disasm-mips.cc 74.7 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4 5 6 7 8 9 10 11 12

// A Disassembler object is used to disassemble a block of code instruction by
// instruction. The default implementation of the NameConverter object can be
// overriden to modify register names or to do symbol lookup on addresses.
//
// The example below will disassemble a block of code and print it to stdout.
//
//   NameConverter converter;
//   Disassembler d(converter);
13
//   for (byte* pc = begin; pc < end;) {
14 15 16
//     v8::internal::EmbeddedVector<char, 256> buffer;
//     byte* prev_pc = pc;
//     pc += d.InstructionDecode(buffer, pc);
17 18 19 20 21 22 23 24 25 26
//     printf("%p    %08x      %s\n",
//            prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
//   }
//
// The Disassembler class also has a convenience method to disassemble a block
// of code into a FILE*, meaning that the above functionality could also be
// achieved by just calling Disassembler::Disassemble(stdout, begin, end);

#include <assert.h>
#include <stdarg.h>
27
#include <stdio.h>
28 29
#include <string.h>

30
#if V8_TARGET_ARCH_MIPS
31

32
#include "src/base/platform/platform.h"
33 34
#include "src/disasm.h"
#include "src/macro-assembler.h"
35
#include "src/mips/constants-mips.h"
36

37 38
namespace v8 {
namespace internal {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

//------------------------------------------------------------------------------

// Decoder decodes and disassembles instructions into an output buffer.
// It uses the converter to convert register names and call destinations into
// more informative description.
class Decoder {
 public:
  Decoder(const disasm::NameConverter& converter,
          v8::internal::Vector<char> out_buffer)
    : converter_(converter),
      out_buffer_(out_buffer),
      out_buffer_pos_(0) {
    out_buffer_[out_buffer_pos_] = '\0';
  }

  ~Decoder() {}

  // Writes one disassembled instruction into 'buffer' (0-terminated).
  // Returns the length of the disassembled machine instruction in bytes.
59
  int InstructionDecode(byte* instruction);
60 61 62 63 64 65 66 67

 private:
  // Bottleneck functions to print into the out_buffer.
  void PrintChar(const char ch);
  void Print(const char* str);

  // Printing of common values.
  void PrintRegister(int reg);
68
  void PrintFPURegister(int freg);
69
  void PrintMSARegister(int wreg);
70
  void PrintFPUStatusRegister(int freg);
71
  void PrintMSAControlRegister(int creg);
72 73 74 75 76 77 78
  void PrintRs(Instruction* instr);
  void PrintRt(Instruction* instr);
  void PrintRd(Instruction* instr);
  void PrintFs(Instruction* instr);
  void PrintFt(Instruction* instr);
  void PrintFd(Instruction* instr);
  void PrintSa(Instruction* instr);
79
  void PrintLsaSa(Instruction* instr);
80
  void PrintSd(Instruction* instr);
81 82
  void PrintSs1(Instruction* instr);
  void PrintSs2(Instruction* instr);
83 84
  void PrintBc(Instruction* instr);
  void PrintCc(Instruction* instr);
85
  void PrintBp2(Instruction* instr);
86 87 88 89 90
  void PrintFunction(Instruction* instr);
  void PrintSecondaryField(Instruction* instr);
  void PrintUImm16(Instruction* instr);
  void PrintSImm16(Instruction* instr);
  void PrintXImm16(Instruction* instr);
91
  void PrintPCImm16(Instruction* instr, int delta_pc, int n_bits);
92 93 94 95
  void PrintXImm18(Instruction* instr);
  void PrintSImm18(Instruction* instr);
  void PrintXImm19(Instruction* instr);
  void PrintSImm19(Instruction* instr);
96
  void PrintXImm21(Instruction* instr);
97
  void PrintSImm21(Instruction* instr);
98
  void PrintPCImm21(Instruction* instr, int delta_pc, int n_bits);
99
  void PrintXImm26(Instruction* instr);
100
  void PrintSImm26(Instruction* instr);
101 102
  void PrintPCImm26(Instruction* instr, int delta_pc, int n_bits);
  void PrintPCImm26(Instruction* instr);
103
  void PrintCode(Instruction* instr);   // For break and trap instructions.
104
  void PrintFormat(Instruction* instr);  // For floating format postfix.
105 106 107 108 109 110 111 112 113
  void PrintMsaDataFormat(Instruction* instr);
  void PrintMsaXImm8(Instruction* instr);
  void PrintMsaImm8(Instruction* instr);
  void PrintMsaImm5(Instruction* instr);
  void PrintMsaSImm5(Instruction* instr);
  void PrintMsaSImm10(Instruction* instr, bool is_mi10 = false);
  void PrintMsaImmBit(Instruction* instr);
  void PrintMsaImmElm(Instruction* instr);
  void PrintMsaCopy(Instruction* instr);
114 115 116 117 118
  // Printing of instruction name.
  void PrintInstructionName(Instruction* instr);

  // Handle formatting of instructions and their options.
  int FormatRegister(Instruction* instr, const char* option);
119
  int FormatFPURegister(Instruction* instr, const char* option);
120
  int FormatMSARegister(Instruction* instr, const char* option);
121 122 123 124
  int FormatOption(Instruction* instr, const char* option);
  void Format(Instruction* instr, const char* format);
  void Unknown(Instruction* instr);

125

126
  // Each of these functions decodes one particular instruction type.
127 128
  bool DecodeTypeRegisterRsType(Instruction* instr);
  void DecodeTypeRegisterSRsType(Instruction* instr);
129 130
  void DecodeTypeRegisterDRsType(Instruction* instr);
  void DecodeTypeRegisterLRsType(Instruction* instr);
131
  void DecodeTypeRegisterWRsType(Instruction* instr);
132 133 134
  void DecodeTypeRegisterSPECIAL(Instruction* instr);
  void DecodeTypeRegisterSPECIAL2(Instruction* instr);
  void DecodeTypeRegisterSPECIAL3(Instruction* instr);
135 136 137
  void DecodeTypeRegister(Instruction* instr);
  void DecodeTypeImmediate(Instruction* instr);
  void DecodeTypeJump(Instruction* instr);
138 139 140 141 142 143 144 145 146 147 148
  void DecodeTypeMsaI8(Instruction* instr);
  void DecodeTypeMsaI5(Instruction* instr);
  void DecodeTypeMsaI10(Instruction* instr);
  void DecodeTypeMsaELM(Instruction* instr);
  void DecodeTypeMsaBIT(Instruction* instr);
  void DecodeTypeMsaMI10(Instruction* instr);
  void DecodeTypeMsa3R(Instruction* instr);
  void DecodeTypeMsa3RF(Instruction* instr);
  void DecodeTypeMsaVec(Instruction* instr);
  void DecodeTypeMsa2R(Instruction* instr);
  void DecodeTypeMsa2RF(Instruction* instr);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

  const disasm::NameConverter& converter_;
  v8::internal::Vector<char> out_buffer_;
  int out_buffer_pos_;

  DISALLOW_COPY_AND_ASSIGN(Decoder);
};


// Support for assertions in the Decoder formatting functions.
#define STRING_STARTS_WITH(string, compare_string) \
  (strncmp(string, compare_string, strlen(compare_string)) == 0)


// Append the ch to the output buffer.
void Decoder::PrintChar(const char ch) {
  out_buffer_[out_buffer_pos_++] = ch;
}


// Append the str to the output buffer.
void Decoder::Print(const char* str) {
  char cur = *str++;
  while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    PrintChar(cur);
    cur = *str++;
  }
  out_buffer_[out_buffer_pos_] = 0;
}


// Print the register name according to the active name converter.
void Decoder::PrintRegister(int reg) {
  Print(converter_.NameOfCPURegister(reg));
}


void Decoder::PrintRs(Instruction* instr) {
187
  int reg = instr->RsValue();
188 189 190 191 192
  PrintRegister(reg);
}


void Decoder::PrintRt(Instruction* instr) {
193
  int reg = instr->RtValue();
194 195 196 197 198
  PrintRegister(reg);
}


void Decoder::PrintRd(Instruction* instr) {
199
  int reg = instr->RdValue();
200 201 202 203
  PrintRegister(reg);
}


204 205 206
// Print the FPUregister name according to the active name converter.
void Decoder::PrintFPURegister(int freg) {
  Print(converter_.NameOfXMMRegister(freg));
207 208
}

209
void Decoder::PrintMSARegister(int wreg) { Print(MSARegisters::Name(wreg)); }
210

211 212 213 214 215 216 217 218 219 220
void Decoder::PrintFPUStatusRegister(int freg) {
  switch (freg) {
    case kFCSRRegister:
      Print("FCSR");
      break;
    default:
      Print(converter_.NameOfXMMRegister(freg));
  }
}

221 222 223 224 225 226 227 228 229 230 231 232
void Decoder::PrintMSAControlRegister(int creg) {
  switch (creg) {
    case kMSAIRRegister:
      Print("MSAIR");
      break;
    case kMSACSRRegister:
      Print("MSACSR");
      break;
    default:
      Print("no_msacreg");
  }
}
233

234
void Decoder::PrintFs(Instruction* instr) {
235 236
  int freg = instr->RsValue();
  PrintFPURegister(freg);
237 238 239 240
}


void Decoder::PrintFt(Instruction* instr) {
241 242
  int freg = instr->RtValue();
  PrintFPURegister(freg);
243 244 245 246
}


void Decoder::PrintFd(Instruction* instr) {
247 248
  int freg = instr->RdValue();
  PrintFPURegister(freg);
249 250 251 252 253
}


// Print the integer value of the sa field.
void Decoder::PrintSa(Instruction* instr) {
254
  int sa = instr->SaValue();
255
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sa);
256 257 258
}


259 260 261 262 263 264 265
// Print the integer value of the sa field of a lsa instruction.
void Decoder::PrintLsaSa(Instruction* instr) {
  int sa = instr->LsaSaValue() + 1;
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sa);
}


266
// Print the integer value of the rd field, when it is not used as reg.
267 268
void Decoder::PrintSd(Instruction* instr) {
  int sd = instr->RdValue();
269
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sd);
270 271 272
}


273 274 275
// Print the integer value of the rd field, when used as 'ext' size.
void Decoder::PrintSs1(Instruction* instr) {
  int ss = instr->RdValue();
276
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", ss + 1);
277 278 279 280 281 282 283 284
}


// Print the integer value of the rd field, when used as 'ins' size.
void Decoder::PrintSs2(Instruction* instr) {
  int ss = instr->RdValue();
  int pos = instr->SaValue();
  out_buffer_pos_ +=
285
      SNPrintF(out_buffer_ + out_buffer_pos_, "%d", ss - pos + 1);
286 287 288
}


289 290 291
// Print the integer value of the cc field for the bc1t/f instructions.
void Decoder::PrintBc(Instruction* instr) {
  int cc = instr->FBccValue();
292
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", cc);
293 294 295 296 297 298
}


// Print the integer value of the cc field for the FP compare instructions.
void Decoder::PrintCc(Instruction* instr) {
  int cc = instr->FCccValue();
299
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "cc(%d)", cc);
300 301 302
}


303 304 305 306 307 308
void Decoder::PrintBp2(Instruction* instr) {
  int bp2 = instr->Bp2Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", bp2);
}


309 310
// Print 16-bit unsigned immediate value.
void Decoder::PrintUImm16(Instruction* instr) {
311
  int32_t imm = instr->Imm16Value();
312
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", imm);
313 314 315 316 317
}


// Print 16-bit signed immediate value.
void Decoder::PrintSImm16(Instruction* instr) {
318
  int32_t imm = ((instr->Imm16Value()) << 16) >> 16;
319
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm);
320 321 322 323 324
}


// Print 16-bit hexa immediate value.
void Decoder::PrintXImm16(Instruction* instr) {
325
  int32_t imm = instr->Imm16Value();
326
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
327 328 329
}


330 331 332 333 334 335 336 337 338 339 340 341
// Print absoulte address for 16-bit offset or immediate value.
// The absolute address is calculated according following expression:
//      PC + delta_pc + (offset << n_bits)
void Decoder::PrintPCImm16(Instruction* instr, int delta_pc, int n_bits) {
  int16_t offset = instr->Imm16Value();
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
               converter_.NameOfAddress(reinterpret_cast<byte*>(instr) +
                                        delta_pc + (offset << n_bits)));
}


342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
// Print 18-bit signed immediate value.
void Decoder::PrintSImm18(Instruction* instr) {
  int32_t imm =
      ((instr->Imm18Value()) << (32 - kImm18Bits)) >> (32 - kImm18Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm);
}


// Print 18-bit hexa immediate value.
void Decoder::PrintXImm18(Instruction* instr) {
  int32_t imm = instr->Imm18Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}


// Print 19-bit hexa immediate value.
void Decoder::PrintXImm19(Instruction* instr) {
  int32_t imm = instr->Imm19Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}


// Print 19-bit signed immediate value.
void Decoder::PrintSImm19(Instruction* instr) {
  int32_t imm19 = instr->Imm19Value();
  // set sign
  imm19 <<= (32 - kImm19Bits);
  imm19 >>= (32 - kImm19Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm19);
}


374 375 376 377 378 379 380
// Print 21-bit immediate value.
void Decoder::PrintXImm21(Instruction* instr) {
  uint32_t imm = instr->Imm21Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}


381 382 383 384 385 386 387 388 389 390
// Print 21-bit signed immediate value.
void Decoder::PrintSImm21(Instruction* instr) {
  int32_t imm21 = instr->Imm21Value();
  // set sign
  imm21 <<= (32 - kImm21Bits);
  imm21 >>= (32 - kImm21Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm21);
}


391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
// Print absoulte address for 21-bit offset or immediate value.
// The absolute address is calculated according following expression:
//      PC + delta_pc + (offset << n_bits)
void Decoder::PrintPCImm21(Instruction* instr, int delta_pc, int n_bits) {
  int32_t imm21 = instr->Imm21Value();
  // set sign
  imm21 <<= (32 - kImm21Bits);
  imm21 >>= (32 - kImm21Bits);
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
               converter_.NameOfAddress(reinterpret_cast<byte*>(instr) +
                                        delta_pc + (imm21 << n_bits)));
}


406
// Print 26-bit hex immediate value.
407
void Decoder::PrintXImm26(Instruction* instr) {
408 409 410 411
  uint32_t target = static_cast<uint32_t>(instr->Imm26Value())
                    << kImmFieldShift;
  target = (reinterpret_cast<uint32_t>(instr) & ~0xfffffff) | target;
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", target);
412 413 414
}


415 416 417 418 419 420 421 422 423 424
// Print 26-bit signed immediate value.
void Decoder::PrintSImm26(Instruction* instr) {
  int32_t imm26 = instr->Imm26Value();
  // set sign
  imm26 <<= (32 - kImm26Bits);
  imm26 >>= (32 - kImm26Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm26);
}


425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
// Print absoulte address for 26-bit offset or immediate value.
// The absolute address is calculated according following expression:
//      PC + delta_pc + (offset << n_bits)
void Decoder::PrintPCImm26(Instruction* instr, int delta_pc, int n_bits) {
  int32_t imm26 = instr->Imm26Value();
  // set sign
  imm26 <<= (32 - kImm26Bits);
  imm26 >>= (32 - kImm26Bits);
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
               converter_.NameOfAddress(reinterpret_cast<byte*>(instr) +
                                        delta_pc + (imm26 << n_bits)));
}


// Print absoulte address for 26-bit offset or immediate value.
// The absolute address is calculated according following expression:
//      PC[GPRLEN-1 .. 28] || instr_index26 || 00
void Decoder::PrintPCImm26(Instruction* instr) {
  int32_t imm26 = instr->Imm26Value();
  uint32_t pc_mask = ~0xfffffff;
  uint32_t pc = ((uint32_t)(instr + 1) & pc_mask) | (imm26 << 2);
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
               converter_.NameOfAddress((reinterpret_cast<byte*>(pc))));
}


453 454 455 456 457 458 459
// Print 26-bit immediate value.
void Decoder::PrintCode(Instruction* instr) {
  if (instr->OpcodeFieldRaw() != SPECIAL)
    return;  // Not a break or trap instruction.
  switch (instr->FunctionFieldRaw()) {
    case BREAK: {
      int32_t code = instr->Bits(25, 6);
460 461
      out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
                                  "0x%05x (%d)", code, code);
462 463 464 465 466 467 468 469 470 471
      break;
                }
    case TGE:
    case TGEU:
    case TLT:
    case TLTU:
    case TEQ:
    case TNE: {
      int32_t code = instr->Bits(15, 6);
      out_buffer_pos_ +=
472
          SNPrintF(out_buffer_ + out_buffer_pos_, "0x%03x", code);
473 474 475 476
      break;
    }
    default:  // Not a break or trap instruction.
    break;
477
  }
478 479
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
void Decoder::PrintMsaXImm8(Instruction* instr) {
  int32_t imm = instr->MsaImm8Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}

void Decoder::PrintMsaImm8(Instruction* instr) {
  int32_t imm = instr->MsaImm8Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", imm);
}

void Decoder::PrintMsaImm5(Instruction* instr) {
  int32_t imm = instr->MsaImm5Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", imm);
}

void Decoder::PrintMsaSImm5(Instruction* instr) {
  int32_t imm = instr->MsaImm5Value();
  imm <<= (32 - kMsaImm5Bits);
  imm >>= (32 - kMsaImm5Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm);
}

void Decoder::PrintMsaSImm10(Instruction* instr, bool is_mi10) {
  int32_t imm = is_mi10 ? instr->MsaImmMI10Value() : instr->MsaImm10Value();
  imm <<= (32 - kMsaImm10Bits);
  imm >>= (32 - kMsaImm10Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm);
}

void Decoder::PrintMsaImmBit(Instruction* instr) {
  int32_t m = instr->MsaBitMValue();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", m);
}

void Decoder::PrintMsaImmElm(Instruction* instr) {
  int32_t n = instr->MsaElmNValue();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", n);
}

void Decoder::PrintMsaCopy(Instruction* instr) {
  int32_t rd = instr->WdValue();
  int32_t ws = instr->WsValue();
  int32_t n = instr->MsaElmNValue();
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s, %s[%u]",
               converter_.NameOfCPURegister(rd), MSARegisters::Name(ws), n);
}
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
void Decoder::PrintFormat(Instruction* instr) {
  char formatLetter = ' ';
  switch (instr->RsFieldRaw()) {
    case S:
      formatLetter = 's';
      break;
    case D:
      formatLetter = 'd';
      break;
    case W:
      formatLetter = 'w';
      break;
    case L:
      formatLetter = 'l';
      break;
    default:
      UNREACHABLE();
      break;
  }
  PrintChar(formatLetter);
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
void Decoder::PrintMsaDataFormat(Instruction* instr) {
  DCHECK(instr->IsMSAInstr());
  char df = ' ';
  if (instr->IsMSABranchInstr()) {
    switch (instr->RsFieldRaw()) {
      case BZ_V:
      case BNZ_V:
        df = 'v';
        break;
      case BZ_B:
      case BNZ_B:
        df = 'b';
        break;
      case BZ_H:
      case BNZ_H:
        df = 'h';
        break;
      case BZ_W:
      case BNZ_W:
        df = 'w';
        break;
      case BZ_D:
      case BNZ_D:
        df = 'd';
        break;
      default:
        UNREACHABLE();
        break;
    }
  } else {
    char DF[] = {'b', 'h', 'w', 'd'};
    switch (instr->MSAMinorOpcodeField()) {
      case kMsaMinorI5:
      case kMsaMinorI10:
      case kMsaMinor3R:
        df = DF[instr->Bits(22, 21)];
        break;
      case kMsaMinorMI10:
        df = DF[instr->Bits(1, 0)];
        break;
      case kMsaMinorBIT:
        df = DF[instr->MsaBitDf()];
        break;
      case kMsaMinorELM:
        df = DF[instr->MsaElmDf()];
        break;
      case kMsaMinor3RF: {
        uint32_t opcode = instr->InstructionBits() & kMsa3RFMask;
        switch (opcode) {
          case FEXDO:
          case FTQ:
          case MUL_Q:
          case MADD_Q:
          case MSUB_Q:
          case MULR_Q:
          case MADDR_Q:
          case MSUBR_Q:
            df = DF[1 + instr->Bit(21)];
            break;
          default:
            df = DF[2 + instr->Bit(21)];
            break;
        }
      } break;
      case kMsaMinor2R:
        df = DF[instr->Bits(17, 16)];
        break;
      case kMsaMinor2RF:
        df = DF[2 + instr->Bit(16)];
        break;
      default:
        UNREACHABLE();
        break;
    }
  }

  PrintChar(df);
}
628

629 630 631 632 633 634 635 636
// Printing of instruction name.
void Decoder::PrintInstructionName(Instruction* instr) {
}


// Handle all register based formatting in this function to reduce the
// complexity of FormatOption.
int Decoder::FormatRegister(Instruction* instr, const char* format) {
637
  DCHECK(format[0] == 'r');
638
  if (format[1] == 's') {  // 'rs: Rs register.
639
    int reg = instr->RsValue();
640 641
    PrintRegister(reg);
    return 2;
642
  } else if (format[1] == 't') {  // 'rt: rt register.
643
    int reg = instr->RtValue();
644 645
    PrintRegister(reg);
    return 2;
646
  } else if (format[1] == 'd') {  // 'rd: rd register.
647
    int reg = instr->RdValue();
648 649 650 651 652 653 654
    PrintRegister(reg);
    return 2;
  }
  UNREACHABLE();
}


655
// Handle all FPUregister based formatting in this function to reduce the
656
// complexity of FormatOption.
657
int Decoder::FormatFPURegister(Instruction* instr, const char* format) {
658
  DCHECK(format[0] == 'f');
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
  if ((CTC1 == instr->RsFieldRaw()) || (CFC1 == instr->RsFieldRaw())) {
    if (format[1] == 's') {  // 'fs: fs register.
      int reg = instr->FsValue();
      PrintFPUStatusRegister(reg);
      return 2;
    } else if (format[1] == 't') {  // 'ft: ft register.
      int reg = instr->FtValue();
      PrintFPUStatusRegister(reg);
      return 2;
    } else if (format[1] == 'd') {  // 'fd: fd register.
      int reg = instr->FdValue();
      PrintFPUStatusRegister(reg);
      return 2;
    } else if (format[1] == 'r') {  // 'fr: fr register.
      int reg = instr->FrValue();
      PrintFPUStatusRegister(reg);
      return 2;
    }
  } else {
    if (format[1] == 's') {  // 'fs: fs register.
      int reg = instr->FsValue();
      PrintFPURegister(reg);
      return 2;
    } else if (format[1] == 't') {  // 'ft: ft register.
      int reg = instr->FtValue();
      PrintFPURegister(reg);
      return 2;
    } else if (format[1] == 'd') {  // 'fd: fd register.
      int reg = instr->FdValue();
      PrintFPURegister(reg);
      return 2;
    } else if (format[1] == 'r') {  // 'fr: fr register.
      int reg = instr->FrValue();
      PrintFPURegister(reg);
      return 2;
    }
695 696 697 698
  }
  UNREACHABLE();
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
// Handle all MSARegister based formatting in this function to reduce the
// complexity of FormatOption.
int Decoder::FormatMSARegister(Instruction* instr, const char* format) {
  DCHECK(format[0] == 'w');
  if (format[1] == 's') {
    int reg = instr->WsValue();
    PrintMSARegister(reg);
    return 2;
  } else if (format[1] == 't') {
    int reg = instr->WtValue();
    PrintMSARegister(reg);
    return 2;
  } else if (format[1] == 'd') {
    int reg = instr->WdValue();
    PrintMSARegister(reg);
    return 2;
  }

  UNREACHABLE();
}
719 720 721 722 723 724 725 726

// FormatOption takes a formatting string and interprets it based on
// the current instructions. The format string points to the first
// character of the option string (the option escape has already been
// consumed by the caller.)  FormatOption returns the number of
// characters that were consumed from the formatting string.
int Decoder::FormatOption(Instruction* instr, const char* format) {
  switch (format[0]) {
727
    case 'c': {   // 'code for break or trap instructions.
728
      DCHECK(STRING_STARTS_WITH(format, "code"));
729 730 731
      PrintCode(instr);
      return 4;
    }
732
    case 'i': {   // 'imm16u or 'imm26.
733
      if (format[3] == '1') {
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        if (format[4] == '6') {
          DCHECK(STRING_STARTS_WITH(format, "imm16"));
          switch (format[5]) {
            case 's':
              DCHECK(STRING_STARTS_WITH(format, "imm16s"));
              PrintSImm16(instr);
              break;
            case 'u':
              DCHECK(STRING_STARTS_WITH(format, "imm16u"));
              PrintSImm16(instr);
              break;
            case 'x':
              DCHECK(STRING_STARTS_WITH(format, "imm16x"));
              PrintXImm16(instr);
              break;
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
            case 'p': {  // The PC relative address.
              DCHECK(STRING_STARTS_WITH(format, "imm16p"));
              int delta_pc = 0;
              int n_bits = 0;
              switch (format[6]) {
                case '4': {
                  DCHECK(STRING_STARTS_WITH(format, "imm16p4"));
                  delta_pc = 4;
                  switch (format[8]) {
                    case '2':
                      DCHECK(STRING_STARTS_WITH(format, "imm16p4s2"));
                      n_bits = 2;
                      PrintPCImm16(instr, delta_pc, n_bits);
                      return 9;
                  }
                }
              }
            }
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
          }
          return 6;
        } else if (format[4] == '8') {
          DCHECK(STRING_STARTS_WITH(format, "imm18"));
          switch (format[5]) {
            case 's':
              DCHECK(STRING_STARTS_WITH(format, "imm18s"));
              PrintSImm18(instr);
              break;
            case 'x':
              DCHECK(STRING_STARTS_WITH(format, "imm18x"));
              PrintXImm18(instr);
              break;
          }
          return 6;
        } else if (format[4] == '9') {
          DCHECK(STRING_STARTS_WITH(format, "imm19"));
          switch (format[5]) {
            case 's':
              DCHECK(STRING_STARTS_WITH(format, "imm19s"));
              PrintSImm19(instr);
              break;
            case 'x':
              DCHECK(STRING_STARTS_WITH(format, "imm19x"));
              PrintXImm19(instr);
              break;
          }
          return 6;
795 796 797 798 799 800 801 802 803 804
        } else if (format[4] == '0' && format[5] == 's') {
          DCHECK(STRING_STARTS_WITH(format, "imm10s"));
          if (format[6] == '1') {
            DCHECK(STRING_STARTS_WITH(format, "imm10s1"));
            PrintMsaSImm10(instr, false);
          } else if (format[6] == '2') {
            DCHECK(STRING_STARTS_WITH(format, "imm10s2"));
            PrintMsaSImm10(instr, true);
          }
          return 7;
805
        }
806
      } else if (format[3] == '2' && format[4] == '1') {
807 808 809 810 811 812 813 814 815 816
        DCHECK(STRING_STARTS_WITH(format, "imm21"));
        switch (format[5]) {
          case 's':
            DCHECK(STRING_STARTS_WITH(format, "imm21s"));
            PrintSImm21(instr);
            break;
          case 'x':
            DCHECK(STRING_STARTS_WITH(format, "imm21x"));
            PrintXImm21(instr);
            break;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
          case 'p': {  // The PC relative address.
            DCHECK(STRING_STARTS_WITH(format, "imm21p"));
            int delta_pc = 0;
            int n_bits = 0;
            switch (format[6]) {
              case '4': {
                DCHECK(STRING_STARTS_WITH(format, "imm21p4"));
                delta_pc = 4;
                switch (format[8]) {
                  case '2':
                    DCHECK(STRING_STARTS_WITH(format, "imm21p4s2"));
                    n_bits = 2;
                    PrintPCImm21(instr, delta_pc, n_bits);
                    return 9;
                }
              }
            }
          }
835
        }
836 837
        return 6;
      } else if (format[3] == '2' && format[4] == '6') {
838 839 840 841 842 843 844 845 846 847
        DCHECK(STRING_STARTS_WITH(format, "imm26"));
        switch (format[5]) {
          case 's':
            DCHECK(STRING_STARTS_WITH(format, "imm26s"));
            PrintSImm26(instr);
            break;
          case 'x':
            DCHECK(STRING_STARTS_WITH(format, "imm26x"));
            PrintXImm26(instr);
            break;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
          case 'p': {  // The PC relative address.
            DCHECK(STRING_STARTS_WITH(format, "imm26p"));
            int delta_pc = 0;
            int n_bits = 0;
            switch (format[6]) {
              case '4': {
                DCHECK(STRING_STARTS_WITH(format, "imm26p4"));
                delta_pc = 4;
                switch (format[8]) {
                  case '2':
                    DCHECK(STRING_STARTS_WITH(format, "imm26p4s2"));
                    n_bits = 2;
                    PrintPCImm26(instr, delta_pc, n_bits);
                    return 9;
                }
              }
            }
          }
          case 'j': {  // Absolute address for jump instructions.
            DCHECK(STRING_STARTS_WITH(format, "imm26j"));
            PrintPCImm26(instr);
            break;
          }
871
        }
872
        return 6;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
      } else if (format[3] == '5') {
        DCHECK(STRING_STARTS_WITH(format, "imm5"));
        if (format[4] == 'u') {
          DCHECK(STRING_STARTS_WITH(format, "imm5u"));
          PrintMsaImm5(instr);
        } else if (format[4] == 's') {
          DCHECK(STRING_STARTS_WITH(format, "imm5s"));
          PrintMsaSImm5(instr);
        }
        return 5;
      } else if (format[3] == '8') {
        DCHECK(STRING_STARTS_WITH(format, "imm8"));
        PrintMsaImm8(instr);
        return 4;
      } else if (format[3] == 'b') {
        DCHECK(STRING_STARTS_WITH(format, "immb"));
        PrintMsaImmBit(instr);
        return 4;
      } else if (format[3] == 'e') {
        DCHECK(STRING_STARTS_WITH(format, "imme"));
        PrintMsaImmElm(instr);
        return 4;
895 896
      }
    }
897
    case 'r': {   // 'r: registers.
898 899
      return FormatRegister(instr, format);
    }
900
    case 'f': {   // 'f: FPUregisters.
901
      return FormatFPURegister(instr, format);
902
    }
903 904 905
    case 'w': {  // 'w: MSA Register
      return FormatMSARegister(instr, format);
    }
906
    case 's': {   // 'sa.
907
      switch (format[1]) {
908 909 910 911 912 913 914 915 916 917 918
        case 'a':
          if (format[2] == '2') {
            DCHECK(STRING_STARTS_WITH(format, "sa2"));  // 'sa2
            PrintLsaSa(instr);
            return 3;
          } else {
            DCHECK(STRING_STARTS_WITH(format, "sa"));
            PrintSa(instr);
            return 2;
          }
          break;
919
        case 'd': {
920
          DCHECK(STRING_STARTS_WITH(format, "sd"));
921 922 923
          PrintSd(instr);
          return 2;
        }
924 925
        case 's': {
          if (format[2] == '1') {
926
              DCHECK(STRING_STARTS_WITH(format, "ss1"));  /* ext size */
927 928 929
              PrintSs1(instr);
              return 3;
          } else {
930
              DCHECK(STRING_STARTS_WITH(format, "ss2"));  /* ins size */
931 932 933 934
              PrintSs2(instr);
              return 3;
          }
        }
935 936
      }
    }
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
    case 'b': {
      switch (format[1]) {
        case 'c': {  // 'bc - Special for bc1 cc field.
          DCHECK(STRING_STARTS_WITH(format, "bc"));
          PrintBc(instr);
          return 2;
        }
        case 'p': {
          switch (format[2]) {
            case '2': {  // 'bp2
              DCHECK(STRING_STARTS_WITH(format, "bp2"));
              PrintBp2(instr);
              return 3;
            }
          }
        }
      }
954 955
    }
    case 'C': {   // 'Cc - Special for c.xx.d cc field.
956
      DCHECK(STRING_STARTS_WITH(format, "Cc"));
957
      PrintCc(instr);
958 959
      return 2;
    }
960
    case 't':
961 962 963 964 965
      if (instr->IsMSAInstr()) {
        PrintMsaDataFormat(instr);
      } else {
        PrintFormat(instr);
      }
966
      return 1;
967
  }
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
  UNREACHABLE();
}


// Format takes a formatting string for a whole instruction and prints it into
// the output buffer. All escaped options are handed to FormatOption to be
// parsed further.
void Decoder::Format(Instruction* instr, const char* format) {
  char cur = *format++;
  while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    if (cur == '\'') {  // Single quote is used as the formatting escape.
      format += FormatOption(instr, format);
    } else {
      out_buffer_[out_buffer_pos_++] = cur;
    }
    cur = *format++;
  }
  out_buffer_[out_buffer_pos_]  = '\0';
}


// For currently unimplemented decodings the disassembler calls Unknown(instr)
// which will just print "unknown" of the instruction bits.
void Decoder::Unknown(Instruction* instr) {
  Format(instr, "unknown");
}


996
bool Decoder::DecodeTypeRegisterRsType(Instruction* instr) {
997
  switch (instr->FunctionFieldRaw()) {
998 999 1000
    case RINT:
      Format(instr, "rint.'t    'fd, 'fs");
      break;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    case MIN:
      Format(instr, "min.'t    'fd, 'fs, 'ft");
      break;
    case MAX:
      Format(instr, "max.'t    'fd, 'fs, 'ft");
      break;
    case MINA:
      Format(instr, "mina.'t   'fd, 'fs, 'ft");
      break;
    case MAXA:
      Format(instr, "maxa.'t   'fd, 'fs, 'ft");
      break;
    case SEL:
      Format(instr, "sel.'t      'fd, 'fs, 'ft");
      break;
    case SELEQZ_C:
      Format(instr, "seleqz.'t    'fd, 'fs, 'ft");
      break;
    case SELNEZ_C:
      Format(instr, "selnez.'t    'fd, 'fs, 'ft");
      break;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    case MOVZ_C:
      Format(instr, "movz.'t    'fd, 'fs, 'rt");
      break;
    case MOVN_C:
      Format(instr, "movn.'t    'fd, 'fs, 'rt");
      break;
    case MOVF:
      if (instr->Bit(16)) {
        Format(instr, "movt.'t    'fd, 'fs, 'Cc");
      } else {
        Format(instr, "movf.'t    'fd, 'fs, 'Cc");
      }
      break;
1035
    case ADD_D:
1036
      Format(instr, "add.'t   'fd, 'fs, 'ft");
1037 1038
      break;
    case SUB_D:
1039
      Format(instr, "sub.'t   'fd, 'fs, 'ft");
1040 1041
      break;
    case MUL_D:
1042
      Format(instr, "mul.'t   'fd, 'fs, 'ft");
1043 1044
      break;
    case DIV_D:
1045
      Format(instr, "div.'t   'fd, 'fs, 'ft");
1046 1047
      break;
    case ABS_D:
1048
      Format(instr, "abs.'t   'fd, 'fs");
1049 1050
      break;
    case MOV_D:
1051
      Format(instr, "mov.'t   'fd, 'fs");
1052 1053
      break;
    case NEG_D:
1054
      Format(instr, "neg.'t   'fd, 'fs");
1055 1056
      break;
    case SQRT_D:
1057
      Format(instr, "sqrt.'t  'fd, 'fs");
1058
      break;
1059 1060 1061 1062 1063 1064
    case RECIP_D:
      Format(instr, "recip.'t  'fd, 'fs");
      break;
    case RSQRT_D:
      Format(instr, "rsqrt.'t  'fd, 'fs");
      break;
1065
    case CVT_W_D:
1066
      Format(instr, "cvt.w.'t 'fd, 'fs");
1067 1068
      break;
    case CVT_L_D:
1069
      Format(instr, "cvt.l.'t 'fd, 'fs");
1070 1071
      break;
    case TRUNC_W_D:
1072
      Format(instr, "trunc.w.'t 'fd, 'fs");
1073 1074
      break;
    case TRUNC_L_D:
1075
      Format(instr, "trunc.l.'t 'fd, 'fs");
1076 1077
      break;
    case ROUND_W_D:
1078
      Format(instr, "round.w.'t 'fd, 'fs");
1079
      break;
1080 1081 1082
    case ROUND_L_D:
      Format(instr, "round.l.'t 'fd, 'fs");
      break;
1083
    case FLOOR_W_D:
1084
      Format(instr, "floor.w.'t 'fd, 'fs");
1085
      break;
1086 1087 1088
    case FLOOR_L_D:
      Format(instr, "floor.l.'t 'fd, 'fs");
      break;
1089
    case CEIL_W_D:
1090
      Format(instr, "ceil.w.'t 'fd, 'fs");
1091
      break;
1092 1093 1094
    case CLASS_D:
      Format(instr, "class.'t 'fd, 'fs");
      break;
1095 1096 1097
    case CEIL_L_D:
      Format(instr, "ceil.l.'t 'fd, 'fs");
      break;
1098
    case CVT_S_D:
1099
      Format(instr, "cvt.s.'t 'fd, 'fs");
1100 1101
      break;
    case C_F_D:
1102
      Format(instr, "c.f.'t   'fs, 'ft, 'Cc");
1103 1104
      break;
    case C_UN_D:
1105
      Format(instr, "c.un.'t  'fs, 'ft, 'Cc");
1106 1107
      break;
    case C_EQ_D:
1108
      Format(instr, "c.eq.'t  'fs, 'ft, 'Cc");
1109 1110
      break;
    case C_UEQ_D:
1111
      Format(instr, "c.ueq.'t 'fs, 'ft, 'Cc");
1112 1113
      break;
    case C_OLT_D:
1114
      Format(instr, "c.olt.'t 'fs, 'ft, 'Cc");
1115 1116
      break;
    case C_ULT_D:
1117
      Format(instr, "c.ult.'t 'fs, 'ft, 'Cc");
1118 1119
      break;
    case C_OLE_D:
1120
      Format(instr, "c.ole.'t 'fs, 'ft, 'Cc");
1121 1122
      break;
    case C_ULE_D:
1123
      Format(instr, "c.ule.'t 'fs, 'ft, 'Cc");
1124 1125
      break;
    default:
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
      return false;
  }
  return true;
}


void Decoder::DecodeTypeRegisterSRsType(Instruction* instr) {
  if (!DecodeTypeRegisterRsType(instr)) {
    switch (instr->FunctionFieldRaw()) {
      case CVT_D_S:
        Format(instr, "cvt.d.'t 'fd, 'fs");
        break;
1138 1139 1140 1141 1142 1143
      case MADDF_S:
        Format(instr, "maddf.s  'fd, 'fs, 'ft");
        break;
      case MSUBF_S:
        Format(instr, "msubf.s  'fd, 'fs, 'ft");
        break;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
      default:
        Format(instr, "unknown.cop1.'t");
        break;
    }
  }
}


void Decoder::DecodeTypeRegisterDRsType(Instruction* instr) {
  if (!DecodeTypeRegisterRsType(instr)) {
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    switch (instr->FunctionFieldRaw()) {
      case MADDF_D:
        Format(instr, "maddf.d  'fd, 'fs, 'ft");
        break;
      case MSUBF_D:
        Format(instr, "msubf.d  'fd, 'fs, 'ft");
        break;
      default:
        Format(instr, "unknown.cop1.'t");
        break;
    }
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
  }
}


void Decoder::DecodeTypeRegisterLRsType(Instruction* instr) {
  switch (instr->FunctionFieldRaw()) {
    case CVT_D_L:
      Format(instr, "cvt.d.l 'fd, 'fs");
      break;
    case CVT_S_L:
      Format(instr, "cvt.s.l 'fd, 'fs");
      break;
1177 1178 1179
    case CMP_AF:
      Format(instr, "cmp.af.d  'fd,  'fs, 'ft");
      break;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    case CMP_UN:
      Format(instr, "cmp.un.d  'fd,  'fs, 'ft");
      break;
    case CMP_EQ:
      Format(instr, "cmp.eq.d  'fd,  'fs, 'ft");
      break;
    case CMP_UEQ:
      Format(instr, "cmp.ueq.d  'fd,  'fs, 'ft");
      break;
    case CMP_LT:
      Format(instr, "cmp.lt.d  'fd,  'fs, 'ft");
      break;
    case CMP_ULT:
      Format(instr, "cmp.ult.d  'fd,  'fs, 'ft");
      break;
    case CMP_LE:
      Format(instr, "cmp.le.d  'fd,  'fs, 'ft");
      break;
    case CMP_ULE:
      Format(instr, "cmp.ule.d  'fd,  'fs, 'ft");
      break;
    case CMP_OR:
      Format(instr, "cmp.or.d  'fd,  'fs, 'ft");
      break;
    case CMP_UNE:
      Format(instr, "cmp.une.d  'fd,  'fs, 'ft");
      break;
    case CMP_NE:
      Format(instr, "cmp.ne.d  'fd,  'fs, 'ft");
      break;
    default:
      UNREACHABLE();
  }
}


1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
void Decoder::DecodeTypeRegisterWRsType(Instruction* instr) {
  switch (instr->FunctionValue()) {
    case CVT_S_W:  // Convert word to float (single).
      Format(instr, "cvt.s.w 'fd, 'fs");
      break;
    case CVT_D_W:  // Convert word to double.
      Format(instr, "cvt.d.w 'fd, 'fs");
      break;
    case CMP_AF:
      Format(instr, "cmp.af.s    'fd, 'fs, 'ft");
      break;
    case CMP_UN:
      Format(instr, "cmp.un.s    'fd, 'fs, 'ft");
      break;
    case CMP_EQ:
      Format(instr, "cmp.eq.s    'fd, 'fs, 'ft");
      break;
    case CMP_UEQ:
      Format(instr, "cmp.ueq.s   'fd, 'fs, 'ft");
      break;
    case CMP_LT:
      Format(instr, "cmp.lt.s    'fd, 'fs, 'ft");
      break;
    case CMP_ULT:
      Format(instr, "cmp.ult.s   'fd, 'fs, 'ft");
      break;
    case CMP_LE:
      Format(instr, "cmp.le.s    'fd, 'fs, 'ft");
      break;
    case CMP_ULE:
      Format(instr, "cmp.ule.s   'fd, 'fs, 'ft");
      break;
    case CMP_OR:
      Format(instr, "cmp.or.s    'fd, 'fs, 'ft");
      break;
    case CMP_UNE:
      Format(instr, "cmp.une.s   'fd, 'fs, 'ft");
      break;
    case CMP_NE:
      Format(instr, "cmp.ne.s    'fd, 'fs, 'ft");
      break;
    default:
      UNREACHABLE();
  }
}


1263 1264 1265 1266 1267 1268
void Decoder::DecodeTypeRegisterSPECIAL(Instruction* instr) {
  switch (instr->FunctionFieldRaw()) {
    case JR:
      Format(instr, "jr      'rs");
      break;
    case JALR:
1269
      Format(instr, "jalr    'rs, 'rd");
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
      break;
    case SLL:
      if (0x0 == static_cast<int>(instr->InstructionBits()))
        Format(instr, "nop");
      else
        Format(instr, "sll     'rd, 'rt, 'sa");
      break;
    case SRL:
      if (instr->RsValue() == 0) {
        Format(instr, "srl     'rd, 'rt, 'sa");
      } else {
        if (IsMipsArchVariant(kMips32r2)) {
          Format(instr, "rotr    'rd, 'rt, 'sa");
        } else {
          Unknown(instr);
        }
      }
      break;
    case SRA:
      Format(instr, "sra     'rd, 'rt, 'sa");
      break;
    case SLLV:
      Format(instr, "sllv    'rd, 'rt, 'rs");
      break;
    case SRLV:
      if (instr->SaValue() == 0) {
        Format(instr, "srlv    'rd, 'rt, 'rs");
      } else {
        if (IsMipsArchVariant(kMips32r2)) {
          Format(instr, "rotrv   'rd, 'rt, 'rs");
        } else {
          Unknown(instr);
        }
      }
      break;
    case SRAV:
      Format(instr, "srav    'rd, 'rt, 'rs");
      break;
1308 1309 1310
    case LSA:
      Format(instr, "lsa     'rd, 'rt, 'rs, 'sa2");
      break;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
    case MFHI:
      if (instr->Bits(25, 16) == 0) {
        Format(instr, "mfhi    'rd");
      } else {
        if ((instr->FunctionFieldRaw() == CLZ_R6) && (instr->FdValue() == 1)) {
          Format(instr, "clz     'rd, 'rs");
        } else if ((instr->FunctionFieldRaw() == CLO_R6) &&
                   (instr->FdValue() == 1)) {
          Format(instr, "clo     'rd, 'rs");
        }
      }
      break;
    case MFLO:
      Format(instr, "mflo    'rd");
      break;
    case MULT:  // @Mips32r6 == MUL_MUH.
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "mult    'rs, 'rt");
      } else {
        if (instr->SaValue() == MUL_OP) {
          Format(instr, "mul    'rd, 'rs, 'rt");
        } else {
          Format(instr, "muh    'rd, 'rs, 'rt");
        }
      }
      break;
    case MULTU:  // @Mips32r6 == MUL_MUH_U.
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "multu   'rs, 'rt");
      } else {
        if (instr->SaValue() == MUL_OP) {
          Format(instr, "mulu   'rd, 'rs, 'rt");
        } else {
          Format(instr, "muhu   'rd, 'rs, 'rt");
        }
      }
      break;
    case DIV:  // @Mips32r6 == DIV_MOD.
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "div     'rs, 'rt");
      } else {
        if (instr->SaValue() == DIV_OP) {
          Format(instr, "div    'rd, 'rs, 'rt");
        } else {
          Format(instr, "mod    'rd, 'rs, 'rt");
        }
      }
      break;
    case DIVU:  // @Mips32r6 == DIV_MOD_U.
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "divu    'rs, 'rt");
      } else {
        if (instr->SaValue() == DIV_OP) {
          Format(instr, "divu   'rd, 'rs, 'rt");
        } else {
          Format(instr, "modu   'rd, 'rs, 'rt");
        }
      }
      break;
    case ADD:
      Format(instr, "add     'rd, 'rs, 'rt");
      break;
    case ADDU:
      Format(instr, "addu    'rd, 'rs, 'rt");
      break;
    case SUB:
      Format(instr, "sub     'rd, 'rs, 'rt");
      break;
    case SUBU:
      Format(instr, "subu    'rd, 'rs, 'rt");
      break;
    case AND:
      Format(instr, "and     'rd, 'rs, 'rt");
      break;
    case OR:
      if (0 == instr->RsValue()) {
        Format(instr, "mov     'rd, 'rt");
      } else if (0 == instr->RtValue()) {
        Format(instr, "mov     'rd, 'rs");
      } else {
        Format(instr, "or      'rd, 'rs, 'rt");
      }
      break;
    case XOR:
      Format(instr, "xor     'rd, 'rs, 'rt");
      break;
    case NOR:
      Format(instr, "nor     'rd, 'rs, 'rt");
      break;
    case SLT:
      Format(instr, "slt     'rd, 'rs, 'rt");
      break;
    case SLTU:
      Format(instr, "sltu    'rd, 'rs, 'rt");
      break;
    case BREAK:
      Format(instr, "break, code: 'code");
      break;
    case TGE:
      Format(instr, "tge     'rs, 'rt, code: 'code");
      break;
    case TGEU:
      Format(instr, "tgeu    'rs, 'rt, code: 'code");
      break;
    case TLT:
      Format(instr, "tlt     'rs, 'rt, code: 'code");
      break;
    case TLTU:
      Format(instr, "tltu    'rs, 'rt, code: 'code");
      break;
    case TEQ:
      Format(instr, "teq     'rs, 'rt, code: 'code");
      break;
    case TNE:
      Format(instr, "tne     'rs, 'rt, code: 'code");
      break;
1427 1428 1429
    case SYNC:
      Format(instr, "sync");
      break;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    case MOVZ:
      Format(instr, "movz    'rd, 'rs, 'rt");
      break;
    case MOVN:
      Format(instr, "movn    'rd, 'rs, 'rt");
      break;
    case MOVCI:
      if (instr->Bit(16)) {
        Format(instr, "movt    'rd, 'rs, 'bc");
      } else {
        Format(instr, "movf    'rd, 'rs, 'bc");
      }
      break;
    case SELEQZ_S:
1444
      Format(instr, "seleqz    'rd, 'rs, 'rt");
1445 1446
      break;
    case SELNEZ_S:
1447
      Format(instr, "selnez    'rd, 'rs, 'rt");
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
      break;
    default:
      UNREACHABLE();
  }
}


void Decoder::DecodeTypeRegisterSPECIAL2(Instruction* instr) {
  switch (instr->FunctionFieldRaw()) {
    case MUL:
      Format(instr, "mul     'rd, 'rs, 'rt");
      break;
    case CLZ:
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "clz     'rd, 'rs");
      }
      break;
    default:
      UNREACHABLE();
  }
}


void Decoder::DecodeTypeRegisterSPECIAL3(Instruction* instr) {
  switch (instr->FunctionFieldRaw()) {
    case INS: {
1474
      if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
1475 1476 1477 1478 1479 1480 1481
        Format(instr, "ins     'rt, 'rs, 'sa, 'ss2");
      } else {
        Unknown(instr);
      }
      break;
    }
    case EXT: {
1482
      if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
1483 1484 1485 1486 1487 1488
        Format(instr, "ext     'rt, 'rs, 'sa, 'ss1");
      } else {
        Unknown(instr);
      }
      break;
    }
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
    case BSHFL: {
      int sa = instr->SaFieldRaw() >> kSaShift;
      switch (sa) {
        case BITSWAP: {
          if (IsMipsArchVariant(kMips32r6)) {
            Format(instr, "bitswap 'rd, 'rt");
          } else {
            Unknown(instr);
          }
          break;
        }
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        case SEB: {
          if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
            Format(instr, "seb     'rd, 'rt");
          } else {
            Unknown(instr);
          }
          break;
        }
        case SEH: {
          if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
            Format(instr, "seh     'rd, 'rt");
          } else {
            Unknown(instr);
          }
1514
          break;
1515 1516 1517 1518 1519 1520 1521 1522 1523
        }
        case WSBH: {
          if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
            Format(instr, "wsbh    'rd, 'rt");
          } else {
            Unknown(instr);
          }
          break;
        }
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
        default: {
          sa >>= kBp2Bits;
          switch (sa) {
            case ALIGN: {
              if (IsMipsArchVariant(kMips32r6)) {
                Format(instr, "align  'rd, 'rs, 'rt, 'bp2");
              } else {
                Unknown(instr);
              }
              break;
            }
            default:
              UNREACHABLE();
              break;
          }
        }
1540 1541 1542
      }
      break;
    }
1543 1544 1545 1546 1547 1548
    default:
      UNREACHABLE();
  }
}


1549 1550
void Decoder::DecodeTypeRegister(Instruction* instr) {
  switch (instr->OpcodeFieldRaw()) {
1551
    case COP1:    // Coprocessor instructions.
1552
      switch (instr->RsFieldRaw()) {
1553
        case BC1:   // bc1 handled in DecodeTypeImmediate.
1554 1555 1556
          UNREACHABLE();
          break;
        case MFC1:
1557
          Format(instr, "mfc1    'rt, 'fs");
1558 1559
          break;
        case MFHC1:
1560
          Format(instr, "mfhc1   'rt, 'fs");
1561 1562
          break;
        case MTC1:
1563
          Format(instr, "mtc1    'rt, 'fs");
1564 1565 1566
          break;
        // These are called "fs" too, although they are not FPU registers.
        case CTC1:
1567
          Format(instr, "ctc1    'rt, 'fs");
1568 1569
          break;
        case CFC1:
1570
          Format(instr, "cfc1    'rt, 'fs");
1571 1572
          break;
        case MTHC1:
1573
          Format(instr, "mthc1   'rt, 'fs");
1574
          break;
1575 1576 1577
        case S:
          DecodeTypeRegisterSRsType(instr);
          break;
1578
        case D:
1579
          DecodeTypeRegisterDRsType(instr);
1580
          break;
1581
        case L:
1582
          DecodeTypeRegisterLRsType(instr);
1583
          break;
1584 1585 1586
        case W:
          DecodeTypeRegisterWRsType(instr);
          break;
1587 1588 1589 1590 1591
        case PS:
          UNIMPLEMENTED_MIPS();
          break;
        default:
          UNREACHABLE();
1592
      }
1593
      break;
1594 1595
    case COP1X:
      switch (instr->FunctionFieldRaw()) {
1596 1597 1598
        case MADD_S:
          Format(instr, "madd.s  'fd, 'fr, 'fs, 'ft");
          break;
1599 1600 1601
        case MADD_D:
          Format(instr, "madd.d  'fd, 'fr, 'fs, 'ft");
          break;
1602 1603 1604 1605 1606 1607
        case MSUB_S:
          Format(instr, "msub.s  'fd, 'fr, 'fs, 'ft");
          break;
        case MSUB_D:
          Format(instr, "msub.d  'fd, 'fr, 'fs, 'ft");
          break;
1608 1609
        default:
          UNREACHABLE();
1610
      }
1611
      break;
1612
    case SPECIAL:
1613
      DecodeTypeRegisterSPECIAL(instr);
1614 1615
      break;
    case SPECIAL2:
1616
      DecodeTypeRegisterSPECIAL2(instr);
1617 1618
      break;
    case SPECIAL3:
1619
      DecodeTypeRegisterSPECIAL3(instr);
1620
      break;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
    case MSA:
      switch (instr->MSAMinorOpcodeField()) {
        case kMsaMinor3R:
          DecodeTypeMsa3R(instr);
          break;
        case kMsaMinor3RF:
          DecodeTypeMsa3RF(instr);
          break;
        case kMsaMinorVEC:
          DecodeTypeMsaVec(instr);
          break;
        case kMsaMinor2R:
          DecodeTypeMsa2R(instr);
          break;
        case kMsaMinor2RF:
          DecodeTypeMsa2RF(instr);
          break;
        default:
          UNREACHABLE();
      }
      break;
1642 1643
    default:
      UNREACHABLE();
1644
  }
1645 1646 1647 1648 1649
}


void Decoder::DecodeTypeImmediate(Instruction* instr) {
  switch (instr->OpcodeFieldRaw()) {
1650 1651 1652 1653
    case COP1:
      switch (instr->RsFieldRaw()) {
        case BC1:
          if (instr->FBtrueValue()) {
1654
            Format(instr, "bc1t    'bc, 'imm16u -> 'imm16p4s2");
1655
          } else {
1656
            Format(instr, "bc1f    'bc, 'imm16u -> 'imm16p4s2");
1657 1658
          }
          break;
1659
        case BC1EQZ:
1660
          Format(instr, "bc1eqz    'ft, 'imm16u -> 'imm16p4s2");
1661 1662
          break;
        case BC1NEZ:
1663
          Format(instr, "bc1nez    'ft, 'imm16u -> 'imm16p4s2");
1664
          break;
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        case BZ_V:
        case BZ_B:
        case BZ_H:
        case BZ_W:
        case BZ_D:
          Format(instr, "bz.'t  'wt, 'imm16s -> 'imm16p4s2");
          break;
        case BNZ_V:
        case BNZ_B:
        case BNZ_H:
        case BNZ_W:
        case BNZ_D:
          Format(instr, "bnz.'t  'wt, 'imm16s -> 'imm16p4s2");
          break;
1679 1680
        default:
          UNREACHABLE();
1681
      }
1682

1683
      break;  // Case COP1.
1684
    // ------------- REGIMM class.
1685 1686 1687
    case REGIMM:
      switch (instr->RtFieldRaw()) {
        case BLTZ:
1688
          Format(instr, "bltz    'rs, 'imm16u -> 'imm16p4s2");
1689 1690
          break;
        case BLTZAL:
1691
          Format(instr, "bltzal  'rs, 'imm16u -> 'imm16p4s2");
1692 1693
          break;
        case BGEZ:
1694
          Format(instr, "bgez    'rs, 'imm16u -> 'imm16p4s2");
1695
          break;
1696 1697 1698 1699 1700
        case BGEZAL: {
          if (instr->RsValue() == 0)
            Format(instr, "bal     'imm16s -> 'imm16p4s2");
          else
            Format(instr, "bgezal  'rs, 'imm16u -> 'imm16p4s2");
1701
          break;
1702
        }
1703
        case BGEZALL:
1704
          Format(instr, "bgezall 'rs, 'imm16u -> 'imm16p4s2");
1705
          break;
1706 1707
        default:
          UNREACHABLE();
1708 1709
      }
    break;  // Case REGIMM.
1710 1711
    // ------------- Branch instructions.
    case BEQ:
1712
      Format(instr, "beq     'rs, 'rt, 'imm16u -> 'imm16p4s2");
1713
      break;
1714
    case BC:
1715
      Format(instr, "bc      'imm26s -> 'imm26p4s2");
1716 1717
      break;
    case BALC:
1718
      Format(instr, "balc    'imm26s -> 'imm26p4s2");
1719
      break;
1720
    case BNE:
1721
      Format(instr, "bne     'rs, 'rt, 'imm16u -> 'imm16p4s2");
1722 1723
      break;
    case BLEZ:
1724 1725 1726 1727
      if ((instr->RtValue() == 0) && (instr->RsValue() != 0)) {
        Format(instr, "blez    'rs, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() != instr->RsValue()) &&
                 (instr->RsValue() != 0) && (instr->RtValue() != 0)) {
1728
        Format(instr, "bgeuc   'rs, 'rt, 'imm16u -> 'imm16p4s2");
1729 1730
      } else if ((instr->RtValue() == instr->RsValue()) &&
                 (instr->RtValue() != 0)) {
1731
        Format(instr, "bgezalc 'rs, 'imm16u -> 'imm16p4s2");
1732
      } else if ((instr->RsValue() == 0) && (instr->RtValue() != 0)) {
1733
        Format(instr, "blezalc 'rt, 'imm16u -> 'imm16p4s2");
1734 1735 1736
      } else {
        UNREACHABLE();
      }
1737 1738
      break;
    case BGTZ:
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
      if ((instr->RtValue() == 0) && (instr->RsValue() != 0)) {
        Format(instr, "bgtz    'rs, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() != instr->RsValue()) &&
                 (instr->RsValue() != 0) && (instr->RtValue() != 0)) {
        Format(instr, "bltuc   'rs, 'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() == instr->RsValue()) &&
                 (instr->RtValue() != 0)) {
        Format(instr, "bltzalc 'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RsValue() == 0) && (instr->RtValue() != 0)) {
        Format(instr, "bgtzalc 'rt, 'imm16u -> 'imm16p4s2");
1749 1750 1751 1752 1753
      } else {
        UNREACHABLE();
      }
      break;
    case BLEZL:
1754 1755 1756 1757 1758 1759 1760
      if ((instr->RtValue() == instr->RsValue()) && (instr->RtValue() != 0)) {
        Format(instr, "bgezc    'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() != instr->RsValue()) &&
                 (instr->RsValue() != 0) && (instr->RtValue() != 0)) {
        Format(instr, "bgec     'rs, 'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RsValue() == 0) && (instr->RtValue() != 0)) {
        Format(instr, "blezc    'rt, 'imm16u -> 'imm16p4s2");
1761 1762 1763 1764 1765
      } else {
        UNREACHABLE();
      }
      break;
    case BGTZL:
1766 1767 1768 1769
      if ((instr->RtValue() == instr->RsValue()) && (instr->RtValue() != 0)) {
        Format(instr, "bltzc    'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() != instr->RsValue()) &&
                 (instr->RsValue() != 0) && (instr->RtValue() != 0)) {
1770
        Format(instr, "bltc    'rs, 'rt, 'imm16u -> 'imm16p4s2");
1771 1772
      } else if ((instr->RsValue() == 0) && (instr->RtValue() != 0)) {
        Format(instr, "bgtzc    'rt, 'imm16u -> 'imm16p4s2");
1773 1774 1775 1776
      } else {
        UNREACHABLE();
      }
      break;
1777 1778 1779 1780
    case POP66:
      if (instr->RsValue() == JIC) {
        Format(instr, "jic     'rt, 'imm16s");
      } else {
1781
        Format(instr, "beqzc   'rs, 'imm21s -> 'imm21p4s2");
1782 1783
      }
      break;
1784 1785
    case POP76:
      if (instr->RsValue() == JIALC) {
1786
        Format(instr, "jialc   'rt, 'imm16s");
1787
      } else {
1788
        Format(instr, "bnezc   'rs, 'imm21s -> 'imm21p4s2");
1789
      }
1790 1791 1792
      break;
    // ------------- Arithmetic instructions.
    case ADDI:
1793 1794 1795
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "addi    'rt, 'rs, 'imm16s");
      } else {
1796 1797 1798 1799
        int rs_reg = instr->RsValue();
        int rt_reg = instr->RtValue();
        // Check if BOVC, BEQZALC or BEQC instruction.
        if (rs_reg >= rt_reg) {
1800
          Format(instr, "bovc  'rs, 'rt, 'imm16s -> 'imm16p4s2");
1801
        } else {
1802
          DCHECK(rt_reg > 0);
1803 1804 1805 1806 1807
          if (rs_reg == 0) {
            Format(instr, "beqzalc 'rt, 'imm16s -> 'imm16p4s2");
          } else {
            Format(instr, "beqc    'rs, 'rt, 'imm16s -> 'imm16p4s2");
          }
1808 1809 1810 1811 1812
        }
      }
      break;
    case DADDI:
      if (IsMipsArchVariant(kMips32r6)) {
1813 1814 1815 1816
        int rs_reg = instr->RsValue();
        int rt_reg = instr->RtValue();
        // Check if BNVC, BNEZALC or BNEC instruction.
        if (rs_reg >= rt_reg) {
1817
          Format(instr, "bnvc  'rs, 'rt, 'imm16s -> 'imm16p4s2");
1818
        } else {
1819
          DCHECK(rt_reg > 0);
1820 1821 1822 1823 1824
          if (rs_reg == 0) {
            Format(instr, "bnezalc 'rt, 'imm16s -> 'imm16p4s2");
          } else {
            Format(instr, "bnec  'rs, 'rt, 'imm16s -> 'imm16p4s2");
          }
1825 1826
        }
      }
1827 1828
      break;
    case ADDIU:
1829
      Format(instr, "addiu   'rt, 'rs, 'imm16s");
1830 1831
      break;
    case SLTI:
1832
      Format(instr, "slti    'rt, 'rs, 'imm16s");
1833 1834
      break;
    case SLTIU:
1835
      Format(instr, "sltiu   'rt, 'rs, 'imm16u");
1836 1837
      break;
    case ANDI:
1838
      Format(instr, "andi    'rt, 'rs, 'imm16x");
1839 1840
      break;
    case ORI:
1841
      Format(instr, "ori     'rt, 'rs, 'imm16x");
1842 1843
      break;
    case XORI:
1844
      Format(instr, "xori    'rt, 'rs, 'imm16x");
1845 1846
      break;
    case LUI:
1847 1848 1849 1850
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "lui     'rt, 'imm16x");
      } else {
        if (instr->RsValue() != 0) {
1851
          Format(instr, "aui     'rt, 'rs, 'imm16x");
1852 1853 1854 1855
        } else {
          Format(instr, "lui     'rt, 'imm16x");
        }
      }
1856 1857 1858
      break;
    // ------------- Memory instructions.
    case LB:
1859
      Format(instr, "lb      'rt, 'imm16s('rs)");
1860
      break;
1861
    case LH:
1862
      Format(instr, "lh      'rt, 'imm16s('rs)");
1863 1864
      break;
    case LWL:
1865
      Format(instr, "lwl     'rt, 'imm16s('rs)");
1866
      break;
1867
    case LW:
1868
      Format(instr, "lw      'rt, 'imm16s('rs)");
1869 1870
      break;
    case LBU:
1871
      Format(instr, "lbu     'rt, 'imm16s('rs)");
1872
      break;
1873
    case LHU:
1874
      Format(instr, "lhu     'rt, 'imm16s('rs)");
1875 1876
      break;
    case LWR:
1877
      Format(instr, "lwr     'rt, 'imm16s('rs)");
1878
      break;
plind44@gmail.com's avatar
plind44@gmail.com committed
1879 1880 1881
    case PREF:
      Format(instr, "pref    'rt, 'imm16s('rs)");
      break;
1882
    case SB:
1883
      Format(instr, "sb      'rt, 'imm16s('rs)");
1884
      break;
1885
    case SH:
1886
      Format(instr, "sh      'rt, 'imm16s('rs)");
1887 1888
      break;
    case SWL:
1889
      Format(instr, "swl     'rt, 'imm16s('rs)");
1890
      break;
1891
    case SW:
1892
      Format(instr, "sw      'rt, 'imm16s('rs)");
1893
      break;
1894
    case SWR:
1895
      Format(instr, "swr     'rt, 'imm16s('rs)");
1896
      break;
1897
    case LWC1:
1898
      Format(instr, "lwc1    'ft, 'imm16s('rs)");
1899 1900
      break;
    case LDC1:
1901
      Format(instr, "ldc1    'ft, 'imm16s('rs)");
1902 1903
      break;
    case SWC1:
1904
      Format(instr, "swc1    'ft, 'imm16s('rs)");
1905 1906
      break;
    case SDC1:
1907
      Format(instr, "sdc1    'ft, 'imm16s('rs)");
1908
      break;
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
    case PCREL: {
      int32_t imm21 = instr->Imm21Value();
      // rt field: 5-bits checking
      uint8_t rt = (imm21 >> kImm16Bits);
      switch (rt) {
        case ALUIPC:
          Format(instr, "aluipc  'rs, 'imm16s");
          break;
        case AUIPC:
          Format(instr, "auipc   'rs, 'imm16s");
          break;
        default: {
          // rt field: checking of the most significant 2-bits
          rt = (imm21 >> kImm19Bits);
          switch (rt) {
            case LWPC:
              Format(instr, "lwpc    'rs, 'imm19s");
              break;
            case ADDIUPC:
              Format(instr, "addiupc 'rs, 'imm19s");
              break;
            default:
              UNREACHABLE();
              break;
          }
        }
      }
      break;
    }
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
    case MSA:
      switch (instr->MSAMinorOpcodeField()) {
        case kMsaMinorI8:
          DecodeTypeMsaI8(instr);
          break;
        case kMsaMinorI5:
          DecodeTypeMsaI5(instr);
          break;
        case kMsaMinorI10:
          DecodeTypeMsaI10(instr);
          break;
        case kMsaMinorELM:
          DecodeTypeMsaELM(instr);
          break;
        case kMsaMinorBIT:
          DecodeTypeMsaBIT(instr);
          break;
        case kMsaMinorMI10:
          DecodeTypeMsaMI10(instr);
          break;
        default:
          UNREACHABLE();
          break;
      }
      break;
1963
    default:
1964
      printf("a 0x%x \n", instr->OpcodeFieldRaw());
1965 1966
      UNREACHABLE();
      break;
1967
  }
1968 1969 1970 1971 1972 1973
}


void Decoder::DecodeTypeJump(Instruction* instr) {
  switch (instr->OpcodeFieldRaw()) {
    case J:
1974
      Format(instr, "j       'imm26x -> 'imm26j");
1975 1976
      break;
    case JAL:
1977
      Format(instr, "jal     'imm26x -> 'imm26j");
1978 1979 1980 1981 1982 1983
      break;
    default:
      UNREACHABLE();
  }
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
void Decoder::DecodeTypeMsaI8(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsaI8Mask;

  switch (opcode) {
    case ANDI_B:
      Format(instr, "andi.b  'wd, 'ws, 'imm8");
      break;
    case ORI_B:
      Format(instr, "ori.b  'wd, 'ws, 'imm8");
      break;
    case NORI_B:
      Format(instr, "nori.b  'wd, 'ws, 'imm8");
      break;
    case XORI_B:
      Format(instr, "xori.b  'wd, 'ws, 'imm8");
      break;
    case BMNZI_B:
      Format(instr, "bmnzi.b  'wd, 'ws, 'imm8");
      break;
    case BMZI_B:
      Format(instr, "bmzi.b  'wd, 'ws, 'imm8");
      break;
    case BSELI_B:
      Format(instr, "bseli.b  'wd, 'ws, 'imm8");
      break;
    case SHF_B:
      Format(instr, "shf.b  'wd, 'ws, 'imm8");
      break;
    case SHF_H:
      Format(instr, "shf.h  'wd, 'ws, 'imm8");
      break;
    case SHF_W:
      Format(instr, "shf.w  'wd, 'ws, 'imm8");
      break;
    default:
      UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsaI5(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsaI5Mask;

  switch (opcode) {
    case ADDVI:
      Format(instr, "addvi.'t  'wd, 'ws, 'imm5u");
      break;
    case SUBVI:
      Format(instr, "subvi.'t  'wd, 'ws, 'imm5u");
      break;
    case MAXI_S:
      Format(instr, "maxi_s.'t  'wd, 'ws, 'imm5s");
      break;
    case MAXI_U:
      Format(instr, "maxi_u.'t  'wd, 'ws, 'imm5u");
      break;
    case MINI_S:
      Format(instr, "mini_s.'t  'wd, 'ws, 'imm5s");
      break;
    case MINI_U:
      Format(instr, "mini_u.'t  'wd, 'ws, 'imm5u");
      break;
    case CEQI:
      Format(instr, "ceqi.'t  'wd, 'ws, 'imm5s");
      break;
    case CLTI_S:
      Format(instr, "clti_s.'t  'wd, 'ws, 'imm5s");
      break;
    case CLTI_U:
      Format(instr, "clti_u.'t  'wd, 'ws, 'imm5u");
      break;
    case CLEI_S:
      Format(instr, "clei_s.'t  'wd, 'ws, 'imm5s");
      break;
    case CLEI_U:
      Format(instr, "clei_u.'t  'wd, 'ws, 'imm5u");
      break;
    default:
      UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsaI10(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsaI5Mask;
  if (opcode == LDI) {
    Format(instr, "ldi.'t  'wd, 'imm10s1");
  } else {
    UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsaELM(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsaELMMask;
  switch (opcode) {
    case SLDI:
      if (instr->Bits(21, 16) == 0x3E) {
        Format(instr, "ctcmsa  ");
        PrintMSAControlRegister(instr->WdValue());
        Print(", ");
        PrintRegister(instr->WsValue());
      } else {
        Format(instr, "sldi.'t  'wd, 'ws['imme]");
      }
      break;
    case SPLATI:
      if (instr->Bits(21, 16) == 0x3E) {
        Format(instr, "cfcmsa  ");
        PrintRegister(instr->WdValue());
        Print(", ");
        PrintMSAControlRegister(instr->WsValue());
      } else {
        Format(instr, "splati.'t  'wd, 'ws['imme]");
      }
      break;
    case COPY_S:
      if (instr->Bits(21, 16) == 0x3E) {
        Format(instr, "move.v  'wd, 'ws");
      } else {
        Format(instr, "copy_s.'t  ");
        PrintMsaCopy(instr);
      }
      break;
    case COPY_U:
      Format(instr, "copy_u.'t  ");
      PrintMsaCopy(instr);
      break;
    case INSERT:
      Format(instr, "insert.'t  'wd['imme], ");
      PrintRegister(instr->WsValue());
      break;
    case INSVE:
      Format(instr, "insve.'t  'wd['imme], 'ws[0]");
      break;
    default:
      UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsaBIT(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsaBITMask;

  switch (opcode) {
    case SLLI:
      Format(instr, "slli.'t  'wd, 'ws, 'immb");
      break;
    case SRAI:
      Format(instr, "srai.'t  'wd, 'ws, 'immb");
      break;
    case SRLI:
      Format(instr, "srli.'t  'wd, 'ws, 'immb");
      break;
    case BCLRI:
      Format(instr, "bclri.'t  'wd, 'ws, 'immb");
      break;
    case BSETI:
      Format(instr, "bseti.'t  'wd, 'ws, 'immb");
      break;
    case BNEGI:
      Format(instr, "bnegi.'t  'wd, 'ws, 'immb");
      break;
    case BINSLI:
      Format(instr, "binsli.'t  'wd, 'ws, 'immb");
      break;
    case BINSRI:
      Format(instr, "binsri.'t  'wd, 'ws, 'immb");
      break;
    case SAT_S:
      Format(instr, "sat_s.'t  'wd, 'ws, 'immb");
      break;
    case SAT_U:
      Format(instr, "sat_u.'t  'wd, 'ws, 'immb");
      break;
    case SRARI:
      Format(instr, "srari.'t  'wd, 'ws, 'immb");
      break;
    case SRLRI:
      Format(instr, "srlri.'t  'wd, 'ws, 'immb");
      break;
    default:
      UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsaMI10(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsaMI10Mask;
  if (opcode == MSA_LD) {
    Format(instr, "ld.'t  'wd, 'imm10s2(");
    PrintRegister(instr->WsValue());
    Print(")");
  } else if (opcode == MSA_ST) {
    Format(instr, "st.'t  'wd, 'imm10s2(");
    PrintRegister(instr->WsValue());
    Print(")");
  } else {
    UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsa3R(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsa3RMask;
  switch (opcode) {
    case SLL_MSA:
      Format(instr, "sll.'t  'wd, 'ws, 'wt");
      break;
    case SRA_MSA:
      Format(instr, "sra.'t  'wd, 'ws, 'wt");
      break;
    case SRL_MSA:
      Format(instr, "srl.'t  'wd, 'ws, 'wt");
      break;
    case BCLR:
      Format(instr, "bclr.'t  'wd, 'ws, 'wt");
      break;
    case BSET:
      Format(instr, "bset.'t  'wd, 'ws, 'wt");
      break;
    case BNEG:
      Format(instr, "bneg.'t  'wd, 'ws, 'wt");
      break;
    case BINSL:
      Format(instr, "binsl.'t  'wd, 'ws, 'wt");
      break;
    case BINSR:
      Format(instr, "binsr.'t  'wd, 'ws, 'wt");
      break;
    case ADDV:
      Format(instr, "addv.'t  'wd, 'ws, 'wt");
      break;
    case SUBV:
      Format(instr, "subv.'t  'wd, 'ws, 'wt");
      break;
    case MAX_S:
      Format(instr, "max_s.'t  'wd, 'ws, 'wt");
      break;
    case MAX_U:
      Format(instr, "max_u.'t  'wd, 'ws, 'wt");
      break;
    case MIN_S:
      Format(instr, "min_s.'t  'wd, 'ws, 'wt");
      break;
    case MIN_U:
      Format(instr, "min_u.'t  'wd, 'ws, 'wt");
      break;
    case MAX_A:
      Format(instr, "max_a.'t  'wd, 'ws, 'wt");
      break;
    case MIN_A:
      Format(instr, "min_a.'t  'wd, 'ws, 'wt");
      break;
    case CEQ:
      Format(instr, "ceq.'t  'wd, 'ws, 'wt");
      break;
    case CLT_S:
      Format(instr, "clt_s.'t  'wd, 'ws, 'wt");
      break;
    case CLT_U:
      Format(instr, "clt_u.'t  'wd, 'ws, 'wt");
      break;
    case CLE_S:
      Format(instr, "cle_s.'t  'wd, 'ws, 'wt");
      break;
    case CLE_U:
      Format(instr, "cle_u.'t  'wd, 'ws, 'wt");
      break;
    case ADD_A:
      Format(instr, "add_a.'t  'wd, 'ws, 'wt");
      break;
    case ADDS_A:
      Format(instr, "adds_a.'t  'wd, 'ws, 'wt");
      break;
    case ADDS_S:
      Format(instr, "adds_s.'t  'wd, 'ws, 'wt");
      break;
    case ADDS_U:
      Format(instr, "adds_u.'t  'wd, 'ws, 'wt");
      break;
    case AVE_S:
      Format(instr, "ave_s.'t  'wd, 'ws, 'wt");
      break;
    case AVE_U:
      Format(instr, "ave_u.'t  'wd, 'ws, 'wt");
      break;
    case AVER_S:
      Format(instr, "aver_s.'t  'wd, 'ws, 'wt");
      break;
    case AVER_U:
      Format(instr, "aver_u.'t  'wd, 'ws, 'wt");
      break;
    case SUBS_S:
      Format(instr, "subs_s.'t  'wd, 'ws, 'wt");
      break;
    case SUBS_U:
      Format(instr, "subs_u.'t  'wd, 'ws, 'wt");
      break;
    case SUBSUS_U:
      Format(instr, "subsus_u.'t  'wd, 'ws, 'wt");
      break;
    case SUBSUU_S:
      Format(instr, "subsuu_s.'t  'wd, 'ws, 'wt");
      break;
    case ASUB_S:
      Format(instr, "asub_s.'t  'wd, 'ws, 'wt");
      break;
    case ASUB_U:
      Format(instr, "asub_u.'t  'wd, 'ws, 'wt");
      break;
    case MULV:
      Format(instr, "mulv.'t  'wd, 'ws, 'wt");
      break;
    case MADDV:
      Format(instr, "maddv.'t  'wd, 'ws, 'wt");
      break;
    case MSUBV:
      Format(instr, "msubv.'t  'wd, 'ws, 'wt");
      break;
    case DIV_S_MSA:
      Format(instr, "div_s.'t  'wd, 'ws, 'wt");
      break;
    case DIV_U:
      Format(instr, "div_u.'t  'wd, 'ws, 'wt");
      break;
    case MOD_S:
      Format(instr, "mod_s.'t  'wd, 'ws, 'wt");
      break;
    case MOD_U:
      Format(instr, "mod_u.'t  'wd, 'ws, 'wt");
      break;
    case DOTP_S:
      Format(instr, "dotp_s.'t  'wd, 'ws, 'wt");
      break;
    case DOTP_U:
      Format(instr, "dotp_u.'t  'wd, 'ws, 'wt");
      break;
    case DPADD_S:
      Format(instr, "dpadd_s.'t  'wd, 'ws, 'wt");
      break;
    case DPADD_U:
      Format(instr, "dpadd_u.'t  'wd, 'ws, 'wt");
      break;
    case DPSUB_S:
      Format(instr, "dpsub_s.'t  'wd, 'ws, 'wt");
      break;
    case DPSUB_U:
      Format(instr, "dpsub_u.'t  'wd, 'ws, 'wt");
      break;
    case SLD:
      Format(instr, "sld.'t  'wd, 'ws['rt]");
      break;
    case SPLAT:
      Format(instr, "splat.'t  'wd, 'ws['rt]");
      break;
    case PCKEV:
      Format(instr, "pckev.'t  'wd, 'ws, 'wt");
      break;
    case PCKOD:
      Format(instr, "pckod.'t  'wd, 'ws, 'wt");
      break;
    case ILVL:
      Format(instr, "ilvl.'t  'wd, 'ws, 'wt");
      break;
    case ILVR:
      Format(instr, "ilvr.'t  'wd, 'ws, 'wt");
      break;
    case ILVEV:
      Format(instr, "ilvev.'t  'wd, 'ws, 'wt");
      break;
    case ILVOD:
      Format(instr, "ilvod.'t  'wd, 'ws, 'wt");
      break;
    case VSHF:
      Format(instr, "vshf.'t  'wd, 'ws, 'wt");
      break;
    case SRAR:
      Format(instr, "srar.'t  'wd, 'ws, 'wt");
      break;
    case SRLR:
      Format(instr, "srlr.'t  'wd, 'ws, 'wt");
      break;
    case HADD_S:
      Format(instr, "hadd_s.'t  'wd, 'ws, 'wt");
      break;
    case HADD_U:
      Format(instr, "hadd_u.'t  'wd, 'ws, 'wt");
      break;
    case HSUB_S:
      Format(instr, "hsub_s.'t  'wd, 'ws, 'wt");
      break;
    case HSUB_U:
      Format(instr, "hsub_u.'t  'wd, 'ws, 'wt");
      break;
    default:
      UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsa3RF(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsa3RFMask;
  switch (opcode) {
    case FCAF:
      Format(instr, "fcaf.'t  'wd, 'ws, 'wt");
      break;
    case FCUN:
      Format(instr, "fcun.'t  'wd, 'ws, 'wt");
      break;
    case FCEQ:
      Format(instr, "fceq.'t  'wd, 'ws, 'wt");
      break;
    case FCUEQ:
      Format(instr, "fcueq.'t  'wd, 'ws, 'wt");
      break;
    case FCLT:
      Format(instr, "fclt.'t  'wd, 'ws, 'wt");
      break;
    case FCULT:
      Format(instr, "fcult.'t  'wd, 'ws, 'wt");
      break;
    case FCLE:
      Format(instr, "fcle.'t  'wd, 'ws, 'wt");
      break;
    case FCULE:
      Format(instr, "fcule.'t  'wd, 'ws, 'wt");
      break;
    case FSAF:
      Format(instr, "fsaf.'t  'wd, 'ws, 'wt");
      break;
    case FSUN:
      Format(instr, "fsun.'t  'wd, 'ws, 'wt");
      break;
    case FSEQ:
      Format(instr, "fseq.'t  'wd, 'ws, 'wt");
      break;
    case FSUEQ:
      Format(instr, "fsueq.'t  'wd, 'ws, 'wt");
      break;
    case FSLT:
      Format(instr, "fslt.'t  'wd, 'ws, 'wt");
      break;
    case FSULT:
      Format(instr, "fsult.'t  'wd, 'ws, 'wt");
      break;
    case FSLE:
      Format(instr, "fsle.'t  'wd, 'ws, 'wt");
      break;
    case FSULE:
      Format(instr, "fsule.'t  'wd, 'ws, 'wt");
      break;
    case FADD:
      Format(instr, "fadd.'t  'wd, 'ws, 'wt");
      break;
    case FSUB:
      Format(instr, "fsub.'t  'wd, 'ws, 'wt");
      break;
    case FMUL:
      Format(instr, "fmul.'t  'wd, 'ws, 'wt");
      break;
    case FDIV:
      Format(instr, "fdiv.'t  'wd, 'ws, 'wt");
      break;
    case FMADD:
      Format(instr, "fmadd.'t  'wd, 'ws, 'wt");
      break;
    case FMSUB:
      Format(instr, "fmsub.'t  'wd, 'ws, 'wt");
      break;
    case FEXP2:
      Format(instr, "fexp2.'t  'wd, 'ws, 'wt");
      break;
    case FEXDO:
      Format(instr, "fexdo.'t  'wd, 'ws, 'wt");
      break;
    case FTQ:
      Format(instr, "ftq.'t  'wd, 'ws, 'wt");
      break;
    case FMIN:
      Format(instr, "fmin.'t  'wd, 'ws, 'wt");
      break;
    case FMIN_A:
      Format(instr, "fmin_a.'t  'wd, 'ws, 'wt");
      break;
    case FMAX:
      Format(instr, "fmax.'t  'wd, 'ws, 'wt");
      break;
    case FMAX_A:
      Format(instr, "fmax_a.'t  'wd, 'ws, 'wt");
      break;
    case FCOR:
      Format(instr, "fcor.'t  'wd, 'ws, 'wt");
      break;
    case FCUNE:
      Format(instr, "fcune.'t  'wd, 'ws, 'wt");
      break;
    case FCNE:
      Format(instr, "fcne.'t  'wd, 'ws, 'wt");
      break;
    case MUL_Q:
      Format(instr, "mul_q.'t  'wd, 'ws, 'wt");
      break;
    case MADD_Q:
      Format(instr, "madd_q.'t  'wd, 'ws, 'wt");
      break;
    case MSUB_Q:
      Format(instr, "msub_q.'t  'wd, 'ws, 'wt");
      break;
    case FSOR:
      Format(instr, "fsor.'t  'wd, 'ws, 'wt");
      break;
    case FSUNE:
      Format(instr, "fsune.'t  'wd, 'ws, 'wt");
      break;
    case FSNE:
      Format(instr, "fsne.'t  'wd, 'ws, 'wt");
      break;
    case MULR_Q:
      Format(instr, "mulr_q.'t  'wd, 'ws, 'wt");
      break;
    case MADDR_Q:
      Format(instr, "maddr_q.'t  'wd, 'ws, 'wt");
      break;
    case MSUBR_Q:
      Format(instr, "msubr_q.'t  'wd, 'ws, 'wt");
      break;
    default:
      UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsaVec(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsaVECMask;
  switch (opcode) {
    case AND_V:
      Format(instr, "and.v  'wd, 'ws, 'wt");
      break;
    case OR_V:
      Format(instr, "or.v  'wd, 'ws, 'wt");
      break;
    case NOR_V:
      Format(instr, "nor.v  'wd, 'ws, 'wt");
      break;
    case XOR_V:
      Format(instr, "xor.v  'wd, 'ws, 'wt");
      break;
    case BMNZ_V:
      Format(instr, "bmnz.v  'wd, 'ws, 'wt");
      break;
    case BMZ_V:
      Format(instr, "bmz.v  'wd, 'ws, 'wt");
      break;
    case BSEL_V:
      Format(instr, "bsel.v  'wd, 'ws, 'wt");
      break;
    default:
      UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsa2R(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsa2RMask;
  switch (opcode) {
    case FILL: {
      Format(instr, "fill.'t  'wd, ");
      PrintRegister(instr->WsValue());  // rs value is in ws field
    } break;
    case PCNT:
      Format(instr, "pcnt.'t  'wd, 'ws");
      break;
    case NLOC:
      Format(instr, "nloc.'t  'wd, 'ws");
      break;
    case NLZC:
      Format(instr, "nlzc.'t  'wd, 'ws");
      break;
    default:
      UNREACHABLE();
  }
}

void Decoder::DecodeTypeMsa2RF(Instruction* instr) {
  uint32_t opcode = instr->InstructionBits() & kMsa2RFMask;
  switch (opcode) {
    case FCLASS:
      Format(instr, "fclass.'t  'wd, 'ws");
      break;
    case FTRUNC_S:
      Format(instr, "ftrunc_s.'t  'wd, 'ws");
      break;
    case FTRUNC_U:
      Format(instr, "ftrunc_u.'t  'wd, 'ws");
      break;
    case FSQRT:
      Format(instr, "fsqrt.'t  'wd, 'ws");
      break;
    case FRSQRT:
      Format(instr, "frsqrt.'t  'wd, 'ws");
      break;
    case FRCP:
      Format(instr, "frcp.'t  'wd, 'ws");
      break;
    case FRINT:
      Format(instr, "frint.'t  'wd, 'ws");
      break;
    case FLOG2:
      Format(instr, "flog2.'t  'wd, 'ws");
      break;
    case FEXUPL:
      Format(instr, "fexupl.'t  'wd, 'ws");
      break;
    case FEXUPR:
      Format(instr, "fexupr.'t  'wd, 'ws");
      break;
    case FFQL:
      Format(instr, "ffql.'t  'wd, 'ws");
      break;
    case FFQR:
      Format(instr, "ffqr.'t  'wd, 'ws");
      break;
    case FTINT_S:
      Format(instr, "ftint_s.'t  'wd, 'ws");
      break;
    case FTINT_U:
      Format(instr, "ftint_u.'t  'wd, 'ws");
      break;
    case FFINT_S:
      Format(instr, "ffint_s.'t  'wd, 'ws");
      break;
    case FFINT_U:
      Format(instr, "ffint_u.'t  'wd, 'ws");
      break;
    default:
      UNREACHABLE();
  }
}
2614 2615

// Disassemble the instruction at *instr_ptr into the output buffer.
2616
int Decoder::InstructionDecode(byte* instr_ptr) {
2617 2618
  Instruction* instr = Instruction::At(instr_ptr);
  // Print raw instruction bytes.
2619 2620 2621
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
                                   "%08x       ",
                                   instr->InstructionBits());
2622
  switch (instr->InstructionType()) {
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
    case Instruction::kRegisterType: {
      DecodeTypeRegister(instr);
      break;
    }
    case Instruction::kImmediateType: {
      DecodeTypeImmediate(instr);
      break;
    }
    case Instruction::kJumpType: {
      DecodeTypeJump(instr);
      break;
    }
    default: {
2636
      Format(instr, "UNSUPPORTED");
2637 2638 2639
      UNSUPPORTED_MIPS();
    }
  }
2640
  return Instruction::kInstrSize;
2641 2642 2643
}


2644 2645
}  // namespace internal
}  // namespace v8
2646 2647 2648 2649 2650 2651


//------------------------------------------------------------------------------

namespace disasm {

2652
const char* NameConverter::NameOfAddress(byte* addr) const {
2653
  v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr));
2654
  return tmp_buffer_.start();
2655 2656 2657
}


2658
const char* NameConverter::NameOfConstant(byte* addr) const {
2659 2660 2661 2662 2663
  return NameOfAddress(addr);
}


const char* NameConverter::NameOfCPURegister(int reg) const {
2664
  return v8::internal::Registers::Name(reg);
2665 2666 2667 2668
}


const char* NameConverter::NameOfXMMRegister(int reg) const {
2669
  return v8::internal::FPURegisters::Name(reg);
2670 2671 2672 2673
}


const char* NameConverter::NameOfByteCPURegister(int reg) const {
2674
  UNREACHABLE();  // MIPS does not have the concept of a byte register.
2675 2676 2677 2678
  return "nobytereg";
}


2679
const char* NameConverter::NameInCode(byte* addr) const {
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
  // The default name converter is called for unknown code. So we will not try
  // to access any memory.
  return "";
}


//------------------------------------------------------------------------------

Disassembler::Disassembler(const NameConverter& converter)
    : converter_(converter) {}


Disassembler::~Disassembler() {}


int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
2696
                                    byte* instruction) {
2697
  v8::internal::Decoder d(converter_, buffer);
2698 2699 2700 2701
  return d.InstructionDecode(instruction);
}


2702
// The MIPS assembler does not currently use constant pools.
2703
int Disassembler::ConstantPoolSizeAt(byte* instruction) {
2704 2705 2706 2707
  return -1;
}


2708
void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
2709 2710
  NameConverter converter;
  Disassembler d(converter);
2711
  for (byte* pc = begin; pc < end;) {
2712 2713
    v8::internal::EmbeddedVector<char, 128> buffer;
    buffer[0] = '\0';
2714
    byte* prev_pc = pc;
2715
    pc += d.InstructionDecode(buffer, pc);
2716 2717
    v8::internal::PrintF(f, "%p    %08x      %s\n", static_cast<void*>(prev_pc),
                         *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
2718 2719 2720
  }
}

2721

2722 2723 2724 2725
#undef UNSUPPORTED

}  // namespace disasm

2726
#endif  // V8_TARGET_ARCH_MIPS