
        AppendToBuffer("pinsrd ");  // xmm, reg/m32, imm8
        AppendToBuffer(" %s,", NameOfXMMRegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(",%d", (*current) & 3);
        current += 1;
1723 1724 1725
      } else {
        UnimplementedInstruction();
      }
1726 1727
    } else {
      get_modrm(*current, &mod, &regop, &rm);
1728
      if (opcode == 0x1F) {
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
        current++;
        if (rm == 4) {  // SIB byte present.
          current++;
        }
        if (mod == 1) {  // Byte displacement.
          current += 1;
        } else if (mod == 2) {  // 32-bit displacement.
          current += 4;
        }  // else no immediate displacement.
        AppendToBuffer("nop");
1739 1740 1741 1742 1743 1744 1745
      } else if (opcode == 0x10) {
        AppendToBuffer("movupd %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
      } else if (opcode == 0x11) {
        AppendToBuffer("movupd ");
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
1746
      } else if (opcode == 0x28) {
1747
        AppendToBuffer("movapd %s,", NameOfXMMRegister(regop));
lrn@chromium.org's avatar
lrn@chromium.org committed
1748 1749 1750 1751
        current += PrintRightXMMOperand(current);
      } else if (opcode == 0x29) {
        AppendToBuffer("movapd ");
        current += PrintRightXMMOperand(current);
1752
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
lrn@chromium.org's avatar
lrn@chromium.org committed
1753
      } else if (opcode == 0x6E) {
1754 1755 1756 1757
        AppendToBuffer("mov%c %s,",
                       rex_w() ? 'q' : 'd',
                       NameOfXMMRegister(regop));
        current += PrintRightOperand(current);
1758 1759 1760
      } else if (opcode == 0x6F) {
        AppendToBuffer("movdqa %s,",
                       NameOfXMMRegister(regop));
1761
        current += PrintRightXMMOperand(current);
1762
      } else if (opcode == 0x7E) {
1763 1764 1765
        AppendToBuffer("mov%c ",
                       rex_w() ? 'q' : 'd');
        current += PrintRightOperand(current);
1766
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
1767 1768
      } else if (opcode == 0x7F) {
        AppendToBuffer("movdqa ");
1769
        current += PrintRightXMMOperand(current);
1770
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
lrn@chromium.org's avatar
lrn@chromium.org committed
1771 1772 1773
      } else if (opcode == 0xD6) {
        AppendToBuffer("movq ");
        current += PrintRightXMMOperand(current);
1774
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
1775 1776 1777
      } else if (opcode == 0x50) {
        AppendToBuffer("movmskpd %s,", NameOfCPURegister(regop));
        current += PrintRightXMMOperand(current);
1778 1779 1780 1781 1782
      } else if (opcode == 0x70) {
        AppendToBuffer("pshufd %s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",0x%x", *current);
        current += 1;
1783 1784 1785
      } else if (opcode == 0x71) {
        current += 1;
        AppendToBuffer("ps%sw %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
1786
                       *current & 0x7F);
1787
        current += 1;
1788 1789
      } else if (opcode == 0x72) {
        current += 1;
1790
        AppendToBuffer("ps%sd %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
1791
                       *current & 0x7F);
1792
        current += 1;
1793 1794
      } else if (opcode == 0x73) {
        current += 1;
1795
        AppendToBuffer("ps%sq %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
1796
                       *current & 0x7F);
1797
        current += 1;
1798 1799
      } else if (opcode == 0xB1) {
        current += PrintOperands("cmpxchg", OPER_REG_OP_ORDER, current);
1800 1801 1802 1803 1804
      } else if (opcode == 0xC4) {
        AppendToBuffer("pinsrw %s,", NameOfXMMRegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(",0x%x", (*current) & 7);
        current += 1;
1805 1806
      } else {
        const char* mnemonic = "?";
1807
        if (opcode == 0x54) {
1808 1809 1810 1811
          mnemonic = "andpd";
        } else  if (opcode == 0x56) {
          mnemonic = "orpd";
        } else  if (opcode == 0x57) {
1812
          mnemonic = "xorpd";
1813 1814
        } else if (opcode == 0x5B) {
          mnemonic = "cvtps2dq";
1815 1816
        } else if (opcode == 0x2E) {
          mnemonic = "ucomisd";
1817 1818
        } else if (opcode == 0x2F) {
          mnemonic = "comisd";
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
        } else if (opcode == 0x64) {
          mnemonic = "pcmpgtb";
        } else if (opcode == 0x65) {
          mnemonic = "pcmpgtw";
        } else if (opcode == 0x66) {
          mnemonic = "pcmpgtd";
        } else if (opcode == 0x74) {
          mnemonic = "pcmpeqb";
        } else if (opcode == 0x75) {
          mnemonic = "pcmpeqw";
1829 1830
        } else if (opcode == 0x76) {
          mnemonic = "pcmpeqd";
1831 1832
        } else if (opcode == 0x62) {
          mnemonic = "punpckldq";
1833 1834 1835 1836
        } else if (opcode == 0x63) {
          mnemonic = "packsswb";
        } else if (opcode == 0x67) {
          mnemonic = "packuswb";
1837 1838
        } else if (opcode == 0x6A) {
          mnemonic = "punpckhdq";
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
        } else if (opcode == 0x6B) {
          mnemonic = "packssdw";
        } else if (opcode == 0xD1) {
          mnemonic = "psrlw";
        } else if (opcode == 0xD2) {
          mnemonic = "psrld";
        } else if (opcode == 0xD5) {
          mnemonic = "pmullw";
        } else if (opcode == 0xD7) {
          mnemonic = "pmovmskb";
        } else if (opcode == 0xD8) {
          mnemonic = "psubusb";
        } else if (opcode == 0xD9) {
          mnemonic = "psubusw";
        } else if (opcode == 0xDA) {
1854 1855
          mnemonic = "pand";
        } else if (opcode == 0xDB) {
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
          mnemonic = "pminub";
        } else if (opcode == 0xDC) {
          mnemonic = "paddusb";
        } else if (opcode == 0xDD) {
          mnemonic = "paddusw";
        } else if (opcode == 0xDE) {
          mnemonic = "pmaxub";
        } else if (opcode == 0xE1) {
          mnemonic = "psraw";
        } else if (opcode == 0xE2) {
          mnemonic = "psrad";
        } else if (opcode == 0xE8) {
          mnemonic = "psubsb";
        } else if (opcode == 0xE9) {
          mnemonic = "psubsw";
        } else if (opcode == 0xEA) {
          mnemonic = "pminsw";
1873 1874
        } else if (opcode == 0xEB) {
          mnemonic = "por";
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        } else if (opcode == 0xEC) {
          mnemonic = "paddsb";
        } else if (opcode == 0xED) {
          mnemonic = "paddsw";
        } else if (opcode == 0xEE) {
          mnemonic = "pmaxsw";
        } else if (opcode == 0xEF) {
          mnemonic = "pxor";
        } else if (opcode == 0xF1) {
          mnemonic = "psllw";
        } else if (opcode == 0xF2) {
          mnemonic = "pslld";
1887 1888
        } else if (opcode == 0xF4) {
          mnemonic = "pmuludq";
1889 1890 1891 1892
        } else if (opcode == 0xF8) {
          mnemonic = "psubb";
        } else if (opcode == 0xF9) {
          mnemonic = "psubw";
1893 1894
        } else if (opcode == 0xFA) {
          mnemonic = "psubd";
1895 1896 1897 1898
        } else if (opcode == 0xFC) {
          mnemonic = "paddb";
        } else if (opcode == 0xFD) {
          mnemonic = "paddw";
1899 1900
        } else if (opcode == 0xFE) {
          mnemonic = "paddd";
1901 1902
        } else if (opcode == 0xC2) {
          mnemonic = "cmppd";
1903 1904 1905 1906 1907
        } else {
          UnimplementedInstruction();
        }
        AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
1908 1909 1910 1911 1912 1913
        if (opcode == 0xC2) {
          const char* const pseudo_op[] = {"eq",  "lt",  "le",  "unord",
                                           "neq", "nlt", "nle", "ord"};
          AppendToBuffer(", (%s)", pseudo_op[*current]);
          current += 1;
        }
1914
      }
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
    }
  } else if (group_1_prefix_ == 0xF2) {
    // Beginning of instructions with prefix 0xF2.

    if (opcode == 0x11 || opcode == 0x10) {
      // MOVSD: Move scalar double-precision fp to/from/between XMM registers.
      AppendToBuffer("movsd ");
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      if (opcode == 0x11) {
1925
        current += PrintRightXMMOperand(current);
1926 1927 1928
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
      } else {
        AppendToBuffer("%s,", NameOfXMMRegister(regop));
1929
        current += PrintRightXMMOperand(current);
1930 1931 1932 1933 1934
      }
    } else if (opcode == 0x2A) {
      // CVTSI2SD: integer to XMM double conversion.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
1935
      AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
1936
      current += PrintRightOperand(current);
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    } else if (opcode == 0x2C) {
      // CVTTSD2SI:
      // Convert with truncation scalar double-precision FP to integer.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("cvttsd2si%c %s,",
          operand_size_code(), NameOfCPURegister(regop));
      current += PrintRightXMMOperand(current);
    } else if (opcode == 0x2D) {
      // CVTSD2SI: Convert scalar double-precision FP to integer.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("cvtsd2si%c %s,",
          operand_size_code(), NameOfCPURegister(regop));
      current += PrintRightXMMOperand(current);
1952
    } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
1953 1954 1955 1956 1957
      // XMM arithmetic. Mnemonic was retrieved at the start of this function.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
      current += PrintRightXMMOperand(current);
1958 1959 1960 1961 1962 1963 1964
    } else if (opcode == 0x70) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("pshuflw %s, ", NameOfXMMRegister(regop));
      current += PrintRightXMMOperand(current);
      AppendToBuffer(", %d", (*current) & 7);
      current += 1;
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
    } else if (opcode == 0xC2) {
      // Intel manual 2A, Table 3-18.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      const char* const pseudo_op[] = {
        "cmpeqsd",
        "cmpltsd",
        "cmplesd",
        "cmpunordsd",
        "cmpneqsd",
        "cmpnltsd",
        "cmpnlesd",
        "cmpordsd"
      };
      AppendToBuffer("%s %s,%s",
                     pseudo_op[current[1]],
                     NameOfXMMRegister(regop),
                     NameOfXMMRegister(rm));
      current += 2;
1984 1985 1986 1987 1988
    } else if (opcode == 0xF0) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("lddqu %s,", NameOfXMMRegister(regop));
      current += PrintRightOperand(current);
1989 1990 1991 1992
    } else if (opcode == 0x7C) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("haddps %s,", NameOfXMMRegister(regop));
1993
      current += PrintRightXMMOperand(current);
1994 1995 1996
    } else {
      UnimplementedInstruction();
    }
1997 1998
  } else if (group_1_prefix_ == 0xF3) {
    // Instructions with prefix 0xF3.
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
    if (opcode == 0x11 || opcode == 0x10) {
      // MOVSS: Move scalar double-precision fp to/from/between XMM registers.
      AppendToBuffer("movss ");
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      if (opcode == 0x11) {
        current += PrintRightOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
      } else {
        AppendToBuffer("%s,", NameOfXMMRegister(regop));
        current += PrintRightOperand(current);
      }
    } else if (opcode == 0x2A) {
      // CVTSI2SS: integer to XMM single conversion.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
2015
      AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
2016 2017
      current += PrintRightOperand(current);
    } else if (opcode == 0x2C) {
2018 2019
      // CVTTSS2SI:
      // Convert with truncation scalar single-precision FP to dword integer.
2020 2021 2022 2023 2024
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("cvttss2si%c %s,",
          operand_size_code(), NameOfCPURegister(regop));
      current += PrintRightXMMOperand(current);
2025 2026 2027 2028 2029 2030 2031
    } else if (opcode == 0x70) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("pshufhw %s, ", NameOfXMMRegister(regop));
      current += PrintRightXMMOperand(current);
      AppendToBuffer(", %d", (*current) & 7);
      current += 1;
2032 2033 2034 2035 2036
    } else if (opcode == 0x6F) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("movdqu %s,", NameOfXMMRegister(regop));
      current += PrintRightXMMOperand(current);
2037
    } else if (opcode == 0x7E) {
2038 2039
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
2040
      AppendToBuffer("movq %s,", NameOfXMMRegister(regop));
2041
      current += PrintRightXMMOperand(current);
2042 2043 2044 2045 2046 2047
    } else if (opcode == 0x7F) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("movdqu ");
      current += PrintRightXMMOperand(current);
      AppendToBuffer(",%s", NameOfXMMRegister(regop));
2048 2049
    } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
      // XMM arithmetic. Mnemonic was retrieved at the start of this function.
2050 2051
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
2052
      AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
2053
      current += PrintRightXMMOperand(current);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    } else if (opcode == 0xB8) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("popcnt%c %s,", operand_size_code(),
                     NameOfCPURegister(regop));
      current += PrintRightOperand(current);
    } else if (opcode == 0xBC) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("tzcnt%c %s,", operand_size_code(),
                     NameOfCPURegister(regop));
      current += PrintRightOperand(current);
    } else if (opcode == 0xBD) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("lzcnt%c %s,", operand_size_code(),
                     NameOfCPURegister(regop));
      current += PrintRightOperand(current);
2072 2073
    } else if (opcode == 0xC2) {
      // Intel manual 2A, Table 3-18.
lrn@chromium.org's avatar
lrn@chromium.org committed
2074 2075
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
2076 2077 2078 2079 2080 2081
      const char* const pseudo_op[] = {"cmpeqss",    "cmpltss",  "cmpless",
                                       "cmpunordss", "cmpneqss", "cmpnltss",
                                       "cmpnless",   "cmpordss"};
      AppendToBuffer("%s %s,%s", pseudo_op[current[1]],
                     NameOfXMMRegister(regop), NameOfXMMRegister(rm));
      current += 2;
2082 2083 2084
    } else {
      UnimplementedInstruction();
    }
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
  } else if (opcode == 0x10 || opcode == 0x11) {
    // movups xmm, xmm/m128
    // movups xmm/m128, xmm
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    AppendToBuffer("movups ");
    if (opcode == 0x11) {
      current += PrintRightXMMOperand(current);
      AppendToBuffer(",%s", NameOfXMMRegister(regop));
    } else {
      AppendToBuffer("%s,", NameOfXMMRegister(regop));
      current += PrintRightXMMOperand(current);
    }
2098
  } else if (opcode == 0x1F) {
2099 2100 2101 2102
    // NOP
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    current++;
2103
    if (rm == 4) {  // SIB byte present.
2104 2105 2106 2107 2108 2109 2110 2111
      current++;
    }
    if (mod == 1) {  // Byte displacement.
      current += 1;
    } else if (mod == 2) {  // 32-bit displacement.
      current += 4;
    }  // else no immediate displacement.
    AppendToBuffer("nop");
lrn@chromium.org's avatar
lrn@chromium.org committed
2112

2113
  } else if (opcode == 0x28) {
lrn@chromium.org's avatar
lrn@chromium.org committed
2114 2115 2116
    // movaps xmm, xmm/m128
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
2117
    AppendToBuffer("movaps %s,", NameOfXMMRegister(regop));
lrn@chromium.org's avatar
lrn@chromium.org committed
2118 2119
    current += PrintRightXMMOperand(current);

2120
  } else if (opcode == 0x29) {
lrn@chromium.org's avatar
lrn@chromium.org committed
2121 2122 2123
    // movaps xmm/m128, xmm
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
2124
    AppendToBuffer("movaps ");
lrn@chromium.org's avatar
lrn@chromium.org committed
2125
    current += PrintRightXMMOperand(current);
2126
    AppendToBuffer(",%s", NameOfXMMRegister(regop));
lrn@chromium.org's avatar
lrn@chromium.org committed
2127

2128
  } else if (opcode == 0x2E) {
2129 2130 2131 2132
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    AppendToBuffer("ucomiss %s,", NameOfXMMRegister(regop));
    current += PrintRightXMMOperand(current);
2133 2134
  } else if (opcode == 0xA2) {
    // CPUID
2135 2136
    AppendToBuffer("%s", mnemonic);

2137 2138 2139 2140 2141 2142 2143
  } else if ((opcode & 0xF0) == 0x40) {
    // CMOVcc: conditional move.
    int condition = opcode & 0x0F;
    const InstructionDesc& idesc = cmov_instructions[condition];
    byte_size_operand_ = idesc.byte_size_operation;
    current += PrintOperands(idesc.mnem, idesc.op_order_, current);

2144
  } else if (opcode >= 0x51 && opcode <= 0x5F) {
2145
    const char* const pseudo_op[] = {
2146 2147 2148
        "sqrtps",   "rsqrtps", "rcpps", "andps", "andnps",
        "orps",     "xorps",   "addps", "mulps", "cvtps2pd",
        "cvtdq2ps", "subps",   "minps", "divps", "maxps",
2149
    };
2150 2151
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
2152
    AppendToBuffer("%s %s,", pseudo_op[opcode - 0x51],
2153
                   NameOfXMMRegister(regop));
2154 2155
    current += PrintRightXMMOperand(current);

2156 2157 2158 2159
  } else if (opcode == 0xC2) {
    // cmpps xmm, xmm/m128, imm8
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
2160 2161 2162 2163 2164 2165
    const char* const pseudo_op[] = {"eq",  "lt",  "le",  "unord",
                                     "neq", "nlt", "nle", "ord"};
    AppendToBuffer("cmpps %s, ", NameOfXMMRegister(regop));
    current += PrintRightXMMOperand(current);
    AppendToBuffer(", %s", pseudo_op[*current]);
    current += 1;
2166 2167
  } else if (opcode == 0xC6) {
    // shufps xmm, xmm/m128, imm8
2168 2169
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
2170
    AppendToBuffer("shufps %s, ", NameOfXMMRegister(regop));
lrn@chromium.org's avatar
lrn@chromium.org committed
2171
    current += PrintRightXMMOperand(current);
2172 2173
    AppendToBuffer(", %d", (*current) & 3);
    current += 1;
2174 2175 2176 2177
  } else if (opcode == 0x50) {
    // movmskps reg, xmm
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
2178
    AppendToBuffer("movmskps %s,", NameOfCPURegister(regop));
2179
    current += PrintRightXMMOperand(current);
2180 2181 2182 2183 2184 2185 2186
  } else if (opcode == 0x70) {
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    AppendToBuffer("pshufw %s, ", NameOfXMMRegister(regop));
    current += PrintRightXMMOperand(current);
    AppendToBuffer(", %d", (*current) & 3);
    current += 1;
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
  } else if ((opcode & 0xF0) == 0x80) {
    // Jcc: Conditional jump (branch).
    current = data + JumpConditional(data);

  } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 ||
             opcode == 0xB7 || opcode == 0xAF) {
    // Size-extending moves, IMUL.
    current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current);

  } else if ((opcode & 0xF0) == 0x90) {
    // SETcc: Set byte on condition. Needs pointer to beginning of instruction.
    current = data + SetCC(data);

  } else if (opcode == 0xAB || opcode == 0xA5 || opcode == 0xAD) {
    // SHLD, SHRD (double-precision shift), BTS (bit set).
    AppendToBuffer("%s ", mnemonic);
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    current += PrintRightOperand(current);
    if (opcode == 0xAB) {
      AppendToBuffer(",%s", NameOfCPURegister(regop));
    } else {
      AppendToBuffer(",%s,cl", NameOfCPURegister(regop));
    }
2211 2212
  } else if (opcode == 0xB8 || opcode == 0xBC || opcode == 0xBD) {
    // POPCNT, CTZ, CLZ.
2213 2214 2215 2216 2217
    AppendToBuffer("%s%c ", mnemonic, operand_size_code());
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    AppendToBuffer("%s,", NameOfCPURegister(regop));
    current += PrintRightOperand(current);
2218 2219
  } else if (opcode == 0x0B) {
    AppendToBuffer("ud2");
2220 2221 2222 2223 2224 2225
  } else if (opcode == 0xB0 || opcode == 0xB1) {
    // CMPXCHG.
    if (opcode == 0xB0) {
      byte_size_operand_ = true;
    }
    current += PrintOperands(mnemonic, OPER_REG_OP_ORDER, current);
2226 2227 2228
  } else if (opcode == 0xAE && (*(data + 2) & 0xF8) == 0xE8) {
    AppendToBuffer("lfence");
    current = data + 3;
2229 2230 2231
  } else {
    UnimplementedInstruction();
  }
2232
  return static_cast<int>(current - data);
2233 2234 2235 2236
}

// Mnemonics for two-byte opcode instructions starting with 0x0F.
// The argument is the second byte of the two-byte opcode.
2237
// Returns nullptr if the instruction is not handled here.
2238 2239
const char* DisassemblerX64::TwoByteMnemonic(byte opcode) {
  switch (opcode) {
2240 2241
    case 0x1F:
      return "nop";
2242
    case 0x2A:  // F2/F3 prefix.
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
      return (group_1_prefix_ == 0xF2) ? "cvtsi2sd" : "cvtsi2ss";
    case 0x51:  // F2/F3 prefix.
      return (group_1_prefix_ == 0xF2) ? "sqrtsd" : "sqrtss";
    case 0x58:  // F2/F3 prefix.
      return (group_1_prefix_ == 0xF2) ? "addsd" : "addss";
    case 0x59:  // F2/F3 prefix.
      return (group_1_prefix_ == 0xF2) ? "mulsd" : "mulss";
    case 0x5A:  // F2/F3 prefix.
      return (group_1_prefix_ == 0xF2) ? "cvtsd2ss" : "cvtss2sd";
    case 0x5D:  // F2/F3 prefix.
      return (group_1_prefix_ == 0xF2) ? "minsd" : "minss";
    case 0x5C:  // F2/F3 prefix.
      return (group_1_prefix_ == 0xF2) ? "subsd" : "subss";
    case 0x5E:  // F2/F3 prefix.
      return (group_1_prefix_ == 0xF2) ? "divsd" : "divss";
    case 0x5F:  // F2/F3 prefix.
      return (group_1_prefix_ == 0xF2) ? "maxsd" : "maxss";
2260 2261 2262 2263 2264 2265
    case 0xA2:
      return "cpuid";
    case 0xA5:
      return "shld";
    case 0xAB:
      return "bts";
2266 2267 2268 2269
    case 0xAD:
      return "shrd";
    case 0xAF:
      return "imul";
2270 2271 2272
    case 0xB0:
    case 0xB1:
      return "cmpxchg";
2273 2274 2275 2276
    case 0xB6:
      return "movzxb";
    case 0xB7:
      return "movzxw";
2277 2278
    case 0xBC:
      return "bsf";
2279 2280
    case 0xBD:
      return "bsr";
2281 2282 2283 2284
    case 0xBE:
      return "movsxb";
    case 0xBF:
      return "movsxw";
2285
    default:
2286
      return nullptr;
2287 2288 2289
  }
}

2290 2291

// Disassembles the instruction at instr, and writes it into out_buffer.
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
int DisassemblerX64::InstructionDecode(v8::internal::Vector<char> out_buffer,
                                       byte* instr) {
  tmp_buffer_pos_ = 0;  // starting to write as position 0
  byte* data = instr;
  bool processed = true;  // Will be set to false if the current instruction
                          // is not in 'instructions' table.
  byte current;

  // Scan for prefixes.
  while (true) {
    current = *data;
2303
    if (current == OPERAND_SIZE_OVERRIDE_PREFIX) {  // Group 3 prefix.
2304 2305
      operand_size_ = current;
    } else if ((current & 0xF0) == 0x40) {  // REX prefix.
2306 2307
      setRex(current);
      if (rex_w()) AppendToBuffer("REX.W ");
2308
    } else if ((current & 0xFE) == 0xF2) {  // Group 1 prefix (0xF2 or 0xF3).
2309
      group_1_prefix_ = current;
2310 2311
    } else if (current == LOCK_PREFIX) {
      AppendToBuffer("lock ");
2312 2313 2314 2315 2316
    } else if (current == VEX3_PREFIX) {
      vex_byte0_ = current;
      vex_byte1_ = *(data + 1);
      vex_byte2_ = *(data + 2);
      setRex(0x40 | (~(vex_byte1_ >> 5) & 7) | ((vex_byte2_ >> 4) & 8));
2317 2318
      data += 3;
      break;  // Vex is the last prefix.
2319 2320 2321 2322
    } else if (current == VEX2_PREFIX) {
      vex_byte0_ = current;
      vex_byte1_ = *(data + 1);
      setRex(0x40 | (~(vex_byte1_ >> 5) & 4));
2323 2324
      data += 2;
      break;  // Vex is the last prefix.
2325
    } else {  // Not a prefix - an opcode.
2326 2327
      break;
    }
2328
    data++;
2329 2330
  }

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
  // Decode AVX instructions.
  if (vex_byte0_ != 0) {
    processed = true;
    data += AVXInstruction(data);
  } else {
    const InstructionDesc& idesc = instruction_table_->Get(current);
    byte_size_operand_ = idesc.byte_size_operation;
    switch (idesc.type) {
      case ZERO_OPERANDS_INSTR:
        if (current >= 0xA4 && current <= 0xA7) {
          // String move or compare operations.
          if (group_1_prefix_ == REP_PREFIX) {
            // REP.
            AppendToBuffer("rep ");
          }
          if (rex_w()) AppendToBuffer("REX.W ");
          AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
        } else {
jfb's avatar
jfb committed
2349
          AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
2350
        }
2351 2352
        data++;
        break;
2353

2354 2355 2356 2357
      case TWO_OPERANDS_INSTR:
        data++;
        data += PrintOperands(idesc.mnem, idesc.op_order_, data);
        break;
2358

2359 2360 2361
      case JUMP_CONDITIONAL_SHORT_INSTR:
        data += JumpConditionalShort(data);
        break;
2362

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
      case REGISTER_INSTR:
        AppendToBuffer("%s%c %s", idesc.mnem, operand_size_code(),
                       NameOfCPURegister(base_reg(current & 0x07)));
        data++;
        break;
      case PUSHPOP_INSTR:
        AppendToBuffer("%s %s", idesc.mnem,
                       NameOfCPURegister(base_reg(current & 0x07)));
        data++;
        break;
      case MOVE_REG_INSTR: {
2374
        byte* addr = nullptr;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
        switch (operand_size()) {
          case OPERAND_WORD_SIZE:
            addr =
                reinterpret_cast<byte*>(*reinterpret_cast<int16_t*>(data + 1));
            data += 3;
            break;
          case OPERAND_DOUBLEWORD_SIZE:
            addr =
                reinterpret_cast<byte*>(*reinterpret_cast<uint32_t*>(data + 1));
            data += 5;
            break;
          case OPERAND_QUADWORD_SIZE:
            addr =
                reinterpret_cast<byte*>(*reinterpret_cast<int64_t*>(data + 1));
            data += 9;
            break;
          default:
            UNREACHABLE();
        }
        AppendToBuffer("mov%c %s,%s", operand_size_code(),
                       NameOfCPURegister(base_reg(current & 0x07)),
                       NameOfAddress(addr));
        break;
2398 2399
      }

2400 2401 2402 2403 2404 2405
      case CALL_JUMP_INSTR: {
        byte* addr = data + *reinterpret_cast<int32_t*>(data + 1) + 5;
        AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr));
        data += 5;
        break;
      }
2406

2407
      case SHORT_IMMEDIATE_INSTR: {
2408 2409 2410 2411 2412 2413 2414 2415 2416
        int32_t imm;
        if (operand_size() == OPERAND_WORD_SIZE) {
          imm = *reinterpret_cast<int16_t*>(data + 1);
          data += 3;
        } else {
          imm = *reinterpret_cast<int32_t*>(data + 1);
          data += 5;
        }
        AppendToBuffer("%s rax,0x%x", idesc.mnem, imm);
2417 2418
        break;
      }
2419

2420 2421 2422
      case NO_INSTR:
        processed = false;
        break;
2423

2424 2425 2426
      default:
        UNIMPLEMENTED();  // This type is not implemented.
    }
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
  }

  // The first byte didn't match any of the simple opcodes, so we
  // need to do special processing on it.
  if (!processed) {
    switch (*data) {
      case 0xC2:
        AppendToBuffer("ret 0x%x", *reinterpret_cast<uint16_t*>(data + 1));
        data += 3;
        break;

      case 0x69:  // fall through
      case 0x6B: {
2440 2441 2442 2443 2444 2445 2446 2447 2448
        int count = 1;
        count += PrintOperands("imul", REG_OPER_OP_ORDER, data + count);
        AppendToBuffer(",0x");
        if (*data == 0x69) {
          count += PrintImmediate(data + count, operand_size());
        } else {
          count += PrintImmediate(data + count, OPERAND_BYTE_SIZE);
        }
        data += count;
2449
        break;
2450
      }
2451 2452 2453 2454 2455 2456

      case 0x81:  // fall through
      case 0x83:  // 0x81 with sign extension bit set
        data += PrintImmediateOp(data);
        break;

2457 2458
      case 0x0F:
        data += TwoByteOpcodeInstruction(data);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
        break;

      case 0x8F: {
        data++;
        int mod, regop, rm;
        get_modrm(*data, &mod, &regop, &rm);
        if (regop == 0) {
          AppendToBuffer("pop ");
          data += PrintRightOperand(data);
        }
      }
        break;

      case 0xFF: {
        data++;
        int mod, regop, rm;
        get_modrm(*data, &mod, &regop, &rm);
2476
        const char* mnem = nullptr;
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
        switch (regop) {
          case 0:
            mnem = "inc";
            break;
          case 1:
            mnem = "dec";
            break;
          case 2:
            mnem = "call";
            break;
          case 4:
            mnem = "jmp";
            break;
          case 6:
            mnem = "push";
            break;
          default:
            mnem = "???";
        }
jfb's avatar
jfb committed
2496 2497 2498 2499 2500
        if (regop <= 1) {
          AppendToBuffer("%s%c ", mnem, operand_size_code());
        } else {
          AppendToBuffer("%s ", mnem);
        }
2501 2502 2503 2504 2505 2506 2507 2508 2509
        data += PrintRightOperand(data);
      }
        break;

      case 0xC7:  // imm32, fall through
      case 0xC6:  // imm8
      {
        bool is_byte = *data == 0xC6;
        data++;
2510 2511 2512 2513 2514 2515 2516 2517 2518
        if (is_byte) {
          AppendToBuffer("movb ");
          data += PrintRightByteOperand(data);
          int32_t imm = *data;
          AppendToBuffer(",0x%x", imm);
          data++;
        } else {
          AppendToBuffer("mov%c ", operand_size_code());
          data += PrintRightOperand(data);
2519 2520 2521 2522 2523 2524 2525 2526 2527
          if (operand_size() == OPERAND_WORD_SIZE) {
            int16_t imm = *reinterpret_cast<int16_t*>(data);
            AppendToBuffer(",0x%x", imm);
            data += 2;
          } else {
            int32_t imm = *reinterpret_cast<int32_t*>(data);
            AppendToBuffer(",0x%x", imm);
            data += 4;
          }
2528
        }
2529 2530 2531 2532 2533 2534
      }
        break;

      case 0x80: {
        data++;
        AppendToBuffer("cmpb ");
2535
        data += PrintRightByteOperand(data);
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
        int32_t imm = *data;
        AppendToBuffer(",0x%x", imm);
        data++;
      }
        break;

      case 0x88:  // 8bit, fall through
      case 0x89:  // 32bit
      {
        bool is_byte = *data == 0x88;
        int mod, regop, rm;
        data++;
        get_modrm(*data, &mod, &regop, &rm);
2549 2550 2551 2552 2553 2554 2555 2556 2557
        if (is_byte) {
          AppendToBuffer("movb ");
          data += PrintRightByteOperand(data);
          AppendToBuffer(",%s", NameOfByteCPURegister(regop));
        } else {
          AppendToBuffer("mov%c ", operand_size_code());
          data += PrintRightOperand(data);
          AppendToBuffer(",%s", NameOfCPURegister(regop));
        }
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
      }
        break;

      case 0x90:
      case 0x91:
      case 0x92:
      case 0x93:
      case 0x94:
      case 0x95:
      case 0x96:
      case 0x97: {
2569
        int reg = (*data & 0x7) | (rex_b() ? 8 : 0);
2570 2571 2572
        if (reg == 0) {
          AppendToBuffer("nop");  // Common name for xchg rax,rax.
        } else {
2573
          AppendToBuffer("xchg%c rax,%s",
2574
                         operand_size_code(),
2575
                         NameOfCPURegister(reg));
2576
        }
2577
        data++;
2578
      }
2579
        break;
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
      case 0xB0:
      case 0xB1:
      case 0xB2:
      case 0xB3:
      case 0xB4:
      case 0xB5:
      case 0xB6:
      case 0xB7:
      case 0xB8:
      case 0xB9:
      case 0xBA:
      case 0xBB:
      case 0xBC:
      case 0xBD:
      case 0xBE:
      case 0xBF: {
        // mov reg8,imm8 or mov reg32,imm32
        byte opcode = *data;
        data++;
        bool is_32bit = (opcode >= 0xB8);
        int reg = (opcode & 0x7) | (rex_b() ? 8 : 0);
        if (is_32bit) {
2602
          AppendToBuffer("mov%c %s,",
2603 2604
                         operand_size_code(),
                         NameOfCPURegister(reg));
2605
          data += PrintImmediate(data, OPERAND_DOUBLEWORD_SIZE);
2606
        } else {
2607
          AppendToBuffer("movb %s,",
2608
                         NameOfByteCPURegister(reg));
2609
          data += PrintImmediate(data, OPERAND_BYTE_SIZE);
2610 2611 2612
        }
        break;
      }
2613 2614 2615 2616
      case 0xFE: {
        data++;
        int mod, regop, rm;
        get_modrm(*data, &mod, &regop, &rm);
2617 2618
        if (regop == 1) {
          AppendToBuffer("decb ");
2619
          data += PrintRightByteOperand(data);
2620 2621 2622 2623
        } else {
          UnimplementedInstruction();
        }
        break;
2624
      }
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
      case 0x68:
        AppendToBuffer("push 0x%x", *reinterpret_cast<int32_t*>(data + 1));
        data += 5;
        break;

      case 0x6A:
        AppendToBuffer("push 0x%x", *reinterpret_cast<int8_t*>(data + 1));
        data += 2;
        break;

2635 2636 2637
      case 0xA1:  // Fall through.
      case 0xA3:
        switch (operand_size()) {
2638
          case OPERAND_DOUBLEWORD_SIZE: {
2639 2640 2641
            const char* memory_location = NameOfAddress(
                reinterpret_cast<byte*>(
                    *reinterpret_cast<int32_t*>(data + 1)));
2642
            if (*data == 0xA1) {  // Opcode 0xA1
2643
              AppendToBuffer("movzxlq rax,(%s)", memory_location);
2644
            } else {  // Opcode 0xA3
2645 2646 2647 2648 2649
              AppendToBuffer("movzxlq (%s),rax", memory_location);
            }
            data += 5;
            break;
          }
2650
          case OPERAND_QUADWORD_SIZE: {
2651 2652 2653
            // New x64 instruction mov rax,(imm_64).
            const char* memory_location = NameOfAddress(
                *reinterpret_cast<byte**>(data + 1));
2654
            if (*data == 0xA1) {  // Opcode 0xA1
2655
              AppendToBuffer("movq rax,(%s)", memory_location);
2656
            } else {  // Opcode 0xA3
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
              AppendToBuffer("movq (%s),rax", memory_location);
            }
            data += 9;
            break;
          }
          default:
            UnimplementedInstruction();
            data += 2;
        }
        break;

2668 2669 2670 2671 2672
      case 0xA8:
        AppendToBuffer("test al,0x%x", *reinterpret_cast<uint8_t*>(data + 1));
        data += 2;
        break;

2673
      case 0xA9: {
2674
        int64_t value = 0;
2675
        switch (operand_size()) {
2676
          case OPERAND_WORD_SIZE:
2677 2678 2679
            value = *reinterpret_cast<uint16_t*>(data + 1);
            data += 3;
            break;
2680
          case OPERAND_DOUBLEWORD_SIZE:
2681 2682 2683
            value = *reinterpret_cast<uint32_t*>(data + 1);
            data += 5;
            break;
2684
          case OPERAND_QUADWORD_SIZE:
2685 2686 2687 2688 2689 2690
            value = *reinterpret_cast<int32_t*>(data + 1);
            data += 5;
            break;
          default:
            UNREACHABLE();
        }
jfb's avatar
jfb committed
2691
        AppendToBuffer("test%c rax,0x%" PRIx64, operand_size_code(), value);
2692
        break;
2693
      }
2694 2695 2696
      case 0xD1:  // fall through
      case 0xD3:  // fall through
      case 0xC1:
2697 2698 2699 2700 2701 2702 2703
        data += ShiftInstruction(data);
        break;
      case 0xD0:  // fall through
      case 0xD2:  // fall through
      case 0xC0:
        byte_size_operand_ = true;
        data += ShiftInstruction(data);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
        break;

      case 0xD9:  // fall through
      case 0xDA:  // fall through
      case 0xDB:  // fall through
      case 0xDC:  // fall through
      case 0xDD:  // fall through
      case 0xDE:  // fall through
      case 0xDF:
        data += FPUInstruction(data);
        break;

      case 0xEB:
        data += JumpShort(data);
        break;

2720
      case 0xF6:
2721 2722
        byte_size_operand_ = true;
        V8_FALLTHROUGH;
2723
      case 0xF7:
2724
        data += F6F7Instruction(data);
2725 2726
        break;

2727
      case 0x3C:
2728
        AppendToBuffer("cmp al,0x%x", *reinterpret_cast<int8_t*>(data + 1));
2729 2730 2731
        data +=2;
        break;

2732 2733
      default:
        UnimplementedInstruction();
2734
        data += 1;
2735 2736 2737 2738 2739 2740 2741
    }
  }  // !processed

  if (tmp_buffer_pos_ < sizeof tmp_buffer_) {
    tmp_buffer_[tmp_buffer_pos_] = '\0';
  }

2742
  int instr_len = static_cast<int>(data - instr);
2743
  DCHECK_GT(instr_len, 0);  // Ensure progress.
2744 2745 2746 2747

  int outp = 0;
  // Instruction bytes.
  for (byte* bp = instr; bp < data; bp++) {
2748
    outp += v8::internal::SNPrintF(out_buffer + outp, "%02x", *bp);
2749 2750
  }
  for (int i = 6 - instr_len; i >= 0; i--) {
2751
    outp += v8::internal::SNPrintF(out_buffer + outp, "  ");
2752 2753
  }

2754 2755
  outp += v8::internal::SNPrintF(out_buffer + outp, " %s",
                                 tmp_buffer_.start());
2756 2757 2758
  return instr_len;
}

2759

2760 2761 2762
//------------------------------------------------------------------------------


2763
static const char* const cpu_regs[16] = {
2764 2765 2766 2767 2768
  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};


2769
static const char* const byte_cpu_regs[16] = {
2770 2771 2772 2773 2774
  "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil",
  "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
};


2775
static const char* const xmm_regs[16] = {
2776 2777 2778 2779 2780 2781
  "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"
};


const char* NameConverter::NameOfAddress(byte* addr) const {
2782
  v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr));
2783
  return tmp_buffer_.start();
2784 2785 2786 2787 2788
}


const char* NameConverter::NameOfConstant(byte* addr) const {
  return NameOfAddress(addr);
2789
}
2790 2791


2792
const char* NameConverter::NameOfCPURegister(int reg) const {
2793 2794 2795
  if (0 <= reg && reg < 16)
    return cpu_regs[reg];
  return "noreg";
2796
}
2797 2798


2799 2800 2801 2802
const char* NameConverter::NameOfByteCPURegister(int reg) const {
  if (0 <= reg && reg < 16)
    return byte_cpu_regs[reg];
  return "noreg";
2803
}
2804 2805


2806 2807 2808 2809
const char* NameConverter::NameOfXMMRegister(int reg) const {
  if (0 <= reg && reg < 16)
    return xmm_regs[reg];
  return "noxmmreg";
2810
}
2811

2812 2813 2814 2815

const char* NameConverter::NameInCode(byte* addr) const {
  // X64 does not embed debug strings at the moment.
  UNREACHABLE();
2816 2817
}

2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
//------------------------------------------------------------------------------

Disassembler::Disassembler(const NameConverter& converter)
    : converter_(converter) { }

Disassembler::~Disassembler() { }


int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
                                    byte* instruction) {
  DisassemblerX64 d(converter_, CONTINUE_ON_UNIMPLEMENTED_OPCODE);
  return d.InstructionDecode(buffer, instruction);
2831 2832
}

2833 2834 2835 2836 2837
int Disassembler::InstructionDecodeForTesting(v8::internal::Vector<char> buffer,
                                              byte* instruction) {
  DisassemblerX64 d(converter_, ABORT_ON_UNIMPLEMENTED_OPCODE);
  return d.InstructionDecode(buffer, instruction);
}
2838 2839 2840 2841

// The X64 assembler does not use constant pools.
int Disassembler::ConstantPoolSizeAt(byte* instruction) {
  return -1;
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852

void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
  NameConverter converter;
  Disassembler d(converter);
  for (byte* pc = begin; pc < end;) {
    v8::internal::EmbeddedVector<char, 128> buffer;
    buffer[0] = '\0';
    byte* prev_pc = pc;
    pc += d.InstructionDecode(buffer, pc);
2853
    fprintf(f, "%p", static_cast<void*>(prev_pc));
2854 2855 2856 2857 2858
    fprintf(f, "    ");

    for (byte* bp = prev_pc; bp < pc; bp++) {
      fprintf(f, "%02x", *bp);
    }
2859
    for (int i = 6 - static_cast<int>(pc - prev_pc); i >= 0; i--) {
2860 2861 2862 2863
      fprintf(f, "  ");
    }
    fprintf(f, "  %s\n", buffer.start());
  }
2864
}
2865 2866

}  // namespace disasm
2867 2868

#endif  // V8_TARGET_ARCH_X64