constants-mips.h 56.3 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#ifndef V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_
#define V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_
7
#include "src/codegen/cpu-features.h"
8
// UNIMPLEMENTED_ macro for MIPS.
9
#ifdef DEBUG
10 11
#define UNIMPLEMENTED_MIPS()                                               \
  v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
12
                       __FILE__, __LINE__, __func__)
13 14 15 16
#else
#define UNIMPLEMENTED_MIPS()
#endif

17 18
#define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")

19
enum ArchVariants {
20 21 22
  kMips32r1 = v8::internal::MIPSr1,
  kMips32r2 = v8::internal::MIPSr2,
  kMips32r6 = v8::internal::MIPSr6,
23 24
  kLoongson
};
25

26
#ifdef _MIPS_ARCH_MIPS32R2
27
static const ArchVariants kArchVariant = kMips32r2;
28
#elif _MIPS_ARCH_MIPS32R6
29
static const ArchVariants kArchVariant = kMips32r6;
30 31 32
#elif _MIPS_ARCH_LOONGSON
// The loongson flag refers to the LOONGSON architectures based on MIPS-III,
// which predates (and is a subset of) the mips32r2 and r1 architectures.
33
static const ArchVariants kArchVariant = kLoongson;
34 35 36 37
#elif _MIPS_ARCH_MIPS32RX
// This flags referred to compatibility mode that creates universal code that
// can run on any MIPS32 architecture revision. The dynamically generated code
// by v8 is specialized for the MIPS host detected in runtime probing.
38
static const ArchVariants kArchVariant = kMips32r1;
39
#else
40
static const ArchVariants kArchVariant = kMips32r1;
41 42
#endif

43
enum Endianness { kLittle, kBig };
44 45

#if defined(V8_TARGET_LITTLE_ENDIAN)
46
static const Endianness kArchEndian = kLittle;
47
#elif defined(V8_TARGET_BIG_ENDIAN)
48
static const Endianness kArchEndian = kBig;
49 50 51
#else
#error Unknown endianness
#endif
52

53
enum FpuMode { kFP32, kFP64, kFPXX };
54 55

#if defined(FPU_MODE_FP32)
56
static const FpuMode kFpuMode = kFP32;
57
#elif defined(FPU_MODE_FP64)
58
static const FpuMode kFpuMode = kFP64;
59
#elif defined(FPU_MODE_FPXX)
60 61
#if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS32R6)
static const FpuMode kFpuMode = kFPXX;
62
#else
63 64 65 66
#error "FPXX is supported only on Mips32R2 and Mips32R6"
#endif
#else
static const FpuMode kFpuMode = kFP32;
67 68
#endif

69
#if defined(__mips_hard_float) && __mips_hard_float != 0
70 71
// Use floating-point coprocessor instructions. This flag is raised when
// -mhard-float is passed to the compiler.
72
const bool IsMipsSoftFloatABI = false;
73
#elif defined(__mips_soft_float) && __mips_soft_float != 0
74 75 76
// This flag is raised when -msoft-float is passed to the compiler.
// Although FPU is a base requirement for v8, soft-float ABI is used
// on soft-float systems with FPU kernel emulation.
77
const bool IsMipsSoftFloatABI = true;
78
#else
79
const bool IsMipsSoftFloatABI = true;
80 81
#endif

82 83 84 85 86 87 88 89 90
#if defined(V8_TARGET_LITTLE_ENDIAN)
const uint32_t kHoleNanUpper32Offset = 4;
const uint32_t kHoleNanLower32Offset = 0;
#elif defined(V8_TARGET_BIG_ENDIAN)
const uint32_t kHoleNanUpper32Offset = 0;
const uint32_t kHoleNanLower32Offset = 4;
#else
#error Unknown endianness
#endif
91

92 93 94
constexpr bool IsFp64Mode() { return kFpuMode == kFP64; }
constexpr bool IsFp32Mode() { return kFpuMode == kFP32; }
constexpr bool IsFpxxMode() { return kFpuMode == kFPXX; }
95 96

#ifndef _MIPS_ARCH_MIPS32RX
97 98 99
constexpr bool IsMipsArchVariant(const ArchVariants check) {
  return kArchVariant == check;
}
100
#else
101 102 103
bool IsMipsArchVariant(const ArchVariants check) {
  return CpuFeatures::IsSupported(static_cast<CpuFeature>(check));
}
104 105
#endif

106 107 108 109 110 111 112 113 114 115 116 117 118
#if defined(V8_TARGET_LITTLE_ENDIAN)
const uint32_t kMipsLwrOffset = 0;
const uint32_t kMipsLwlOffset = 3;
const uint32_t kMipsSwrOffset = 0;
const uint32_t kMipsSwlOffset = 3;
#elif defined(V8_TARGET_BIG_ENDIAN)
const uint32_t kMipsLwrOffset = 3;
const uint32_t kMipsLwlOffset = 0;
const uint32_t kMipsSwrOffset = 3;
const uint32_t kMipsSwlOffset = 0;
#else
#error Unknown endianness
#endif
119

Miran.Karic's avatar
Miran.Karic committed
120 121 122 123 124 125 126 127
#if defined(V8_TARGET_LITTLE_ENDIAN)
const uint32_t kLeastSignificantByteInInt32Offset = 0;
#elif defined(V8_TARGET_BIG_ENDIAN)
const uint32_t kLeastSignificantByteInInt32Offset = 3;
#else
#error Unknown endianness
#endif

128
#ifndef __STDC_FORMAT_MACROS
129
#define __STDC_FORMAT_MACROS
130
#endif
131 132
#include <inttypes.h>

133 134 135 136 137 138 139
// Defines constants and accessor classes to assemble, disassemble and
// simulate MIPS32 instructions.
//
// See: MIPS32 Architecture For Programmers
//      Volume II: The MIPS32 Instruction Set
// Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.

140 141
namespace v8 {
namespace internal {
142

143
constexpr size_t kMaxPCRelativeCodeRangeInMB = 4096;
144

145
// -----------------------------------------------------------------------------
146
// Registers and FPURegisters.
147 148

// Number of general purpose registers.
149 150
const int kNumRegisters = 32;
const int kInvalidRegister = -1;
151 152

// Number of registers with HI, LO, and pc.
153
const int kNumSimuRegisters = 35;
154 155

// In the simulator, the PC register is simulated as the 34th register.
156
const int kPCRegister = 34;
157 158

// Number coprocessor registers.
159 160
const int kNumFPURegisters = 32;
const int kInvalidFPURegister = -1;
161

162 163 164 165 166 167 168
// Number of MSA registers
const int kNumMSARegisters = 32;
const int kInvalidMSARegister = -1;

const int kInvalidMSAControlRegister = -1;
const int kMSAIRRegister = 0;
const int kMSACSRRegister = 1;
169 170 171 172 173
const int kMSARegSize = 128;
const int kMSALanesByte = kMSARegSize / 8;
const int kMSALanesHalf = kMSARegSize / 16;
const int kMSALanesWord = kMSARegSize / 32;
const int kMSALanesDword = kMSARegSize / 64;
174

175
// FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
176 177
const int kFCSRRegister = 31;
const int kInvalidFPUControlRegister = -1;
178 179
const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
180 181
const uint64_t kFPU64InvalidResult =
    static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
182 183
const int64_t kFPU64InvalidResultNegative =
    static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
184 185

// FCSR constants.
186 187 188 189 190
const uint32_t kFCSRInexactFlagBit = 2;
const uint32_t kFCSRUnderflowFlagBit = 3;
const uint32_t kFCSROverflowFlagBit = 4;
const uint32_t kFCSRDivideByZeroFlagBit = 5;
const uint32_t kFCSRInvalidOpFlagBit = 6;
191
const uint32_t kFCSRNaN2008FlagBit = 18;
192 193 194 195 196 197

const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
198
const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
199 200

const uint32_t kFCSRFlagMask =
201 202
    kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask |
    kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask;
203

204
const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
205

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
const uint32_t kFCSRInexactCauseBit = 12;
const uint32_t kFCSRUnderflowCauseBit = 13;
const uint32_t kFCSROverflowCauseBit = 14;
const uint32_t kFCSRDivideByZeroCauseBit = 15;
const uint32_t kFCSRInvalidOpCauseBit = 16;
const uint32_t kFCSRUnimplementedOpCauseBit = 17;

const uint32_t kFCSRInexactCauseMask = 1 << kFCSRInexactCauseBit;
const uint32_t kFCSRUnderflowCauseMask = 1 << kFCSRUnderflowCauseBit;
const uint32_t kFCSROverflowCauseMask = 1 << kFCSROverflowCauseBit;
const uint32_t kFCSRDivideByZeroCauseMask = 1 << kFCSRDivideByZeroCauseBit;
const uint32_t kFCSRInvalidOpCauseMask = 1 << kFCSRInvalidOpCauseBit;
const uint32_t kFCSRUnimplementedOpCauseMask = 1
                                               << kFCSRUnimplementedOpCauseBit;

const uint32_t kFCSRCauseMask =
    kFCSRInexactCauseMask | kFCSRUnderflowCauseMask | kFCSROverflowCauseMask |
    kFCSRDivideByZeroCauseMask | kFCSRInvalidOpCauseMask |
    kFCSRUnimplementedOpCauseBit;

plind44@gmail.com's avatar
plind44@gmail.com committed
226 227 228 229 230 231 232 233 234 235
// 'pref' instruction hints
const int32_t kPrefHintLoad = 0;
const int32_t kPrefHintStore = 1;
const int32_t kPrefHintLoadStreamed = 4;
const int32_t kPrefHintStoreStreamed = 5;
const int32_t kPrefHintLoadRetained = 6;
const int32_t kPrefHintStoreRetained = 7;
const int32_t kPrefHintWritebackInvalidate = 25;
const int32_t kPrefHintPrepareForStore = 30;

236 237 238 239 240
// Actual value of root register is offset from the root array's start
// to take advantage of negative displacement values.
// TODO(sigurds): Choose best value.
constexpr int kRootRegisterBias = 256;

241 242 243 244 245 246 247 248 249 250 251
// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int reg;
252
    const char* name;
253 254 255 256 257 258 259 260 261 262 263
  };

  static const int32_t kMaxValue = 0x7fffffff;
  static const int32_t kMinValue = 0x80000000;

 private:
  static const char* names_[kNumSimuRegisters];
  static const RegisterAlias aliases_[];
};

// Helper functions for converting between register numbers and names.
264
class FPURegisters {
265 266 267 268 269 270 271 272 273
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int creg;
274
    const char* name;
275 276 277
  };

 private:
278
  static const char* names_[kNumFPURegisters];
279 280 281
  static const RegisterAlias aliases_[];
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
// Helper functions for converting between register numbers and names.
class MSARegisters {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int creg;
    const char* name;
  };

 private:
  static const char* names_[kNumMSARegisters];
  static const RegisterAlias aliases_[];
};
300 301 302 303 304

// -----------------------------------------------------------------------------
// Instructions encoding constants.

// On MIPS all instructions are 32 bits.
305
using Instr = int32_t;
306 307 308 309 310 311 312 313

// Special Software Interrupt codes when used in the presence of the MIPS
// simulator.
enum SoftwareInterruptCodes {
  // Transition to C code.
  call_rt_redirected = 0xfffff
};

314 315 316 317 318 319 320
// On MIPS Simulator breakpoints can have different codes:
// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
//   the simulator will run through them and print the registers.
// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
//   instructions (see Assembler::stop()).
// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
//   debugger.
321 322
const uint32_t kMaxWatchpointCode = 31;
const uint32_t kMaxStopCode = 127;
323 324
STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);

325
// ----- Fields offset and length.
326 327 328 329 330 331 332 333 334 335
const int kOpcodeShift = 26;
const int kOpcodeBits = 6;
const int kRsShift = 21;
const int kRsBits = 5;
const int kRtShift = 16;
const int kRtBits = 5;
const int kRdShift = 11;
const int kRdBits = 5;
const int kSaShift = 6;
const int kSaBits = 5;
336
const int kLsaSaBits = 2;
337
const int kFunctionShift = 0;
338 339
const int kFunctionBits = 6;
const int kLuiShift = 16;
340 341
const int kBp2Shift = 6;
const int kBp2Bits = 2;
342 343 344 345
const int kBaseShift = 21;
const int kBaseBits = 5;
const int kBit6Shift = 6;
const int kBit6Bits = 1;
346

347 348
const int kImm9Shift = 7;
const int kImm9Bits = 9;
349
const int kImm16Shift = 0;
350
const int kImm16Bits = 16;
351 352 353 354
const int kImm18Shift = 0;
const int kImm18Bits = 18;
const int kImm19Shift = 0;
const int kImm19Bits = 19;
355
const int kImm21Shift = 0;
356
const int kImm21Bits = 21;
357
const int kImm26Shift = 0;
358
const int kImm26Bits = 26;
359
const int kImm28Shift = 0;
360
const int kImm28Bits = 28;
361
const int kImm32Shift = 0;
362
const int kImm32Bits = 32;
363 364 365 366 367 368 369 370
const int kMsaImm8Shift = 16;
const int kMsaImm8Bits = 8;
const int kMsaImm5Shift = 16;
const int kMsaImm5Bits = 5;
const int kMsaImm10Shift = 11;
const int kMsaImm10Bits = 10;
const int kMsaImmMI10Shift = 16;
const int kMsaImmMI10Bits = 10;
371

372 373
// In branches and jumps immediate fields point to words, not bytes,
// and are therefore shifted by 2.
374 375
const int kImmFieldShift = 2;

376 377 378 379 380 381 382 383 384 385 386 387 388 389
const int kFrBits = 5;
const int kFrShift = 21;
const int kFsShift = 11;
const int kFsBits = 5;
const int kFtShift = 16;
const int kFtBits = 5;
const int kFdShift = 6;
const int kFdBits = 5;
const int kFCccShift = 8;
const int kFCccBits = 3;
const int kFBccShift = 18;
const int kFBccBits = 3;
const int kFBtrueShift = 16;
const int kFBtrueBits = 1;
390 391 392 393 394 395
const int kWtBits = 5;
const int kWtShift = 16;
const int kWsBits = 5;
const int kWsShift = 11;
const int kWdBits = 5;
const int kWdShift = 6;
396

397
// ----- Miscellaneous useful masks.
398
// Instruction bit masks.
399
const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
400
const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
401
const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
402 403 404
const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
405 406
const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
407 408 409 410
const int kImm5Mask = ((1 << 5) - 1);
const int kImm8Mask = ((1 << 8) - 1);
const int kImm10Mask = ((1 << 10) - 1);
const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
411 412 413 414 415
const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
const int kMsaMI10Mask = (15U << 2);
const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
const int kMsaELMMask = (15U << 22);
416
const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
417 418 419 420 421
const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
const int kMsaVECMask = (23U << 21);
const int kMsa2RMask = (7U << 18);
const int kMsa2RFMask = (15U << 17);
422 423 424 425 426
const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
427
// Misc masks.
428 429 430 431
const int kHiMask = 0xffff << 16;
const int kLoMask = 0xffff;
const int kSignMask = 0x80000000;
const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
432 433 434 435

// ----- MIPS Opcodes and Function Fields.
// We use this presentation to stay close to the table representation in
// MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
enum Opcode : uint32_t {
  SPECIAL = 0U << kOpcodeShift,
  REGIMM = 1U << kOpcodeShift,

  J = ((0U << 3) + 2) << kOpcodeShift,
  JAL = ((0U << 3) + 3) << kOpcodeShift,
  BEQ = ((0U << 3) + 4) << kOpcodeShift,
  BNE = ((0U << 3) + 5) << kOpcodeShift,
  BLEZ = ((0U << 3) + 6) << kOpcodeShift,
  BGTZ = ((0U << 3) + 7) << kOpcodeShift,

  ADDI = ((1U << 3) + 0) << kOpcodeShift,
  ADDIU = ((1U << 3) + 1) << kOpcodeShift,
  SLTI = ((1U << 3) + 2) << kOpcodeShift,
  SLTIU = ((1U << 3) + 3) << kOpcodeShift,
  ANDI = ((1U << 3) + 4) << kOpcodeShift,
  ORI = ((1U << 3) + 5) << kOpcodeShift,
  XORI = ((1U << 3) + 6) << kOpcodeShift,
  LUI = ((1U << 3) + 7) << kOpcodeShift,  // LUI/AUI family.

  BEQC = ((2U << 3) + 0) << kOpcodeShift,
  COP1 = ((2U << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class.
  BEQL = ((2U << 3) + 4) << kOpcodeShift,
  BNEL = ((2U << 3) + 5) << kOpcodeShift,
  BLEZL = ((2U << 3) + 6) << kOpcodeShift,
  BGTZL = ((2U << 3) + 7) << kOpcodeShift,

  DADDI = ((3U << 3) + 0) << kOpcodeShift,  // This is also BNEC.
  SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
465
  MSA = ((3U << 3) + 6) << kOpcodeShift,
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,

  LB = ((4U << 3) + 0) << kOpcodeShift,
  LH = ((4U << 3) + 1) << kOpcodeShift,
  LWL = ((4U << 3) + 2) << kOpcodeShift,
  LW = ((4U << 3) + 3) << kOpcodeShift,
  LBU = ((4U << 3) + 4) << kOpcodeShift,
  LHU = ((4U << 3) + 5) << kOpcodeShift,
  LWR = ((4U << 3) + 6) << kOpcodeShift,
  SB = ((5U << 3) + 0) << kOpcodeShift,
  SH = ((5U << 3) + 1) << kOpcodeShift,
  SWL = ((5U << 3) + 2) << kOpcodeShift,
  SW = ((5U << 3) + 3) << kOpcodeShift,
  SWR = ((5U << 3) + 6) << kOpcodeShift,

481
  LL = ((6U << 3) + 0) << kOpcodeShift,
482 483 484 485 486 487 488
  LWC1 = ((6U << 3) + 1) << kOpcodeShift,
  BC = ((6U << 3) + 2) << kOpcodeShift,
  LDC1 = ((6U << 3) + 5) << kOpcodeShift,
  POP66 = ((6U << 3) + 6) << kOpcodeShift,  // beqzc, jic

  PREF = ((6U << 3) + 3) << kOpcodeShift,

489
  SC = ((7U << 3) + 0) << kOpcodeShift,
490 491 492 493 494 495 496 497 498 499 500 501 502 503
  SWC1 = ((7U << 3) + 1) << kOpcodeShift,
  BALC = ((7U << 3) + 2) << kOpcodeShift,
  PCREL = ((7U << 3) + 3) << kOpcodeShift,
  SDC1 = ((7U << 3) + 5) << kOpcodeShift,
  POP76 = ((7U << 3) + 6) << kOpcodeShift,  // bnezc, jialc

  COP1X = ((1U << 4) + 3) << kOpcodeShift,

  // New r6 instruction.
  POP06 = BLEZ,   // bgeuc/bleuc, blezalc, bgezalc
  POP07 = BGTZ,   // bltuc/bgtuc, bgtzalc, bltzalc
  POP10 = ADDI,   // beqzalc, bovc, beqc
  POP26 = BLEZL,  // bgezc, blezc, bgec/blec
  POP27 = BGTZL,  // bgtzc, bltzc, bltc/bgtc
504
  POP30 = DADDI,  // bnezalc, bnvc, bnec
505 506
};

507
enum SecondaryField : uint32_t {
508
  // SPECIAL Encoding of Function Field.
509 510 511 512 513
  SLL = ((0U << 3) + 0),
  MOVCI = ((0U << 3) + 1),
  SRL = ((0U << 3) + 2),
  SRA = ((0U << 3) + 3),
  SLLV = ((0U << 3) + 4),
514
  LSA = ((0U << 3) + 5),
515 516 517 518 519 520 521 522
  SRLV = ((0U << 3) + 6),
  SRAV = ((0U << 3) + 7),

  JR = ((1U << 3) + 0),
  JALR = ((1U << 3) + 1),
  MOVZ = ((1U << 3) + 2),
  MOVN = ((1U << 3) + 3),
  BREAK = ((1U << 3) + 5),
523
  SYNC = ((1U << 3) + 7),
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

  MFHI = ((2U << 3) + 0),
  CLZ_R6 = ((2U << 3) + 0),
  CLO_R6 = ((2U << 3) + 1),
  MFLO = ((2U << 3) + 2),

  MULT = ((3U << 3) + 0),
  MULTU = ((3U << 3) + 1),
  DIV = ((3U << 3) + 2),
  DIVU = ((3U << 3) + 3),

  ADD = ((4U << 3) + 0),
  ADDU = ((4U << 3) + 1),
  SUB = ((4U << 3) + 2),
  SUBU = ((4U << 3) + 3),
  AND = ((4U << 3) + 4),
  OR = ((4U << 3) + 5),
  XOR = ((4U << 3) + 6),
  NOR = ((4U << 3) + 7),

  SLT = ((5U << 3) + 2),
  SLTU = ((5U << 3) + 3),

  TGE = ((6U << 3) + 0),
  TGEU = ((6U << 3) + 1),
  TLT = ((6U << 3) + 2),
  TLTU = ((6U << 3) + 3),
  TEQ = ((6U << 3) + 4),
  SELEQZ_S = ((6U << 3) + 5),
  TNE = ((6U << 3) + 6),
  SELNEZ_S = ((6U << 3) + 7),
555 556

  // Multiply integers in r6.
557 558 559
  MUL_MUH = ((3U << 3) + 0),    // MUL, MUH.
  MUL_MUH_U = ((3U << 3) + 1),  // MUL_U, MUH_U.
  RINT = ((3U << 3) + 2),
560

561 562 563 564
  MUL_OP = ((0U << 3) + 2),
  MUH_OP = ((0U << 3) + 3),
  DIV_OP = ((0U << 3) + 2),
  MOD_OP = ((0U << 3) + 3),
565

566 567
  DIV_MOD = ((3U << 3) + 2),
  DIV_MOD_U = ((3U << 3) + 3),
568 569

  // SPECIAL2 Encoding of Function Field.
570 571 572
  MUL = ((0U << 3) + 2),
  CLZ = ((4U << 3) + 0),
  CLO = ((4U << 3) + 1),
573 574

  // SPECIAL3 Encoding of Function Field.
575 576 577
  EXT = ((0U << 3) + 0),
  INS = ((0U << 3) + 4),
  BSHFL = ((4U << 3) + 0),
578 579
  SC_R6 = ((4U << 3) + 6),
  LL_R6 = ((6U << 3) + 6),
580 581

  // SPECIAL3 Encoding of sa Field.
582 583 584 585 586
  BITSWAP = ((0U << 3) + 0),
  ALIGN = ((0U << 3) + 2),
  WSBH = ((0U << 3) + 2),
  SEB = ((2U << 3) + 0),
  SEH = ((3U << 3) + 0),
587 588

  // REGIMM  encoding of rt Field.
589 590 591 592 593
  BLTZ = ((0U << 3) + 0) << 16,
  BGEZ = ((0U << 3) + 1) << 16,
  BLTZAL = ((2U << 3) + 0) << 16,
  BGEZAL = ((2U << 3) + 1) << 16,
  BGEZALL = ((2U << 3) + 3) << 16,
594 595

  // COP1 Encoding of rs Field.
596 597 598 599 600 601 602 603 604 605 606 607
  MFC1 = ((0U << 3) + 0) << 21,
  CFC1 = ((0U << 3) + 2) << 21,
  MFHC1 = ((0U << 3) + 3) << 21,
  MTC1 = ((0U << 3) + 4) << 21,
  CTC1 = ((0U << 3) + 6) << 21,
  MTHC1 = ((0U << 3) + 7) << 21,
  BC1 = ((1U << 3) + 0) << 21,
  S = ((2U << 3) + 0) << 21,
  D = ((2U << 3) + 1) << 21,
  W = ((2U << 3) + 4) << 21,
  L = ((2U << 3) + 5) << 21,
  PS = ((2U << 3) + 6) << 21,
608
  // COP1 Encoding of Function Field When rs=S.
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
  ADD_S = ((0U << 3) + 0),
  SUB_S = ((0U << 3) + 1),
  MUL_S = ((0U << 3) + 2),
  DIV_S = ((0U << 3) + 3),
  ABS_S = ((0U << 3) + 5),
  SQRT_S = ((0U << 3) + 4),
  MOV_S = ((0U << 3) + 6),
  NEG_S = ((0U << 3) + 7),
  ROUND_L_S = ((1U << 3) + 0),
  TRUNC_L_S = ((1U << 3) + 1),
  CEIL_L_S = ((1U << 3) + 2),
  FLOOR_L_S = ((1U << 3) + 3),
  ROUND_W_S = ((1U << 3) + 4),
  TRUNC_W_S = ((1U << 3) + 5),
  CEIL_W_S = ((1U << 3) + 6),
  FLOOR_W_S = ((1U << 3) + 7),
  RECIP_S = ((2U << 3) + 5),
  RSQRT_S = ((2U << 3) + 6),
628 629
  MADDF_S = ((3U << 3) + 0),
  MSUBF_S = ((3U << 3) + 1),
630 631 632 633 634
  CLASS_S = ((3U << 3) + 3),
  CVT_D_S = ((4U << 3) + 1),
  CVT_W_S = ((4U << 3) + 4),
  CVT_L_S = ((4U << 3) + 5),
  CVT_PS_S = ((4U << 3) + 6),
635

636
  // COP1 Encoding of Function Field When rs=D.
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
  ADD_D = ((0U << 3) + 0),
  SUB_D = ((0U << 3) + 1),
  MUL_D = ((0U << 3) + 2),
  DIV_D = ((0U << 3) + 3),
  SQRT_D = ((0U << 3) + 4),
  ABS_D = ((0U << 3) + 5),
  MOV_D = ((0U << 3) + 6),
  NEG_D = ((0U << 3) + 7),
  ROUND_L_D = ((1U << 3) + 0),
  TRUNC_L_D = ((1U << 3) + 1),
  CEIL_L_D = ((1U << 3) + 2),
  FLOOR_L_D = ((1U << 3) + 3),
  ROUND_W_D = ((1U << 3) + 4),
  TRUNC_W_D = ((1U << 3) + 5),
  CEIL_W_D = ((1U << 3) + 6),
  FLOOR_W_D = ((1U << 3) + 7),
  RECIP_D = ((2U << 3) + 5),
  RSQRT_D = ((2U << 3) + 6),
655 656
  MADDF_D = ((3U << 3) + 0),
  MSUBF_D = ((3U << 3) + 1),
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
  CLASS_D = ((3U << 3) + 3),
  MIN = ((3U << 3) + 4),
  MINA = ((3U << 3) + 5),
  MAX = ((3U << 3) + 6),
  MAXA = ((3U << 3) + 7),
  CVT_S_D = ((4U << 3) + 0),
  CVT_W_D = ((4U << 3) + 4),
  CVT_L_D = ((4U << 3) + 5),
  C_F_D = ((6U << 3) + 0),
  C_UN_D = ((6U << 3) + 1),
  C_EQ_D = ((6U << 3) + 2),
  C_UEQ_D = ((6U << 3) + 3),
  C_OLT_D = ((6U << 3) + 4),
  C_ULT_D = ((6U << 3) + 5),
  C_OLE_D = ((6U << 3) + 6),
  C_ULE_D = ((6U << 3) + 7),
673

674
  // COP1 Encoding of Function Field When rs=W or L.
675 676 677 678 679 680
  CVT_S_W = ((4U << 3) + 0),
  CVT_D_W = ((4U << 3) + 1),
  CVT_S_L = ((4U << 3) + 0),
  CVT_D_L = ((4U << 3) + 1),
  BC1EQZ = ((2U << 2) + 1) << 21,
  BC1NEZ = ((3U << 2) + 1) << 21,
681
  // COP1 CMP positive predicates Bit 5..4 = 00.
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
  CMP_AF = ((0U << 3) + 0),
  CMP_UN = ((0U << 3) + 1),
  CMP_EQ = ((0U << 3) + 2),
  CMP_UEQ = ((0U << 3) + 3),
  CMP_LT = ((0U << 3) + 4),
  CMP_ULT = ((0U << 3) + 5),
  CMP_LE = ((0U << 3) + 6),
  CMP_ULE = ((0U << 3) + 7),
  CMP_SAF = ((1U << 3) + 0),
  CMP_SUN = ((1U << 3) + 1),
  CMP_SEQ = ((1U << 3) + 2),
  CMP_SUEQ = ((1U << 3) + 3),
  CMP_SSLT = ((1U << 3) + 4),
  CMP_SSULT = ((1U << 3) + 5),
  CMP_SLE = ((1U << 3) + 6),
  CMP_SULE = ((1U << 3) + 7),
698
  // COP1 CMP negative predicates Bit 5..4 = 01.
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
  CMP_AT = ((2U << 3) + 0),  // Reserved, not implemented.
  CMP_OR = ((2U << 3) + 1),
  CMP_UNE = ((2U << 3) + 2),
  CMP_NE = ((2U << 3) + 3),
  CMP_UGE = ((2U << 3) + 4),  // Reserved, not implemented.
  CMP_OGE = ((2U << 3) + 5),  // Reserved, not implemented.
  CMP_UGT = ((2U << 3) + 6),  // Reserved, not implemented.
  CMP_OGT = ((2U << 3) + 7),  // Reserved, not implemented.
  CMP_SAT = ((3U << 3) + 0),  // Reserved, not implemented.
  CMP_SOR = ((3U << 3) + 1),
  CMP_SUNE = ((3U << 3) + 2),
  CMP_SNE = ((3U << 3) + 3),
  CMP_SUGE = ((3U << 3) + 4),  // Reserved, not implemented.
  CMP_SOGE = ((3U << 3) + 5),  // Reserved, not implemented.
  CMP_SUGT = ((3U << 3) + 6),  // Reserved, not implemented.
  CMP_SOGT = ((3U << 3) + 7),  // Reserved, not implemented.

  SEL = ((2U << 3) + 0),
  MOVZ_C = ((2U << 3) + 2),
  MOVN_C = ((2U << 3) + 3),
  SELEQZ_C = ((2U << 3) + 4),  // COP1 on FPR registers.
  MOVF = ((2U << 3) + 1),      // Function field for MOVT.fmt and MOVF.fmt
  SELNEZ_C = ((2U << 3) + 7),  // COP1 on FPR registers.
722
                               // COP1 Encoding of Function Field When rs=PS.
723

724
  // COP1X Encoding of Function Field.
725
  MADD_S = ((4U << 3) + 0),
726
  MADD_D = ((4U << 3) + 1),
727 728
  MSUB_S = ((5U << 3) + 0),
  MSUB_D = ((5U << 3) + 1),
729

730
  // PCREL Encoding of rt Field.
731 732 733 734
  ADDIUPC = ((0U << 2) + 0),
  LWPC = ((0U << 2) + 1),
  AUIPC = ((3U << 3) + 6),
  ALUIPC = ((3U << 3) + 7),
735 736

  // POP66 Encoding of rs Field.
737
  JIC = ((0U << 5) + 0),
738 739

  // POP76 Encoding of rs Field.
740
  JIALC = ((0U << 5) + 0),
741

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
  // COP1 Encoding of rs Field for MSA Branch Instructions
  BZ_V = (((1U << 3) + 3) << kRsShift),
  BNZ_V = (((1U << 3) + 7) << kRsShift),
  BZ_B = (((3U << 3) + 0) << kRsShift),
  BZ_H = (((3U << 3) + 1) << kRsShift),
  BZ_W = (((3U << 3) + 2) << kRsShift),
  BZ_D = (((3U << 3) + 3) << kRsShift),
  BNZ_B = (((3U << 3) + 4) << kRsShift),
  BNZ_H = (((3U << 3) + 5) << kRsShift),
  BNZ_W = (((3U << 3) + 6) << kRsShift),
  BNZ_D = (((3U << 3) + 7) << kRsShift),

  // MSA: Operation Field for MI10 Instruction Formats
  MSA_LD = (8U << 2),
  MSA_ST = (9U << 2),
  LD_B = ((8U << 2) + 0),
  LD_H = ((8U << 2) + 1),
  LD_W = ((8U << 2) + 2),
  LD_D = ((8U << 2) + 3),
  ST_B = ((9U << 2) + 0),
  ST_H = ((9U << 2) + 1),
  ST_W = ((9U << 2) + 2),
  ST_D = ((9U << 2) + 3),

  // MSA: Operation Field for I5 Instruction Format
  ADDVI = ((0U << 23) + 6),
  SUBVI = ((1U << 23) + 6),
  MAXI_S = ((2U << 23) + 6),
  MAXI_U = ((3U << 23) + 6),
  MINI_S = ((4U << 23) + 6),
  MINI_U = ((5U << 23) + 6),
  CEQI = ((0U << 23) + 7),
  CLTI_S = ((2U << 23) + 7),
  CLTI_U = ((3U << 23) + 7),
  CLEI_S = ((4U << 23) + 7),
  CLEI_U = ((5U << 23) + 7),
  LDI = ((6U << 23) + 7),  // I10 instruction format
  I5_DF_b = (0U << 21),
  I5_DF_h = (1U << 21),
  I5_DF_w = (2U << 21),
  I5_DF_d = (3U << 21),

  // MSA: Operation Field for I8 Instruction Format
  ANDI_B = ((0U << 24) + 0),
  ORI_B = ((1U << 24) + 0),
  NORI_B = ((2U << 24) + 0),
  XORI_B = ((3U << 24) + 0),
  BMNZI_B = ((0U << 24) + 1),
  BMZI_B = ((1U << 24) + 1),
  BSELI_B = ((2U << 24) + 1),
  SHF_B = ((0U << 24) + 2),
  SHF_H = ((1U << 24) + 2),
  SHF_W = ((2U << 24) + 2),

  MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),

  // MSA: Operation Field for VEC Instruction Formats
  AND_V = (((0U << 2) + 0) << 21),
  OR_V = (((0U << 2) + 1) << 21),
  NOR_V = (((0U << 2) + 2) << 21),
  XOR_V = (((0U << 2) + 3) << 21),
  BMNZ_V = (((1U << 2) + 0) << 21),
  BMZ_V = (((1U << 2) + 1) << 21),
  BSEL_V = (((1U << 2) + 2) << 21),

  // MSA: Operation Field for 2R Instruction Formats
  MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
  FILL = (0U << 18),
  PCNT = (1U << 18),
  NLOC = (2U << 18),
  NLZC = (3U << 18),
  MSA_2R_DF_b = (0U << 16),
  MSA_2R_DF_h = (1U << 16),
  MSA_2R_DF_w = (2U << 16),
  MSA_2R_DF_d = (3U << 16),

  // MSA: Operation Field for 2RF Instruction Formats
  MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
  FCLASS = (0U << 17),
  FTRUNC_S = (1U << 17),
  FTRUNC_U = (2U << 17),
  FSQRT = (3U << 17),
  FRSQRT = (4U << 17),
  FRCP = (5U << 17),
  FRINT = (6U << 17),
  FLOG2 = (7U << 17),
  FEXUPL = (8U << 17),
  FEXUPR = (9U << 17),
  FFQL = (10U << 17),
  FFQR = (11U << 17),
  FTINT_S = (12U << 17),
  FTINT_U = (13U << 17),
  FFINT_S = (14U << 17),
  FFINT_U = (15U << 17),
  MSA_2RF_DF_w = (0U << 16),
  MSA_2RF_DF_d = (1U << 16),

  // MSA: Operation Field for 3R Instruction Format
  SLL_MSA = ((0U << 23) + 13),
  SRA_MSA = ((1U << 23) + 13),
  SRL_MSA = ((2U << 23) + 13),
  BCLR = ((3U << 23) + 13),
  BSET = ((4U << 23) + 13),
  BNEG = ((5U << 23) + 13),
  BINSL = ((6U << 23) + 13),
  BINSR = ((7U << 23) + 13),
  ADDV = ((0U << 23) + 14),
  SUBV = ((1U << 23) + 14),
  MAX_S = ((2U << 23) + 14),
  MAX_U = ((3U << 23) + 14),
  MIN_S = ((4U << 23) + 14),
  MIN_U = ((5U << 23) + 14),
  MAX_A = ((6U << 23) + 14),
  MIN_A = ((7U << 23) + 14),
  CEQ = ((0U << 23) + 15),
  CLT_S = ((2U << 23) + 15),
  CLT_U = ((3U << 23) + 15),
  CLE_S = ((4U << 23) + 15),
  CLE_U = ((5U << 23) + 15),
  ADD_A = ((0U << 23) + 16),
  ADDS_A = ((1U << 23) + 16),
  ADDS_S = ((2U << 23) + 16),
  ADDS_U = ((3U << 23) + 16),
  AVE_S = ((4U << 23) + 16),
  AVE_U = ((5U << 23) + 16),
  AVER_S = ((6U << 23) + 16),
  AVER_U = ((7U << 23) + 16),
  SUBS_S = ((0U << 23) + 17),
  SUBS_U = ((1U << 23) + 17),
  SUBSUS_U = ((2U << 23) + 17),
  SUBSUU_S = ((3U << 23) + 17),
  ASUB_S = ((4U << 23) + 17),
  ASUB_U = ((5U << 23) + 17),
  MULV = ((0U << 23) + 18),
  MADDV = ((1U << 23) + 18),
  MSUBV = ((2U << 23) + 18),
  DIV_S_MSA = ((4U << 23) + 18),
  DIV_U = ((5U << 23) + 18),
  MOD_S = ((6U << 23) + 18),
  MOD_U = ((7U << 23) + 18),
  DOTP_S = ((0U << 23) + 19),
  DOTP_U = ((1U << 23) + 19),
  DPADD_S = ((2U << 23) + 19),
  DPADD_U = ((3U << 23) + 19),
  DPSUB_S = ((4U << 23) + 19),
  DPSUB_U = ((5U << 23) + 19),
  SLD = ((0U << 23) + 20),
  SPLAT = ((1U << 23) + 20),
  PCKEV = ((2U << 23) + 20),
  PCKOD = ((3U << 23) + 20),
  ILVL = ((4U << 23) + 20),
  ILVR = ((5U << 23) + 20),
  ILVEV = ((6U << 23) + 20),
  ILVOD = ((7U << 23) + 20),
  VSHF = ((0U << 23) + 21),
  SRAR = ((1U << 23) + 21),
  SRLR = ((2U << 23) + 21),
  HADD_S = ((4U << 23) + 21),
  HADD_U = ((5U << 23) + 21),
  HSUB_S = ((6U << 23) + 21),
  HSUB_U = ((7U << 23) + 21),
  MSA_3R_DF_b = (0U << 21),
  MSA_3R_DF_h = (1U << 21),
  MSA_3R_DF_w = (2U << 21),
  MSA_3R_DF_d = (3U << 21),

  // MSA: Operation Field for 3RF Instruction Format
  FCAF = ((0U << 22) + 26),
  FCUN = ((1U << 22) + 26),
  FCEQ = ((2U << 22) + 26),
  FCUEQ = ((3U << 22) + 26),
  FCLT = ((4U << 22) + 26),
  FCULT = ((5U << 22) + 26),
  FCLE = ((6U << 22) + 26),
  FCULE = ((7U << 22) + 26),
  FSAF = ((8U << 22) + 26),
  FSUN = ((9U << 22) + 26),
  FSEQ = ((10U << 22) + 26),
  FSUEQ = ((11U << 22) + 26),
  FSLT = ((12U << 22) + 26),
  FSULT = ((13U << 22) + 26),
  FSLE = ((14U << 22) + 26),
  FSULE = ((15U << 22) + 26),
  FADD = ((0U << 22) + 27),
  FSUB = ((1U << 22) + 27),
  FMUL = ((2U << 22) + 27),
  FDIV = ((3U << 22) + 27),
  FMADD = ((4U << 22) + 27),
  FMSUB = ((5U << 22) + 27),
  FEXP2 = ((7U << 22) + 27),
  FEXDO = ((8U << 22) + 27),
  FTQ = ((10U << 22) + 27),
  FMIN = ((12U << 22) + 27),
  FMIN_A = ((13U << 22) + 27),
  FMAX = ((14U << 22) + 27),
  FMAX_A = ((15U << 22) + 27),
  FCOR = ((1U << 22) + 28),
  FCUNE = ((2U << 22) + 28),
  FCNE = ((3U << 22) + 28),
  MUL_Q = ((4U << 22) + 28),
  MADD_Q = ((5U << 22) + 28),
  MSUB_Q = ((6U << 22) + 28),
  FSOR = ((9U << 22) + 28),
  FSUNE = ((10U << 22) + 28),
  FSNE = ((11U << 22) + 28),
  MULR_Q = ((12U << 22) + 28),
  MADDR_Q = ((13U << 22) + 28),
  MSUBR_Q = ((14U << 22) + 28),

  // MSA: Operation Field for ELM Instruction Format
  MSA_ELM_MINOR = ((3U << 3) + 1),
  SLDI = (0U << 22),
  CTCMSA = ((0U << 22) | (62U << 16)),
  SPLATI = (1U << 22),
  CFCMSA = ((1U << 22) | (62U << 16)),
  COPY_S = (2U << 22),
  MOVE_V = ((2U << 22) | (62U << 16)),
  COPY_U = (3U << 22),
  INSERT = (4U << 22),
  INSVE = (5U << 22),
  ELM_DF_B = ((0U << 4) << 16),
  ELM_DF_H = ((4U << 3) << 16),
  ELM_DF_W = ((12U << 2) << 16),
  ELM_DF_D = ((28U << 1) << 16),

  // MSA: Operation Field for BIT Instruction Format
  SLLI = ((0U << 23) + 9),
  SRAI = ((1U << 23) + 9),
  SRLI = ((2U << 23) + 9),
  BCLRI = ((3U << 23) + 9),
  BSETI = ((4U << 23) + 9),
  BNEGI = ((5U << 23) + 9),
  BINSLI = ((6U << 23) + 9),
  BINSRI = ((7U << 23) + 9),
  SAT_S = ((0U << 23) + 10),
  SAT_U = ((1U << 23) + 10),
  SRARI = ((2U << 23) + 10),
  SRLRI = ((3U << 23) + 10),
  BIT_DF_b = ((14U << 3) << 16),
  BIT_DF_h = ((6U << 4) << 16),
  BIT_DF_w = ((2U << 5) << 16),
  BIT_DF_d = ((0U << 6) << 16),

985
  nullptrSF = 0U
986 987
};

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
enum MSAMinorOpcode : uint32_t {
  kMsaMinorUndefined = 0,
  kMsaMinorI8,
  kMsaMinorI5,
  kMsaMinorI10,
  kMsaMinorBIT,
  kMsaMinor3R,
  kMsaMinor3RF,
  kMsaMinorELM,
  kMsaMinorVEC,
  kMsaMinor2R,
  kMsaMinor2RF,
  kMsaMinorMI10
};

1003
// ----- Emulated conditions.
1004
// On MIPS we use this enum to abstract from conditional branch instructions.
1005
// The 'U' prefix is used to specify unsigned comparisons.
1006
// Opposite conditions must be paired as odd/even numbers
1007
// because 'NegateCondition' function flips LSB to negate condition.
1008 1009
enum Condition {
  // Any value < 0 is considered no_condition.
Benedikt Meurer's avatar
Benedikt Meurer committed
1010 1011 1012 1013 1014
  kNoCondition = -1,
  overflow = 0,
  no_overflow = 1,
  Uless = 2,
  Ugreater_equal = 3,
1015 1016 1017 1018
  Uless_equal = 4,
  Ugreater = 5,
  equal = 6,
  not_equal = 7,  // Unordered or Not Equal.
Benedikt Meurer's avatar
Benedikt Meurer committed
1019 1020 1021 1022 1023
  negative = 8,
  positive = 9,
  parity_even = 10,
  parity_odd = 11,
  less = 12,
1024
  greater_equal = 13,
Benedikt Meurer's avatar
Benedikt Meurer committed
1025 1026 1027
  less_equal = 14,
  greater = 15,
  ueq = 16,  // Unordered or Equal.
1028
  ogl = 17,  // Ordered and Not Equal.
Benedikt Meurer's avatar
Benedikt Meurer committed
1029
  cc_always = 18,
1030

1031
  // Aliases.
Benedikt Meurer's avatar
Benedikt Meurer committed
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
  carry = Uless,
  not_carry = Ugreater_equal,
  zero = equal,
  eq = equal,
  not_zero = not_equal,
  ne = not_equal,
  nz = not_equal,
  sign = negative,
  not_sign = positive,
  mi = negative,
  pl = positive,
  hi = Ugreater,
  ls = Uless_equal,
  ge = greater_equal,
  lt = less,
  gt = greater,
  le = less_equal,
  hs = Ugreater_equal,
  lo = Uless,
  al = cc_always,
1052 1053 1054 1055
  ult = Uless,
  uge = Ugreater_equal,
  ule = Uless_equal,
  ugt = Ugreater,
Benedikt Meurer's avatar
Benedikt Meurer committed
1056
  cc_default = kNoCondition
1057 1058
};

1059 1060 1061 1062 1063
// Returns the equivalent of !cc.
// Negation of the default kNoCondition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
1064
  DCHECK(cc != cc_always);
1065 1066 1067
  return static_cast<Condition>(cc ^ 1);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
inline Condition NegateFpuCondition(Condition cc) {
  DCHECK(cc != cc_always);
  switch (cc) {
    case ult:
      return ge;
    case ugt:
      return le;
    case uge:
      return lt;
    case ule:
      return gt;
    case lt:
      return uge;
    case gt:
      return ule;
    case ge:
      return ult;
    case le:
      return ugt;
    case eq:
      return ne;
    case ne:
      return eq;
    case ueq:
      return ogl;
    case ogl:
      return ueq;
    default:
      return cc;
  }
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
enum MSABranchCondition {
  all_not_zero = 0,   // Branch If All Elements Are Not Zero
  one_elem_not_zero,  // Branch If At Least One Element of Any Format Is Not
                      // Zero
  one_elem_zero,      // Branch If At Least One Element Is Zero
  all_zero            // Branch If All Elements of Any Format Are Zero
};

inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
  switch (cond) {
    case all_not_zero:
      return one_elem_zero;
    case one_elem_not_zero:
      return all_zero;
    case one_elem_zero:
      return all_not_zero;
    case all_zero:
      return one_elem_not_zero;
    default:
      return cond;
  }
}

enum MSABranchDF {
  MSA_BRANCH_B = 0,
  MSA_BRANCH_H,
  MSA_BRANCH_W,
  MSA_BRANCH_D,
  MSA_BRANCH_V
};
1130

1131 1132
// ----- Coprocessor conditions.
enum FPUCondition {
1133 1134
  kNoFPUCondition = -1,

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
  F = 0x00,    // False.
  UN = 0x01,   // Unordered.
  EQ = 0x02,   // Equal.
  UEQ = 0x03,  // Unordered or Equal.
  OLT = 0x04,  // Ordered or Less Than, on Mips release < 6.
  LT = 0x04,   // Ordered or Less Than, on Mips release >= 6.
  ULT = 0x05,  // Unordered or Less Than.
  OLE = 0x06,  // Ordered or Less Than or Equal, on Mips release < 6.
  LE = 0x06,   // Ordered or Less Than or Equal, on Mips release >= 6.
  ULE = 0x07,  // Unordered or Less Than or Equal.

  // Following constants are available on Mips release >= 6 only.
  ORD = 0x11,  // Ordered, on Mips release >= 6.
  UNE = 0x12,  // Not equal, on Mips release >= 6.
  NE = 0x13,   // Ordered Greater Than or Less Than. on Mips >= 6 only.
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
};

// FPU rounding modes.
enum FPURoundingMode {
  RN = 0 << 0,  // Round to Nearest.
  RZ = 1 << 0,  // Round towards zero.
  RP = 2 << 0,  // Round towards Plus Infinity.
  RM = 3 << 0,  // Round towards Minus Infinity.

  // Aliases.
  kRoundToNearest = RN,
  kRoundToZero = RZ,
  kRoundToPlusInf = RP,
1163 1164 1165 1166 1167 1168
  kRoundToMinusInf = RM,

  mode_round = RN,
  mode_ceil = RP,
  mode_floor = RM,
  mode_trunc = RZ
1169 1170
};

1171
const uint32_t kFPURoundingModeMask = 3 << 0;
1172 1173 1174 1175

enum CheckForInexactConversion {
  kCheckForInexactConversion,
  kDontCheckForInexactConversion
1176 1177
};

1178
enum class MaxMinKind : int { kMin = 0, kMax = 1 };
1179

1180 1181 1182 1183 1184 1185
// -----------------------------------------------------------------------------
// Hints.

// Branch hints are not used on the MIPS.  They are defined so that they can
// appear in shared function signatures, but will be ignored in MIPS
// implementations.
1186
enum Hint { no_hint = 0 };
1187

1188
inline Hint NegateHint(Hint hint) { return no_hint; }
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-mips.cc, as they use named
// registers and other constants.

// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
extern const Instr kPopInstruction;
// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
extern const Instr kPushInstruction;
// sw(r, MemOperand(sp, 0))
extern const Instr kPushRegPattern;
1202
// lw(r, MemOperand(sp, 0))
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
extern const Instr kPopRegPattern;
extern const Instr kLwRegFpOffsetPattern;
extern const Instr kSwRegFpOffsetPattern;
extern const Instr kLwRegFpNegOffsetPattern;
extern const Instr kSwRegFpNegOffsetPattern;
// A mask for the Rt register for push, pop, lw, sw instructions.
extern const Instr kRtMask;
extern const Instr kLwSwInstrTypeMask;
extern const Instr kLwSwInstrArgumentMask;
extern const Instr kLwSwOffsetMask;

1214 1215 1216 1217 1218
// Break 0xfffff, reserved for redirected real time call.
const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
// A nop instruction. (Encoding of sll 0 0 0).
const Instr nopInstr = 0;

1219 1220 1221 1222
static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
  return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
}

1223 1224 1225
constexpr uint8_t kInstrSize = 4;
constexpr uint8_t kInstrSizeLog2 = 2;

1226
class InstructionBase {
1227 1228 1229
 public:
  enum {
    // On MIPS PC cannot actually be directly accessed. We behave as if PC was
1230
    // always the value of the current instruction being executed.
1231 1232 1233
    kPCReadOffset = 0
  };

1234 1235 1236
  // Instruction type.
  enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
  // Get the raw instruction bits.
  inline Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
  }

  // Set the raw instruction bits to value.
  inline void SetInstructionBits(Instr value) {
    *reinterpret_cast<Instr*>(this) = value;
  }

  // Read one particular bit out of the instruction bits.
1248
  inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
1249 1250 1251

  // Read a bit field out of the instruction bits.
  inline int Bits(int hi, int lo) const {
1252
    return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
1253
  }
1254

1255
  static constexpr uint64_t kOpcodeImmediateTypeMask =
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
      OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
      OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
      OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
      OpcodeToBitNumber(SLTI) | OpcodeToBitNumber(SLTIU) |
      OpcodeToBitNumber(ANDI) | OpcodeToBitNumber(ORI) |
      OpcodeToBitNumber(XORI) | OpcodeToBitNumber(LUI) |
      OpcodeToBitNumber(BEQL) | OpcodeToBitNumber(BNEL) |
      OpcodeToBitNumber(BLEZL) | OpcodeToBitNumber(BGTZL) |
      OpcodeToBitNumber(POP66) | OpcodeToBitNumber(POP76) |
      OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) | OpcodeToBitNumber(LWL) |
      OpcodeToBitNumber(LW) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
      OpcodeToBitNumber(LWR) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
      OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SWR) |
      OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
      OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
      OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(BC) |
      OpcodeToBitNumber(BALC);

#define FunctionFieldToBitNumber(function) (1ULL << function)

  static const uint64_t kFunctionFieldRegisterTypeMask =
      FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
      FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
      FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(SRA) |
      FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(SRLV) |
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
      FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(LSA) |
      FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
      FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(MULTU) |
      FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DIVU) |
      FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(ADDU) |
      FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(SUBU) |
      FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
      FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
      FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
      FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
      FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
      FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
      FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
      FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
1296
      FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
1297 1298

  // Accessors for the different named fields used in the MIPS encoding.
1299
  inline Opcode OpcodeValue() const {
1300 1301 1302 1303
    return static_cast<Opcode>(
        Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
  }

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
  inline int FunctionFieldRaw() const {
    return InstructionBits() & kFunctionFieldMask;
  }

  // Return the fields at their original place in the instruction encoding.
  inline Opcode OpcodeFieldRaw() const {
    return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
  }

  // Safe to call within InstructionType().
  inline int RsFieldRawNoAssert() const {
    return InstructionBits() & kRsFieldMask;
  }

  inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }

  // Get the encoding type of the instruction.
1321
  inline Type InstructionType() const;
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
  inline MSAMinorOpcode MSAMinorOpcodeField() const {
    int op = this->FunctionFieldRaw();
    switch (op) {
      case 0:
      case 1:
      case 2:
        return kMsaMinorI8;
      case 6:
        return kMsaMinorI5;
      case 7:
        return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
                    ? kMsaMinorI10
                    : kMsaMinorI5);
      case 9:
      case 10:
        return kMsaMinorBIT;
      case 13:
      case 14:
      case 15:
      case 16:
      case 17:
      case 18:
      case 19:
      case 20:
      case 21:
        return kMsaMinor3R;
      case 25:
        return kMsaMinorELM;
      case 26:
      case 27:
      case 28:
        return kMsaMinor3RF;
      case 30:
        switch (this->RsFieldRawNoAssert()) {
          case MSA_2R_FORMAT:
            return kMsaMinor2R;
          case MSA_2RF_FORMAT:
            return kMsaMinor2RF;
          default:
            return kMsaMinorVEC;
        }
        break;
      case 32:
      case 33:
      case 34:
      case 35:
      case 36:
      case 37:
      case 38:
      case 39:
        return kMsaMinorMI10;
      default:
        return kMsaMinorUndefined;
    }
  }

1379 1380 1381 1382 1383 1384 1385
 protected:
  InstructionBase() {}
};

template <class T>
class InstructionGetters : public T {
 public:
1386
  inline int RsValue() const {
1387 1388 1389
    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
           this->InstructionType() == InstructionBase::kImmediateType);
    return InstructionBase::Bits(kRsShift + kRsBits - 1, kRsShift);
1390 1391
  }

1392
  inline int RtValue() const {
1393 1394 1395
    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
           this->InstructionType() == InstructionBase::kImmediateType);
    return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1396 1397
  }

1398
  inline int RdValue() const {
1399
    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1400
    return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1401 1402
  }

1403
  inline int BaseValue() const {
1404
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1405 1406 1407
    return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
  }

1408
  inline int SaValue() const {
1409
    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1410
    return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1411 1412
  }

1413
  inline int LsaSaValue() const {
1414
    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1415
    return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1416 1417
  }

1418
  inline int FunctionValue() const {
1419 1420 1421
    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
           this->InstructionType() == InstructionBase::kImmediateType);
    return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1422 1423
  }

1424
  inline int FdValue() const {
1425
    return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1426 1427 1428
  }

  inline int FsValue() const {
1429
    return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1430 1431 1432
  }

  inline int FtValue() const {
1433
    return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1434 1435
  }

1436
  inline int FrValue() const {
1437
    return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1438 1439
  }

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
  inline int WdValue() const {
    return this->Bits(kWdShift + kWdBits - 1, kWdShift);
  }

  inline int WsValue() const {
    return this->Bits(kWsShift + kWsBits - 1, kWsShift);
  }

  inline int WtValue() const {
    return this->Bits(kWtShift + kWtBits - 1, kWtShift);
  }

1452
  inline int Bp2Value() const {
1453
    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1454
    return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1455 1456
  }

1457 1458
  // Float Compare condition code instruction bits.
  inline int FCccValue() const {
1459
    return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1460 1461 1462 1463
  }

  // Float Branch condition code instruction bits.
  inline int FBccValue() const {
1464
    return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1465 1466 1467 1468
  }

  // Float Branch true/false instruction bit.
  inline int FBtrueValue() const {
1469
    return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1470 1471 1472 1473
  }

  // Return the fields at their original place in the instruction encoding.
  inline Opcode OpcodeFieldRaw() const {
1474
    return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1475 1476 1477
  }

  inline int RsFieldRaw() const {
1478 1479 1480
    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
           this->InstructionType() == InstructionBase::kImmediateType);
    return this->InstructionBits() & kRsFieldMask;
1481 1482
  }

1483
  inline int RtFieldRaw() const {
1484 1485 1486
    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
           this->InstructionType() == InstructionBase::kImmediateType);
    return this->InstructionBits() & kRtFieldMask;
1487 1488 1489
  }

  inline int RdFieldRaw() const {
1490
    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1491
    return this->InstructionBits() & kRdFieldMask;
1492 1493 1494
  }

  inline int SaFieldRaw() const {
1495
    return this->InstructionBits() & kSaFieldMask;
1496 1497 1498
  }

  inline int FunctionFieldRaw() const {
1499
    return this->InstructionBits() & kFunctionFieldMask;
1500 1501 1502
  }

  // Get the secondary field according to the opcode.
1503
  inline int SecondaryValue() const {
1504
    Opcode op = this->OpcodeFieldRaw();
1505 1506 1507
    switch (op) {
      case SPECIAL:
      case SPECIAL2:
1508
        return FunctionValue();
1509
      case COP1:
1510
        return RsValue();
1511
      case REGIMM:
1512
        return RtValue();
1513
      default:
1514
        return nullptrSF;
1515 1516 1517
    }
  }

1518
  inline int32_t ImmValue(int bits) const {
1519
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1520
    return this->Bits(bits - 1, 0);
1521 1522
  }

1523
  inline int32_t Imm9Value() const {
1524
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1525 1526 1527
    return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
  }

1528
  inline int32_t Imm16Value() const {
1529
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1530
    return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1531 1532
  }

1533
  inline int32_t Imm18Value() const {
1534
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1535
    return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1536 1537 1538
  }

  inline int32_t Imm19Value() const {
1539
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1540
    return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1541 1542
  }

1543
  inline int32_t Imm21Value() const {
1544
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1545
    return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1546 1547
  }

1548
  inline int32_t Imm26Value() const {
1549 1550 1551
    DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
           (this->InstructionType() == InstructionBase::kImmediateType));
    return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1552 1553
  }

1554
  inline int32_t MsaImm8Value() const {
1555
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1556 1557 1558 1559
    return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
  }

  inline int32_t MsaImm5Value() const {
1560
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1561 1562 1563 1564
    return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
  }

  inline int32_t MsaImm10Value() const {
1565
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1566 1567 1568 1569
    return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
  }

  inline int32_t MsaImmMI10Value() const {
1570
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1571 1572 1573 1574
    return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
  }

  inline int32_t MsaBitDf() const {
1575
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    int32_t df_m = this->Bits(22, 16);
    if (((df_m >> 6) & 1U) == 0) {
      return 3;
    } else if (((df_m >> 5) & 3U) == 2) {
      return 2;
    } else if (((df_m >> 4) & 7U) == 6) {
      return 1;
    } else if (((df_m >> 3) & 15U) == 14) {
      return 0;
    } else {
      return -1;
    }
  }

  inline int32_t MsaBitMValue() const {
1591
    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1592 1593 1594 1595
    return this->Bits(16 + this->MsaBitDf() + 3, 16);
  }

  inline int32_t MsaElmDf() const {
1596 1597
    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
           this->InstructionType() == InstructionBase::kImmediateType);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
    int32_t df_n = this->Bits(21, 16);
    if (((df_n >> 4) & 3U) == 0) {
      return 0;
    } else if (((df_n >> 3) & 7U) == 4) {
      return 1;
    } else if (((df_n >> 2) & 15U) == 12) {
      return 2;
    } else if (((df_n >> 1) & 31U) == 28) {
      return 3;
    } else {
      return -1;
    }
  }

  inline int32_t MsaElmNValue() const {
1613 1614
    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
           this->InstructionType() == InstructionBase::kImmediateType);
1615 1616 1617
    return this->Bits(16 + 4 - this->MsaElmDf(), 16);
  }

1618 1619 1620 1621 1622
  static bool IsForbiddenAfterBranchInstr(Instr instr);

  // Say if the instruction should not be used in a branch delay slot or
  // immediately after a compact branch.
  inline bool IsForbiddenAfterBranch() const {
1623
    return IsForbiddenAfterBranchInstr(this->InstructionBits());
1624 1625 1626 1627 1628 1629
  }

  inline bool IsForbiddenInBranchDelay() const {
    return IsForbiddenAfterBranch();
  }

1630
  // Say if the instruction 'links'. e.g. jal, bal.
1631
  bool IsLinkingInstruction() const;
1632
  // Say if the instruction is a break or a trap.
1633
  bool IsTrap() const;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

  inline bool IsMSABranchInstr() const {
    if (this->OpcodeFieldRaw() == COP1) {
      switch (this->RsFieldRaw()) {
        case BZ_V:
        case BZ_B:
        case BZ_H:
        case BZ_W:
        case BZ_D:
        case BNZ_V:
        case BNZ_B:
        case BNZ_H:
        case BNZ_W:
        case BNZ_D:
          return true;
        default:
          return false;
      }
    }
    return false;
  }

  inline bool IsMSAInstr() const {
    if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
      return true;
    return false;
  }
1661
};
1662

1663 1664
class Instruction : public InstructionGetters<InstructionBase> {
 public:
1665 1666 1667 1668
  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
  // to allocate or create instances of class Instruction.
  // Use the At(pc) function to create references to Instruction.
1669
  static Instruction* At(byte* pc) {
1670 1671 1672 1673
    return reinterpret_cast<Instruction*>(pc);
  }

 private:
1674
  // We need to prevent the creation of instances of class Instruction.
1675 1676 1677 1678 1679 1680
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};

// -----------------------------------------------------------------------------
// MIPS assembly various constants.

1681
// C/C++ argument slots size.
1682
const int kCArgSlotCount = 4;
1683
const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize;
1684

1685
// JS argument slots size.
1686
const int kJSArgsSlotsSize = 0 * kInstrSize;
1687

1688
// Assembly builtins argument slots size.
1689
const int kBArgsSlotsSize = 0 * kInstrSize;
1690

1691
const int kBranchReturnOffset = 2 * kInstrSize;
1692

1693
InstructionBase::Type InstructionBase::InstructionType() const {
1694 1695
  switch (OpcodeFieldRaw()) {
    case SPECIAL:
1696 1697
      if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
          kFunctionFieldRegisterTypeMask) {
1698 1699
        return kRegisterType;
      }
1700
      return kUnsupported;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
    case SPECIAL2:
      switch (FunctionFieldRaw()) {
        case MUL:
        case CLZ:
          return kRegisterType;
        default:
          return kUnsupported;
      }
      break;
    case SPECIAL3:
      switch (FunctionFieldRaw()) {
        case INS:
        case EXT:
          return kRegisterType;
        case BSHFL: {
          int sa = SaFieldRaw() >> kSaShift;
          switch (sa) {
            case BITSWAP:
            case WSBH:
            case SEB:
            case SEH:
1722
              return kRegisterType;
1723 1724 1725 1726 1727 1728 1729 1730 1731
          }
          sa >>= kBp2Bits;
          switch (sa) {
            case ALIGN:
              return kRegisterType;
            default:
              return kUnsupported;
          }
        }
1732 1733 1734 1735 1736
        case LL_R6:
        case SC_R6: {
          DCHECK(IsMipsArchVariant(kMips32r6));
          return kImmediateType;
        }
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        default:
          return kUnsupported;
      }
      break;
    case COP1:  // Coprocessor instructions.
      switch (RsFieldRawNoAssert()) {
        case BC1:  // Branch on coprocessor condition.
        case BC1EQZ:
        case BC1NEZ:
          return kImmediateType;
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
        // MSA Branch instructions
        case BZ_V:
        case BNZ_V:
        case BZ_B:
        case BZ_H:
        case BZ_W:
        case BZ_D:
        case BNZ_B:
        case BNZ_H:
        case BNZ_W:
        case BNZ_D:
          return kImmediateType;
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
        default:
          return kRegisterType;
      }
      break;
    case COP1X:
      return kRegisterType;

    // 26 bits immediate type instructions. e.g.: j imm26.
    case J:
    case JAL:
      return kJumpType;

1771 1772 1773 1774 1775 1776 1777 1778
    case MSA:
      switch (MSAMinorOpcodeField()) {
        case kMsaMinor3R:
        case kMsaMinor3RF:
        case kMsaMinorVEC:
        case kMsaMinor2R:
        case kMsaMinor2RF:
          return kRegisterType;
1779 1780 1781 1782 1783 1784 1785 1786 1787
        case kMsaMinorELM:
          switch (InstructionBits() & kMsaLongerELMMask) {
            case CFCMSA:
            case CTCMSA:
            case MOVE_V:
              return kRegisterType;
            default:
              return kImmediateType;
          }
1788 1789 1790 1791
        default:
          return kImmediateType;
      }

1792
    default:
1793
      return kImmediateType;
1794 1795 1796 1797 1798
  }
}

#undef OpcodeToBitNumber
#undef FunctionFieldToBitNumber
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

// -----------------------------------------------------------------------------
// Instructions.

template <class P>
bool InstructionGetters<P>::IsLinkingInstruction() const {
  uint32_t op = this->OpcodeFieldRaw();
  switch (op) {
    case JAL:
      return true;
    case POP76:
      if (this->RsFieldRawNoAssert() == JIALC)
        return true;  // JIALC
      else
        return false;  // BNEZC
    case REGIMM:
      switch (this->RtFieldRaw()) {
        case BGEZAL:
        case BLTZAL:
          return true;
        default:
          return false;
      }
    case SPECIAL:
      switch (this->FunctionFieldRaw()) {
        case JALR:
          return true;
        default:
          return false;
      }
    default:
      return false;
  }
}

template <class P>
bool InstructionGetters<P>::IsTrap() const {
  if (this->OpcodeFieldRaw() != SPECIAL) {
    return false;
  } else {
    switch (this->FunctionFieldRaw()) {
      case BREAK:
      case TGE:
      case TGEU:
      case TLT:
      case TLTU:
      case TEQ:
      case TNE:
        return true;
      default:
        return false;
    }
  }
}

// static
template <class T>
bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
  Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
  switch (opcode) {
    case J:
    case JAL:
    case BEQ:
    case BNE:
    case BLEZ:  // POP06 bgeuc/bleuc, blezalc, bgezalc
    case BGTZ:  // POP07 bltuc/bgtuc, bgtzalc, bltzalc
    case BEQL:
    case BNEL:
    case BLEZL:  // POP26 bgezc, blezc, bgec/blec
    case BGTZL:  // POP27 bgtzc, bltzc, bltc/bgtc
    case BC:
    case BALC:
    case POP10:  // beqzalc, bovc, beqc
    case POP30:  // bnezalc, bnvc, bnec
    case POP66:  // beqzc, jic
    case POP76:  // bnezc, jialc
      return true;
    case REGIMM:
      switch (instr & kRtFieldMask) {
        case BLTZ:
        case BGEZ:
        case BLTZAL:
        case BGEZAL:
          return true;
        default:
          return false;
      }
      break;
    case SPECIAL:
      switch (instr & kFunctionFieldMask) {
        case JR:
        case JALR:
          return true;
        default:
          return false;
      }
      break;
    case COP1:
      switch (instr & kRsFieldMask) {
        case BC1:
        case BC1EQZ:
        case BC1NEZ:
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        case BZ_V:
        case BZ_B:
        case BZ_H:
        case BZ_W:
        case BZ_D:
        case BNZ_V:
        case BNZ_B:
        case BNZ_H:
        case BNZ_W:
        case BNZ_D:
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
          return true;
          break;
        default:
          return false;
      }
      break;
    default:
      return false;
  }
}
1921 1922
}  // namespace internal
}  // namespace v8
1923

1924
#endif  // V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_