Commit 62e8d5a7 authored by ager@chromium.org's avatar ager@chromium.org

Port inline version of Math.sqrt and Math.pow from ia32 to x64.

Review URL: http://codereview.chromium.org/1774010

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4541 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent c973f99c
......@@ -6623,10 +6623,10 @@ void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) {
}
// Generates the Math.pow method - only handles special cases and branches to
// the runtime system if not.Please note - this function assumes that
// the callsite has executed ToNumber on both arguments and that the
// arguments are not the same identifier.
// Generates the Math.pow method. Only handles special cases and
// branches to the runtime system for everything else. Please note
// that this function assumes that the callsite has executed ToNumber
// on both arguments.
void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
Load(args->at(0));
......@@ -6649,8 +6649,6 @@ void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
Result answer = allocator()->Allocate();
ASSERT(answer.is_valid());
// We can safely assume that the base and exponent is not in the same
// register since we only call this from one callsite (math.js).
ASSERT(!exponent.reg().is(base.reg()));
JumpTarget call_runtime;
......@@ -6699,7 +6697,6 @@ void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
Label while_true;
Label no_multiply;
// Label allocate_and_return;
__ bind(&while_true);
__ shr(exponent.reg(), 1);
__ j(not_carry, &no_multiply);
......
......@@ -2546,12 +2546,23 @@ void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
last_pc_ = pc_;
emit(0x66);
emit_optional_rex_32(dst, src);
emit(0x0f);
emit(0x0F);
emit(0x57);
emit_sse_operand(dst, src);
}
void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2);
emit_optional_rex_32(dst, src);
emit(0x0F);
emit(0x51);
emit_sse_operand(dst, src);
}
void Assembler::comisd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
......
......@@ -1101,6 +1101,7 @@ class Assembler : public Malloced {
void divsd(XMMRegister dst, XMMRegister src);
void xorpd(XMMRegister dst, XMMRegister src);
void sqrtsd(XMMRegister dst, XMMRegister src);
void comisd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, XMMRegister src);
......
......@@ -4050,22 +4050,231 @@ void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
}
// Generates the Math.pow method - currently just calls runtime.
// Generates the Math.pow method. Only handles special cases and
// branches to the runtime system for everything else. Please note
// that this function assumes that the callsite has executed ToNumber
// on both arguments.
void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Result res = frame_->CallRuntime(Runtime::kMath_pow, 2);
frame_->Push(&res);
Label allocate_return;
// Load the two operands while leaving the values on the frame.
frame()->Dup();
Result exponent = frame()->Pop();
exponent.ToRegister();
frame()->Spill(exponent.reg());
frame()->PushElementAt(1);
Result base = frame()->Pop();
base.ToRegister();
frame()->Spill(base.reg());
Result answer = allocator()->Allocate();
ASSERT(answer.is_valid());
ASSERT(!exponent.reg().is(base.reg()));
JumpTarget call_runtime;
// Save 1 in xmm3 - we need this several times later on.
__ movl(answer.reg(), Immediate(1));
__ cvtlsi2sd(xmm3, answer.reg());
Label exponent_nonsmi;
Label base_nonsmi;
// If the exponent is a heap number go to that specific case.
__ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi);
__ JumpIfNotSmi(base.reg(), &base_nonsmi);
// Optimized version when y is an integer.
Label powi;
__ SmiToInteger32(base.reg(), base.reg());
__ cvtlsi2sd(xmm0, base.reg());
__ jmp(&powi);
// exponent is smi and base is a heapnumber.
__ bind(&base_nonsmi);
__ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
// Optimized version of pow if y is an integer.
__ bind(&powi);
__ SmiToInteger32(exponent.reg(), exponent.reg());
// Save exponent in base as we need to check if exponent is negative later.
// We know that base and exponent are in different registers.
__ movl(base.reg(), exponent.reg());
// Get absolute value of exponent.
Label no_neg;
__ cmpl(exponent.reg(), Immediate(0));
__ j(greater_equal, &no_neg);
__ negl(exponent.reg());
__ bind(&no_neg);
// Load xmm1 with 1.
__ movsd(xmm1, xmm3);
Label while_true;
Label no_multiply;
__ bind(&while_true);
__ shrl(exponent.reg(), Immediate(1));
__ j(not_carry, &no_multiply);
__ mulsd(xmm1, xmm0);
__ bind(&no_multiply);
__ testl(exponent.reg(), exponent.reg());
__ mulsd(xmm0, xmm0);
__ j(not_zero, &while_true);
// x has the original value of y - if y is negative return 1/result.
__ testl(base.reg(), base.reg());
__ j(positive, &allocate_return);
// Special case if xmm1 has reached infinity.
__ movl(answer.reg(), Immediate(0x7FB00000));
__ movd(xmm0, answer.reg());
__ cvtss2sd(xmm0, xmm0);
__ ucomisd(xmm0, xmm1);
call_runtime.Branch(equal);
__ divsd(xmm3, xmm1);
__ movsd(xmm1, xmm3);
__ jmp(&allocate_return);
// exponent (or both) is a heapnumber - no matter what we should now work
// on doubles.
__ bind(&exponent_nonsmi);
__ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
// Test if exponent is nan.
__ ucomisd(xmm1, xmm1);
call_runtime.Branch(parity_even);
Label base_not_smi;
Label handle_special_cases;
__ testl(base.reg(), Immediate(kSmiTagMask));
__ j(not_zero, &base_not_smi);
__ SmiToInteger32(base.reg(), base.reg());
__ cvtlsi2sd(xmm0, base.reg());
__ jmp(&handle_special_cases);
__ bind(&base_not_smi);
__ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
__ andl(answer.reg(), Immediate(HeapNumber::kExponentMask));
__ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask));
// base is NaN or +/-Infinity
call_runtime.Branch(greater_equal);
__ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
// base is in xmm0 and exponent is in xmm1.
__ bind(&handle_special_cases);
Label not_minus_half;
// Test for -0.5.
// Load xmm2 with -0.5.
__ movl(answer.reg(), Immediate(0xBF000000));
__ movd(xmm2, answer.reg());
__ cvtss2sd(xmm2, xmm2);
// xmm2 now has -0.5.
__ ucomisd(xmm2, xmm1);
__ j(not_equal, &not_minus_half);
// Calculates reciprocal of square root.
// Note that 1/sqrt(x) = sqrt(1/x))
__ divsd(xmm3, xmm0);
__ movsd(xmm1, xmm3);
__ sqrtsd(xmm1, xmm1);
__ jmp(&allocate_return);
// Test for 0.5.
__ bind(&not_minus_half);
// Load xmm2 with 0.5.
// Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
__ addsd(xmm2, xmm3);
// xmm2 now has 0.5.
__ comisd(xmm2, xmm1);
call_runtime.Branch(not_equal);
// Calculates square root.
__ movsd(xmm1, xmm0);
__ sqrtsd(xmm1, xmm1);
JumpTarget done;
Label failure, success;
__ bind(&allocate_return);
// Make a copy of the frame to enable us to handle allocation
// failure after the JumpTarget jump.
VirtualFrame* clone = new VirtualFrame(frame());
__ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure);
__ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
// Remove the two original values from the frame - we only need those
// in the case where we branch to runtime.
frame()->Drop(2);
exponent.Unuse();
base.Unuse();
done.Jump(&answer);
// Use the copy of the original frame as our current frame.
RegisterFile empty_regs;
SetFrame(clone, &empty_regs);
// If we experience an allocation failure we branch to runtime.
__ bind(&failure);
call_runtime.Bind();
answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
done.Bind(&answer);
frame()->Push(&answer);
}
// Generates the Math.sqrt method - currently just calls runtime.
// Generates the Math.sqrt method. Please note - this function assumes that
// the callsite has executed ToNumber on the argument.
void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result res = frame_->CallRuntime(Runtime::kMath_sqrt, 1);
frame_->Push(&res);
// Leave original value on the frame if we need to call runtime.
frame()->Dup();
Result result = frame()->Pop();
result.ToRegister();
frame()->Spill(result.reg());
Label runtime;
Label non_smi;
Label load_done;
JumpTarget end;
__ JumpIfNotSmi(result.reg(), &non_smi);
__ SmiToInteger32(result.reg(), result.reg());
__ cvtlsi2sd(xmm0, result.reg());
__ jmp(&load_done);
__ bind(&non_smi);
__ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &runtime);
__ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
__ bind(&load_done);
__ sqrtsd(xmm0, xmm0);
// A copy of the virtual frame to allow us to go to runtime after the
// JumpTarget jump.
Result scratch = allocator()->Allocate();
VirtualFrame* clone = new VirtualFrame(frame());
__ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime);
__ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
frame()->Drop(1);
scratch.Unuse();
end.Jump(&result);
// We only branch to runtime if we have an allocation error.
// Use the copy of the original frame as our current frame.
RegisterFile empty_regs;
SetFrame(clone, &empty_regs);
__ bind(&runtime);
result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
end.Bind(&result);
frame()->Push(&result);
}
......
......@@ -1035,7 +1035,7 @@ int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) {
get_modrm(*current, &mod, &regop, &rm);
AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
current += PrintRightOperand(current);
} else if ((opcode & 0xF8) == 0x58) {
} else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
// XMM arithmetic. Mnemonic was retrieved at the start of this function.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
......@@ -1126,6 +1126,8 @@ const char* DisassemblerX64::TwoByteMnemonic(byte opcode) {
return "cvtsi2sd";
case 0x31:
return "rdtsc";
case 0x51: // F2 prefix.
return "sqrtsd";
case 0x58: // F2 prefix.
return "addsd";
case 0x59: // F2 prefix.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment