Commit 6f1d641f authored by lrn@chromium.org's avatar lrn@chromium.org

X64/Win64: Alternative implementation of fmod in general.

Review URL: http://codereview.chromium.org/303034


git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3116 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent d50fbb63
......@@ -84,7 +84,7 @@ int32_t DoubleToInt32(double x) {
static const double two32 = 4294967296.0;
static const double two31 = 2147483648.0;
if (!isfinite(x) || x == 0) return 0;
if (x < 0 || x >= two32) x = fmod(x, two32);
if (x < 0 || x >= two32) x = modulo(x, two32);
x = (x >= 0) ? floor(x) : ceil(x) + two32;
return (int32_t) ((x >= two31) ? x - two32 : x);
}
......
......@@ -664,7 +664,7 @@ char* DoubleToRadixCString(double value, int radix) {
int integer_pos = kBufferSize - 2;
do {
integer_buffer[integer_pos--] =
chars[static_cast<int>(fmod(integer_part, radix))];
chars[static_cast<int>(modulo(integer_part, radix))];
integer_part /= radix;
} while (integer_part >= 1.0);
// Sanity check.
......
......@@ -31,6 +31,7 @@
namespace v8 {
namespace internal {
// The fast double-to-int conversion routine does not guarantee
// rounding towards zero.
// The result is unspecified if x is infinite or NaN, or if the rounded
......
......@@ -47,6 +47,13 @@ double ceiling(double x) {
}
// Give V8 the opportunity to override the default fmod behavior.
double modulo(double x, double y) {
UNIMPLEMENTED();
return 0;
}
// Initialize OS class early in the V8 startup.
void OS::Setup() {
// Seed the random number generator.
......
......@@ -54,6 +54,12 @@
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Math functions
double modulo(double x, double y) {
return fmod(x, y);
}
// ----------------------------------------------------------------------------
// POSIX date/time support.
......
......@@ -223,6 +223,31 @@ double ceiling(double x) {
return ceil(x);
}
#ifdef _WIN64
typedef double (*ModuloFunction)(double, double);
// Defined in codegen-x64.cc.
ModuloFunction CreateModuloFunction();
double modulo(double x, double y) {
static ModuloFunction function = CreateModuloFunction();
return function(x, y);
}
#else // Win32
double modulo(double x, double y) {
// Workaround MS fmod bugs. ECMA-262 says:
// dividend is finite and divisor is an infinity => result equals dividend
// dividend is a zero and divisor is nonzero finite => result equals dividend
if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
!(x == 0 && (y != 0 && isfinite(y)))) {
x = fmod(x, y);
}
return x;
}
#endif // _WIN64
// ----------------------------------------------------------------------------
// The Time class represents time on win32. A timestamp is represented as
// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
......
......@@ -111,6 +111,7 @@ namespace internal {
class Semaphore;
double ceiling(double x);
double modulo(double x, double y);
// Forward declarations.
class Socket;
......
......@@ -3742,14 +3742,7 @@ static Object* Runtime_NumberMod(Arguments args) {
CONVERT_DOUBLE_CHECKED(x, args[0]);
CONVERT_DOUBLE_CHECKED(y, args[1]);
#if defined WIN32 || defined _WIN64
// Workaround MS fmod bugs. ECMA-262 says:
// dividend is finite and divisor is an infinity => result equals dividend
// dividend is a zero and divisor is nonzero finite => result equals dividend
if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
!(x == 0 && (y != 0 && isfinite(y))))
#endif
x = fmod(x, y);
x = modulo(x, y);
// NewNumberFromDouble may return a Smi instead of a Number object
return Heap::NewNumberFromDouble(x);
}
......
......@@ -2009,6 +2009,14 @@ void Assembler::fstp_d(const Operand& adr) {
}
void Assembler::fstp(int index) {
ASSERT(is_uint3(index));
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit_farith(0xDD, 0xD8, index);
}
void Assembler::fild_s(const Operand& adr) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
......@@ -2313,18 +2321,7 @@ void Assembler::movsd(const Operand& dst, XMMRegister src) {
}
void Assembler::movsd(Register dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2); // double
emit_optional_rex_32(src, dst);
emit(0x0F);
emit(0x11); // store
emit_sse_operand(src, dst);
}
void Assembler::movsd(XMMRegister dst, Register src) {
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
EnsureSpace ensure_space(this);
last_pc_ = pc_;
emit(0xF2); // double
......
......@@ -1013,6 +1013,7 @@ class Assembler : public Malloced {
void fstp_s(const Operand& adr);
void fstp_d(const Operand& adr);
void fstp(int index);
void fild_s(const Operand& adr);
void fild_d(const Operand& adr);
......@@ -1066,8 +1067,7 @@ class Assembler : public Malloced {
// SSE2 instructions
void movsd(const Operand& dst, XMMRegister src);
void movsd(Register src, XMMRegister dst);
void movsd(XMMRegister dst, Register src);
void movsd(XMMRegister src, XMMRegister dst);
void movsd(XMMRegister src, const Operand& dst);
void cvttss2si(Register dst, const Operand& src);
......
......@@ -7643,6 +7643,98 @@ int CompareStub::MinorKey() {
return (static_cast<unsigned>(cc_) << 1) | (strict_ ? 1 : 0);
}
#undef __
#define __ masm.
#ifdef _WIN64
typedef double (*ModuloFunction)(double, double);
// Define custom fmod implementation.
ModuloFunction CreateModuloFunction() {
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Assembler masm(buffer, actual_size);
// Generated code is put into a fixed, unmovable, buffer, and not into
// the V8 heap. We can't, and don't, refer to any relocatable addresses
// (e.g. the JavaScript nan-object).
// Windows 64 ABI passes double arguments in xmm0, xmm1 and
// returns result in xmm0.
// Argument backing space is allocated on the stack above
// the return address.
// Compute x mod y.
// Load y and x (use argument backing store as temporary storage).
__ movsd(Operand(rsp, kPointerSize * 2), xmm1);
__ movsd(Operand(rsp, kPointerSize), xmm0);
__ fld_d(Operand(rsp, kPointerSize * 2));
__ fld_d(Operand(rsp, kPointerSize));
// Clear exception flags before operation.
{
Label no_exceptions;
__ fwait();
__ fnstsw_ax();
// Clear if Illegal Operand or Zero Division exceptions are set.
__ testb(rax, Immediate(5));
__ j(zero, &no_exceptions);
__ fnclex();
__ bind(&no_exceptions);
}
// Compute st(0) % st(1)
{
Label partial_remainder_loop;
__ bind(&partial_remainder_loop);
__ fprem();
__ fwait();
__ fnstsw_ax();
__ testl(rax, Immediate(0x400 /* C2 */));
// If C2 is set, computation only has partial result. Loop to
// continue computation.
__ j(not_zero, &partial_remainder_loop);
}
Label valid_result;
Label return_result;
// If Invalid Operand or Zero Division exceptions are set,
// return NaN.
__ testb(rax, Immediate(5));
__ j(zero, &valid_result);
__ fstp(0); // Drop result in st(0).
int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000);
__ movq(rcx, kNaNValue, RelocInfo::NONE);
__ movq(Operand(rsp, kPointerSize), rcx);
__ movsd(xmm0, Operand(rsp, kPointerSize));
__ jmp(&return_result);
// If result is valid, return that.
__ bind(&valid_result);
__ fstp_d(Operand(rsp, kPointerSize));
__ movsd(xmm0, Operand(rsp, kPointerSize));
// Clean up FPU stack and exceptions and return xmm0
__ bind(&return_result);
__ fstp(0); // Unload y.
{
Label no_exceptions;
__ testb(rax, Immediate(0x3f /* Any Exception*/));
__ j(zero, &no_exceptions);
__ fnclex();
__ bind(&no_exceptions);
}
__ ret(0);
CodeDesc desc;
masm.GetCode(&desc);
// Call the function from C++.
return FUNCTION_CAST<ModuloFunction>(buffer);
}
#endif
#undef __
......
......@@ -860,12 +860,22 @@ int DisassemblerX64::FPUInstruction(byte* data) {
return count + 1;
}
} else if (b1 == 0xDD) {
if ((b2 & 0xF8) == 0xC0) {
AppendToBuffer("ffree st%d", b2 & 0x7);
int mod, regop, rm;
get_modrm(*(data + 1), &mod, &regop, &rm);
if (mod == 3) {
switch (regop) {
case 0:
AppendToBuffer("ffree st%d", rm & 7);
break;
case 2:
AppendToBuffer("fstp st%d", rm & 7);
break;
default:
UnimplementedInstruction();
break;
}
return 2;
} else {
int mod, regop, rm;
get_modrm(*(data + 1), &mod, &regop, &rm);
const char* mnem = "?";
switch (regop) {
case 0:
......
......@@ -86,3 +86,72 @@ var divisors = [
for (var i = 0; i < divisors.length; i++) {
run_tests_for(divisors[i]);
}
// Test extreme corner cases of modulo.
// Computes the modulo by slow but lossless operations.
function compute_mod(dividend, divisor) {
// Return NaN if either operand is NaN, if divisor is 0 or
// dividend is an infinity. Return dividend if divisor is an infinity.
if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; }
var sign = 1;
if (dividend < 0) { dividend = -dividend; sign = -1; }
if (dividend == Infinity) { return NaN; }
if (divisor < 0) { divisor = -divisor; }
if (divisor == Infinity) { return sign * dividend; }
function rec_mod(a, b) {
// Subtracts maximal possible multiplum of b from a.
if (a >= b) {
a = rec_mod(a, 2 * b);
if (a >= b) { a -= b; }
}
return a;
}
return sign * rec_mod(dividend, divisor);
}
(function () {
var large_non_smi = 1234567891234.12245;
var small_non_smi = 43.2367243;
var repeating_decimal = 0.3;
var finite_decimal = 0.5;
var smi = 43;
var power_of_two = 64;
var min_normal = Number.MIN_VALUE * Math.pow(2, 52);
var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1);
// All combinations of NaN, Infinity, normal, denormal and zero.
var example_numbers = [
NaN,
0,
Number.MIN_VALUE,
3 * Number.MIN_VALUE,
max_denormal,
min_normal,
repeating_decimal,
finite_decimal,
smi,
power_of_two,
small_non_smi,
large_non_smi,
Number.MAX_VALUE,
Infinity
];
function doTest(a, b) {
var exp = compute_mod(a, b);
var act = a % b;
assertEquals(exp, act, a + " % " + b);
}
for (var i = 0; i < example_numbers.length; i++) {
for (var j = 0; j < example_numbers.length; j++) {
var a = example_numbers[i];
var b = example_numbers[j];
doTest(a,b);
doTest(-a,b);
doTest(a,-b);
doTest(-a,-b);
}
}
})()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment