test-run-machops.cc 220 KB
Newer Older
1 2 3
// Copyright 2014 the V8 project authors. All rights reserved. Use of this
// source code is governed by a BSD-style license that can be found in the
// LICENSE file.
4

5
#include <cmath>
6
#include <functional>
7 8
#include <limits>

9
#include "src/base/bits.h"
10
#include "src/base/ieee754.h"
11
#include "src/base/overflowing-math.h"
12
#include "src/base/utils/random-number-generator.h"
13 14
#include "src/utils/boxed-float.h"
#include "src/utils/utils.h"
15
#include "src/objects/objects-inl.h"
16 17 18 19
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/value-helper.h"

20 21 22
namespace v8 {
namespace internal {
namespace compiler {
23

24

25 26 27 28 29 30 31
TEST(RunInt32Add) {
  RawMachineAssemblerTester<int32_t> m;
  Node* add = m.Int32Add(m.Int32Constant(0), m.Int32Constant(1));
  m.Return(add);
  CHECK_EQ(1, m.Call());
}

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
static int RunInt32AddShift(bool is_left, int32_t add_left, int32_t add_right,
                            int32_t shift_left, int32_t shit_right) {
  RawMachineAssemblerTester<int32_t> m;
  Node* shift =
      m.Word32Shl(m.Int32Constant(shift_left), m.Int32Constant(shit_right));
  Node* add = m.Int32Add(m.Int32Constant(add_left), m.Int32Constant(add_right));
  Node* lsa = is_left ? m.Int32Add(shift, add) : m.Int32Add(add, shift);
  m.Return(lsa);
  return m.Call();
}

TEST(RunInt32AddShift) {
  struct Test_case {
    int32_t add_left, add_right, shift_left, shit_right, expected;
  };

  Test_case tc[] = {
      {20, 22, 4, 2, 58},
      {20, 22, 4, 1, 50},
      {20, 22, 1, 6, 106},
      {INT_MAX - 2, 1, 1, 1, INT_MIN},  // INT_MAX - 2 + 1 + (1 << 1), overflow.
  };
  const size_t tc_size = sizeof(tc) / sizeof(Test_case);

  for (size_t i = 0; i < tc_size; ++i) {
    CHECK_EQ(tc[i].expected,
             RunInt32AddShift(false, tc[i].add_left, tc[i].add_right,
                              tc[i].shift_left, tc[i].shit_right));
    CHECK_EQ(tc[i].expected,
             RunInt32AddShift(true, tc[i].add_left, tc[i].add_right,
                              tc[i].shift_left, tc[i].shit_right));
  }
}
65

66 67 68 69 70 71 72 73 74
TEST(RunWord32ReverseBits) {
  BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
  if (!m.machine()->Word32ReverseBits().IsSupported()) {
    // We can only test the operator if it exists on the testing platform.
    return;
  }
  m.Return(m.AddNode(m.machine()->Word32ReverseBits().op(), m.Parameter(0)));

  CHECK_EQ(uint32_t(0x00000000), m.Call(uint32_t(0x00000000)));
75 76
  CHECK_EQ(uint32_t(0x12345678), m.Call(uint32_t(0x1E6A2C48)));
  CHECK_EQ(uint32_t(0xFEDCBA09), m.Call(uint32_t(0x905D3B7F)));
77 78
  CHECK_EQ(uint32_t(0x01010101), m.Call(uint32_t(0x80808080)));
  CHECK_EQ(uint32_t(0x01020408), m.Call(uint32_t(0x10204080)));
79 80 81
  CHECK_EQ(uint32_t(0xF0703010), m.Call(uint32_t(0x080C0E0F)));
  CHECK_EQ(uint32_t(0x1F8D0A3A), m.Call(uint32_t(0x5C50B1F8)));
  CHECK_EQ(uint32_t(0xFFFFFFFF), m.Call(uint32_t(0xFFFFFFFF)));
82 83
}

84 85
TEST(RunWord32ReverseBytes) {
  BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
86
  m.Return(m.AddNode(m.machine()->Word32ReverseBytes(), m.Parameter(0)));
87 88 89

  CHECK_EQ(uint32_t(0x00000000), m.Call(uint32_t(0x00000000)));
  CHECK_EQ(uint32_t(0x12345678), m.Call(uint32_t(0x78563412)));
90
  CHECK_EQ(uint32_t(0xFEDCBA09), m.Call(uint32_t(0x09BADCFE)));
91 92
  CHECK_EQ(uint32_t(0x01010101), m.Call(uint32_t(0x01010101)));
  CHECK_EQ(uint32_t(0x01020408), m.Call(uint32_t(0x08040201)));
93 94 95
  CHECK_EQ(uint32_t(0xF0703010), m.Call(uint32_t(0x103070F0)));
  CHECK_EQ(uint32_t(0x1F8D0A3A), m.Call(uint32_t(0x3A0A8D1F)));
  CHECK_EQ(uint32_t(0xFFFFFFFF), m.Call(uint32_t(0xFFFFFFFF)));
96
}
97

98
TEST(RunWord32Ctz) {
99
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
100 101 102 103 104 105 106 107 108 109 110
  if (!m.machine()->Word32Ctz().IsSupported()) {
    // We can only test the operator if it exists on the testing platform.
    return;
  }
  m.Return(m.AddNode(m.machine()->Word32Ctz().op(), m.Parameter(0)));

  CHECK_EQ(32, m.Call(uint32_t(0x00000000)));
  CHECK_EQ(31, m.Call(uint32_t(0x80000000)));
  CHECK_EQ(30, m.Call(uint32_t(0x40000000)));
  CHECK_EQ(29, m.Call(uint32_t(0x20000000)));
  CHECK_EQ(28, m.Call(uint32_t(0x10000000)));
111 112
  CHECK_EQ(27, m.Call(uint32_t(0xA8000000)));
  CHECK_EQ(26, m.Call(uint32_t(0xF4000000)));
113 114
  CHECK_EQ(25, m.Call(uint32_t(0x62000000)));
  CHECK_EQ(24, m.Call(uint32_t(0x91000000)));
115
  CHECK_EQ(23, m.Call(uint32_t(0xCD800000)));
116
  CHECK_EQ(22, m.Call(uint32_t(0x09400000)));
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  CHECK_EQ(21, m.Call(uint32_t(0xAF200000)));
  CHECK_EQ(20, m.Call(uint32_t(0xAC100000)));
  CHECK_EQ(19, m.Call(uint32_t(0xE0B80000)));
  CHECK_EQ(18, m.Call(uint32_t(0x9CE40000)));
  CHECK_EQ(17, m.Call(uint32_t(0xC7920000)));
  CHECK_EQ(16, m.Call(uint32_t(0xB8F10000)));
  CHECK_EQ(15, m.Call(uint32_t(0x3B9F8000)));
  CHECK_EQ(14, m.Call(uint32_t(0xDB4C4000)));
  CHECK_EQ(13, m.Call(uint32_t(0xE9A32000)));
  CHECK_EQ(12, m.Call(uint32_t(0xFCA61000)));
  CHECK_EQ(11, m.Call(uint32_t(0x6C8A7800)));
  CHECK_EQ(10, m.Call(uint32_t(0x8CE5A400)));
  CHECK_EQ(9, m.Call(uint32_t(0xCB7D0200)));
  CHECK_EQ(8, m.Call(uint32_t(0xCB4DC100)));
  CHECK_EQ(7, m.Call(uint32_t(0xDFBEC580)));
  CHECK_EQ(6, m.Call(uint32_t(0x27A9DB40)));
  CHECK_EQ(5, m.Call(uint32_t(0xDE3BCB20)));
  CHECK_EQ(4, m.Call(uint32_t(0xD7E8A610)));
  CHECK_EQ(3, m.Call(uint32_t(0x9AFDBC88)));
  CHECK_EQ(2, m.Call(uint32_t(0x9AFDBC84)));
  CHECK_EQ(1, m.Call(uint32_t(0x9AFDBC82)));
  CHECK_EQ(0, m.Call(uint32_t(0x9AFDBC81)));
139 140 141
}

TEST(RunWord32Clz) {
142
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
143 144 145 146 147 148 149 150 151
  m.Return(m.Word32Clz(m.Parameter(0)));

  CHECK_EQ(0, m.Call(uint32_t(0x80001000)));
  CHECK_EQ(1, m.Call(uint32_t(0x40000500)));
  CHECK_EQ(2, m.Call(uint32_t(0x20000300)));
  CHECK_EQ(3, m.Call(uint32_t(0x10000003)));
  CHECK_EQ(4, m.Call(uint32_t(0x08050000)));
  CHECK_EQ(5, m.Call(uint32_t(0x04006000)));
  CHECK_EQ(6, m.Call(uint32_t(0x02000000)));
152 153
  CHECK_EQ(7, m.Call(uint32_t(0x010000A0)));
  CHECK_EQ(8, m.Call(uint32_t(0x00800C00)));
154
  CHECK_EQ(9, m.Call(uint32_t(0x00400000)));
155 156
  CHECK_EQ(10, m.Call(uint32_t(0x0020000D)));
  CHECK_EQ(11, m.Call(uint32_t(0x00100F00)));
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  CHECK_EQ(12, m.Call(uint32_t(0x00080000)));
  CHECK_EQ(13, m.Call(uint32_t(0x00041000)));
  CHECK_EQ(14, m.Call(uint32_t(0x00020020)));
  CHECK_EQ(15, m.Call(uint32_t(0x00010300)));
  CHECK_EQ(16, m.Call(uint32_t(0x00008040)));
  CHECK_EQ(17, m.Call(uint32_t(0x00004005)));
  CHECK_EQ(18, m.Call(uint32_t(0x00002050)));
  CHECK_EQ(19, m.Call(uint32_t(0x00001700)));
  CHECK_EQ(20, m.Call(uint32_t(0x00000870)));
  CHECK_EQ(21, m.Call(uint32_t(0x00000405)));
  CHECK_EQ(22, m.Call(uint32_t(0x00000203)));
  CHECK_EQ(23, m.Call(uint32_t(0x00000101)));
  CHECK_EQ(24, m.Call(uint32_t(0x00000089)));
  CHECK_EQ(25, m.Call(uint32_t(0x00000041)));
  CHECK_EQ(26, m.Call(uint32_t(0x00000022)));
  CHECK_EQ(27, m.Call(uint32_t(0x00000013)));
  CHECK_EQ(28, m.Call(uint32_t(0x00000008)));
  CHECK_EQ(29, m.Call(uint32_t(0x00000004)));
  CHECK_EQ(30, m.Call(uint32_t(0x00000002)));
  CHECK_EQ(31, m.Call(uint32_t(0x00000001)));
  CHECK_EQ(32, m.Call(uint32_t(0x00000000)));
}


TEST(RunWord32Popcnt) {
182
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
183 184 185 186 187 188 189 190 191
  if (!m.machine()->Word32Popcnt().IsSupported()) {
    // We can only test the operator if it exists on the testing platform.
    return;
  }
  m.Return(m.AddNode(m.machine()->Word32Popcnt().op(), m.Parameter(0)));

  CHECK_EQ(0, m.Call(uint32_t(0x00000000)));
  CHECK_EQ(1, m.Call(uint32_t(0x00000001)));
  CHECK_EQ(1, m.Call(uint32_t(0x80000000)));
192 193 194 195 196
  CHECK_EQ(32, m.Call(uint32_t(0xFFFFFFFF)));
  CHECK_EQ(6, m.Call(uint32_t(0x000DC100)));
  CHECK_EQ(9, m.Call(uint32_t(0xE00DC100)));
  CHECK_EQ(11, m.Call(uint32_t(0xE00DC103)));
  CHECK_EQ(9, m.Call(uint32_t(0x000DC107)));
ahaas's avatar
ahaas committed
197 198 199
}


200
#if V8_TARGET_ARCH_64_BIT
201 202 203 204 205 206 207 208 209
TEST(RunWord64ReverseBits) {
  RawMachineAssemblerTester<uint64_t> m(MachineType::Uint64());
  if (!m.machine()->Word64ReverseBits().IsSupported()) {
    return;
  }

  m.Return(m.AddNode(m.machine()->Word64ReverseBits().op(), m.Parameter(0)));

  CHECK_EQ(uint64_t(0x0000000000000000), m.Call(uint64_t(0x0000000000000000)));
210 211
  CHECK_EQ(uint64_t(0x1234567890ABCDEF), m.Call(uint64_t(0xF7B3D5091E6A2C48)));
  CHECK_EQ(uint64_t(0xFEDCBA0987654321), m.Call(uint64_t(0x84C2A6E1905D3B7F)));
212
  CHECK_EQ(uint64_t(0x0101010101010101), m.Call(uint64_t(0x8080808080808080)));
213 214 215 216
  CHECK_EQ(uint64_t(0x0102040803060C01), m.Call(uint64_t(0x803060C010204080)));
  CHECK_EQ(uint64_t(0xF0703010E060200F), m.Call(uint64_t(0xF0040607080C0E0F)));
  CHECK_EQ(uint64_t(0x2F8A6DF01C21FA3B), m.Call(uint64_t(0xDC5F84380FB651F4)));
  CHECK_EQ(uint64_t(0xFFFFFFFFFFFFFFFF), m.Call(uint64_t(0xFFFFFFFFFFFFFFFF)));
217 218
}

219 220
TEST(RunWord64ReverseBytes) {
  BufferedRawMachineAssemblerTester<uint64_t> m(MachineType::Uint64());
221
  m.Return(m.AddNode(m.machine()->Word64ReverseBytes(), m.Parameter(0)));
222 223

  CHECK_EQ(uint64_t(0x0000000000000000), m.Call(uint64_t(0x0000000000000000)));
224 225
  CHECK_EQ(uint64_t(0x1234567890ABCDEF), m.Call(uint64_t(0xEFCDAB9078563412)));
  CHECK_EQ(uint64_t(0xFEDCBA0987654321), m.Call(uint64_t(0x2143658709BADCFE)));
226
  CHECK_EQ(uint64_t(0x0101010101010101), m.Call(uint64_t(0x0101010101010101)));
227 228 229 230
  CHECK_EQ(uint64_t(0x0102040803060C01), m.Call(uint64_t(0x010C060308040201)));
  CHECK_EQ(uint64_t(0xF0703010E060200F), m.Call(uint64_t(0x0F2060E0103070F0)));
  CHECK_EQ(uint64_t(0x2F8A6DF01C21FA3B), m.Call(uint64_t(0x3BFA211CF06D8A2F)));
  CHECK_EQ(uint64_t(0xFFFFFFFFFFFFFFFF), m.Call(uint64_t(0xFFFFFFFFFFFFFFFF)));
231
}
232

233
TEST(RunWord64Clz) {
234
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint64());
235 236 237 238 239 240 241 242 243
  m.Return(m.Word64Clz(m.Parameter(0)));

  CHECK_EQ(0, m.Call(uint64_t(0x8000100000000000)));
  CHECK_EQ(1, m.Call(uint64_t(0x4000050000000000)));
  CHECK_EQ(2, m.Call(uint64_t(0x2000030000000000)));
  CHECK_EQ(3, m.Call(uint64_t(0x1000000300000000)));
  CHECK_EQ(4, m.Call(uint64_t(0x0805000000000000)));
  CHECK_EQ(5, m.Call(uint64_t(0x0400600000000000)));
  CHECK_EQ(6, m.Call(uint64_t(0x0200000000000000)));
244 245
  CHECK_EQ(7, m.Call(uint64_t(0x010000A000000000)));
  CHECK_EQ(8, m.Call(uint64_t(0x00800C0000000000)));
246
  CHECK_EQ(9, m.Call(uint64_t(0x0040000000000000)));
247 248
  CHECK_EQ(10, m.Call(uint64_t(0x0020000D00000000)));
  CHECK_EQ(11, m.Call(uint64_t(0x00100F0000000000)));
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  CHECK_EQ(12, m.Call(uint64_t(0x0008000000000000)));
  CHECK_EQ(13, m.Call(uint64_t(0x0004100000000000)));
  CHECK_EQ(14, m.Call(uint64_t(0x0002002000000000)));
  CHECK_EQ(15, m.Call(uint64_t(0x0001030000000000)));
  CHECK_EQ(16, m.Call(uint64_t(0x0000804000000000)));
  CHECK_EQ(17, m.Call(uint64_t(0x0000400500000000)));
  CHECK_EQ(18, m.Call(uint64_t(0x0000205000000000)));
  CHECK_EQ(19, m.Call(uint64_t(0x0000170000000000)));
  CHECK_EQ(20, m.Call(uint64_t(0x0000087000000000)));
  CHECK_EQ(21, m.Call(uint64_t(0x0000040500000000)));
  CHECK_EQ(22, m.Call(uint64_t(0x0000020300000000)));
  CHECK_EQ(23, m.Call(uint64_t(0x0000010100000000)));
  CHECK_EQ(24, m.Call(uint64_t(0x0000008900000000)));
  CHECK_EQ(25, m.Call(uint64_t(0x0000004100000000)));
  CHECK_EQ(26, m.Call(uint64_t(0x0000002200000000)));
  CHECK_EQ(27, m.Call(uint64_t(0x0000001300000000)));
  CHECK_EQ(28, m.Call(uint64_t(0x0000000800000000)));
  CHECK_EQ(29, m.Call(uint64_t(0x0000000400000000)));
  CHECK_EQ(30, m.Call(uint64_t(0x0000000200000000)));
  CHECK_EQ(31, m.Call(uint64_t(0x0000000100000000)));
  CHECK_EQ(32, m.Call(uint64_t(0x0000000080001000)));
  CHECK_EQ(33, m.Call(uint64_t(0x0000000040000500)));
  CHECK_EQ(34, m.Call(uint64_t(0x0000000020000300)));
  CHECK_EQ(35, m.Call(uint64_t(0x0000000010000003)));
  CHECK_EQ(36, m.Call(uint64_t(0x0000000008050000)));
  CHECK_EQ(37, m.Call(uint64_t(0x0000000004006000)));
  CHECK_EQ(38, m.Call(uint64_t(0x0000000002000000)));
276 277
  CHECK_EQ(39, m.Call(uint64_t(0x00000000010000A0)));
  CHECK_EQ(40, m.Call(uint64_t(0x0000000000800C00)));
278
  CHECK_EQ(41, m.Call(uint64_t(0x0000000000400000)));
279 280
  CHECK_EQ(42, m.Call(uint64_t(0x000000000020000D)));
  CHECK_EQ(43, m.Call(uint64_t(0x0000000000100F00)));
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
  CHECK_EQ(44, m.Call(uint64_t(0x0000000000080000)));
  CHECK_EQ(45, m.Call(uint64_t(0x0000000000041000)));
  CHECK_EQ(46, m.Call(uint64_t(0x0000000000020020)));
  CHECK_EQ(47, m.Call(uint64_t(0x0000000000010300)));
  CHECK_EQ(48, m.Call(uint64_t(0x0000000000008040)));
  CHECK_EQ(49, m.Call(uint64_t(0x0000000000004005)));
  CHECK_EQ(50, m.Call(uint64_t(0x0000000000002050)));
  CHECK_EQ(51, m.Call(uint64_t(0x0000000000001700)));
  CHECK_EQ(52, m.Call(uint64_t(0x0000000000000870)));
  CHECK_EQ(53, m.Call(uint64_t(0x0000000000000405)));
  CHECK_EQ(54, m.Call(uint64_t(0x0000000000000203)));
  CHECK_EQ(55, m.Call(uint64_t(0x0000000000000101)));
  CHECK_EQ(56, m.Call(uint64_t(0x0000000000000089)));
  CHECK_EQ(57, m.Call(uint64_t(0x0000000000000041)));
  CHECK_EQ(58, m.Call(uint64_t(0x0000000000000022)));
  CHECK_EQ(59, m.Call(uint64_t(0x0000000000000013)));
  CHECK_EQ(60, m.Call(uint64_t(0x0000000000000008)));
  CHECK_EQ(61, m.Call(uint64_t(0x0000000000000004)));
  CHECK_EQ(62, m.Call(uint64_t(0x0000000000000002)));
  CHECK_EQ(63, m.Call(uint64_t(0x0000000000000001)));
  CHECK_EQ(64, m.Call(uint64_t(0x0000000000000000)));
}
303 304 305


TEST(RunWord64Ctz) {
306
  RawMachineAssemblerTester<int32_t> m(MachineType::Uint64());
307 308 309 310 311 312 313 314 315 316 317
  if (!m.machine()->Word64Ctz().IsSupported()) {
    return;
  }

  m.Return(m.AddNode(m.machine()->Word64Ctz().op(), m.Parameter(0)));

  CHECK_EQ(64, m.Call(uint64_t(0x0000000000000000)));
  CHECK_EQ(63, m.Call(uint64_t(0x8000000000000000)));
  CHECK_EQ(62, m.Call(uint64_t(0x4000000000000000)));
  CHECK_EQ(61, m.Call(uint64_t(0x2000000000000000)));
  CHECK_EQ(60, m.Call(uint64_t(0x1000000000000000)));
318 319
  CHECK_EQ(59, m.Call(uint64_t(0xA800000000000000)));
  CHECK_EQ(58, m.Call(uint64_t(0xF400000000000000)));
320 321
  CHECK_EQ(57, m.Call(uint64_t(0x6200000000000000)));
  CHECK_EQ(56, m.Call(uint64_t(0x9100000000000000)));
322
  CHECK_EQ(55, m.Call(uint64_t(0xCD80000000000000)));
323
  CHECK_EQ(54, m.Call(uint64_t(0x0940000000000000)));
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
  CHECK_EQ(53, m.Call(uint64_t(0xAF20000000000000)));
  CHECK_EQ(52, m.Call(uint64_t(0xAC10000000000000)));
  CHECK_EQ(51, m.Call(uint64_t(0xE0B8000000000000)));
  CHECK_EQ(50, m.Call(uint64_t(0x9CE4000000000000)));
  CHECK_EQ(49, m.Call(uint64_t(0xC792000000000000)));
  CHECK_EQ(48, m.Call(uint64_t(0xB8F1000000000000)));
  CHECK_EQ(47, m.Call(uint64_t(0x3B9F800000000000)));
  CHECK_EQ(46, m.Call(uint64_t(0xDB4C400000000000)));
  CHECK_EQ(45, m.Call(uint64_t(0xE9A3200000000000)));
  CHECK_EQ(44, m.Call(uint64_t(0xFCA6100000000000)));
  CHECK_EQ(43, m.Call(uint64_t(0x6C8A780000000000)));
  CHECK_EQ(42, m.Call(uint64_t(0x8CE5A40000000000)));
  CHECK_EQ(41, m.Call(uint64_t(0xCB7D020000000000)));
  CHECK_EQ(40, m.Call(uint64_t(0xCB4DC10000000000)));
  CHECK_EQ(39, m.Call(uint64_t(0xDFBEC58000000000)));
  CHECK_EQ(38, m.Call(uint64_t(0x27A9DB4000000000)));
  CHECK_EQ(37, m.Call(uint64_t(0xDE3BCB2000000000)));
  CHECK_EQ(36, m.Call(uint64_t(0xD7E8A61000000000)));
  CHECK_EQ(35, m.Call(uint64_t(0x9AFDBC8800000000)));
  CHECK_EQ(34, m.Call(uint64_t(0x9AFDBC8400000000)));
  CHECK_EQ(33, m.Call(uint64_t(0x9AFDBC8200000000)));
  CHECK_EQ(32, m.Call(uint64_t(0x9AFDBC8100000000)));
346 347 348 349
  CHECK_EQ(31, m.Call(uint64_t(0x0000000080000000)));
  CHECK_EQ(30, m.Call(uint64_t(0x0000000040000000)));
  CHECK_EQ(29, m.Call(uint64_t(0x0000000020000000)));
  CHECK_EQ(28, m.Call(uint64_t(0x0000000010000000)));
350 351
  CHECK_EQ(27, m.Call(uint64_t(0x00000000A8000000)));
  CHECK_EQ(26, m.Call(uint64_t(0x00000000F4000000)));
352 353
  CHECK_EQ(25, m.Call(uint64_t(0x0000000062000000)));
  CHECK_EQ(24, m.Call(uint64_t(0x0000000091000000)));
354
  CHECK_EQ(23, m.Call(uint64_t(0x00000000CD800000)));
355
  CHECK_EQ(22, m.Call(uint64_t(0x0000000009400000)));
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  CHECK_EQ(21, m.Call(uint64_t(0x00000000AF200000)));
  CHECK_EQ(20, m.Call(uint64_t(0x00000000AC100000)));
  CHECK_EQ(19, m.Call(uint64_t(0x00000000E0B80000)));
  CHECK_EQ(18, m.Call(uint64_t(0x000000009CE40000)));
  CHECK_EQ(17, m.Call(uint64_t(0x00000000C7920000)));
  CHECK_EQ(16, m.Call(uint64_t(0x00000000B8F10000)));
  CHECK_EQ(15, m.Call(uint64_t(0x000000003B9F8000)));
  CHECK_EQ(14, m.Call(uint64_t(0x00000000DB4C4000)));
  CHECK_EQ(13, m.Call(uint64_t(0x00000000E9A32000)));
  CHECK_EQ(12, m.Call(uint64_t(0x00000000FCA61000)));
  CHECK_EQ(11, m.Call(uint64_t(0x000000006C8A7800)));
  CHECK_EQ(10, m.Call(uint64_t(0x000000008CE5A400)));
  CHECK_EQ(9, m.Call(uint64_t(0x00000000CB7D0200)));
  CHECK_EQ(8, m.Call(uint64_t(0x00000000CB4DC100)));
  CHECK_EQ(7, m.Call(uint64_t(0x00000000DFBEC580)));
  CHECK_EQ(6, m.Call(uint64_t(0x0000000027A9DB40)));
  CHECK_EQ(5, m.Call(uint64_t(0x00000000DE3BCB20)));
  CHECK_EQ(4, m.Call(uint64_t(0x00000000D7E8A610)));
  CHECK_EQ(3, m.Call(uint64_t(0x000000009AFDBC88)));
  CHECK_EQ(2, m.Call(uint64_t(0x000000009AFDBC84)));
  CHECK_EQ(1, m.Call(uint64_t(0x000000009AFDBC82)));
  CHECK_EQ(0, m.Call(uint64_t(0x000000009AFDBC81)));
378
}
379 380 381


TEST(RunWord64Popcnt) {
382
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint64());
383 384 385 386 387 388 389 390 391
  if (!m.machine()->Word64Popcnt().IsSupported()) {
    return;
  }

  m.Return(m.AddNode(m.machine()->Word64Popcnt().op(), m.Parameter(0)));

  CHECK_EQ(0, m.Call(uint64_t(0x0000000000000000)));
  CHECK_EQ(1, m.Call(uint64_t(0x0000000000000001)));
  CHECK_EQ(1, m.Call(uint64_t(0x8000000000000000)));
392 393 394 395 396
  CHECK_EQ(64, m.Call(uint64_t(0xFFFFFFFFFFFFFFFF)));
  CHECK_EQ(12, m.Call(uint64_t(0x000DC100000DC100)));
  CHECK_EQ(18, m.Call(uint64_t(0xE00DC100E00DC100)));
  CHECK_EQ(22, m.Call(uint64_t(0xE00DC103E00DC103)));
  CHECK_EQ(18, m.Call(uint64_t(0x000DC107000DC107)));
397
}
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

#ifdef V8_COMPRESS_POINTERS
TEST(CompressDecompressTaggedAnyPointer) {
  RawMachineAssemblerTester<void*> m;

  Handle<HeapNumber> value = m.isolate()->factory()->NewHeapNumber(11.2);
  Node* node = m.HeapConstant(value);
  m.Return(m.ChangeCompressedToTagged(m.ChangeTaggedToCompressed(node)));

  HeapObject result =
      HeapObject::cast(Object(reinterpret_cast<Address>(m.Call())));
  CHECK_EQ(result, *value);
}

TEST(CompressDecompressTaggedAnySigned) {
  RawMachineAssemblerTester<int64_t> m;
  Smi smi = Smi::FromInt(123);
  int64_t smiPointer = static_cast<int64_t>(smi.ptr());
  Node* node = m.Int64Constant(smiPointer);
  m.Return(m.ChangeCompressedToTagged(m.ChangeTaggedToCompressed(node)));
  CHECK_EQ(smiPointer, m.Call());
}

TEST(CompressDecompressTaggedPointer) {
  RawMachineAssemblerTester<void*> m;

  Handle<HeapNumber> value = m.isolate()->factory()->NewHeapNumber(11.2);
  Node* node = m.HeapConstant(value);
  m.Return(m.ChangeCompressedPointerToTaggedPointer(
      m.ChangeTaggedPointerToCompressedPointer(node)));

  HeapObject result =
      HeapObject::cast(Object(reinterpret_cast<Address>(m.Call())));
  CHECK_EQ(result, *value);
}

TEST(CompressDecompressTaggedSigned) {
  RawMachineAssemblerTester<int64_t> m;
  Smi smi = Smi::FromInt(123);
  int64_t smiPointer = static_cast<int64_t>(smi.ptr());
  Node* node = m.Int64Constant(smiPointer);
  m.Return(m.ChangeCompressedSignedToTaggedSigned(
      m.ChangeTaggedSignedToCompressedSigned(node)));
  CHECK_EQ(smiPointer, m.Call());
}
#endif  // V8_COMPRESS_POINTERS

445 446 447
#endif  // V8_TARGET_ARCH_64_BIT


448 449 450 451 452 453 454 455 456 457 458 459 460
static Node* Int32Input(RawMachineAssemblerTester<int32_t>* m, int index) {
  switch (index) {
    case 0:
      return m->Parameter(0);
    case 1:
      return m->Parameter(1);
    case 2:
      return m->Int32Constant(0);
    case 3:
      return m->Int32Constant(1);
    case 4:
      return m->Int32Constant(-1);
    case 5:
461
      return m->Int32Constant(0xFF);
462 463 464
    case 6:
      return m->Int32Constant(0x01234567);
    case 7:
465
      return m->Load(MachineType::Int32(), m->PointerConstant(nullptr));
466
    default:
467
      return nullptr;
468 469 470 471 472 473 474
  }
}


TEST(CodeGenInt32Binop) {
  RawMachineAssemblerTester<void> m;

475
  const Operator* kOps[] = {
476 477 478 479 480 481 482 483 484 485
      m.machine()->Word32And(),      m.machine()->Word32Or(),
      m.machine()->Word32Xor(),      m.machine()->Word32Shl(),
      m.machine()->Word32Shr(),      m.machine()->Word32Sar(),
      m.machine()->Word32Equal(),    m.machine()->Int32Add(),
      m.machine()->Int32Sub(),       m.machine()->Int32Mul(),
      m.machine()->Int32MulHigh(),   m.machine()->Int32Div(),
      m.machine()->Uint32Div(),      m.machine()->Int32Mod(),
      m.machine()->Uint32Mod(),      m.machine()->Uint32MulHigh(),
      m.machine()->Int32LessThan(),  m.machine()->Int32LessThanOrEqual(),
      m.machine()->Uint32LessThan(), m.machine()->Uint32LessThanOrEqual()};
486 487

  for (size_t i = 0; i < arraysize(kOps); ++i) {
488 489
    for (int j = 0; j < 8; j++) {
      for (int k = 0; k < 8; k++) {
490 491
        RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
                                             MachineType::Int32());
492 493
        Node* a = Int32Input(&m, j);
        Node* b = Int32Input(&m, k);
494
        m.Return(m.AddNode(kOps[i], a, b));
495 496 497 498 499 500 501
        m.GenerateCode();
      }
    }
  }
}


502 503 504 505 506 507 508
TEST(CodeGenNop) {
  RawMachineAssemblerTester<void> m;
  m.Return(m.Int32Constant(0));
  m.GenerateCode();
}


509
#if V8_TARGET_ARCH_64_BIT
510 511 512 513 514 515 516 517 518 519 520 521 522
static Node* Int64Input(RawMachineAssemblerTester<int64_t>* m, int index) {
  switch (index) {
    case 0:
      return m->Parameter(0);
    case 1:
      return m->Parameter(1);
    case 2:
      return m->Int64Constant(0);
    case 3:
      return m->Int64Constant(1);
    case 4:
      return m->Int64Constant(-1);
    case 5:
523
      return m->Int64Constant(0xFF);
524
    case 6:
525
      return m->Int64Constant(0x0123456789ABCDEFLL);
526
    case 7:
527
      return m->Load(MachineType::Int64(), m->PointerConstant(nullptr));
528
    default:
529
      return nullptr;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  }
}


TEST(CodeGenInt64Binop) {
  RawMachineAssemblerTester<void> m;

  const Operator* kOps[] = {
      m.machine()->Word64And(), m.machine()->Word64Or(),
      m.machine()->Word64Xor(), m.machine()->Word64Shl(),
      m.machine()->Word64Shr(), m.machine()->Word64Sar(),
      m.machine()->Word64Equal(), m.machine()->Int64Add(),
      m.machine()->Int64Sub(), m.machine()->Int64Mul(), m.machine()->Int64Div(),
      m.machine()->Uint64Div(), m.machine()->Int64Mod(),
      m.machine()->Uint64Mod(), m.machine()->Int64LessThan(),
      m.machine()->Int64LessThanOrEqual(), m.machine()->Uint64LessThan(),
      m.machine()->Uint64LessThanOrEqual()};

  for (size_t i = 0; i < arraysize(kOps); ++i) {
    for (int j = 0; j < 8; j++) {
      for (int k = 0; k < 8; k++) {
551 552
        RawMachineAssemblerTester<int64_t> m(MachineType::Int64(),
                                             MachineType::Int64());
553 554
        Node* a = Int64Input(&m, j);
        Node* b = Int64Input(&m, k);
555
        m.Return(m.AddNode(kOps[i], a, b));
556 557 558 559 560 561 562
        m.GenerateCode();
      }
    }
  }
}


563 564 565 566 567 568 569 570 571 572 573 574
TEST(RunInt64AddWithOverflowP) {
  int64_t actual_val = -1;
  RawMachineAssemblerTester<int32_t> m;
  Int64BinopTester bt(&m);
  Node* add = m.Int64AddWithOverflow(bt.param0, bt.param1);
  Node* val = m.Projection(0, add);
  Node* ovf = m.Projection(1, add);
  m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
  bt.AddReturn(ovf);
  FOR_INT64_INPUTS(i) {
    FOR_INT64_INPUTS(j) {
      int64_t expected_val;
575 576
      int expected_ovf = base::bits::SignedAddOverflow64(i, j, &expected_val);
      CHECK_EQ(expected_ovf, bt.call(i, j));
577 578 579 580 581 582 583 584 585 586 587
      CHECK_EQ(expected_val, actual_val);
    }
  }
}


TEST(RunInt64AddWithOverflowImm) {
  int64_t actual_val = -1, expected_val = 0;
  FOR_INT64_INPUTS(i) {
    {
      RawMachineAssemblerTester<int32_t> m(MachineType::Int64());
588
      Node* add = m.Int64AddWithOverflow(m.Int64Constant(i), m.Parameter(0));
589 590 591 592 593
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
      m.Return(ovf);
      FOR_INT64_INPUTS(j) {
594 595
        int expected_ovf = base::bits::SignedAddOverflow64(i, j, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
596 597 598 599 600
        CHECK_EQ(expected_val, actual_val);
      }
    }
    {
      RawMachineAssemblerTester<int32_t> m(MachineType::Int64());
601
      Node* add = m.Int64AddWithOverflow(m.Parameter(0), m.Int64Constant(i));
602 603 604 605 606
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
      m.Return(ovf);
      FOR_INT64_INPUTS(j) {
607 608
        int expected_ovf = base::bits::SignedAddOverflow64(i, j, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
609 610 611 612 613 614
        CHECK_EQ(expected_val, actual_val);
      }
    }
    FOR_INT64_INPUTS(j) {
      RawMachineAssemblerTester<int32_t> m;
      Node* add =
615
          m.Int64AddWithOverflow(m.Int64Constant(i), m.Int64Constant(j));
616 617 618 619
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
      m.Return(ovf);
620
      int expected_ovf = base::bits::SignedAddOverflow64(i, j, &expected_val);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
      CHECK_EQ(expected_ovf, m.Call());
      CHECK_EQ(expected_val, actual_val);
    }
  }
}


TEST(RunInt64AddWithOverflowInBranchP) {
  int constant = 911777;
  RawMachineLabel blocka, blockb;
  RawMachineAssemblerTester<int32_t> m;
  Int64BinopTester bt(&m);
  Node* add = m.Int64AddWithOverflow(bt.param0, bt.param1);
  Node* ovf = m.Projection(1, add);
  m.Branch(ovf, &blocka, &blockb);
  m.Bind(&blocka);
  bt.AddReturn(m.Int64Constant(constant));
  m.Bind(&blockb);
  Node* val = m.Projection(0, add);
  Node* truncated = m.TruncateInt64ToInt32(val);
  bt.AddReturn(truncated);
  FOR_INT64_INPUTS(i) {
    FOR_INT64_INPUTS(j) {
      int32_t expected = constant;
      int64_t result;
646
      if (!base::bits::SignedAddOverflow64(i, j, &result)) {
647 648
        expected = static_cast<int32_t>(result);
      }
649
      CHECK_EQ(expected, bt.call(i, j));
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    }
  }
}


TEST(RunInt64SubWithOverflowP) {
  int64_t actual_val = -1;
  RawMachineAssemblerTester<int32_t> m;
  Int64BinopTester bt(&m);
  Node* add = m.Int64SubWithOverflow(bt.param0, bt.param1);
  Node* val = m.Projection(0, add);
  Node* ovf = m.Projection(1, add);
  m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
  bt.AddReturn(ovf);
  FOR_INT64_INPUTS(i) {
    FOR_INT64_INPUTS(j) {
      int64_t expected_val;
667 668
      int expected_ovf = base::bits::SignedSubOverflow64(i, j, &expected_val);
      CHECK_EQ(expected_ovf, bt.call(i, j));
669 670 671 672 673 674 675 676 677 678 679
      CHECK_EQ(expected_val, actual_val);
    }
  }
}


TEST(RunInt64SubWithOverflowImm) {
  int64_t actual_val = -1, expected_val = 0;
  FOR_INT64_INPUTS(i) {
    {
      RawMachineAssemblerTester<int32_t> m(MachineType::Int64());
680
      Node* add = m.Int64SubWithOverflow(m.Int64Constant(i), m.Parameter(0));
681 682 683 684 685
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
      m.Return(ovf);
      FOR_INT64_INPUTS(j) {
686 687
        int expected_ovf = base::bits::SignedSubOverflow64(i, j, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
688 689 690 691 692
        CHECK_EQ(expected_val, actual_val);
      }
    }
    {
      RawMachineAssemblerTester<int32_t> m(MachineType::Int64());
693
      Node* add = m.Int64SubWithOverflow(m.Parameter(0), m.Int64Constant(i));
694 695 696 697 698
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
      m.Return(ovf);
      FOR_INT64_INPUTS(j) {
699 700
        int expected_ovf = base::bits::SignedSubOverflow64(j, i, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
701 702 703 704 705 706
        CHECK_EQ(expected_val, actual_val);
      }
    }
    FOR_INT64_INPUTS(j) {
      RawMachineAssemblerTester<int32_t> m;
      Node* add =
707
          m.Int64SubWithOverflow(m.Int64Constant(i), m.Int64Constant(j));
708 709 710 711
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord64, val);
      m.Return(ovf);
712
      int expected_ovf = base::bits::SignedSubOverflow64(i, j, &expected_val);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
      CHECK_EQ(expected_ovf, m.Call());
      CHECK_EQ(expected_val, actual_val);
    }
  }
}


TEST(RunInt64SubWithOverflowInBranchP) {
  int constant = 911999;
  RawMachineLabel blocka, blockb;
  RawMachineAssemblerTester<int32_t> m;
  Int64BinopTester bt(&m);
  Node* sub = m.Int64SubWithOverflow(bt.param0, bt.param1);
  Node* ovf = m.Projection(1, sub);
  m.Branch(ovf, &blocka, &blockb);
  m.Bind(&blocka);
  bt.AddReturn(m.Int64Constant(constant));
  m.Bind(&blockb);
  Node* val = m.Projection(0, sub);
  Node* truncated = m.TruncateInt64ToInt32(val);
  bt.AddReturn(truncated);
  FOR_INT64_INPUTS(i) {
    FOR_INT64_INPUTS(j) {
      int32_t expected = constant;
      int64_t result;
738
      if (!base::bits::SignedSubOverflow64(i, j, &result)) {
739 740
        expected = static_cast<int32_t>(result);
      }
741
      CHECK_EQ(expected, static_cast<int32_t>(bt.call(i, j)));
742 743 744 745
    }
  }
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static int64_t RunInt64AddShift(bool is_left, int64_t add_left,
                                int64_t add_right, int64_t shift_left,
                                int64_t shit_right) {
  RawMachineAssemblerTester<int64_t> m;
  Node* shift = m.Word64Shl(m.Int64Constant(4), m.Int64Constant(2));
  Node* add = m.Int64Add(m.Int64Constant(20), m.Int64Constant(22));
  Node* dlsa = is_left ? m.Int64Add(shift, add) : m.Int64Add(add, shift);
  m.Return(dlsa);
  return m.Call();
}

TEST(RunInt64AddShift) {
  struct Test_case {
    int64_t add_left, add_right, shift_left, shit_right, expected;
  };

  Test_case tc[] = {
      {20, 22, 4, 2, 58},
      {20, 22, 4, 1, 50},
      {20, 22, 1, 6, 106},
      {INT64_MAX - 2, 1, 1, 1,
       INT64_MIN},  // INT64_MAX - 2 + 1 + (1 << 1), overflow.
  };
  const size_t tc_size = sizeof(tc) / sizeof(Test_case);

  for (size_t i = 0; i < tc_size; ++i) {
    CHECK_EQ(58, RunInt64AddShift(false, tc[i].add_left, tc[i].add_right,
                                  tc[i].shift_left, tc[i].shit_right));
    CHECK_EQ(58, RunInt64AddShift(true, tc[i].add_left, tc[i].add_right,
                                  tc[i].shift_left, tc[i].shit_right));
  }
}
778

779
// TODO(titzer): add tests that run 64-bit integer operations.
780
#endif  // V8_TARGET_ARCH_64_BIT
781 782


783 784 785 786
TEST(RunGoto) {
  RawMachineAssemblerTester<int32_t> m;
  int constant = 99999;

787
  RawMachineLabel next;
788 789 790 791 792 793 794 795 796 797 798 799
  m.Goto(&next);
  m.Bind(&next);
  m.Return(m.Int32Constant(constant));

  CHECK_EQ(constant, m.Call());
}


TEST(RunGotoMultiple) {
  RawMachineAssemblerTester<int32_t> m;
  int constant = 9999977;

800
  RawMachineLabel labels[10];
801
  for (size_t i = 0; i < arraysize(labels); i++) {
802 803 804 805 806 807 808 809 810 811 812 813 814
    m.Goto(&labels[i]);
    m.Bind(&labels[i]);
  }
  m.Return(m.Int32Constant(constant));

  CHECK_EQ(constant, m.Call());
}


TEST(RunBranch) {
  RawMachineAssemblerTester<int32_t> m;
  int constant = 999777;

815
  RawMachineLabel blocka, blockb;
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
  m.Branch(m.Int32Constant(0), &blocka, &blockb);
  m.Bind(&blocka);
  m.Return(m.Int32Constant(0 - constant));
  m.Bind(&blockb);
  m.Return(m.Int32Constant(constant));

  CHECK_EQ(constant, m.Call());
}


TEST(RunDiamond2) {
  RawMachineAssemblerTester<int32_t> m;

  int constant = 995666;

831
  RawMachineLabel blocka, blockb, end;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
  m.Branch(m.Int32Constant(0), &blocka, &blockb);
  m.Bind(&blocka);
  m.Goto(&end);
  m.Bind(&blockb);
  m.Goto(&end);
  m.Bind(&end);
  m.Return(m.Int32Constant(constant));

  CHECK_EQ(constant, m.Call());
}


TEST(RunLoop) {
  RawMachineAssemblerTester<int32_t> m;
  int constant = 999555;

848
  RawMachineLabel header, body, exit;
849 850 851 852 853 854 855 856 857 858 859 860 861 862
  m.Goto(&header);
  m.Bind(&header);
  m.Branch(m.Int32Constant(0), &body, &exit);
  m.Bind(&body);
  m.Goto(&header);
  m.Bind(&exit);
  m.Return(m.Int32Constant(constant));

  CHECK_EQ(constant, m.Call());
}


template <typename R>
static void BuildDiamondPhi(RawMachineAssemblerTester<R>* m, Node* cond_node,
863
                            MachineRepresentation rep, Node* true_node,
864
                            Node* false_node) {
865
  RawMachineLabel blocka, blockb, end;
866 867
  m->Branch(cond_node, &blocka, &blockb);
  m->Bind(&blocka);
868
  m->Goto(&end);
869
  m->Bind(&blockb);
870
  m->Goto(&end);
871

872
  m->Bind(&end);
873
  Node* phi = m->Phi(rep, true_node, false_node);
874 875 876 877 878
  m->Return(phi);
}


TEST(RunDiamondPhiConst) {
879
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
880 881 882 883
  int false_val = 0xFF666;
  int true_val = 0x00DDD;
  Node* true_node = m.Int32Constant(true_val);
  Node* false_node = m.Int32Constant(false_val);
884 885
  BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kWord32, true_node,
                  false_node);
886 887 888 889 890 891
  CHECK_EQ(false_val, m.Call(0));
  CHECK_EQ(true_val, m.Call(1));
}


TEST(RunDiamondPhiNumber) {
892
  RawMachineAssemblerTester<Object> m(MachineType::Int32());
893 894 895 896
  double false_val = -11.1;
  double true_val = 200.1;
  Node* true_node = m.NumberConstant(true_val);
  Node* false_node = m.NumberConstant(false_val);
897 898
  BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kTagged, true_node,
                  false_node);
899 900 901 902 903 904
  m.CheckNumber(false_val, m.Call(0));
  m.CheckNumber(true_val, m.Call(1));
}


TEST(RunDiamondPhiString) {
905
  RawMachineAssemblerTester<Object> m(MachineType::Int32());
906 907 908 909
  const char* false_val = "false";
  const char* true_val = "true";
  Node* true_node = m.StringConstant(true_val);
  Node* false_node = m.StringConstant(false_val);
910 911
  BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kTagged, true_node,
                  false_node);
912 913 914 915 916 917
  m.CheckString(false_val, m.Call(0));
  m.CheckString(true_val, m.Call(1));
}


TEST(RunDiamondPhiParam) {
918 919 920 921
  RawMachineAssemblerTester<int32_t> m(
      MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
  BuildDiamondPhi(&m, m.Parameter(0), MachineRepresentation::kWord32,
                  m.Parameter(1), m.Parameter(2));
922 923
  int32_t c1 = 0x260CB75A;
  int32_t c2 = 0xCD3E9C8B;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
  int result = m.Call(0, c1, c2);
  CHECK_EQ(c2, result);
  result = m.Call(1, c1, c2);
  CHECK_EQ(c1, result);
}


TEST(RunLoopPhiConst) {
  RawMachineAssemblerTester<int32_t> m;
  int true_val = 0x44000;
  int false_val = 0x00888;

  Node* cond_node = m.Int32Constant(0);
  Node* true_node = m.Int32Constant(true_val);
  Node* false_node = m.Int32Constant(false_val);

  // x = false_val; while(false) { x = true_val; } return x;
941
  RawMachineLabel body, header, end;
942 943 944

  m.Goto(&header);
  m.Bind(&header);
945
  Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, true_node);
946
  m.Branch(cond_node, &body, &end);
947 948
  m.Bind(&body);
  m.Goto(&header);
949
  m.Bind(&end);
950 951 952 953 954 955 956
  m.Return(phi);

  CHECK_EQ(false_val, m.Call());
}


TEST(RunLoopPhiParam) {
957 958
  RawMachineAssemblerTester<int32_t> m(
      MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
959

960
  RawMachineLabel blocka, blockb, end;
961 962 963 964

  m.Goto(&blocka);

  m.Bind(&blocka);
965 966 967 968
  Node* phi =
      m.Phi(MachineRepresentation::kWord32, m.Parameter(1), m.Parameter(2));
  Node* cond =
      m.Phi(MachineRepresentation::kWord32, m.Parameter(0), m.Int32Constant(0));
969
  m.Branch(cond, &blockb, &end);
970 971 972 973

  m.Bind(&blockb);
  m.Goto(&blocka);

974
  m.Bind(&end);
975 976
  m.Return(phi);

977 978
  int32_t c1 = 0xA81903B4;
  int32_t c2 = 0x5A1207DA;
979 980 981 982 983 984 985 986 987 988 989 990 991
  int result = m.Call(0, c1, c2);
  CHECK_EQ(c1, result);
  result = m.Call(1, c1, c2);
  CHECK_EQ(c2, result);
}


TEST(RunLoopPhiInduction) {
  RawMachineAssemblerTester<int32_t> m;

  int false_val = 0x10777;

  // x = false_val; while(false) { x++; } return x;
992
  RawMachineLabel header, body, end;
993 994 995 996 997
  Node* false_node = m.Int32Constant(false_val);

  m.Goto(&header);

  m.Bind(&header);
998
  Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, false_node);
999
  m.Branch(m.Int32Constant(0), &body, &end);
1000 1001 1002 1003 1004 1005

  m.Bind(&body);
  Node* add = m.Int32Add(phi, m.Int32Constant(1));
  phi->ReplaceInput(1, add);
  m.Goto(&header);

1006
  m.Bind(&end);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
  m.Return(phi);

  CHECK_EQ(false_val, m.Call());
}


TEST(RunLoopIncrement) {
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);

  // x = 0; while(x ^ param) { x++; } return x;
1018
  RawMachineLabel header, body, end;
1019 1020 1021 1022 1023
  Node* zero = m.Int32Constant(0);

  m.Goto(&header);

  m.Bind(&header);
1024
  Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero);
1025
  m.Branch(m.WordXor(phi, bt.param0), &body, &end);
1026 1027 1028 1029 1030

  m.Bind(&body);
  phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
  m.Goto(&header);

1031
  m.Bind(&end);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
  bt.AddReturn(phi);

  CHECK_EQ(11, bt.call(11, 0));
  CHECK_EQ(110, bt.call(110, 0));
  CHECK_EQ(176, bt.call(176, 0));
}


TEST(RunLoopIncrement2) {
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);

  // x = 0; while(x < param) { x++; } return x;
1045
  RawMachineLabel header, body, end;
1046 1047 1048 1049 1050
  Node* zero = m.Int32Constant(0);

  m.Goto(&header);

  m.Bind(&header);
1051
  Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero);
1052
  m.Branch(m.Int32LessThan(phi, bt.param0), &body, &end);
1053 1054 1055 1056 1057

  m.Bind(&body);
  phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
  m.Goto(&header);

1058
  m.Bind(&end);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
  bt.AddReturn(phi);

  CHECK_EQ(11, bt.call(11, 0));
  CHECK_EQ(110, bt.call(110, 0));
  CHECK_EQ(176, bt.call(176, 0));
  CHECK_EQ(0, bt.call(-200, 0));
}


TEST(RunLoopIncrement3) {
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);

  // x = 0; while(x < param) { x++; } return x;
1073
  RawMachineLabel header, body, end;
1074 1075 1076 1077 1078
  Node* zero = m.Int32Constant(0);

  m.Goto(&header);

  m.Bind(&header);
1079
  Node* phi = m.Phi(MachineRepresentation::kWord32, zero, zero);
1080
  m.Branch(m.Uint32LessThan(phi, bt.param0), &body, &end);
1081 1082 1083 1084 1085

  m.Bind(&body);
  phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
  m.Goto(&header);

1086
  m.Bind(&end);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
  bt.AddReturn(phi);

  CHECK_EQ(11, bt.call(11, 0));
  CHECK_EQ(110, bt.call(110, 0));
  CHECK_EQ(176, bt.call(176, 0));
  CHECK_EQ(200, bt.call(200, 0));
}


TEST(RunLoopDecrement) {
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);

  // x = param; while(x) { x--; } return x;
1101
  RawMachineLabel header, body, end;
1102 1103 1104 1105

  m.Goto(&header);

  m.Bind(&header);
1106 1107
  Node* phi =
      m.Phi(MachineRepresentation::kWord32, bt.param0, m.Int32Constant(0));
1108
  m.Branch(phi, &body, &end);
1109 1110 1111 1112 1113

  m.Bind(&body);
  phi->ReplaceInput(1, m.Int32Sub(phi, m.Int32Constant(1)));
  m.Goto(&header);

1114
  m.Bind(&end);
1115 1116 1117 1118 1119 1120 1121 1122
  bt.AddReturn(phi);

  CHECK_EQ(0, bt.call(11, 0));
  CHECK_EQ(0, bt.call(110, 0));
  CHECK_EQ(0, bt.call(197, 0));
}


1123 1124 1125 1126
TEST(RunLoopIncrementFloat32) {
  RawMachineAssemblerTester<int32_t> m;

  // x = -3.0f; while(x < 10f) { x = x + 0.5f; } return (int) (double) x;
1127
  RawMachineLabel header, body, end;
1128 1129 1130 1131 1132 1133
  Node* minus_3 = m.Float32Constant(-3.0f);
  Node* ten = m.Float32Constant(10.0f);

  m.Goto(&header);

  m.Bind(&header);
1134
  Node* phi = m.Phi(MachineRepresentation::kFloat32, minus_3, ten);
1135
  m.Branch(m.Float32LessThan(phi, ten), &body, &end);
1136 1137 1138 1139 1140

  m.Bind(&body);
  phi->ReplaceInput(1, m.Float32Add(phi, m.Float32Constant(0.5f)));
  m.Goto(&header);

1141
  m.Bind(&end);
1142 1143 1144 1145 1146 1147
  m.Return(m.ChangeFloat64ToInt32(m.ChangeFloat32ToFloat64(phi)));

  CHECK_EQ(10, m.Call());
}


1148 1149 1150 1151
TEST(RunLoopIncrementFloat64) {
  RawMachineAssemblerTester<int32_t> m;

  // x = -3.0; while(x < 10) { x = x + 0.5; } return (int) x;
1152
  RawMachineLabel header, body, end;
1153 1154 1155 1156 1157 1158
  Node* minus_3 = m.Float64Constant(-3.0);
  Node* ten = m.Float64Constant(10.0);

  m.Goto(&header);

  m.Bind(&header);
1159
  Node* phi = m.Phi(MachineRepresentation::kFloat64, minus_3, ten);
1160
  m.Branch(m.Float64LessThan(phi, ten), &body, &end);
1161 1162 1163 1164 1165

  m.Bind(&body);
  phi->ReplaceInput(1, m.Float64Add(phi, m.Float64Constant(0.5)));
  m.Goto(&header);

1166
  m.Bind(&end);
1167
  m.Return(m.ChangeFloat64ToInt32(phi));
1168 1169 1170 1171 1172

  CHECK_EQ(10, m.Call());
}


1173 1174 1175 1176 1177
TEST(RunSwitch1) {
  RawMachineAssemblerTester<int32_t> m;

  int constant = 11223344;

1178 1179
  RawMachineLabel block0, block1, def, end;
  RawMachineLabel* case_labels[] = {&block0, &block1};
1180 1181 1182
  int32_t case_values[] = {0, 1};
  m.Switch(m.Int32Constant(0), &def, case_values, case_labels,
           arraysize(case_labels));
1183 1184 1185 1186
  m.Bind(&block0);
  m.Goto(&end);
  m.Bind(&block1);
  m.Goto(&end);
1187 1188
  m.Bind(&def);
  m.Goto(&end);
1189 1190 1191 1192 1193 1194 1195 1196
  m.Bind(&end);
  m.Return(m.Int32Constant(constant));

  CHECK_EQ(constant, m.Call());
}


TEST(RunSwitch2) {
1197
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
1198

1199 1200
  RawMachineLabel blocka, blockb, blockc;
  RawMachineLabel* case_labels[] = {&blocka, &blockb};
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  int32_t case_values[] = {std::numeric_limits<int32_t>::min(),
                           std::numeric_limits<int32_t>::max()};
  m.Switch(m.Parameter(0), &blockc, case_values, case_labels,
           arraysize(case_labels));
  m.Bind(&blocka);
  m.Return(m.Int32Constant(-1));
  m.Bind(&blockb);
  m.Return(m.Int32Constant(1));
  m.Bind(&blockc);
  m.Return(m.Int32Constant(0));

  CHECK_EQ(1, m.Call(std::numeric_limits<int32_t>::max()));
  CHECK_EQ(-1, m.Call(std::numeric_limits<int32_t>::min()));
  for (int i = -100; i < 100; i += 25) {
    CHECK_EQ(0, m.Call(i));
  }
}


TEST(RunSwitch3) {
1221
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
1222

1223 1224
  RawMachineLabel blocka, blockb, blockc;
  RawMachineLabel* case_labels[] = {&blocka, &blockb};
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  int32_t case_values[] = {std::numeric_limits<int32_t>::min() + 0,
                           std::numeric_limits<int32_t>::min() + 1};
  m.Switch(m.Parameter(0), &blockc, case_values, case_labels,
           arraysize(case_labels));
  m.Bind(&blocka);
  m.Return(m.Int32Constant(0));
  m.Bind(&blockb);
  m.Return(m.Int32Constant(1));
  m.Bind(&blockc);
  m.Return(m.Int32Constant(2));

  CHECK_EQ(0, m.Call(std::numeric_limits<int32_t>::min() + 0));
  CHECK_EQ(1, m.Call(std::numeric_limits<int32_t>::min() + 1));
  for (int i = -100; i < 100; i += 25) {
    CHECK_EQ(2, m.Call(i));
  }
}


TEST(RunSwitch4) {
1245
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
1246 1247 1248 1249

  const size_t kNumCases = 512;
  const size_t kNumValues = kNumCases + 1;
  int32_t values[kNumValues];
1250 1251
  m.main_isolate()->random_number_generator()->NextBytes(values,
                                                         sizeof(values));
1252
  RawMachineLabel end, def;
1253
  int32_t case_values[kNumCases];
1254
  RawMachineLabel* case_labels[kNumCases];
1255
  Node* results[kNumValues];
1256
  for (size_t i = 0; i < kNumCases; ++i) {
1257
    case_values[i] = static_cast<int32_t>(i);
1258 1259
    case_labels[i] =
        new (m.main_zone()->New(sizeof(RawMachineLabel))) RawMachineLabel;
1260
  }
1261 1262
  m.Switch(m.Parameter(0), &def, case_values, case_labels,
           arraysize(case_labels));
1263
  for (size_t i = 0; i < kNumCases; ++i) {
1264
    m.Bind(case_labels[i]);
1265 1266 1267
    results[i] = m.Int32Constant(values[i]);
    m.Goto(&end);
  }
1268 1269 1270
  m.Bind(&def);
  results[kNumCases] = m.Int32Constant(values[kNumCases]);
  m.Goto(&end);
1271 1272 1273
  m.Bind(&end);
  const int num_results = static_cast<int>(arraysize(results));
  Node* phi =
1274 1275
      m.AddNode(m.common()->Phi(MachineRepresentation::kWord32, num_results),
                num_results, results);
1276 1277
  m.Return(phi);

1278
  for (size_t i = 0; i < kNumValues; ++i) {
1279 1280 1281 1282 1283
    CHECK_EQ(values[i], m.Call(static_cast<int>(i)));
  }
}


1284 1285 1286 1287 1288 1289 1290 1291 1292
TEST(RunInt32AddP) {
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);

  bt.AddReturn(m.Int32Add(bt.param0, bt.param1));

  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
      // Use uint32_t because signed overflow is UB in C.
1293 1294 1295
      int expected = static_cast<int32_t>(static_cast<uint32_t>(i) +
                                          static_cast<uint32_t>(j));
      CHECK_EQ(expected, bt.call(i, j));
1296 1297 1298 1299 1300
    }
  }
}


1301 1302
TEST(RunInt32AddAndWord32EqualP) {
  {
1303 1304
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
1305 1306 1307 1308 1309 1310 1311
    m.Return(m.Int32Add(m.Parameter(0),
                        m.Word32Equal(m.Parameter(1), m.Parameter(2))));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
          int32_t const expected =
1312 1313
              bit_cast<int32_t>(bit_cast<uint32_t>(i) + (j == k));
          CHECK_EQ(expected, m.Call(i, j, k));
1314 1315 1316 1317 1318
        }
      }
    }
  }
  {
1319 1320
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
1321 1322 1323 1324 1325 1326 1327
    m.Return(m.Int32Add(m.Word32Equal(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
          int32_t const expected =
1328 1329
              bit_cast<int32_t>((i == j) + bit_cast<uint32_t>(k));
          CHECK_EQ(expected, m.Call(i, j, k));
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        }
      }
    }
  }
}


TEST(RunInt32AddAndWord32EqualImm) {
  {
    FOR_INT32_INPUTS(i) {
1340 1341
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
                                           MachineType::Int32());
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
  m.Return(m.Int32Add(m.Int32Constant(i),
                      m.Word32Equal(m.Parameter(0), m.Parameter(1))));
  FOR_INT32_INPUTS(j) {
    FOR_INT32_INPUTS(k) {
      // Use uint32_t because signed overflow is UB in C.
      int32_t const expected =
          bit_cast<int32_t>(bit_cast<uint32_t>(i) + (j == k));
      CHECK_EQ(expected, m.Call(j, k));
    }
  }
1352 1353 1354 1355
    }
  }
  {
    FOR_INT32_INPUTS(i) {
1356 1357
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
                                           MachineType::Int32());
1358
      m.Return(m.Int32Add(m.Word32Equal(m.Int32Constant(i), m.Parameter(0)),
1359 1360 1361 1362 1363
                          m.Parameter(1)));
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
          int32_t const expected =
1364 1365
              bit_cast<int32_t>((i == j) + bit_cast<uint32_t>(k));
          CHECK_EQ(expected, m.Call(j, k));
1366 1367 1368 1369 1370 1371 1372 1373 1374
        }
      }
    }
  }
}


TEST(RunInt32AddAndWord32NotEqualP) {
  {
1375 1376
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
1377 1378 1379 1380 1381 1382 1383
    m.Return(m.Int32Add(m.Parameter(0),
                        m.Word32NotEqual(m.Parameter(1), m.Parameter(2))));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
          int32_t const expected =
1384 1385
              bit_cast<int32_t>(bit_cast<uint32_t>(i) + (j != k));
          CHECK_EQ(expected, m.Call(i, j, k));
1386 1387 1388 1389 1390
        }
      }
    }
  }
  {
1391 1392
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
1393 1394 1395 1396 1397 1398 1399
    m.Return(m.Int32Add(m.Word32NotEqual(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
          int32_t const expected =
1400 1401
              bit_cast<int32_t>((i != j) + bit_cast<uint32_t>(k));
          CHECK_EQ(expected, m.Call(i, j, k));
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
        }
      }
    }
  }
}


TEST(RunInt32AddAndWord32NotEqualImm) {
  {
    FOR_INT32_INPUTS(i) {
1412 1413
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
                                           MachineType::Int32());
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
  m.Return(m.Int32Add(m.Int32Constant(i),
                      m.Word32NotEqual(m.Parameter(0), m.Parameter(1))));
  FOR_INT32_INPUTS(j) {
    FOR_INT32_INPUTS(k) {
      // Use uint32_t because signed overflow is UB in C.
      int32_t const expected =
          bit_cast<int32_t>(bit_cast<uint32_t>(i) + (j != k));
      CHECK_EQ(expected, m.Call(j, k));
    }
  }
1424 1425 1426 1427
    }
  }
  {
    FOR_INT32_INPUTS(i) {
1428 1429
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
                                           MachineType::Int32());
1430
      m.Return(m.Int32Add(m.Word32NotEqual(m.Int32Constant(i), m.Parameter(0)),
1431 1432 1433 1434 1435
                          m.Parameter(1)));
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
          int32_t const expected =
1436 1437
              bit_cast<int32_t>((i != j) + bit_cast<uint32_t>(k));
          CHECK_EQ(expected, m.Call(j, k));
1438 1439 1440 1441 1442 1443 1444
        }
      }
    }
  }
}


1445 1446
TEST(RunInt32AddAndWord32SarP) {
  {
1447 1448
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
1449 1450 1451 1452
    m.Return(m.Int32Add(m.Parameter(0),
                        m.Word32Sar(m.Parameter(1), m.Parameter(2))));
    FOR_UINT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
1453
        FOR_UINT32_SHIFTS(shift) {
1454
          // Use uint32_t because signed overflow is UB in C.
1455 1456
          int32_t expected = i + (j >> shift);
          CHECK_EQ(expected, m.Call(i, j, shift));
1457 1458 1459 1460 1461
        }
      }
    }
  }
  {
1462 1463
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Uint32(), MachineType::Uint32());
1464 1465 1466
    m.Return(m.Int32Add(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
    FOR_INT32_INPUTS(i) {
1467
      FOR_UINT32_SHIFTS(shift) {
1468 1469
        FOR_UINT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
1470 1471
          int32_t expected = (i >> shift) + k;
          CHECK_EQ(expected, m.Call(i, shift, k));
1472 1473 1474 1475 1476 1477 1478 1479 1480
        }
      }
    }
  }
}


TEST(RunInt32AddAndWord32ShlP) {
  {
1481
    RawMachineAssemblerTester<int32_t> m(
1482
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
1483 1484 1485
    m.Return(m.Int32Add(m.Parameter(0),
                        m.Word32Shl(m.Parameter(1), m.Parameter(2))));
    FOR_UINT32_INPUTS(i) {
1486
      FOR_UINT32_INPUTS(j) {
1487
        FOR_UINT32_SHIFTS(shift) {
1488
          // Use uint32_t because signed overflow is UB in C.
1489 1490
          int32_t expected = i + (j << shift);
          CHECK_EQ(expected, m.Call(i, j, shift));
1491 1492 1493 1494 1495
        }
      }
    }
  }
  {
1496
    RawMachineAssemblerTester<int32_t> m(
1497
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
1498 1499
    m.Return(m.Int32Add(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
1500
    FOR_UINT32_INPUTS(i) {
1501
      FOR_UINT32_SHIFTS(shift) {
1502 1503
        FOR_UINT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
1504 1505
          int32_t expected = (i << shift) + k;
          CHECK_EQ(expected, m.Call(i, shift, k));
1506 1507 1508 1509 1510 1511 1512 1513 1514
        }
      }
    }
  }
}


TEST(RunInt32AddAndWord32ShrP) {
  {
1515 1516
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
1517 1518 1519 1520
    m.Return(m.Int32Add(m.Parameter(0),
                        m.Word32Shr(m.Parameter(1), m.Parameter(2))));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
1521
        FOR_UINT32_SHIFTS(shift) {
1522
          // Use uint32_t because signed overflow is UB in C.
1523 1524
          int32_t expected = i + (j >> shift);
          CHECK_EQ(expected, m.Call(i, j, shift));
1525 1526 1527 1528 1529
        }
      }
    }
  }
  {
1530 1531
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
1532 1533 1534
    m.Return(m.Int32Add(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
    FOR_UINT32_INPUTS(i) {
1535
      FOR_UINT32_SHIFTS(shift) {
1536 1537
        FOR_UINT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
1538 1539
          int32_t expected = (i >> shift) + k;
          CHECK_EQ(expected, m.Call(i, shift, k));
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
        }
      }
    }
  }
}


TEST(RunInt32AddInBranch) {
  static const int32_t constant = 987654321;
  {
    RawMachineAssemblerTester<int32_t> m;
1551
    Int32BinopTester bt(&m);
1552
    RawMachineLabel blocka, blockb;
1553 1554 1555 1556 1557 1558 1559 1560 1561
    m.Branch(
        m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
1562 1563
        int32_t expected = (i + j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
1564 1565 1566 1567 1568
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
1569
    Int32BinopTester bt(&m);
1570
    RawMachineLabel blocka, blockb;
1571 1572 1573 1574 1575 1576 1577 1578 1579
    m.Branch(
        m.Word32NotEqual(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
1580 1581
        int32_t expected = (i + j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
1582 1583 1584 1585 1586
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
1587
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
1588
      RawMachineLabel blocka, blockb;
1589
      m.Branch(m.Word32Equal(m.Int32Add(m.Int32Constant(i), m.Parameter(0)),
1590 1591 1592 1593 1594 1595 1596
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(j) {
1597 1598
        uint32_t expected = (i + j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
1599 1600 1601 1602 1603
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
1604
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
1605
      RawMachineLabel blocka, blockb;
1606
      m.Branch(m.Word32NotEqual(m.Int32Add(m.Int32Constant(i), m.Parameter(0)),
1607 1608 1609 1610 1611 1612 1613
                                m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(j) {
1614 1615
        uint32_t expected = (i + j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
1616 1617 1618 1619 1620
      }
    }
  }
  {
    RawMachineAssemblerTester<void> m;
1621 1622 1623
    const Operator* shops[] = {m.machine()->Word32Sar(),
                               m.machine()->Word32Shl(),
                               m.machine()->Word32Shr()};
1624
    for (size_t n = 0; n < arraysize(shops); n++) {
1625 1626
      RawMachineAssemblerTester<int32_t> m(
          MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
1627
      RawMachineLabel blocka, blockb;
1628
      m.Branch(m.Word32Equal(m.Int32Add(m.Parameter(0),
1629
                                        m.AddNode(shops[n], m.Parameter(1),
1630 1631 1632 1633 1634 1635 1636 1637 1638
                                                  m.Parameter(2))),
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(i) {
        FOR_INT32_INPUTS(j) {
1639
          FOR_UINT32_SHIFTS(shift) {
1640 1641 1642 1643 1644
            int32_t right;
            switch (shops[n]->opcode()) {
              default:
                UNREACHABLE();
              case IrOpcode::kWord32Sar:
1645
                right = j >> shift;
1646 1647
                break;
              case IrOpcode::kWord32Shl:
1648
                right = static_cast<uint32_t>(j) << shift;
1649 1650
                break;
              case IrOpcode::kWord32Shr:
1651
                right = static_cast<uint32_t>(j) >> shift;
1652 1653
                break;
            }
1654 1655
            int32_t expected = ((i + right) == 0) ? constant : 0 - constant;
            CHECK_EQ(expected, m.Call(i, j, shift));
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
          }
        }
      }
    }
  }
}


TEST(RunInt32AddInComparison) {
  {
    RawMachineAssemblerTester<int32_t> m;
1667
    Uint32BinopTester bt(&m);
1668 1669 1670 1671
    bt.AddReturn(
        m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
1672 1673
        uint32_t expected = (i + j) == 0;
        CHECK_EQ(expected, bt.call(i, j));
1674 1675 1676 1677 1678
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
1679
    Uint32BinopTester bt(&m);
1680 1681 1682 1683
    bt.AddReturn(
        m.Word32Equal(m.Int32Constant(0), m.Int32Add(bt.param0, bt.param1)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
1684 1685
        uint32_t expected = (i + j) == 0;
        CHECK_EQ(expected, bt.call(i, j));
1686 1687 1688 1689 1690
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
1691
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
1692 1693 1694 1695 1696 1697
  m.Return(m.Word32Equal(m.Int32Add(m.Int32Constant(i), m.Parameter(0)),
                         m.Int32Constant(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = (i + j) == 0;
    CHECK_EQ(expected, m.Call(j));
  }
1698 1699 1700 1701
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
1702
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
1703 1704 1705 1706 1707 1708
  m.Return(m.Word32Equal(m.Int32Add(m.Parameter(0), m.Int32Constant(i)),
                         m.Int32Constant(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = (j + i) == 0;
    CHECK_EQ(expected, m.Call(j));
  }
1709 1710 1711 1712
    }
  }
  {
    RawMachineAssemblerTester<void> m;
1713 1714 1715
    const Operator* shops[] = {m.machine()->Word32Sar(),
                               m.machine()->Word32Shl(),
                               m.machine()->Word32Shr()};
1716
    for (size_t n = 0; n < arraysize(shops); n++) {
1717 1718
      RawMachineAssemblerTester<int32_t> m(
          MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
1719 1720
      m.Return(m.Word32Equal(
          m.Int32Add(m.Parameter(0),
1721
                     m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))),
1722 1723 1724
          m.Int32Constant(0)));
      FOR_UINT32_INPUTS(i) {
        FOR_INT32_INPUTS(j) {
1725
          FOR_UINT32_SHIFTS(shift) {
1726 1727 1728 1729 1730
            int32_t right;
            switch (shops[n]->opcode()) {
              default:
                UNREACHABLE();
              case IrOpcode::kWord32Sar:
1731
                right = j >> shift;
1732 1733
                break;
              case IrOpcode::kWord32Shl:
1734
                right = static_cast<uint32_t>(j) << shift;
1735 1736
                break;
              case IrOpcode::kWord32Shr:
1737
                right = static_cast<uint32_t>(j) >> shift;
1738 1739
                break;
            }
1740 1741
            int32_t expected = (i + right) == 0;
            CHECK_EQ(expected, m.Call(i, j, shift));
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
          }
        }
      }
    }
  }
}


TEST(RunInt32SubP) {
  RawMachineAssemblerTester<int32_t> m;
1752
  Uint32BinopTester bt(&m);
1753 1754 1755 1756 1757

  m.Return(m.Int32Sub(bt.param0, bt.param1));

  FOR_UINT32_INPUTS(i) {
    FOR_UINT32_INPUTS(j) {
1758 1759
      uint32_t expected = i - j;
      CHECK_EQ(expected, bt.call(i, j));
1760 1761 1762 1763 1764 1765 1766
    }
  }
}

TEST(RunInt32SubImm) {
  {
    FOR_UINT32_INPUTS(i) {
1767
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
1768 1769 1770 1771 1772
  m.Return(m.Int32Sub(m.Int32Constant(i), m.Parameter(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = i - j;
    CHECK_EQ(expected, m.Call(j));
  }
1773 1774 1775 1776
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
1777
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
1778
      m.Return(m.Int32Sub(m.Parameter(0), m.Int32Constant(i)));
1779
      FOR_UINT32_INPUTS(j) {
1780 1781
        uint32_t expected = j - i;
        CHECK_EQ(expected, m.Call(j));
1782 1783 1784 1785 1786
      }
    }
  }
}

1787 1788 1789 1790 1791
TEST(RunInt32SubImm2) {
  BufferedRawMachineAssemblerTester<int32_t> r;
  r.Return(r.Int32Sub(r.Int32Constant(-1), r.Int32Constant(0)));
  CHECK_EQ(-1, r.Call());
}
1792 1793 1794

TEST(RunInt32SubAndWord32SarP) {
  {
1795 1796
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
1797 1798 1799 1800
    m.Return(m.Int32Sub(m.Parameter(0),
                        m.Word32Sar(m.Parameter(1), m.Parameter(2))));
    FOR_UINT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
1801
        FOR_UINT32_SHIFTS(shift) {
1802 1803
          int32_t expected = i - (j >> shift);
          CHECK_EQ(expected, m.Call(i, j, shift));
1804 1805 1806 1807 1808
        }
      }
    }
  }
  {
1809 1810
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Uint32(), MachineType::Uint32());
1811 1812 1813
    m.Return(m.Int32Sub(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
    FOR_INT32_INPUTS(i) {
1814
      FOR_UINT32_SHIFTS(shift) {
1815
        FOR_UINT32_INPUTS(k) {
1816 1817
          int32_t expected = (i >> shift) - k;
          CHECK_EQ(expected, m.Call(i, shift, k));
1818 1819 1820 1821 1822 1823 1824 1825 1826
        }
      }
    }
  }
}


TEST(RunInt32SubAndWord32ShlP) {
  {
1827
    RawMachineAssemblerTester<int32_t> m(
1828
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
1829 1830 1831
    m.Return(m.Int32Sub(m.Parameter(0),
                        m.Word32Shl(m.Parameter(1), m.Parameter(2))));
    FOR_UINT32_INPUTS(i) {
1832
      FOR_UINT32_INPUTS(j) {
1833
        FOR_UINT32_SHIFTS(shift) {
1834 1835
          int32_t expected = i - (j << shift);
          CHECK_EQ(expected, m.Call(i, j, shift));
1836 1837 1838 1839 1840
        }
      }
    }
  }
  {
1841
    RawMachineAssemblerTester<int32_t> m(
1842
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
1843 1844
    m.Return(m.Int32Sub(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
1845
    FOR_UINT32_INPUTS(i) {
1846
      FOR_UINT32_SHIFTS(shift) {
1847 1848
        FOR_UINT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
1849 1850
          int32_t expected = (i << shift) - k;
          CHECK_EQ(expected, m.Call(i, shift, k));
1851 1852 1853 1854 1855 1856 1857 1858 1859
        }
      }
    }
  }
}


TEST(RunInt32SubAndWord32ShrP) {
  {
1860 1861
    RawMachineAssemblerTester<uint32_t> m(
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
1862 1863 1864 1865
    m.Return(m.Int32Sub(m.Parameter(0),
                        m.Word32Shr(m.Parameter(1), m.Parameter(2))));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
1866
        FOR_UINT32_SHIFTS(shift) {
1867
          // Use uint32_t because signed overflow is UB in C.
1868 1869
          uint32_t expected = i - (j >> shift);
          CHECK_EQ(expected, m.Call(i, j, shift));
1870 1871 1872 1873 1874
        }
      }
    }
  }
  {
1875 1876
    RawMachineAssemblerTester<uint32_t> m(
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
1877 1878 1879
    m.Return(m.Int32Sub(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
    FOR_UINT32_INPUTS(i) {
1880
      FOR_UINT32_SHIFTS(shift) {
1881 1882
        FOR_UINT32_INPUTS(k) {
          // Use uint32_t because signed overflow is UB in C.
1883 1884
          uint32_t expected = (i >> shift) - k;
          CHECK_EQ(expected, m.Call(i, shift, k));
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
        }
      }
    }
  }
}


TEST(RunInt32SubInBranch) {
  static const int constant = 987654321;
  {
    RawMachineAssemblerTester<int32_t> m;
1896
    Int32BinopTester bt(&m);
1897
    RawMachineLabel blocka, blockb;
1898 1899 1900 1901 1902 1903 1904 1905 1906
    m.Branch(
        m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
1907 1908
        int32_t expected = (i - j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
1909 1910 1911 1912 1913
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
1914
    Int32BinopTester bt(&m);
1915
    RawMachineLabel blocka, blockb;
1916 1917 1918 1919 1920 1921 1922 1923 1924
    m.Branch(
        m.Word32NotEqual(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
1925 1926
        int32_t expected = (i - j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
1927 1928 1929 1930 1931
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
1932
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
1933
      RawMachineLabel blocka, blockb;
1934
      m.Branch(m.Word32Equal(m.Int32Sub(m.Int32Constant(i), m.Parameter(0)),
1935 1936 1937 1938 1939 1940 1941
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(j) {
1942 1943
        uint32_t expected = (i - j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
1944 1945 1946 1947 1948
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
1949
      RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
1950
      RawMachineLabel blocka, blockb;
1951
      m.Branch(m.Word32NotEqual(m.Int32Sub(m.Int32Constant(i), m.Parameter(0)),
1952 1953 1954 1955 1956 1957 1958
                                m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(j) {
1959 1960
        int32_t expected = (i - j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
1961 1962 1963 1964 1965
      }
    }
  }
  {
    RawMachineAssemblerTester<void> m;
1966 1967 1968
    const Operator* shops[] = {m.machine()->Word32Sar(),
                               m.machine()->Word32Shl(),
                               m.machine()->Word32Shr()};
1969
    for (size_t n = 0; n < arraysize(shops); n++) {
1970 1971
      RawMachineAssemblerTester<int32_t> m(
          MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
1972
      RawMachineLabel blocka, blockb;
1973
      m.Branch(m.Word32Equal(m.Int32Sub(m.Parameter(0),
1974
                                        m.AddNode(shops[n], m.Parameter(1),
1975 1976 1977 1978 1979 1980 1981 1982 1983
                                                  m.Parameter(2))),
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(i) {
        FOR_INT32_INPUTS(j) {
1984
          FOR_UINT32_SHIFTS(shift) {
1985 1986 1987 1988 1989
            int32_t right;
            switch (shops[n]->opcode()) {
              default:
                UNREACHABLE();
              case IrOpcode::kWord32Sar:
1990
                right = j >> shift;
1991 1992
                break;
              case IrOpcode::kWord32Shl:
1993
                right = static_cast<uint32_t>(j) << shift;
1994 1995
                break;
              case IrOpcode::kWord32Shr:
1996
                right = static_cast<uint32_t>(j) >> shift;
1997 1998
                break;
            }
1999 2000
            int32_t expected = ((i - right) == 0) ? constant : 0 - constant;
            CHECK_EQ(expected, m.Call(i, j, shift));
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
          }
        }
      }
    }
  }
}


TEST(RunInt32SubInComparison) {
  {
    RawMachineAssemblerTester<int32_t> m;
2012
    Uint32BinopTester bt(&m);
2013 2014 2015 2016
    bt.AddReturn(
        m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2017 2018
        uint32_t expected = (i - j) == 0;
        CHECK_EQ(expected, bt.call(i, j));
2019 2020 2021 2022 2023
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2024
    Uint32BinopTester bt(&m);
2025 2026 2027 2028
    bt.AddReturn(
        m.Word32Equal(m.Int32Constant(0), m.Int32Sub(bt.param0, bt.param1)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2029 2030
        uint32_t expected = (i - j) == 0;
        CHECK_EQ(expected, bt.call(i, j));
2031 2032 2033 2034 2035
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2036
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2037 2038 2039 2040 2041 2042
  m.Return(m.Word32Equal(m.Int32Sub(m.Int32Constant(i), m.Parameter(0)),
                         m.Int32Constant(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = (i - j) == 0;
    CHECK_EQ(expected, m.Call(j));
  }
2043 2044 2045 2046
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2047
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2048 2049 2050 2051 2052 2053
  m.Return(m.Word32Equal(m.Int32Sub(m.Parameter(0), m.Int32Constant(i)),
                         m.Int32Constant(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = (j - i) == 0;
    CHECK_EQ(expected, m.Call(j));
  }
2054 2055 2056 2057
    }
  }
  {
    RawMachineAssemblerTester<void> m;
2058 2059 2060
    const Operator* shops[] = {m.machine()->Word32Sar(),
                               m.machine()->Word32Shl(),
                               m.machine()->Word32Shr()};
2061
    for (size_t n = 0; n < arraysize(shops); n++) {
2062 2063
      RawMachineAssemblerTester<int32_t> m(
          MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
2064 2065
      m.Return(m.Word32Equal(
          m.Int32Sub(m.Parameter(0),
2066
                     m.AddNode(shops[n], m.Parameter(1), m.Parameter(2))),
2067 2068 2069
          m.Int32Constant(0)));
      FOR_UINT32_INPUTS(i) {
        FOR_INT32_INPUTS(j) {
2070
          FOR_UINT32_SHIFTS(shift) {
2071 2072 2073 2074 2075
            int32_t right;
            switch (shops[n]->opcode()) {
              default:
                UNREACHABLE();
              case IrOpcode::kWord32Sar:
2076
                right = j >> shift;
2077 2078
                break;
              case IrOpcode::kWord32Shl:
2079
                right = static_cast<uint32_t>(j) << shift;
2080 2081
                break;
              case IrOpcode::kWord32Shr:
2082
                right = static_cast<uint32_t>(j) >> shift;
2083 2084
                break;
            }
2085 2086
            int32_t expected = (i - right) == 0;
            CHECK_EQ(expected, m.Call(i, j, shift));
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
          }
        }
      }
    }
  }
}


TEST(RunInt32MulP) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(m.Int32Mul(bt.param0, bt.param1));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2102 2103
        int expected = base::MulWithWraparound(i, j);
        CHECK_EQ(expected, bt.call(i, j));
2104 2105 2106 2107 2108
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2109
    Uint32BinopTester bt(&m);
2110 2111 2112
    bt.AddReturn(m.Int32Mul(bt.param0, bt.param1));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2113 2114
        uint32_t expected = i * j;
        CHECK_EQ(expected, bt.call(i, j));
2115 2116 2117 2118 2119 2120
      }
    }
  }
}


2121 2122 2123 2124 2125 2126 2127
TEST(RunInt32MulHighP) {
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);
  bt.AddReturn(m.Int32MulHigh(bt.param0, bt.param1));
  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
      int32_t expected = static_cast<int32_t>(
2128 2129
          (static_cast<int64_t>(i) * static_cast<int64_t>(j)) >> 32);
      CHECK_EQ(expected, bt.call(i, j));
2130 2131 2132 2133 2134
    }
  }
}


2135 2136 2137
TEST(RunInt32MulImm) {
  {
    FOR_UINT32_INPUTS(i) {
2138
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2139 2140 2141 2142 2143
  m.Return(m.Int32Mul(m.Int32Constant(i), m.Parameter(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = i * j;
    CHECK_EQ(expected, m.Call(j));
  }
2144 2145 2146 2147
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2148
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2149
      m.Return(m.Int32Mul(m.Parameter(0), m.Int32Constant(i)));
2150
      FOR_UINT32_INPUTS(j) {
2151 2152
        uint32_t expected = j * i;
        CHECK_EQ(expected, m.Call(j));
2153 2154 2155 2156 2157 2158
      }
    }
  }
}

TEST(RunInt32MulAndInt32AddP) {
2159 2160 2161
  {
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2162
        RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
2163 2164 2165 2166 2167 2168 2169 2170 2171
  int32_t p0 = i;
  int32_t p1 = j;
  m.Return(m.Int32Add(m.Int32Constant(p0),
                      m.Int32Mul(m.Parameter(0), m.Int32Constant(p1))));
  FOR_INT32_INPUTS(k) {
    int32_t p2 = k;
    int expected = base::AddWithWraparound(p0, base::MulWithWraparound(p1, p2));
    CHECK_EQ(expected, m.Call(p2));
  }
2172 2173 2174
      }
    }
  }
2175
  {
2176 2177
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
2178 2179 2180 2181 2182
    m.Return(
        m.Int32Add(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2))));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
2183 2184 2185
          int32_t p0 = i;
          int32_t p1 = j;
          int32_t p2 = k;
2186 2187
          int expected =
              base::AddWithWraparound(p0, base::MulWithWraparound(p1, p2));
2188 2189 2190 2191 2192 2193
          CHECK_EQ(expected, m.Call(p0, p1, p2));
        }
      }
    }
  }
  {
2194 2195
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
2196 2197 2198 2199 2200
    m.Return(
        m.Int32Add(m.Int32Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2)));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
2201 2202 2203
          int32_t p0 = i;
          int32_t p1 = j;
          int32_t p2 = k;
2204 2205
          int expected =
              base::AddWithWraparound(base::MulWithWraparound(p0, p1), p2);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
          CHECK_EQ(expected, m.Call(p0, p1, p2));
        }
      }
    }
  }
  {
    FOR_INT32_INPUTS(i) {
      RawMachineAssemblerTester<int32_t> m;
      Int32BinopTester bt(&m);
      bt.AddReturn(
2216
          m.Int32Add(m.Int32Constant(i), m.Int32Mul(bt.param0, bt.param1)));
2217 2218
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
2219 2220
          int32_t p0 = j;
          int32_t p1 = k;
2221
          int expected =
2222
              base::AddWithWraparound(i, base::MulWithWraparound(p0, p1));
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
}


TEST(RunInt32MulAndInt32SubP) {
  {
2233
    RawMachineAssemblerTester<int32_t> m(
2234
        MachineType::Int32(), MachineType::Int32(), MachineType::Int32());
2235 2236
    m.Return(
        m.Int32Sub(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2))));
2237
    FOR_INT32_INPUTS(i) {
2238 2239
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
2240 2241 2242
          int32_t p0 = i;
          int32_t p1 = j;
          int32_t p2 = k;
2243 2244
          int expected =
              base::SubWithWraparound(p0, base::MulWithWraparound(p1, p2));
2245 2246 2247 2248 2249 2250
          CHECK_EQ(expected, m.Call(p0, p1, p2));
        }
      }
    }
  }
  {
2251
    FOR_INT32_INPUTS(i) {
2252 2253 2254
      RawMachineAssemblerTester<int32_t> m;
      Int32BinopTester bt(&m);
      bt.AddReturn(
2255
          m.Int32Sub(m.Int32Constant(i), m.Int32Mul(bt.param0, bt.param1)));
2256 2257
      FOR_INT32_INPUTS(j) {
        FOR_INT32_INPUTS(k) {
2258 2259
          int32_t p0 = j;
          int32_t p1 = k;
2260
          int expected =
2261
              base::SubWithWraparound(i, base::MulWithWraparound(p0, p1));
2262 2263 2264 2265 2266 2267 2268 2269
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
}


2270 2271 2272 2273 2274 2275 2276
TEST(RunUint32MulHighP) {
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);
  bt.AddReturn(m.Uint32MulHigh(bt.param0, bt.param1));
  FOR_UINT32_INPUTS(i) {
    FOR_UINT32_INPUTS(j) {
      int32_t expected = bit_cast<int32_t>(static_cast<uint32_t>(
2277 2278
          (static_cast<uint64_t>(i) * static_cast<uint64_t>(j)) >> 32));
      CHECK_EQ(expected, bt.call(bit_cast<int32_t>(i), bit_cast<int32_t>(j)));
2279 2280 2281 2282 2283
    }
  }
}


2284 2285 2286 2287 2288 2289 2290
TEST(RunInt32DivP) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(m.Int32Div(bt.param0, bt.param1));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2291 2292
        int p0 = i;
        int p1 = j;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
        if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
          int expected = static_cast<int32_t>(p0 / p1);
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(m.Int32Add(bt.param0, m.Int32Div(bt.param0, bt.param1)));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2306 2307
        int p0 = i;
        int p1 = j;
2308
        if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
2309 2310
          int expected =
              static_cast<int32_t>(base::AddWithWraparound(p0, (p0 / p1)));
2311 2312 2313 2314 2315 2316 2317 2318
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
}


2319
TEST(RunUint32DivP) {
2320 2321 2322
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
2323
    bt.AddReturn(m.Uint32Div(bt.param0, bt.param1));
2324 2325
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2326 2327
        uint32_t p0 = i;
        uint32_t p1 = j;
2328
        if (p1 != 0) {
2329
          int32_t expected = bit_cast<int32_t>(p0 / p1);
2330 2331 2332 2333 2334 2335 2336 2337
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
2338
    bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Div(bt.param0, bt.param1)));
2339 2340
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2341 2342
        uint32_t p0 = i;
        uint32_t p1 = j;
2343
        if (p1 != 0) {
2344
          int32_t expected = bit_cast<int32_t>(p0 + (p0 / p1));
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
}


TEST(RunInt32ModP) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(m.Int32Mod(bt.param0, bt.param1));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2360 2361
        int p0 = i;
        int p1 = j;
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
        if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
          int expected = static_cast<int32_t>(p0 % p1);
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(m.Int32Add(bt.param0, m.Int32Mod(bt.param0, bt.param1)));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2375 2376
        int p0 = i;
        int p1 = j;
2377
        if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
2378 2379
          int expected =
              static_cast<int32_t>(base::AddWithWraparound(p0, (p0 % p1)));
2380 2381 2382 2383 2384 2385 2386 2387
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
}


2388
TEST(RunUint32ModP) {
2389 2390
  {
    RawMachineAssemblerTester<int32_t> m;
2391
    Uint32BinopTester bt(&m);
2392
    bt.AddReturn(m.Uint32Mod(bt.param0, bt.param1));
2393 2394
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2395 2396
        uint32_t p0 = i;
        uint32_t p1 = j;
2397 2398 2399 2400 2401 2402 2403 2404 2405
        if (p1 != 0) {
          uint32_t expected = static_cast<uint32_t>(p0 % p1);
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2406
    Uint32BinopTester bt(&m);
2407
    bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Mod(bt.param0, bt.param1)));
2408 2409
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2410 2411
        uint32_t p0 = i;
        uint32_t p1 = j;
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
        if (p1 != 0) {
          uint32_t expected = static_cast<uint32_t>(p0 + (p0 % p1));
          CHECK_EQ(expected, bt.call(p0, p1));
        }
      }
    }
  }
}


TEST(RunWord32AndP) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(m.Word32And(bt.param0, bt.param1));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2429 2430
        int32_t expected = i & j;
        CHECK_EQ(expected, bt.call(i, j));
2431 2432 2433 2434 2435 2436
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
2437
    bt.AddReturn(m.Word32And(bt.param0, m.Word32BitwiseNot(bt.param1)));
2438 2439
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2440 2441
        int32_t expected = i & ~(j);
        CHECK_EQ(expected, bt.call(i, j));
2442 2443 2444 2445 2446 2447
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
2448
    bt.AddReturn(m.Word32And(m.Word32BitwiseNot(bt.param0), bt.param1));
2449 2450
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2451 2452
        int32_t expected = ~(i)&j;
        CHECK_EQ(expected, bt.call(i, j));
2453 2454 2455 2456 2457 2458 2459 2460 2461
      }
    }
  }
}


TEST(RunWord32AndAndWord32ShlP) {
  {
    RawMachineAssemblerTester<int32_t> m;
2462
    Uint32BinopTester bt(&m);
2463
    bt.AddReturn(
2464
        m.Word32Shl(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1F))));
2465 2466
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2467 2468
        uint32_t expected = i << (j & 0x1F);
        CHECK_EQ(expected, bt.call(i, j));
2469 2470 2471 2472 2473
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2474
    Uint32BinopTester bt(&m);
2475
    bt.AddReturn(
2476
        m.Word32Shl(bt.param0, m.Word32And(m.Int32Constant(0x1F), bt.param1)));
2477 2478
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2479 2480
        uint32_t expected = i << (0x1F & j);
        CHECK_EQ(expected, bt.call(i, j));
2481 2482 2483 2484 2485 2486 2487 2488 2489
      }
    }
  }
}


TEST(RunWord32AndAndWord32ShrP) {
  {
    RawMachineAssemblerTester<int32_t> m;
2490
    Uint32BinopTester bt(&m);
2491
    bt.AddReturn(
2492
        m.Word32Shr(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1F))));
2493 2494
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2495 2496
        uint32_t expected = i >> (j & 0x1F);
        CHECK_EQ(expected, bt.call(i, j));
2497 2498 2499 2500 2501
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2502
    Uint32BinopTester bt(&m);
2503
    bt.AddReturn(
2504
        m.Word32Shr(bt.param0, m.Word32And(m.Int32Constant(0x1F), bt.param1)));
2505 2506
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2507 2508
        uint32_t expected = i >> (0x1F & j);
        CHECK_EQ(expected, bt.call(i, j));
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
      }
    }
  }
}


TEST(RunWord32AndAndWord32SarP) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(
2520
        m.Word32Sar(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1F))));
2521
    FOR_INT32_INPUTS(i) {
2522
      FOR_INT32_INPUTS(j) {
2523 2524
        int32_t expected = i >> (j & 0x1F);
        CHECK_EQ(expected, bt.call(i, j));
2525 2526 2527 2528 2529 2530 2531
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(
2532
        m.Word32Sar(bt.param0, m.Word32And(m.Int32Constant(0x1F), bt.param1)));
2533
    FOR_INT32_INPUTS(i) {
2534
      FOR_INT32_INPUTS(j) {
2535 2536
        int32_t expected = i >> (0x1F & j);
        CHECK_EQ(expected, bt.call(i, j));
2537 2538 2539 2540 2541 2542 2543 2544 2545
      }
    }
  }
}


TEST(RunWord32AndImm) {
  {
    FOR_UINT32_INPUTS(i) {
2546
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2547 2548 2549 2550 2551
  m.Return(m.Word32And(m.Int32Constant(i), m.Parameter(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = i & j;
    CHECK_EQ(expected, m.Call(j));
  }
2552 2553 2554 2555
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2556
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2557
      m.Return(
2558
          m.Word32And(m.Int32Constant(i), m.Word32BitwiseNot(m.Parameter(0))));
2559
      FOR_UINT32_INPUTS(j) {
2560 2561
        uint32_t expected = i & ~(j);
        CHECK_EQ(expected, m.Call(j));
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
      }
    }
  }
}


TEST(RunWord32AndInBranch) {
  static const int constant = 987654321;
  {
    RawMachineAssemblerTester<int32_t> m;
2572
    Int32BinopTester bt(&m);
2573
    RawMachineLabel blocka, blockb;
2574 2575 2576 2577 2578 2579 2580 2581 2582
    m.Branch(
        m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2583 2584
        int32_t expected = (i & j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
2585 2586 2587 2588 2589
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2590
    Int32BinopTester bt(&m);
2591
    RawMachineLabel blocka, blockb;
2592 2593 2594 2595 2596 2597 2598 2599 2600
    m.Branch(
        m.Word32NotEqual(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2601 2602
        int32_t expected = (i & j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
2603 2604 2605 2606 2607
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2608
      RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
2609
      RawMachineLabel blocka, blockb;
2610
      m.Branch(m.Word32Equal(m.Word32And(m.Int32Constant(i), m.Parameter(0)),
2611 2612 2613 2614 2615 2616 2617
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(j) {
2618 2619
        int32_t expected = (i & j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
2620 2621 2622 2623 2624
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2625
      RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
2626
      RawMachineLabel blocka, blockb;
2627 2628 2629
      m.Branch(m.Word32NotEqual(m.Word32And(m.Int32Constant(i), m.Parameter(0)),
                                m.Int32Constant(0)),
               &blocka, &blockb);
2630 2631 2632 2633 2634
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(j) {
2635 2636
        int32_t expected = (i & j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
2637 2638 2639 2640 2641
      }
    }
  }
  {
    RawMachineAssemblerTester<void> m;
2642 2643 2644
    const Operator* shops[] = {m.machine()->Word32Sar(),
                               m.machine()->Word32Shl(),
                               m.machine()->Word32Shr()};
2645
    for (size_t n = 0; n < arraysize(shops); n++) {
2646 2647
      RawMachineAssemblerTester<int32_t> m(
          MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
2648
      RawMachineLabel blocka, blockb;
2649
      m.Branch(m.Word32Equal(m.Word32And(m.Parameter(0),
2650
                                         m.AddNode(shops[n], m.Parameter(1),
2651 2652 2653 2654 2655 2656 2657 2658 2659
                                                   m.Parameter(2))),
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(i) {
        FOR_INT32_INPUTS(j) {
2660
          FOR_UINT32_SHIFTS(shift) {
2661 2662 2663 2664 2665
            int32_t right;
            switch (shops[n]->opcode()) {
              default:
                UNREACHABLE();
              case IrOpcode::kWord32Sar:
2666
                right = j >> shift;
2667 2668
                break;
              case IrOpcode::kWord32Shl:
2669
                right = static_cast<uint32_t>(j) << shift;
2670 2671
                break;
              case IrOpcode::kWord32Shr:
2672
                right = static_cast<uint32_t>(j) >> shift;
2673 2674
                break;
            }
2675 2676
            int32_t expected = ((i & right) == 0) ? constant : 0 - constant;
            CHECK_EQ(expected, m.Call(i, j, shift));
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
          }
        }
      }
    }
  }
}


TEST(RunWord32AndInComparison) {
  {
    RawMachineAssemblerTester<int32_t> m;
2688
    Uint32BinopTester bt(&m);
2689 2690 2691 2692
    bt.AddReturn(
        m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2693 2694
        uint32_t expected = (i & j) == 0;
        CHECK_EQ(expected, bt.call(i, j));
2695 2696 2697 2698 2699
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2700
    Uint32BinopTester bt(&m);
2701 2702 2703 2704
    bt.AddReturn(
        m.Word32Equal(m.Int32Constant(0), m.Word32And(bt.param0, bt.param1)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2705 2706
        uint32_t expected = (i & j) == 0;
        CHECK_EQ(expected, bt.call(i, j));
2707 2708 2709 2710 2711
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2712
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2713 2714 2715 2716 2717 2718
  m.Return(m.Word32Equal(m.Word32And(m.Int32Constant(i), m.Parameter(0)),
                         m.Int32Constant(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = (i & j) == 0;
    CHECK_EQ(expected, m.Call(j));
  }
2719 2720 2721 2722
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2723
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2724
      m.Return(m.Word32Equal(m.Word32And(m.Parameter(0), m.Int32Constant(i)),
2725 2726
                             m.Int32Constant(0)));
      FOR_UINT32_INPUTS(j) {
2727 2728
        uint32_t expected = (j & i) == 0;
        CHECK_EQ(expected, m.Call(j));
2729 2730 2731 2732 2733 2734 2735 2736 2737
      }
    }
  }
}


TEST(RunWord32OrP) {
  {
    RawMachineAssemblerTester<int32_t> m;
2738
    Uint32BinopTester bt(&m);
2739 2740 2741
    bt.AddReturn(m.Word32Or(bt.param0, bt.param1));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2742 2743
        uint32_t expected = i | j;
        CHECK_EQ(expected, bt.call(i, j));
2744 2745 2746 2747 2748
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2749
    Uint32BinopTester bt(&m);
2750
    bt.AddReturn(m.Word32Or(bt.param0, m.Word32BitwiseNot(bt.param1)));
2751 2752
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2753 2754
        uint32_t expected = i | ~(j);
        CHECK_EQ(expected, bt.call(i, j));
2755 2756 2757 2758 2759
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2760
    Uint32BinopTester bt(&m);
2761
    bt.AddReturn(m.Word32Or(m.Word32BitwiseNot(bt.param0), bt.param1));
2762 2763
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2764 2765
        uint32_t expected = ~(i) | j;
        CHECK_EQ(expected, bt.call(i, j));
2766 2767 2768 2769 2770 2771 2772 2773 2774
      }
    }
  }
}


TEST(RunWord32OrImm) {
  {
    FOR_UINT32_INPUTS(i) {
2775
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2776 2777 2778 2779 2780
  m.Return(m.Word32Or(m.Int32Constant(i), m.Parameter(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = i | j;
    CHECK_EQ(expected, m.Call(j));
  }
2781 2782 2783 2784
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2785
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2786
      m.Return(
2787
          m.Word32Or(m.Int32Constant(i), m.Word32BitwiseNot(m.Parameter(0))));
2788
      FOR_UINT32_INPUTS(j) {
2789 2790
        uint32_t expected = i | ~(j);
        CHECK_EQ(expected, m.Call(j));
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
      }
    }
  }
}


TEST(RunWord32OrInBranch) {
  static const int constant = 987654321;
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
2802
    RawMachineLabel blocka, blockb;
2803 2804 2805 2806 2807 2808 2809
    m.Branch(
        m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
2810 2811
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2812 2813
        int32_t expected = (i | j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
2814 2815 2816 2817 2818 2819
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
2820
    RawMachineLabel blocka, blockb;
2821 2822 2823 2824 2825 2826 2827
    m.Branch(
        m.Word32NotEqual(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
2828 2829
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2830 2831
        int32_t expected = (i | j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
2832 2833 2834 2835
      }
    }
  }
  {
2836
    FOR_INT32_INPUTS(i) {
2837
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
2838
      RawMachineLabel blocka, blockb;
2839
      m.Branch(m.Word32Equal(m.Word32Or(m.Int32Constant(i), m.Parameter(0)),
2840 2841 2842 2843 2844 2845
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
2846
      FOR_INT32_INPUTS(j) {
2847 2848
        int32_t expected = (i | j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
2849 2850 2851 2852
      }
    }
  }
  {
2853
    FOR_INT32_INPUTS(i) {
2854
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
2855
      RawMachineLabel blocka, blockb;
2856
      m.Branch(m.Word32NotEqual(m.Word32Or(m.Int32Constant(i), m.Parameter(0)),
2857 2858 2859 2860 2861 2862
                                m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
2863
      FOR_INT32_INPUTS(j) {
2864 2865
        int32_t expected = (i | j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
2866 2867 2868 2869 2870
      }
    }
  }
  {
    RawMachineAssemblerTester<void> m;
2871 2872 2873
    const Operator* shops[] = {m.machine()->Word32Sar(),
                               m.machine()->Word32Shl(),
                               m.machine()->Word32Shr()};
2874
    for (size_t n = 0; n < arraysize(shops); n++) {
2875 2876
      RawMachineAssemblerTester<int32_t> m(
          MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
2877
      RawMachineLabel blocka, blockb;
2878
      m.Branch(m.Word32Equal(m.Word32Or(m.Parameter(0),
2879
                                        m.AddNode(shops[n], m.Parameter(1),
2880 2881 2882 2883 2884 2885 2886 2887 2888
                                                  m.Parameter(2))),
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(i) {
        FOR_INT32_INPUTS(j) {
2889
          FOR_UINT32_SHIFTS(shift) {
2890 2891 2892 2893 2894
            int32_t right;
            switch (shops[n]->opcode()) {
              default:
                UNREACHABLE();
              case IrOpcode::kWord32Sar:
2895
                right = j >> shift;
2896 2897
                break;
              case IrOpcode::kWord32Shl:
2898
                right = static_cast<uint32_t>(j) << shift;
2899 2900
                break;
              case IrOpcode::kWord32Shr:
2901
                right = static_cast<uint32_t>(j) >> shift;
2902 2903
                break;
            }
2904 2905
            int32_t expected = ((i | right) == 0) ? constant : 0 - constant;
            CHECK_EQ(expected, m.Call(i, j, shift));
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
          }
        }
      }
    }
  }
}


TEST(RunWord32OrInComparison) {
  {
    RawMachineAssemblerTester<int32_t> m;
2917
    Int32BinopTester bt(&m);
2918 2919 2920 2921
    bt.AddReturn(
        m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2922 2923
        int32_t expected = (i | j) == 0;
        CHECK_EQ(expected, bt.call(i, j));
2924 2925 2926 2927 2928
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2929
    Int32BinopTester bt(&m);
2930 2931 2932 2933
    bt.AddReturn(
        m.Word32Equal(m.Int32Constant(0), m.Word32Or(bt.param0, bt.param1)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2934 2935
        int32_t expected = (i | j) == 0;
        CHECK_EQ(expected, bt.call(i, j));
2936 2937 2938 2939 2940
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2941
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2942 2943 2944 2945 2946 2947
  m.Return(m.Word32Equal(m.Word32Or(m.Int32Constant(i), m.Parameter(0)),
                         m.Int32Constant(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = (i | j) == 0;
    CHECK_EQ(expected, m.Call(j));
  }
2948 2949 2950 2951
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
2952
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2953
      m.Return(m.Word32Equal(m.Word32Or(m.Parameter(0), m.Int32Constant(i)),
2954 2955
                             m.Int32Constant(0)));
      FOR_UINT32_INPUTS(j) {
2956 2957
        uint32_t expected = (j | i) == 0;
        CHECK_EQ(expected, m.Call(j));
2958 2959 2960 2961 2962 2963 2964 2965 2966
      }
    }
  }
}


TEST(RunWord32XorP) {
  {
    FOR_UINT32_INPUTS(i) {
2967
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
2968 2969 2970 2971 2972
  m.Return(m.Word32Xor(m.Int32Constant(i), m.Parameter(0)));
  FOR_UINT32_INPUTS(j) {
    uint32_t expected = i ^ j;
    CHECK_EQ(expected, m.Call(j));
  }
2973 2974 2975 2976
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
2977
    Uint32BinopTester bt(&m);
2978 2979 2980
    bt.AddReturn(m.Word32Xor(bt.param0, bt.param1));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
2981 2982
        uint32_t expected = i ^ j;
        CHECK_EQ(expected, bt.call(i, j));
2983 2984 2985 2986 2987 2988
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
2989
    bt.AddReturn(m.Word32Xor(bt.param0, m.Word32BitwiseNot(bt.param1)));
2990 2991
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
2992 2993
        int32_t expected = i ^ ~(j);
        CHECK_EQ(expected, bt.call(i, j));
2994 2995 2996 2997 2998 2999
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
3000
    bt.AddReturn(m.Word32Xor(m.Word32BitwiseNot(bt.param0), bt.param1));
3001 3002
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
3003 3004
        int32_t expected = ~(i) ^ j;
        CHECK_EQ(expected, bt.call(i, j));
3005 3006 3007 3008 3009
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
3010
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3011
      m.Return(
3012
          m.Word32Xor(m.Int32Constant(i), m.Word32BitwiseNot(m.Parameter(0))));
3013
      FOR_UINT32_INPUTS(j) {
3014 3015
        uint32_t expected = i ^ ~(j);
        CHECK_EQ(expected, m.Call(j));
3016 3017 3018 3019 3020 3021 3022
      }
    }
  }
}


TEST(RunWord32XorInBranch) {
3023
  static const uint32_t constant = 987654321;
3024 3025
  {
    RawMachineAssemblerTester<int32_t> m;
3026
    Uint32BinopTester bt(&m);
3027
    RawMachineLabel blocka, blockb;
3028 3029 3030 3031 3032 3033 3034 3035 3036
    m.Branch(
        m.Word32Equal(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
3037 3038
        uint32_t expected = (i ^ j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
3039 3040 3041 3042 3043
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
3044
    Uint32BinopTester bt(&m);
3045
    RawMachineLabel blocka, blockb;
3046 3047 3048 3049 3050 3051 3052 3053 3054
    m.Branch(
        m.Word32NotEqual(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)),
        &blocka, &blockb);
    m.Bind(&blocka);
    bt.AddReturn(m.Int32Constant(constant));
    m.Bind(&blockb);
    bt.AddReturn(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
3055 3056
        uint32_t expected = (i ^ j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, bt.call(i, j));
3057 3058 3059 3060 3061
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
3062
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3063
      RawMachineLabel blocka, blockb;
3064
      m.Branch(m.Word32Equal(m.Word32Xor(m.Int32Constant(i), m.Parameter(0)),
3065 3066 3067 3068 3069 3070 3071
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(j) {
3072 3073
        uint32_t expected = (i ^ j) == 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
3074 3075 3076 3077 3078
      }
    }
  }
  {
    FOR_UINT32_INPUTS(i) {
3079
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3080
      RawMachineLabel blocka, blockb;
3081 3082 3083
      m.Branch(m.Word32NotEqual(m.Word32Xor(m.Int32Constant(i), m.Parameter(0)),
                                m.Int32Constant(0)),
               &blocka, &blockb);
3084 3085 3086 3087 3088
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(j) {
3089 3090
        uint32_t expected = (i ^ j) != 0 ? constant : 0 - constant;
        CHECK_EQ(expected, m.Call(j));
3091 3092 3093 3094 3095
      }
    }
  }
  {
    RawMachineAssemblerTester<void> m;
3096 3097 3098
    const Operator* shops[] = {m.machine()->Word32Sar(),
                               m.machine()->Word32Shl(),
                               m.machine()->Word32Shr()};
3099
    for (size_t n = 0; n < arraysize(shops); n++) {
3100 3101
      RawMachineAssemblerTester<int32_t> m(
          MachineType::Uint32(), MachineType::Int32(), MachineType::Uint32());
3102
      RawMachineLabel blocka, blockb;
3103
      m.Branch(m.Word32Equal(m.Word32Xor(m.Parameter(0),
3104
                                         m.AddNode(shops[n], m.Parameter(1),
3105 3106 3107 3108 3109 3110 3111 3112 3113
                                                   m.Parameter(2))),
                             m.Int32Constant(0)),
               &blocka, &blockb);
      m.Bind(&blocka);
      m.Return(m.Int32Constant(constant));
      m.Bind(&blockb);
      m.Return(m.Int32Constant(0 - constant));
      FOR_UINT32_INPUTS(i) {
        FOR_INT32_INPUTS(j) {
3114
          FOR_UINT32_SHIFTS(shift) {
3115 3116 3117 3118 3119
            int32_t right;
            switch (shops[n]->opcode()) {
              default:
                UNREACHABLE();
              case IrOpcode::kWord32Sar:
3120
                right = j >> shift;
3121 3122
                break;
              case IrOpcode::kWord32Shl:
3123
                right = static_cast<uint32_t>(j) << shift;
3124 3125
                break;
              case IrOpcode::kWord32Shr:
3126
                right = static_cast<uint32_t>(j) >> shift;
3127 3128
                break;
            }
3129 3130
            int32_t expected = ((i ^ right) == 0) ? constant : 0 - constant;
            CHECK_EQ(expected, m.Call(i, j, shift));
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
          }
        }
      }
    }
  }
}


TEST(RunWord32ShlP) {
  {
3141
    FOR_UINT32_SHIFTS(shift) {
3142
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3143 3144
      m.Return(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)));
      FOR_UINT32_INPUTS(j) {
3145 3146
        uint32_t expected = j << shift;
        CHECK_EQ(expected, m.Call(j));
3147 3148 3149 3150 3151
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
3152
    Uint32BinopTester bt(&m);
3153 3154
    bt.AddReturn(m.Word32Shl(bt.param0, bt.param1));
    FOR_UINT32_INPUTS(i) {
3155
      FOR_UINT32_SHIFTS(shift) {
3156 3157
        uint32_t expected = i << shift;
        CHECK_EQ(expected, bt.call(i, shift));
3158 3159 3160 3161 3162 3163
      }
    }
  }
}


3164 3165 3166 3167 3168 3169 3170 3171
TEST(RunWord32ShlInComparison) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Uint32BinopTester bt(&m);
    bt.AddReturn(
        m.Word32Equal(m.Word32Shl(bt.param0, bt.param1), m.Int32Constant(0)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_SHIFTS(shift) {
3172 3173
        uint32_t expected = 0 == (i << shift);
        CHECK_EQ(expected, bt.call(i, shift));
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Uint32BinopTester bt(&m);
    bt.AddReturn(
        m.Word32Equal(m.Int32Constant(0), m.Word32Shl(bt.param0, bt.param1)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_SHIFTS(shift) {
3184 3185
        uint32_t expected = 0 == (i << shift);
        CHECK_EQ(expected, bt.call(i, shift));
3186 3187 3188 3189 3190
      }
    }
  }
  {
    FOR_UINT32_SHIFTS(shift) {
3191
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3192 3193 3194 3195
      m.Return(
          m.Word32Equal(m.Int32Constant(0),
                        m.Word32Shl(m.Parameter(0), m.Int32Constant(shift))));
      FOR_UINT32_INPUTS(i) {
3196 3197
        uint32_t expected = 0 == (i << shift);
        CHECK_EQ(expected, m.Call(i));
3198 3199 3200 3201 3202
      }
    }
  }
  {
    FOR_UINT32_SHIFTS(shift) {
3203
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3204 3205 3206 3207
      m.Return(
          m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)),
                        m.Int32Constant(0)));
      FOR_UINT32_INPUTS(i) {
3208 3209
        uint32_t expected = 0 == (i << shift);
        CHECK_EQ(expected, m.Call(i));
3210 3211 3212 3213 3214 3215
      }
    }
  }
}


3216 3217
TEST(RunWord32ShrP) {
  {
3218
    FOR_UINT32_SHIFTS(shift) {
3219
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3220 3221
      m.Return(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)));
      FOR_UINT32_INPUTS(j) {
3222 3223
        uint32_t expected = j >> shift;
        CHECK_EQ(expected, m.Call(j));
3224 3225 3226 3227 3228
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
3229
    Uint32BinopTester bt(&m);
3230 3231
    bt.AddReturn(m.Word32Shr(bt.param0, bt.param1));
    FOR_UINT32_INPUTS(i) {
3232
      FOR_UINT32_SHIFTS(shift) {
3233 3234
        uint32_t expected = i >> shift;
        CHECK_EQ(expected, bt.call(i, shift));
3235 3236
      }
    }
3237
    CHECK_EQ(0x00010000u, bt.call(0x80000000, 15));
3238 3239 3240
  }
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
TEST(RunWordShiftInBranch) {
  static const uint32_t constant = 987654321;
  FOR_UINT32_SHIFTS(shift) {
    RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
    RawMachineLabel blocka, blockb;
    m.Branch(m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)),
                           m.Int32Constant(0)),
             &blocka, &blockb);
    m.Bind(&blocka);
    m.Return(m.Int32Constant(constant));
    m.Bind(&blockb);
    m.Return(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
3254 3255
      uint32_t expected = ((i << shift) == 0) ? constant : 0 - constant;
      CHECK_EQ(expected, m.Call(i));
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
    }
  }
  FOR_UINT32_SHIFTS(shift) {
    RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
    RawMachineLabel blocka, blockb;
    m.Branch(m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)),
                           m.Int32Constant(0)),
             &blocka, &blockb);
    m.Bind(&blocka);
    m.Return(m.Int32Constant(constant));
    m.Bind(&blockb);
    m.Return(m.Int32Constant(0 - constant));
    FOR_UINT32_INPUTS(i) {
3269 3270
      uint32_t expected = ((i >> shift) == 0) ? constant : 0 - constant;
      CHECK_EQ(expected, m.Call(i));
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
    }
  }
  FOR_UINT32_SHIFTS(shift) {
    RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
    RawMachineLabel blocka, blockb;
    m.Branch(m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)),
                           m.Int32Constant(0)),
             &blocka, &blockb);
    m.Bind(&blocka);
    m.Return(m.Int32Constant(constant));
    m.Bind(&blockb);
    m.Return(m.Int32Constant(0 - constant));
    FOR_INT32_INPUTS(i) {
3284 3285
      int32_t expected = ((i >> shift) == 0) ? constant : 0 - constant;
      CHECK_EQ(expected, m.Call(i));
3286 3287 3288
    }
  }
}
3289

3290 3291 3292 3293 3294 3295 3296 3297
TEST(RunWord32ShrInComparison) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Uint32BinopTester bt(&m);
    bt.AddReturn(
        m.Word32Equal(m.Word32Shr(bt.param0, bt.param1), m.Int32Constant(0)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_SHIFTS(shift) {
3298 3299
        uint32_t expected = 0 == (i >> shift);
        CHECK_EQ(expected, bt.call(i, shift));
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Uint32BinopTester bt(&m);
    bt.AddReturn(
        m.Word32Equal(m.Int32Constant(0), m.Word32Shr(bt.param0, bt.param1)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_SHIFTS(shift) {
3310 3311
        uint32_t expected = 0 == (i >> shift);
        CHECK_EQ(expected, bt.call(i, shift));
3312 3313 3314 3315 3316
      }
    }
  }
  {
    FOR_UINT32_SHIFTS(shift) {
3317
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3318 3319 3320 3321
      m.Return(
          m.Word32Equal(m.Int32Constant(0),
                        m.Word32Shr(m.Parameter(0), m.Int32Constant(shift))));
      FOR_UINT32_INPUTS(i) {
3322 3323
        uint32_t expected = 0 == (i >> shift);
        CHECK_EQ(expected, m.Call(i));
3324 3325 3326 3327 3328
      }
    }
  }
  {
    FOR_UINT32_SHIFTS(shift) {
3329
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3330 3331 3332 3333
      m.Return(
          m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)),
                        m.Int32Constant(0)));
      FOR_UINT32_INPUTS(i) {
3334 3335
        uint32_t expected = 0 == (i >> shift);
        CHECK_EQ(expected, m.Call(i));
3336 3337 3338 3339 3340 3341
      }
    }
  }
}


3342 3343
TEST(RunWord32SarP) {
  {
3344
    FOR_INT32_SHIFTS(shift) {
3345
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
3346 3347
      m.Return(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)));
      FOR_INT32_INPUTS(j) {
3348 3349
        int32_t expected = j >> shift;
        CHECK_EQ(expected, m.Call(j));
3350 3351 3352 3353 3354 3355 3356 3357
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(m.Word32Sar(bt.param0, bt.param1));
    FOR_INT32_INPUTS(i) {
3358
      FOR_INT32_SHIFTS(shift) {
3359 3360
        int32_t expected = i >> shift;
        CHECK_EQ(expected, bt.call(i, shift));
3361 3362
      }
    }
3363
    CHECK_EQ(bit_cast<int32_t>(0xFFFF0000), bt.call(0x80000000, 15));
3364 3365 3366 3367
  }
}


3368 3369 3370 3371 3372 3373 3374 3375
TEST(RunWord32SarInComparison) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(
        m.Word32Equal(m.Word32Sar(bt.param0, bt.param1), m.Int32Constant(0)));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_SHIFTS(shift) {
3376 3377
        int32_t expected = 0 == (i >> shift);
        CHECK_EQ(expected, bt.call(i, shift));
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Int32BinopTester bt(&m);
    bt.AddReturn(
        m.Word32Equal(m.Int32Constant(0), m.Word32Sar(bt.param0, bt.param1)));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_SHIFTS(shift) {
3388 3389
        int32_t expected = 0 == (i >> shift);
        CHECK_EQ(expected, bt.call(i, shift));
3390 3391 3392 3393 3394
      }
    }
  }
  {
    FOR_INT32_SHIFTS(shift) {
3395
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
3396 3397 3398 3399
      m.Return(
          m.Word32Equal(m.Int32Constant(0),
                        m.Word32Sar(m.Parameter(0), m.Int32Constant(shift))));
      FOR_INT32_INPUTS(i) {
3400 3401
        int32_t expected = 0 == (i >> shift);
        CHECK_EQ(expected, m.Call(i));
3402 3403 3404 3405 3406
      }
    }
  }
  {
    FOR_INT32_SHIFTS(shift) {
3407
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
3408 3409 3410 3411
      m.Return(
          m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)),
                        m.Int32Constant(0)));
      FOR_INT32_INPUTS(i) {
3412 3413
        int32_t expected = 0 == (i >> shift);
        CHECK_EQ(expected, m.Call(i));
3414 3415 3416 3417 3418 3419
      }
    }
  }
}


3420 3421 3422
TEST(RunWord32RorP) {
  {
    FOR_UINT32_SHIFTS(shift) {
3423
      RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
3424 3425
      m.Return(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)));
      FOR_UINT32_INPUTS(j) {
3426 3427
        int32_t expected = base::bits::RotateRight32(j, shift);
        CHECK_EQ(expected, m.Call(j));
3428 3429 3430 3431 3432
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
3433
    Uint32BinopTester bt(&m);
3434 3435 3436
    bt.AddReturn(m.Word32Ror(bt.param0, bt.param1));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_SHIFTS(shift) {
3437 3438
        uint32_t expected = base::bits::RotateRight32(i, shift);
        CHECK_EQ(expected, bt.call(i, shift));
3439 3440 3441 3442 3443 3444
      }
    }
  }
}


3445 3446 3447 3448 3449 3450 3451 3452
TEST(RunWord32RorInComparison) {
  {
    RawMachineAssemblerTester<int32_t> m;
    Uint32BinopTester bt(&m);
    bt.AddReturn(
        m.Word32Equal(m.Word32Ror(bt.param0, bt.param1), m.Int32Constant(0)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_SHIFTS(shift) {
3453 3454
        uint32_t expected = 0 == base::bits::RotateRight32(i, shift);
        CHECK_EQ(expected, bt.call(i, shift));
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
      }
    }
  }
  {
    RawMachineAssemblerTester<int32_t> m;
    Uint32BinopTester bt(&m);
    bt.AddReturn(
        m.Word32Equal(m.Int32Constant(0), m.Word32Ror(bt.param0, bt.param1)));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_SHIFTS(shift) {
3465 3466
        uint32_t expected = 0 == base::bits::RotateRight32(i, shift);
        CHECK_EQ(expected, bt.call(i, shift));
3467 3468 3469 3470 3471
      }
    }
  }
  {
    FOR_UINT32_SHIFTS(shift) {
3472
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3473 3474 3475 3476
      m.Return(
          m.Word32Equal(m.Int32Constant(0),
                        m.Word32Ror(m.Parameter(0), m.Int32Constant(shift))));
      FOR_UINT32_INPUTS(i) {
3477 3478
        uint32_t expected = 0 == base::bits::RotateRight32(i, shift);
        CHECK_EQ(expected, m.Call(i));
3479 3480 3481 3482 3483
      }
    }
  }
  {
    FOR_UINT32_SHIFTS(shift) {
3484
      RawMachineAssemblerTester<uint32_t> m(MachineType::Uint32());
3485 3486 3487 3488
      m.Return(
          m.Word32Equal(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)),
                        m.Int32Constant(0)));
      FOR_UINT32_INPUTS(i) {
3489 3490
        uint32_t expected = 0 == base::bits::RotateRight32(i, shift);
        CHECK_EQ(expected, m.Call(i));
3491 3492 3493 3494 3495
      }
    }
  }
}

3496
TEST(RunWord32BitwiseNotP) {
3497
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
3498
  m.Return(m.Word32BitwiseNot(m.Parameter(0)));
3499
  FOR_INT32_INPUTS(i) {
3500 3501
    int expected = ~(i);
    CHECK_EQ(expected, m.Call(i));
3502 3503 3504 3505 3506
  }
}


TEST(RunInt32NegP) {
3507
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
3508 3509
  m.Return(m.Int32Neg(m.Parameter(0)));
  FOR_INT32_INPUTS(i) {
3510 3511
    int expected = base::NegateWithWraparound(i);
    CHECK_EQ(expected, m.Call(i));
3512 3513 3514 3515 3516 3517
  }
}


TEST(RunWord32EqualAndWord32SarP) {
  {
3518 3519
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Int32(), MachineType::Uint32());
3520 3521 3522 3523
    m.Return(m.Word32Equal(m.Parameter(0),
                           m.Word32Sar(m.Parameter(1), m.Parameter(2))));
    FOR_INT32_INPUTS(i) {
      FOR_INT32_INPUTS(j) {
3524
        FOR_UINT32_SHIFTS(shift) {
3525 3526
          int32_t expected = (i == (j >> shift));
          CHECK_EQ(expected, m.Call(i, j, shift));
3527 3528 3529 3530 3531
        }
      }
    }
  }
  {
3532 3533
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Int32(), MachineType::Uint32(), MachineType::Int32());
3534 3535 3536
    m.Return(m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
                           m.Parameter(2)));
    FOR_INT32_INPUTS(i) {
3537
      FOR_UINT32_SHIFTS(shift) {
3538
        FOR_INT32_INPUTS(k) {
3539 3540
          int32_t expected = ((i >> shift) == k);
          CHECK_EQ(expected, m.Call(i, shift, k));
3541 3542 3543 3544 3545 3546 3547 3548 3549
        }
      }
    }
  }
}


TEST(RunWord32EqualAndWord32ShlP) {
  {
3550 3551
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
3552 3553 3554 3555
    m.Return(m.Word32Equal(m.Parameter(0),
                           m.Word32Shl(m.Parameter(1), m.Parameter(2))));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
3556
        FOR_UINT32_SHIFTS(shift) {
3557 3558
          int32_t expected = (i == (j << shift));
          CHECK_EQ(expected, m.Call(i, j, shift));
3559 3560 3561 3562 3563
        }
      }
    }
  }
  {
3564 3565
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
3566 3567 3568
    m.Return(m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
                           m.Parameter(2)));
    FOR_UINT32_INPUTS(i) {
3569
      FOR_UINT32_SHIFTS(shift) {
3570
        FOR_UINT32_INPUTS(k) {
3571 3572
          int32_t expected = ((i << shift) == k);
          CHECK_EQ(expected, m.Call(i, shift, k));
3573 3574 3575 3576 3577 3578 3579 3580 3581
        }
      }
    }
  }
}


TEST(RunWord32EqualAndWord32ShrP) {
  {
3582 3583
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
3584 3585 3586 3587
    m.Return(m.Word32Equal(m.Parameter(0),
                           m.Word32Shr(m.Parameter(1), m.Parameter(2))));
    FOR_UINT32_INPUTS(i) {
      FOR_UINT32_INPUTS(j) {
3588
        FOR_UINT32_SHIFTS(shift) {
3589 3590
          int32_t expected = (i == (j >> shift));
          CHECK_EQ(expected, m.Call(i, j, shift));
3591 3592 3593 3594 3595
        }
      }
    }
  }
  {
3596 3597
    RawMachineAssemblerTester<int32_t> m(
        MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());
3598 3599 3600
    m.Return(m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
                           m.Parameter(2)));
    FOR_UINT32_INPUTS(i) {
3601
      FOR_UINT32_SHIFTS(shift) {
3602
        FOR_UINT32_INPUTS(k) {
3603 3604
          int32_t expected = ((i >> shift) == k);
          CHECK_EQ(expected, m.Call(i, shift, k));
3605 3606 3607 3608 3609 3610 3611 3612 3613
        }
      }
    }
  }
}


TEST(RunDeadNodes) {
  for (int i = 0; true; i++) {
3614 3615 3616 3617
    RawMachineAssemblerTester<int32_t> m_v;
    RawMachineAssemblerTester<int32_t> m_i(MachineType::Int32());
    RawMachineAssemblerTester<int32_t>& m = i == 5 ? m_i : m_v;

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
    int constant = 0x55 + i;
    switch (i) {
      case 0:
        m.Int32Constant(44);
        break;
      case 1:
        m.StringConstant("unused");
        break;
      case 2:
        m.NumberConstant(11.1);
        break;
      case 3:
        m.PointerConstant(&constant);
        break;
      case 4:
3633
        m.LoadFromPointer(&constant, MachineType::Int32());
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
        break;
      case 5:
        m.Parameter(0);
        break;
      default:
        return;
    }
    m.Return(m.Int32Constant(constant));
    if (i != 5) {
      CHECK_EQ(constant, m.Call());
    } else {
      CHECK_EQ(constant, m.Call(0));
    }
  }
}


TEST(RunDeadInt32Binops) {
  RawMachineAssemblerTester<int32_t> m;

3654
  const Operator* kOps[] = {
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
      m.machine()->Word32And(),            m.machine()->Word32Or(),
      m.machine()->Word32Xor(),            m.machine()->Word32Shl(),
      m.machine()->Word32Shr(),            m.machine()->Word32Sar(),
      m.machine()->Word32Ror(),            m.machine()->Word32Equal(),
      m.machine()->Int32Add(),             m.machine()->Int32Sub(),
      m.machine()->Int32Mul(),             m.machine()->Int32MulHigh(),
      m.machine()->Int32Div(),             m.machine()->Uint32Div(),
      m.machine()->Int32Mod(),             m.machine()->Uint32Mod(),
      m.machine()->Uint32MulHigh(),        m.machine()->Int32LessThan(),
      m.machine()->Int32LessThanOrEqual(), m.machine()->Uint32LessThan(),
      m.machine()->Uint32LessThanOrEqual()};
3666 3667

  for (size_t i = 0; i < arraysize(kOps); ++i) {
3668 3669
    RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
                                         MachineType::Int32());
3670
    int32_t constant = static_cast<int32_t>(0x55555 + i);
3671
    m.AddNode(kOps[i], m.Parameter(0), m.Parameter(1));
3672 3673 3674 3675 3676 3677 3678
    m.Return(m.Int32Constant(constant));

    CHECK_EQ(constant, m.Call(1, 1));
  }
}


3679
TEST(RunFloat32Add) {
3680 3681
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
                                             MachineType::Float32());
3682
  m.Return(m.Float32Add(m.Parameter(0), m.Parameter(1)));
3683

3684
  FOR_FLOAT32_INPUTS(i) {
3685
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i + j, m.Call(i, j)); }
3686 3687
  }
}
3688 3689


3690
TEST(RunFloat32Sub) {
3691 3692
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
                                             MachineType::Float32());
3693 3694 3695
  m.Return(m.Float32Sub(m.Parameter(0), m.Parameter(1)));

  FOR_FLOAT32_INPUTS(i) {
3696
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i - j, m.Call(i, j)); }
3697 3698 3699
  }
}

3700 3701
TEST(RunFloat32Neg) {
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
3702
  m.Return(m.AddNode(m.machine()->Float32Neg(), m.Parameter(0)));
3703
  FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(-0.0f - i, m.Call(i)); }
3704
}
3705

3706
TEST(RunFloat32Mul) {
3707 3708
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
                                             MachineType::Float32());
3709
  m.Return(m.Float32Mul(m.Parameter(0), m.Parameter(1)));
3710

3711
  FOR_FLOAT32_INPUTS(i) {
3712
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i * j, m.Call(i, j)); }
3713 3714
  }
}
3715 3716


3717
TEST(RunFloat32Div) {
3718 3719
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
                                             MachineType::Float32());
3720 3721 3722
  m.Return(m.Float32Div(m.Parameter(0), m.Parameter(1)));

  FOR_FLOAT32_INPUTS(i) {
3723
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(base::Divide(i, j), m.Call(i, j)); }
3724 3725 3726 3727 3728
  }
}


TEST(RunFloat64Add) {
3729 3730
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
3731 3732 3733
  m.Return(m.Float64Add(m.Parameter(0), m.Parameter(1)));

  FOR_FLOAT64_INPUTS(i) {
3734
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i + j, m.Call(i, j)); }
3735 3736 3737 3738 3739
  }
}


TEST(RunFloat64Sub) {
3740 3741
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
3742 3743 3744
  m.Return(m.Float64Sub(m.Parameter(0), m.Parameter(1)));

  FOR_FLOAT64_INPUTS(i) {
3745
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i - j, m.Call(i, j)); }
3746 3747 3748
  }
}

3749 3750
TEST(RunFloat64Neg) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
3751
  m.Return(m.AddNode(m.machine()->Float64Neg(), m.Parameter(0)));
3752
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(-0.0 - i, m.Call(i)); }
3753
}
3754 3755

TEST(RunFloat64Mul) {
3756 3757
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
3758 3759 3760
  m.Return(m.Float64Mul(m.Parameter(0), m.Parameter(1)));

  FOR_FLOAT64_INPUTS(i) {
3761
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i * j, m.Call(i, j)); }
3762 3763 3764 3765 3766
  }
}


TEST(RunFloat64Div) {
3767 3768
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
3769 3770 3771
  m.Return(m.Float64Div(m.Parameter(0), m.Parameter(1)));

  FOR_FLOAT64_INPUTS(i) {
3772
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(base::Divide(i, j), m.Call(i, j)); }
3773 3774 3775 3776 3777
  }
}


TEST(RunFloat64Mod) {
3778 3779
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
3780 3781 3782
  m.Return(m.Float64Mod(m.Parameter(0), m.Parameter(1)));

  FOR_FLOAT64_INPUTS(i) {
3783
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(Modulo(i, j), m.Call(i, j)); }
3784 3785 3786 3787
  }
}


3788 3789 3790 3791 3792
TEST(RunDeadFloat32Binops) {
  RawMachineAssemblerTester<int32_t> m;

  const Operator* ops[] = {m.machine()->Float32Add(), m.machine()->Float32Sub(),
                           m.machine()->Float32Mul(), m.machine()->Float32Div(),
3793
                           nullptr};
3794

3795
  for (int i = 0; ops[i] != nullptr; i++) {
3796 3797
    RawMachineAssemblerTester<int32_t> m;
    int constant = 0x53355 + i;
3798
    m.AddNode(ops[i], m.Float32Constant(0.1f), m.Float32Constant(1.11f));
3799 3800 3801 3802 3803 3804
    m.Return(m.Int32Constant(constant));
    CHECK_EQ(constant, m.Call());
  }
}


3805 3806 3807
TEST(RunDeadFloat64Binops) {
  RawMachineAssemblerTester<int32_t> m;

3808 3809
  const Operator* ops[] = {m.machine()->Float64Add(), m.machine()->Float64Sub(),
                           m.machine()->Float64Mul(), m.machine()->Float64Div(),
3810
                           m.machine()->Float64Mod(), nullptr};
3811

3812
  for (int i = 0; ops[i] != nullptr; i++) {
3813 3814
    RawMachineAssemblerTester<int32_t> m;
    int constant = 0x53355 + i;
3815
    m.AddNode(ops[i], m.Float64Constant(0.1), m.Float64Constant(1.11));
3816 3817 3818 3819 3820 3821
    m.Return(m.Int32Constant(constant));
    CHECK_EQ(constant, m.Call());
  }
}


3822 3823 3824 3825 3826 3827 3828
TEST(RunFloat32AddP) {
  RawMachineAssemblerTester<int32_t> m;
  Float32BinopTester bt(&m);

  bt.AddReturn(m.Float32Add(bt.param0, bt.param1));

  FOR_FLOAT32_INPUTS(pl) {
3829
    FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(pl + pr, bt.call(pl, pr)); }
3830 3831 3832 3833
  }
}


3834 3835 3836 3837 3838 3839 3840
TEST(RunFloat64AddP) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);

  bt.AddReturn(m.Float64Add(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(pl) {
3841
    FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(pl + pr, bt.call(pl, pr)); }
3842 3843 3844
  }
}

3845 3846 3847 3848 3849 3850
TEST(RunFloat64MaxP) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);
  bt.AddReturn(m.Float64Max(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(pl) {
3851
    FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(JSMax(pl, pr), bt.call(pl, pr)); }
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
  }
}


TEST(RunFloat64MinP) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);
  bt.AddReturn(m.Float64Min(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(pl) {
3862
    FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(JSMin(pl, pr), bt.call(pl, pr)); }
3863 3864 3865
  }
}

3866 3867 3868 3869 3870 3871
TEST(RunFloat32Max) {
  RawMachineAssemblerTester<int32_t> m;
  Float32BinopTester bt(&m);
  bt.AddReturn(m.Float32Max(bt.param0, bt.param1));

  FOR_FLOAT32_INPUTS(pl) {
3872
    FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(JSMax(pl, pr), bt.call(pl, pr)); }
3873 3874 3875 3876 3877 3878 3879 3880 3881
  }
}

TEST(RunFloat32Min) {
  RawMachineAssemblerTester<int32_t> m;
  Float32BinopTester bt(&m);
  bt.AddReturn(m.Float32Min(bt.param0, bt.param1));

  FOR_FLOAT32_INPUTS(pl) {
3882
    FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(JSMin(pl, pr), bt.call(pl, pr)); }
3883 3884
  }
}
3885

3886 3887 3888 3889 3890 3891
TEST(RunFloat64Max) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);
  bt.AddReturn(m.Float64Max(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(pl) {
3892
    FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(JSMax(pl, pr), bt.call(pl, pr)); }
3893 3894 3895 3896 3897 3898 3899 3900 3901
  }
}

TEST(RunFloat64Min) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);
  bt.AddReturn(m.Float64Min(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(pl) {
3902
    FOR_FLOAT64_INPUTS(pr) { CHECK_DOUBLE_EQ(JSMin(pl, pr), bt.call(pl, pr)); }
3903 3904 3905
  }
}

3906 3907 3908 3909 3910 3911 3912
TEST(RunFloat32SubP) {
  RawMachineAssemblerTester<int32_t> m;
  Float32BinopTester bt(&m);

  bt.AddReturn(m.Float32Sub(bt.param0, bt.param1));

  FOR_FLOAT32_INPUTS(pl) {
3913
    FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(pl - pr, bt.call(pl, pr)); }
3914 3915 3916 3917
  }
}


3918 3919
TEST(RunFloat32SubImm1) {
  FOR_FLOAT32_INPUTS(i) {
3920
    BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
3921
    m.Return(m.Float32Sub(m.Float32Constant(i), m.Parameter(0)));
3922

3923
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(i - j, m.Call(j)); }
3924 3925 3926 3927 3928 3929
  }
}


TEST(RunFloat32SubImm2) {
  FOR_FLOAT32_INPUTS(i) {
3930
    BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
3931
    m.Return(m.Float32Sub(m.Parameter(0), m.Float32Constant(i)));
3932

3933
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(j - i, m.Call(j)); }
3934 3935 3936 3937
  }
}


3938 3939
TEST(RunFloat64SubImm1) {
  FOR_FLOAT64_INPUTS(i) {
3940
    BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
3941
    m.Return(m.Float64Sub(m.Float64Constant(i), m.Parameter(0)));
3942

3943
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i - j, m.Call(j)); }
3944 3945 3946 3947
  }
}


3948
TEST(RunFloat64SubImm2) {
3949
  FOR_FLOAT64_INPUTS(i) {
3950
    BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
3951
    m.Return(m.Float64Sub(m.Parameter(0), m.Float64Constant(i)));
3952

3953
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(j - i, m.Call(j)); }
3954 3955 3956 3957
  }
}


3958 3959 3960
TEST(RunFloat64SubP) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);
3961

3962 3963 3964 3965
  bt.AddReturn(m.Float64Sub(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(pl) {
    FOR_FLOAT64_INPUTS(pr) {
3966 3967
      double expected = pl - pr;
      CHECK_DOUBLE_EQ(expected, bt.call(pl, pr));
3968 3969 3970 3971 3972
    }
  }
}


3973 3974 3975 3976 3977 3978 3979
TEST(RunFloat32MulP) {
  RawMachineAssemblerTester<int32_t> m;
  Float32BinopTester bt(&m);

  bt.AddReturn(m.Float32Mul(bt.param0, bt.param1));

  FOR_FLOAT32_INPUTS(pl) {
3980
    FOR_FLOAT32_INPUTS(pr) { CHECK_FLOAT_EQ(pl * pr, bt.call(pl, pr)); }
3981 3982 3983 3984
  }
}


3985 3986 3987 3988 3989 3990 3991 3992
TEST(RunFloat64MulP) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);

  bt.AddReturn(m.Float64Mul(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(pl) {
    FOR_FLOAT64_INPUTS(pr) {
3993 3994
      double expected = pl * pr;
      CHECK_DOUBLE_EQ(expected, bt.call(pl, pr));
3995 3996 3997 3998
    }
  }
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
TEST(RunFloat32MulAndFloat32Neg) {
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
                                             MachineType::Float32());
  m.Return(m.Float32Neg(m.Float32Mul(m.Parameter(0), m.Parameter(1))));

  FOR_FLOAT32_INPUTS(i) {
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(-(i * j), m.Call(i, j)); }
  }
}

TEST(RunFloat64MulAndFloat64Neg) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
  m.Return(m.Float64Neg(m.Float64Mul(m.Parameter(0), m.Parameter(1))));

  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(-(i * j), m.Call(i, j)); }
  }
}

TEST(RunFloat32NegAndFloat32Mul1) {
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
                                             MachineType::Float32());
  m.Return(m.Float32Mul(m.Float32Neg(m.Parameter(0)), m.Parameter(1)));

  FOR_FLOAT32_INPUTS(i) {
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ((-i * j), m.Call(i, j)); }
  }
}

TEST(RunFloat64NegAndFloat64Mul1) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
  m.Return(m.Float64Mul(m.Float64Neg(m.Parameter(0)), m.Parameter(1)));

  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ((-i * j), m.Call(i, j)); }
  }
}

TEST(RunFloat32NegAndFloat32Mul2) {
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
                                             MachineType::Float32());
  m.Return(m.Float32Mul(m.Parameter(0), m.Float32Neg(m.Parameter(1))));

  FOR_FLOAT32_INPUTS(i) {
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ((i * -j), m.Call(i, j)); }
  }
}

TEST(RunFloat64NegAndFloat64Mul2) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
  m.Return(m.Float64Mul(m.Parameter(0), m.Float64Neg(m.Parameter(1))));

  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ((i * -j), m.Call(i, j)); }
  }
}

TEST(RunFloat32NegAndFloat32Mul3) {
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32(),
                                             MachineType::Float32());
  m.Return(
      m.Float32Mul(m.Float32Neg(m.Parameter(0)), m.Float32Neg(m.Parameter(1))));

  FOR_FLOAT32_INPUTS(i) {
    FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ((-i * -j), m.Call(i, j)); }
  }
}

TEST(RunFloat64NegAndFloat64Mul3) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
  m.Return(
      m.Float64Mul(m.Float64Neg(m.Parameter(0)), m.Float64Neg(m.Parameter(1))));

  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ((-i * -j), m.Call(i, j)); }
  }
}
4080

4081
TEST(RunFloat64MulAndFloat64Add1) {
4082 4083
  BufferedRawMachineAssemblerTester<double> m(
      MachineType::Float64(), MachineType::Float64(), MachineType::Float64());
4084 4085
  m.Return(m.Float64Add(m.Float64Mul(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
4086

4087 4088
  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) {
4089
      FOR_FLOAT64_INPUTS(k) { CHECK_DOUBLE_EQ((i * j) + k, m.Call(i, j, k)); }
4090 4091
    }
  }
4092 4093 4094 4095
}


TEST(RunFloat64MulAndFloat64Add2) {
4096 4097
  BufferedRawMachineAssemblerTester<double> m(
      MachineType::Float64(), MachineType::Float64(), MachineType::Float64());
4098 4099 4100 4101 4102
  m.Return(m.Float64Add(m.Parameter(0),
                        m.Float64Mul(m.Parameter(1), m.Parameter(2))));

  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) {
4103
      FOR_FLOAT64_INPUTS(k) { CHECK_DOUBLE_EQ(i + (j * k), m.Call(i, j, k)); }
4104 4105 4106 4107 4108
    }
  }
}


4109
TEST(RunFloat64MulAndFloat64Sub1) {
4110 4111
  BufferedRawMachineAssemblerTester<double> m(
      MachineType::Float64(), MachineType::Float64(), MachineType::Float64());
4112 4113
  m.Return(m.Float64Sub(m.Float64Mul(m.Parameter(0), m.Parameter(1)),
                        m.Parameter(2)));
4114 4115 4116

  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) {
4117
      FOR_FLOAT64_INPUTS(k) { CHECK_DOUBLE_EQ((i * j) - k, m.Call(i, j, k)); }
4118 4119 4120 4121 4122
    }
  }
}


4123
TEST(RunFloat64MulAndFloat64Sub2) {
4124 4125
  BufferedRawMachineAssemblerTester<double> m(
      MachineType::Float64(), MachineType::Float64(), MachineType::Float64());
4126 4127
  m.Return(m.Float64Sub(m.Parameter(0),
                        m.Float64Mul(m.Parameter(1), m.Parameter(2))));
4128

4129 4130
  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) {
4131
      FOR_FLOAT64_INPUTS(k) { CHECK_DOUBLE_EQ(i - (j * k), m.Call(i, j, k)); }
4132 4133
    }
  }
4134 4135 4136 4137 4138
}


TEST(RunFloat64MulImm1) {
  FOR_FLOAT64_INPUTS(i) {
4139
    BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
4140
    m.Return(m.Float64Mul(m.Float64Constant(i), m.Parameter(0)));
4141

4142
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(i * j, m.Call(j)); }
4143 4144 4145 4146 4147 4148
  }
}


TEST(RunFloat64MulImm2) {
  FOR_FLOAT64_INPUTS(i) {
4149
    BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
4150
    m.Return(m.Float64Mul(m.Parameter(0), m.Float64Constant(i)));
4151

4152
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(j * i, m.Call(j)); }
4153 4154 4155 4156
  }
}


4157 4158 4159 4160 4161 4162 4163
TEST(RunFloat32DivP) {
  RawMachineAssemblerTester<int32_t> m;
  Float32BinopTester bt(&m);

  bt.AddReturn(m.Float32Div(bt.param0, bt.param1));

  FOR_FLOAT32_INPUTS(pl) {
4164
    FOR_FLOAT32_INPUTS(pr) {
4165
      CHECK_FLOAT_EQ(base::Divide(pl, pr), bt.call(pl, pr));
4166
    }
4167 4168 4169 4170
  }
}


4171 4172 4173 4174 4175 4176 4177
TEST(RunFloat64DivP) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);

  bt.AddReturn(m.Float64Div(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(pl) {
4178
    FOR_FLOAT64_INPUTS(pr) {
4179
      CHECK_DOUBLE_EQ(base::Divide(pl, pr), bt.call(pl, pr));
4180
    }
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
  }
}


TEST(RunFloat64ModP) {
  RawMachineAssemblerTester<int32_t> m;
  Float64BinopTester bt(&m);

  bt.AddReturn(m.Float64Mod(bt.param0, bt.param1));

  FOR_FLOAT64_INPUTS(i) {
4192
    FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(Modulo(i, j), bt.call(i, j)); }
4193 4194 4195 4196
  }
}


4197
TEST(RunChangeInt32ToFloat64_A) {
4198
  int32_t magic = 0x986234;
4199 4200
  BufferedRawMachineAssemblerTester<double> m;
  m.Return(m.ChangeInt32ToFloat64(m.Int32Constant(magic)));
4201
  CHECK_DOUBLE_EQ(static_cast<double>(magic), m.Call());
4202 4203 4204
}


4205
TEST(RunChangeInt32ToFloat64_B) {
4206
  BufferedRawMachineAssemblerTester<double> m(MachineType::Int32());
4207
  m.Return(m.ChangeInt32ToFloat64(m.Parameter(0)));
4208

4209
  FOR_INT32_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast<double>(i), m.Call(i)); }
4210 4211 4212
}


4213
TEST(RunChangeUint32ToFloat64) {
4214
  BufferedRawMachineAssemblerTester<double> m(MachineType::Uint32());
4215
  m.Return(m.ChangeUint32ToFloat64(m.Parameter(0)));
4216

4217
  FOR_UINT32_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast<double>(i), m.Call(i)); }
4218 4219 4220
}


4221 4222 4223
TEST(RunTruncateFloat32ToInt32) {
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Float32());
  m.Return(m.TruncateFloat32ToInt32(m.Parameter(0)));
4224 4225 4226 4227 4228 4229 4230
  // The upper bound is (INT32_MAX + 1), which is the lowest float-representable
  // number above INT32_MAX which cannot be represented as int32.
  float upper_bound = 2147483648.0f;
  // We use INT32_MIN as a lower bound because (INT32_MIN - 1) is not
  // representable as float, and no number between (INT32_MIN - 1) and INT32_MIN
  // is.
  float lower_bound = static_cast<float>(INT32_MIN);
4231
  FOR_FLOAT32_INPUTS(i) {
4232 4233
    if (i < upper_bound && i >= lower_bound) {
      CHECK_FLOAT_EQ(static_cast<int32_t>(i), m.Call(i));
4234 4235 4236 4237 4238
    }
  }
}


4239 4240 4241
TEST(RunTruncateFloat32ToUint32) {
  BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Float32());
  m.Return(m.TruncateFloat32ToUint32(m.Parameter(0)));
4242 4243 4244 4245 4246 4247
  // The upper bound is (UINT32_MAX + 1), which is the lowest
  // float-representable number above UINT32_MAX which cannot be represented as
  // uint32.
  double upper_bound = 4294967296.0f;
  double lower_bound = -1.0f;
  FOR_UINT32_INPUTS(i) {
4248
    volatile float input = static_cast<float>(i);
4249 4250
    if (input < upper_bound) {
      CHECK_EQ(static_cast<uint32_t>(input), m.Call(input));
4251 4252
    }
  }
4253
  FOR_FLOAT32_INPUTS(j) {
4254 4255
    if ((j < upper_bound) && (j > lower_bound)) {
      CHECK_FLOAT_EQ(static_cast<uint32_t>(j), m.Call(j));
4256 4257 4258 4259 4260
    }
  }
}


4261
TEST(RunChangeFloat64ToInt32_A) {
4262 4263 4264 4265
  BufferedRawMachineAssemblerTester<int32_t> m;
  double magic = 11.1;
  m.Return(m.ChangeFloat64ToInt32(m.Float64Constant(magic)));
  CHECK_EQ(static_cast<int32_t>(magic), m.Call());
4266 4267 4268
}


4269
TEST(RunChangeFloat64ToInt32_B) {
4270
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Float64());
4271
  m.Return(m.ChangeFloat64ToInt32(m.Parameter(0)));
4272

4273 4274
  // Note we don't check fractional inputs, or inputs outside the range of
  // int32, because these Convert operators really should be Change operators.
4275
  FOR_INT32_INPUTS(i) { CHECK_EQ(i, m.Call(static_cast<double>(i))); }
4276

4277 4278
  for (int32_t n = 1; n < 31; ++n) {
    CHECK_EQ(1 << n, m.Call(static_cast<double>(1 << n)));
4279 4280
  }

4281
  for (int32_t n = 1; n < 31; ++n) {
4282
    CHECK_EQ(3 << n, m.Call(static_cast<double>(3 << n)));
4283 4284 4285
  }
}

4286
TEST(RunChangeFloat64ToUint32) {
4287
  BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Float64());
4288
  m.Return(m.ChangeFloat64ToUint32(m.Parameter(0)));
4289

4290
  {
4291
    FOR_UINT32_INPUTS(i) { CHECK_EQ(i, m.Call(static_cast<double>(i))); }
4292 4293 4294 4295
  }

  // Check various powers of 2.
  for (int32_t n = 1; n < 31; ++n) {
4296
    { CHECK_EQ(1u << n, m.Call(static_cast<double>(1u << n))); }
4297

4298
    { CHECK_EQ(3u << n, m.Call(static_cast<double>(3u << n))); }
4299
  }
4300 4301
  // Note we don't check fractional inputs, because these Convert operators
  // really should be Change operators.
4302 4303 4304
}


4305
TEST(RunTruncateFloat64ToFloat32) {
4306
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float64());
4307

4308
  m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0)));
4309

4310
  FOR_FLOAT64_INPUTS(i) { CHECK_FLOAT_EQ(DoubleToFloat32(i), m.Call(i)); }
4311 4312
}

4313 4314
uint64_t ToInt64(uint32_t low, uint32_t high) {
  return (static_cast<uint64_t>(high) << 32) | static_cast<uint64_t>(low);
4315 4316
}

4317
#if V8_TARGET_ARCH_32_BIT && !V8_TARGET_ARCH_X87
4318 4319
TEST(RunInt32PairAdd) {
  BufferedRawMachineAssemblerTester<int32_t> m(
4320 4321
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
      MachineType::Uint32());
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

  uint32_t high;
  uint32_t low;

  Node* PairAdd = m.Int32PairAdd(m.Parameter(0), m.Parameter(1), m.Parameter(2),
                                 m.Parameter(3));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairAdd));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairAdd));
  m.Return(m.Int32Constant(74));

4335 4336
  FOR_UINT64_INPUTS(i) {
    FOR_UINT64_INPUTS(j) {
4337 4338 4339 4340 4341
      m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
             static_cast<uint32_t>(i >> 32),
             static_cast<uint32_t>(j & 0xFFFFFFFF),
             static_cast<uint32_t>(j >> 32));
      CHECK_EQ(i + j, ToInt64(low, high));
4342 4343 4344 4345
    }
  }
}

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
TEST(RunInt32PairAddUseOnlyHighWord) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
      MachineType::Uint32());

  m.Return(m.Projection(1, m.Int32PairAdd(m.Parameter(0), m.Parameter(1),
                                          m.Parameter(2), m.Parameter(3))));

  FOR_UINT64_INPUTS(i) {
    FOR_UINT64_INPUTS(j) {
4356
      CHECK_EQ(
4357 4358 4359 4360 4361
          static_cast<uint32_t>((i + j) >> 32),
          static_cast<uint32_t>(m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
                                       static_cast<uint32_t>(i >> 32),
                                       static_cast<uint32_t>(j & 0xFFFFFFFF),
                                       static_cast<uint32_t>(j >> 32))));
4362 4363 4364 4365
    }
  }
}

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
void TestInt32PairAddWithSharedInput(int a, int b, int c, int d) {
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
                                               MachineType::Uint32());

  uint32_t high;
  uint32_t low;

  Node* PairAdd = m.Int32PairAdd(m.Parameter(a), m.Parameter(b), m.Parameter(c),
                                 m.Parameter(d));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairAdd));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairAdd));
  m.Return(m.Int32Constant(74));

  FOR_UINT32_INPUTS(i) {
    FOR_UINT32_INPUTS(j) {
4384 4385
      m.Call(i, j);
      uint32_t inputs[] = {i, j};
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
      CHECK_EQ(ToInt64(inputs[a], inputs[b]) + ToInt64(inputs[c], inputs[d]),
               ToInt64(low, high));
    }
  }
}

TEST(RunInt32PairAddWithSharedInput) {
  TestInt32PairAddWithSharedInput(0, 0, 0, 0);
  TestInt32PairAddWithSharedInput(1, 0, 0, 0);
  TestInt32PairAddWithSharedInput(0, 1, 0, 0);
  TestInt32PairAddWithSharedInput(0, 0, 1, 0);
  TestInt32PairAddWithSharedInput(0, 0, 0, 1);
  TestInt32PairAddWithSharedInput(1, 1, 0, 0);
}
4400

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
TEST(RunInt32PairSub) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
      MachineType::Uint32());

  uint32_t high;
  uint32_t low;

  Node* PairSub = m.Int32PairSub(m.Parameter(0), m.Parameter(1), m.Parameter(2),
                                 m.Parameter(3));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairSub));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairSub));
  m.Return(m.Int32Constant(74));

  FOR_UINT64_INPUTS(i) {
    FOR_UINT64_INPUTS(j) {
4420 4421 4422 4423 4424
      m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
             static_cast<uint32_t>(i >> 32),
             static_cast<uint32_t>(j & 0xFFFFFFFF),
             static_cast<uint32_t>(j >> 32));
      CHECK_EQ(i - j, ToInt64(low, high));
4425 4426 4427 4428
    }
  }
}

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
TEST(RunInt32PairSubUseOnlyHighWord) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
      MachineType::Uint32());

  m.Return(m.Projection(1, m.Int32PairSub(m.Parameter(0), m.Parameter(1),
                                          m.Parameter(2), m.Parameter(3))));

  FOR_UINT64_INPUTS(i) {
    FOR_UINT64_INPUTS(j) {
4439
      CHECK_EQ(
4440 4441 4442 4443 4444
          static_cast<uint32_t>((i - j) >> 32),
          static_cast<uint32_t>(m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
                                       static_cast<uint32_t>(i >> 32),
                                       static_cast<uint32_t>(j & 0xFFFFFFFF),
                                       static_cast<uint32_t>(j >> 32))));
4445 4446 4447 4448
    }
  }
}

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
void TestInt32PairSubWithSharedInput(int a, int b, int c, int d) {
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
                                               MachineType::Uint32());

  uint32_t high;
  uint32_t low;

  Node* PairSub = m.Int32PairSub(m.Parameter(a), m.Parameter(b), m.Parameter(c),
                                 m.Parameter(d));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairSub));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairSub));
  m.Return(m.Int32Constant(74));

  FOR_UINT32_INPUTS(i) {
    FOR_UINT32_INPUTS(j) {
4467 4468
      m.Call(i, j);
      uint32_t inputs[] = {i, j};
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
      CHECK_EQ(ToInt64(inputs[a], inputs[b]) - ToInt64(inputs[c], inputs[d]),
               ToInt64(low, high));
    }
  }
}

TEST(RunInt32PairSubWithSharedInput) {
  TestInt32PairSubWithSharedInput(0, 0, 0, 0);
  TestInt32PairSubWithSharedInput(1, 0, 0, 0);
  TestInt32PairSubWithSharedInput(0, 1, 0, 0);
  TestInt32PairSubWithSharedInput(0, 0, 1, 0);
  TestInt32PairSubWithSharedInput(0, 0, 0, 1);
  TestInt32PairSubWithSharedInput(1, 1, 0, 0);
}

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
TEST(RunInt32PairMul) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
      MachineType::Uint32());

  uint32_t high;
  uint32_t low;

  Node* PairMul = m.Int32PairMul(m.Parameter(0), m.Parameter(1), m.Parameter(2),
                                 m.Parameter(3));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairMul));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairMul));
  m.Return(m.Int32Constant(74));

  FOR_UINT64_INPUTS(i) {
    FOR_UINT64_INPUTS(j) {
4503 4504 4505 4506 4507
      m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
             static_cast<uint32_t>(i >> 32),
             static_cast<uint32_t>(j & 0xFFFFFFFF),
             static_cast<uint32_t>(j >> 32));
      CHECK_EQ(i * j, ToInt64(low, high));
4508 4509 4510 4511
    }
  }
}

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
TEST(RunInt32PairMulUseOnlyHighWord) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32(),
      MachineType::Uint32());

  m.Return(m.Projection(1, m.Int32PairMul(m.Parameter(0), m.Parameter(1),
                                          m.Parameter(2), m.Parameter(3))));

  FOR_UINT64_INPUTS(i) {
    FOR_UINT64_INPUTS(j) {
4522
      CHECK_EQ(
4523 4524 4525 4526 4527
          static_cast<uint32_t>((i * j) >> 32),
          static_cast<uint32_t>(m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
                                       static_cast<uint32_t>(i >> 32),
                                       static_cast<uint32_t>(j & 0xFFFFFFFF),
                                       static_cast<uint32_t>(j >> 32))));
4528 4529 4530 4531
    }
  }
}

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
void TestInt32PairMulWithSharedInput(int a, int b, int c, int d) {
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
                                               MachineType::Uint32());

  uint32_t high;
  uint32_t low;

  Node* PairMul = m.Int32PairMul(m.Parameter(a), m.Parameter(b), m.Parameter(c),
                                 m.Parameter(d));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairMul));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairMul));
  m.Return(m.Int32Constant(74));

  FOR_UINT32_INPUTS(i) {
    FOR_UINT32_INPUTS(j) {
4550 4551
      m.Call(i, j);
      uint32_t inputs[] = {i, j};
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
      CHECK_EQ(ToInt64(inputs[a], inputs[b]) * ToInt64(inputs[c], inputs[d]),
               ToInt64(low, high));
    }
  }
}

TEST(RunInt32PairMulWithSharedInput) {
  TestInt32PairMulWithSharedInput(0, 0, 0, 0);
  TestInt32PairMulWithSharedInput(1, 0, 0, 0);
  TestInt32PairMulWithSharedInput(0, 1, 0, 0);
  TestInt32PairMulWithSharedInput(0, 0, 1, 0);
  TestInt32PairMulWithSharedInput(0, 0, 0, 1);
  TestInt32PairMulWithSharedInput(1, 1, 0, 0);
  TestInt32PairMulWithSharedInput(0, 1, 1, 0);
}

4568 4569 4570 4571 4572 4573 4574
TEST(RunWord32PairShl) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());

  uint32_t high;
  uint32_t low;

4575
  Node* PairShl =
4576 4577 4578
      m.Word32PairShl(m.Parameter(0), m.Parameter(1), m.Parameter(2));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
4579
                   m.Projection(0, PairShl));
4580
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
4581
                   m.Projection(1, PairShl));
4582 4583
  m.Return(m.Int32Constant(74));

4584
  FOR_UINT64_INPUTS(i) {
4585
    for (uint32_t j = 0; j < 64; j++) {
4586 4587 4588
      m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
             static_cast<uint32_t>(i >> 32), j);
      CHECK_EQ(i << j, ToInt64(low, high));
4589 4590 4591 4592
    }
  }
}

4593 4594 4595 4596 4597 4598 4599 4600 4601
TEST(RunWord32PairShlUseOnlyHighWord) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());

  m.Return(m.Projection(
      1, m.Word32PairShl(m.Parameter(0), m.Parameter(1), m.Parameter(2))));

  FOR_UINT64_INPUTS(i) {
    for (uint32_t j = 0; j < 64; j++) {
4602
      CHECK_EQ(
4603 4604 4605
          static_cast<uint32_t>((i << j) >> 32),
          static_cast<uint32_t>(m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
                                       static_cast<uint32_t>(i >> 32), j)));
4606 4607 4608 4609
    }
  }
}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
void TestWord32PairShlWithSharedInput(int a, int b) {
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Uint32(),
                                               MachineType::Uint32());

  uint32_t high;
  uint32_t low;

  Node* PairAdd =
      m.Word32PairShl(m.Parameter(a), m.Parameter(b), m.Parameter(1));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairAdd));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairAdd));
  m.Return(m.Int32Constant(74));

  FOR_UINT32_INPUTS(i) {
    for (uint32_t j = 0; j < 64; j++) {
4628 4629
      m.Call(i, j);
      uint32_t inputs[] = {i, j};
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
      CHECK_EQ(ToInt64(inputs[a], inputs[b]) << j, ToInt64(low, high));
    }
  }
}

TEST(RunWord32PairShlWithSharedInput) {
  TestWord32PairShlWithSharedInput(0, 0);
  TestWord32PairShlWithSharedInput(0, 1);
  TestWord32PairShlWithSharedInput(1, 0);
  TestWord32PairShlWithSharedInput(1, 1);
}

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
TEST(RunWord32PairShr) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());

  uint32_t high;
  uint32_t low;

  Node* PairAdd =
      m.Word32PairShr(m.Parameter(0), m.Parameter(1), m.Parameter(2));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairAdd));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairAdd));
  m.Return(m.Int32Constant(74));

  FOR_UINT64_INPUTS(i) {
    for (uint32_t j = 0; j < 64; j++) {
4660 4661 4662
      m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
             static_cast<uint32_t>(i >> 32), j);
      CHECK_EQ(i >> j, ToInt64(low, high));
4663 4664 4665 4666
    }
  }
}

4667 4668 4669 4670 4671 4672 4673 4674 4675
TEST(RunWord32PairShrUseOnlyHighWord) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());

  m.Return(m.Projection(
      1, m.Word32PairShr(m.Parameter(0), m.Parameter(1), m.Parameter(2))));

  FOR_UINT64_INPUTS(i) {
    for (uint32_t j = 0; j < 64; j++) {
4676
      CHECK_EQ(
4677 4678 4679
          static_cast<uint32_t>((i >> j) >> 32),
          static_cast<uint32_t>(m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
                                       static_cast<uint32_t>(i >> 32), j)));
4680 4681 4682 4683
    }
  }
}

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
TEST(RunWord32PairSar) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());

  uint32_t high;
  uint32_t low;

  Node* PairAdd =
      m.Word32PairSar(m.Parameter(0), m.Parameter(1), m.Parameter(2));

  m.StoreToPointer(&low, MachineRepresentation::kWord32,
                   m.Projection(0, PairAdd));
  m.StoreToPointer(&high, MachineRepresentation::kWord32,
                   m.Projection(1, PairAdd));
  m.Return(m.Int32Constant(74));

  FOR_INT64_INPUTS(i) {
    for (uint32_t j = 0; j < 64; j++) {
4702 4703 4704
      m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
             static_cast<uint32_t>(i >> 32), j);
      CHECK_EQ(i >> j, static_cast<int64_t>(ToInt64(low, high)));
4705 4706 4707 4708
    }
  }
}

4709 4710 4711 4712 4713 4714 4715 4716 4717
TEST(RunWord32PairSarUseOnlyHighWord) {
  BufferedRawMachineAssemblerTester<int32_t> m(
      MachineType::Uint32(), MachineType::Uint32(), MachineType::Uint32());

  m.Return(m.Projection(
      1, m.Word32PairSar(m.Parameter(0), m.Parameter(1), m.Parameter(2))));

  FOR_INT64_INPUTS(i) {
    for (uint32_t j = 0; j < 64; j++) {
4718
      CHECK_EQ(
4719 4720 4721
          static_cast<uint32_t>((i >> j) >> 32),
          static_cast<uint32_t>(m.Call(static_cast<uint32_t>(i & 0xFFFFFFFF),
                                       static_cast<uint32_t>(i >> 32), j)));
4722 4723 4724
    }
  }
}
4725
#endif
4726

4727
TEST(RunDeadChangeFloat64ToInt32) {
4728
  RawMachineAssemblerTester<int32_t> m;
4729
  const int magic = 0x88ABCDA4;
4730
  m.ChangeFloat64ToInt32(m.Float64Constant(999.78));
4731 4732 4733 4734 4735
  m.Return(m.Int32Constant(magic));
  CHECK_EQ(magic, m.Call());
}


4736
TEST(RunDeadChangeInt32ToFloat64) {
4737
  RawMachineAssemblerTester<int32_t> m;
4738
  const int magic = 0x8834ABCD;
4739
  m.ChangeInt32ToFloat64(m.Int32Constant(magic - 6888));
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
  m.Return(m.Int32Constant(magic));
  CHECK_EQ(magic, m.Call());
}


TEST(RunLoopPhiInduction2) {
  RawMachineAssemblerTester<int32_t> m;

  int false_val = 0x10777;

  // x = false_val; while(false) { x++; } return x;
4751
  RawMachineLabel header, body, end;
4752 4753 4754
  Node* false_node = m.Int32Constant(false_val);
  m.Goto(&header);
  m.Bind(&header);
4755
  Node* phi = m.Phi(MachineRepresentation::kWord32, false_node, false_node);
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
  m.Branch(m.Int32Constant(0), &body, &end);
  m.Bind(&body);
  Node* add = m.Int32Add(phi, m.Int32Constant(1));
  phi->ReplaceInput(1, add);
  m.Goto(&header);
  m.Bind(&end);
  m.Return(phi);

  CHECK_EQ(false_val, m.Call());
}


4768 4769 4770 4771 4772 4773 4774
TEST(RunFloatDiamond) {
  RawMachineAssemblerTester<int32_t> m;

  const int magic = 99645;
  float buffer = 0.1f;
  float constant = 99.99f;

4775
  RawMachineLabel blocka, blockb, end;
4776 4777 4778 4779 4780 4781 4782 4783
  Node* k1 = m.Float32Constant(constant);
  Node* k2 = m.Float32Constant(0 - constant);
  m.Branch(m.Int32Constant(0), &blocka, &blockb);
  m.Bind(&blocka);
  m.Goto(&end);
  m.Bind(&blockb);
  m.Goto(&end);
  m.Bind(&end);
4784
  Node* phi = m.Phi(MachineRepresentation::kFloat32, k2, k1);
4785
  m.Store(MachineRepresentation::kFloat32, m.PointerConstant(&buffer),
4786
          m.IntPtrConstant(0), phi, kNoWriteBarrier);
4787 4788 4789 4790 4791 4792 4793
  m.Return(m.Int32Constant(magic));

  CHECK_EQ(magic, m.Call());
  CHECK(constant == buffer);
}


4794 4795 4796 4797 4798 4799 4800
TEST(RunDoubleDiamond) {
  RawMachineAssemblerTester<int32_t> m;

  const int magic = 99645;
  double buffer = 0.1;
  double constant = 99.99;

4801
  RawMachineLabel blocka, blockb, end;
4802 4803 4804 4805 4806 4807 4808 4809
  Node* k1 = m.Float64Constant(constant);
  Node* k2 = m.Float64Constant(0 - constant);
  m.Branch(m.Int32Constant(0), &blocka, &blockb);
  m.Bind(&blocka);
  m.Goto(&end);
  m.Bind(&blockb);
  m.Goto(&end);
  m.Bind(&end);
4810
  Node* phi = m.Phi(MachineRepresentation::kFloat64, k2, k1);
4811
  m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&buffer),
4812
          m.Int32Constant(0), phi, kNoWriteBarrier);
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
  m.Return(m.Int32Constant(magic));

  CHECK_EQ(magic, m.Call());
  CHECK_EQ(constant, buffer);
}


TEST(RunRefDiamond) {
  RawMachineAssemblerTester<int32_t> m;

  const int magic = 99644;
  Handle<String> rexpected =
      CcTest::i_isolate()->factory()->InternalizeUtf8String("A");
4826
  String buffer;
4827

4828
  RawMachineLabel blocka, blockb, end;
4829 4830 4831 4832 4833 4834 4835 4836
  Node* k1 = m.StringConstant("A");
  Node* k2 = m.StringConstant("B");
  m.Branch(m.Int32Constant(0), &blocka, &blockb);
  m.Bind(&blocka);
  m.Goto(&end);
  m.Bind(&blockb);
  m.Goto(&end);
  m.Bind(&end);
4837
  Node* phi = m.Phi(MachineRepresentation::kTagged, k2, k1);
4838 4839 4840 4841 4842 4843 4844 4845
  if (COMPRESS_POINTERS_BOOL) {
    // Since |buffer| is located off-heap, use full pointer store.
    m.Store(MachineType::PointerRepresentation(), m.PointerConstant(&buffer),
            m.Int32Constant(0), m.BitcastTaggedToWord(phi), kNoWriteBarrier);
  } else {
    m.Store(MachineRepresentation::kTagged, m.PointerConstant(&buffer),
            m.Int32Constant(0), phi, kNoWriteBarrier);
  }
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
  m.Return(m.Int32Constant(magic));

  CHECK_EQ(magic, m.Call());
  CHECK(rexpected->SameValue(buffer));
}


TEST(RunDoubleRefDiamond) {
  RawMachineAssemblerTester<int32_t> m;

  const int magic = 99648;
  double dbuffer = 0.1;
  double dconstant = 99.99;
  Handle<String> rexpected =
      CcTest::i_isolate()->factory()->InternalizeUtf8String("AX");
4861
  String rbuffer;
4862

4863
  RawMachineLabel blocka, blockb, end;
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
  Node* d1 = m.Float64Constant(dconstant);
  Node* d2 = m.Float64Constant(0 - dconstant);
  Node* r1 = m.StringConstant("AX");
  Node* r2 = m.StringConstant("BX");
  m.Branch(m.Int32Constant(0), &blocka, &blockb);
  m.Bind(&blocka);
  m.Goto(&end);
  m.Bind(&blockb);
  m.Goto(&end);
  m.Bind(&end);
4874 4875
  Node* dphi = m.Phi(MachineRepresentation::kFloat64, d2, d1);
  Node* rphi = m.Phi(MachineRepresentation::kTagged, r2, r1);
4876
  m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&dbuffer),
4877
          m.Int32Constant(0), dphi, kNoWriteBarrier);
4878 4879 4880 4881 4882 4883 4884 4885
  if (COMPRESS_POINTERS_BOOL) {
    // Since |buffer| is located off-heap, use full pointer store.
    m.Store(MachineType::PointerRepresentation(), m.PointerConstant(&rbuffer),
            m.Int32Constant(0), m.BitcastTaggedToWord(rphi), kNoWriteBarrier);
  } else {
    m.Store(MachineRepresentation::kTagged, m.PointerConstant(&rbuffer),
            m.Int32Constant(0), rphi, kNoWriteBarrier);
  }
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
  m.Return(m.Int32Constant(magic));

  CHECK_EQ(magic, m.Call());
  CHECK_EQ(dconstant, dbuffer);
  CHECK(rexpected->SameValue(rbuffer));
}


TEST(RunDoubleRefDoubleDiamond) {
  RawMachineAssemblerTester<int32_t> m;

  const int magic = 99649;
  double dbuffer = 0.1;
  double dconstant = 99.997;
  Handle<String> rexpected =
      CcTest::i_isolate()->factory()->InternalizeUtf8String("AD");
4902
  String rbuffer;
4903

4904
  RawMachineLabel blocka, blockb, mid, blockd, blocke, end;
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
  Node* d1 = m.Float64Constant(dconstant);
  Node* d2 = m.Float64Constant(0 - dconstant);
  Node* r1 = m.StringConstant("AD");
  Node* r2 = m.StringConstant("BD");
  m.Branch(m.Int32Constant(0), &blocka, &blockb);
  m.Bind(&blocka);
  m.Goto(&mid);
  m.Bind(&blockb);
  m.Goto(&mid);
  m.Bind(&mid);
4915 4916
  Node* dphi1 = m.Phi(MachineRepresentation::kFloat64, d2, d1);
  Node* rphi1 = m.Phi(MachineRepresentation::kTagged, r2, r1);
4917 4918 4919 4920 4921 4922 4923
  m.Branch(m.Int32Constant(0), &blockd, &blocke);

  m.Bind(&blockd);
  m.Goto(&end);
  m.Bind(&blocke);
  m.Goto(&end);
  m.Bind(&end);
4924 4925
  Node* dphi2 = m.Phi(MachineRepresentation::kFloat64, d1, dphi1);
  Node* rphi2 = m.Phi(MachineRepresentation::kTagged, r1, rphi1);
4926

4927
  m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&dbuffer),
4928
          m.Int32Constant(0), dphi2, kNoWriteBarrier);
4929 4930 4931 4932 4933 4934 4935 4936
  if (COMPRESS_POINTERS_BOOL) {
    // Since |buffer| is located off-heap, use full pointer store.
    m.Store(MachineType::PointerRepresentation(), m.PointerConstant(&rbuffer),
            m.Int32Constant(0), m.BitcastTaggedToWord(rphi2), kNoWriteBarrier);
  } else {
    m.Store(MachineRepresentation::kTagged, m.PointerConstant(&rbuffer),
            m.Int32Constant(0), rphi2, kNoWriteBarrier);
  }
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
  m.Return(m.Int32Constant(magic));

  CHECK_EQ(magic, m.Call());
  CHECK_EQ(dconstant, dbuffer);
  CHECK(rexpected->SameValue(rbuffer));
}


TEST(RunDoubleLoopPhi) {
  RawMachineAssemblerTester<int32_t> m;
4947
  RawMachineLabel header, body, end;
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

  int magic = 99773;
  double buffer = 0.99;
  double dconstant = 777.1;

  Node* zero = m.Int32Constant(0);
  Node* dk = m.Float64Constant(dconstant);

  m.Goto(&header);
  m.Bind(&header);
4958
  Node* phi = m.Phi(MachineRepresentation::kFloat64, dk, dk);
4959 4960 4961 4962 4963
  phi->ReplaceInput(1, phi);
  m.Branch(zero, &body, &end);
  m.Bind(&body);
  m.Goto(&header);
  m.Bind(&end);
4964
  m.Store(MachineRepresentation::kFloat64, m.PointerConstant(&buffer),
4965
          m.Int32Constant(0), phi, kNoWriteBarrier);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
  m.Return(m.Int32Constant(magic));

  CHECK_EQ(magic, m.Call());
}


TEST(RunCountToTenAccRaw) {
  RawMachineAssemblerTester<int32_t> m;

  Node* zero = m.Int32Constant(0);
  Node* ten = m.Int32Constant(10);
  Node* one = m.Int32Constant(1);

4979
  RawMachineLabel header, body, body_cont, end;
4980 4981 4982 4983

  m.Goto(&header);

  m.Bind(&header);
4984 4985
  Node* i = m.Phi(MachineRepresentation::kWord32, zero, zero);
  Node* j = m.Phi(MachineRepresentation::kWord32, zero, zero);
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
  m.Goto(&body);

  m.Bind(&body);
  Node* next_i = m.Int32Add(i, one);
  Node* next_j = m.Int32Add(j, one);
  m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont);

  m.Bind(&body_cont);
  i->ReplaceInput(1, next_i);
  j->ReplaceInput(1, next_j);
  m.Goto(&header);

  m.Bind(&end);
  m.Return(ten);

  CHECK_EQ(10, m.Call());
}


TEST(RunCountToTenAccRaw2) {
  RawMachineAssemblerTester<int32_t> m;

  Node* zero = m.Int32Constant(0);
  Node* ten = m.Int32Constant(10);
  Node* one = m.Int32Constant(1);

5012
  RawMachineLabel header, body, body_cont, end;
5013 5014 5015 5016

  m.Goto(&header);

  m.Bind(&header);
5017 5018 5019
  Node* i = m.Phi(MachineRepresentation::kWord32, zero, zero);
  Node* j = m.Phi(MachineRepresentation::kWord32, zero, zero);
  Node* k = m.Phi(MachineRepresentation::kWord32, zero, zero);
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
  m.Goto(&body);

  m.Bind(&body);
  Node* next_i = m.Int32Add(i, one);
  Node* next_j = m.Int32Add(j, one);
  Node* next_k = m.Int32Add(j, one);
  m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont);

  m.Bind(&body_cont);
  i->ReplaceInput(1, next_i);
  j->ReplaceInput(1, next_j);
  k->ReplaceInput(1, next_k);
  m.Goto(&header);

  m.Bind(&end);
  m.Return(ten);

  CHECK_EQ(10, m.Call());
}


TEST(RunAddTree) {
  RawMachineAssemblerTester<int32_t> m;
  int32_t inputs[] = {11, 12, 13, 14, 15, 16, 17, 18};

  Node* base = m.PointerConstant(inputs);
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
  Node* n0 =
      m.Load(MachineType::Int32(), base, m.Int32Constant(0 * sizeof(int32_t)));
  Node* n1 =
      m.Load(MachineType::Int32(), base, m.Int32Constant(1 * sizeof(int32_t)));
  Node* n2 =
      m.Load(MachineType::Int32(), base, m.Int32Constant(2 * sizeof(int32_t)));
  Node* n3 =
      m.Load(MachineType::Int32(), base, m.Int32Constant(3 * sizeof(int32_t)));
  Node* n4 =
      m.Load(MachineType::Int32(), base, m.Int32Constant(4 * sizeof(int32_t)));
  Node* n5 =
      m.Load(MachineType::Int32(), base, m.Int32Constant(5 * sizeof(int32_t)));
  Node* n6 =
      m.Load(MachineType::Int32(), base, m.Int32Constant(6 * sizeof(int32_t)));
  Node* n7 =
      m.Load(MachineType::Int32(), base, m.Int32Constant(7 * sizeof(int32_t)));
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092

  Node* i1 = m.Int32Add(n0, n1);
  Node* i2 = m.Int32Add(n2, n3);
  Node* i3 = m.Int32Add(n4, n5);
  Node* i4 = m.Int32Add(n6, n7);

  Node* i5 = m.Int32Add(i1, i2);
  Node* i6 = m.Int32Add(i3, i4);

  Node* i7 = m.Int32Add(i5, i6);

  m.Return(i7);

  CHECK_EQ(116, m.Call());
}


static const int kFloat64CompareHelperTestCases = 15;
static const int kFloat64CompareHelperNodeType = 4;

static int Float64CompareHelper(RawMachineAssemblerTester<int32_t>* m,
                                int test_case, int node_type, double x,
                                double y) {
  static double buffer[2];
  buffer[0] = x;
  buffer[1] = y;
  CHECK(0 <= test_case && test_case < kFloat64CompareHelperTestCases);
  CHECK(0 <= node_type && node_type < kFloat64CompareHelperNodeType);
  CHECK(x < y);
  bool load_a = node_type / 2 == 1;
  bool load_b = node_type % 2 == 1;
5093 5094 5095 5096 5097 5098
  Node* a =
      load_a ? m->Load(MachineType::Float64(), m->PointerConstant(&buffer[0]))
             : m->Float64Constant(x);
  Node* b =
      load_b ? m->Load(MachineType::Float64(), m->PointerConstant(&buffer[1]))
             : m->Float64Constant(y);
5099
  Node* cmp = nullptr;
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
  bool expected = false;
  switch (test_case) {
    // Equal tests.
    case 0:
      cmp = m->Float64Equal(a, b);
      expected = false;
      break;
    case 1:
      cmp = m->Float64Equal(a, a);
      expected = true;
      break;
    // LessThan tests.
    case 2:
      cmp = m->Float64LessThan(a, b);
      expected = true;
      break;
    case 3:
      cmp = m->Float64LessThan(b, a);
      expected = false;
      break;
    case 4:
      cmp = m->Float64LessThan(a, a);
      expected = false;
      break;
    // LessThanOrEqual tests.
    case 5:
      cmp = m->Float64LessThanOrEqual(a, b);
      expected = true;
      break;
    case 6:
      cmp = m->Float64LessThanOrEqual(b, a);
      expected = false;
      break;
    case 7:
      cmp = m->Float64LessThanOrEqual(a, a);
      expected = true;
      break;
    // NotEqual tests.
    case 8:
      cmp = m->Float64NotEqual(a, b);
      expected = true;
      break;
    case 9:
      cmp = m->Float64NotEqual(b, a);
      expected = true;
      break;
    case 10:
      cmp = m->Float64NotEqual(a, a);
      expected = false;
      break;
    // GreaterThan tests.
    case 11:
      cmp = m->Float64GreaterThan(a, a);
      expected = false;
      break;
    case 12:
      cmp = m->Float64GreaterThan(a, b);
      expected = false;
      break;
    // GreaterThanOrEqual tests.
    case 13:
      cmp = m->Float64GreaterThanOrEqual(a, a);
      expected = true;
      break;
    case 14:
      cmp = m->Float64GreaterThanOrEqual(b, a);
      expected = true;
      break;
    default:
      UNREACHABLE();
  }
  m->Return(cmp);
  return expected;
}


TEST(RunFloat64Compare) {
5177
  double inf = V8_INFINITY;
5178 5179 5180 5181 5182 5183 5184
  // All pairs (a1, a2) are of the form a1 < a2.
  double inputs[] = {0.0,  1.0,  -1.0, 0.22, -1.22, 0.22,
                     -inf, 0.22, 0.22, inf,  -inf,  inf};

  for (int test = 0; test < kFloat64CompareHelperTestCases; test++) {
    for (int node_type = 0; node_type < kFloat64CompareHelperNodeType;
         node_type++) {
5185
      for (size_t input = 0; input < arraysize(inputs); input += 2) {
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
        RawMachineAssemblerTester<int32_t> m;
        int expected = Float64CompareHelper(&m, test, node_type, inputs[input],
                                            inputs[input + 1]);
        CHECK_EQ(expected, m.Call());
      }
    }
  }
}


TEST(RunFloat64UnorderedCompare) {
  RawMachineAssemblerTester<int32_t> m;

5199 5200 5201
  const Operator* operators[] = {m.machine()->Float64Equal(),
                                 m.machine()->Float64LessThan(),
                                 m.machine()->Float64LessThanOrEqual()};
5202

5203
  double nan = std::numeric_limits<double>::quiet_NaN();
5204 5205

  FOR_FLOAT64_INPUTS(i) {
5206
    for (size_t o = 0; o < arraysize(operators); ++o) {
5207 5208
      for (int j = 0; j < 2; j++) {
        RawMachineAssemblerTester<int32_t> m;
5209
        Node* a = m.Float64Constant(i);
5210 5211
        Node* b = m.Float64Constant(nan);
        if (j == 1) std::swap(a, b);
5212
        m.Return(m.AddNode(operators[o], a, b));
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
        CHECK_EQ(0, m.Call());
      }
    }
  }
}


TEST(RunFloat64Equal) {
  double input_a = 0.0;
  double input_b = 0.0;

  RawMachineAssemblerTester<int32_t> m;
5225 5226
  Node* a = m.LoadFromPointer(&input_a, MachineType::Float64());
  Node* b = m.LoadFromPointer(&input_b, MachineType::Float64());
5227 5228 5229 5230 5231
  m.Return(m.Float64Equal(a, b));

  CompareWrapper cmp(IrOpcode::kFloat64Equal);
  FOR_FLOAT64_INPUTS(pl) {
    FOR_FLOAT64_INPUTS(pr) {
5232 5233
      input_a = pl;
      input_b = pr;
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
      int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0;
      CHECK_EQ(expected, m.Call());
    }
  }
}


TEST(RunFloat64LessThan) {
  double input_a = 0.0;
  double input_b = 0.0;

  RawMachineAssemblerTester<int32_t> m;
5246 5247
  Node* a = m.LoadFromPointer(&input_a, MachineType::Float64());
  Node* b = m.LoadFromPointer(&input_b, MachineType::Float64());
5248 5249 5250 5251 5252
  m.Return(m.Float64LessThan(a, b));

  CompareWrapper cmp(IrOpcode::kFloat64LessThan);
  FOR_FLOAT64_INPUTS(pl) {
    FOR_FLOAT64_INPUTS(pr) {
5253 5254
      input_a = pl;
      input_b = pr;
5255 5256 5257 5258 5259 5260 5261 5262 5263
      int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0;
      CHECK_EQ(expected, m.Call());
    }
  }
}


static void IntPtrCompare(intptr_t left, intptr_t right) {
  for (int test = 0; test < 7; test++) {
5264 5265
    RawMachineAssemblerTester<bool> m(MachineType::Pointer(),
                                      MachineType::Pointer());
5266 5267
    Node* p0 = m.Parameter(0);
    Node* p1 = m.Parameter(1);
5268
    Node* res = nullptr;
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
    bool expected = false;
    switch (test) {
      case 0:
        res = m.IntPtrLessThan(p0, p1);
        expected = true;
        break;
      case 1:
        res = m.IntPtrLessThanOrEqual(p0, p1);
        expected = true;
        break;
      case 2:
        res = m.IntPtrEqual(p0, p1);
        expected = false;
        break;
      case 3:
        res = m.IntPtrGreaterThanOrEqual(p0, p1);
        expected = false;
        break;
      case 4:
        res = m.IntPtrGreaterThan(p0, p1);
        expected = false;
        break;
      case 5:
        res = m.IntPtrEqual(p0, p0);
        expected = true;
        break;
      case 6:
        res = m.IntPtrNotEqual(p0, p1);
        expected = true;
        break;
      default:
        UNREACHABLE();
        break;
    }
    m.Return(res);
    CHECK_EQ(expected, m.Call(reinterpret_cast<int32_t*>(left),
                              reinterpret_cast<int32_t*>(right)));
  }
}


TEST(RunIntPtrCompare) {
  intptr_t min = std::numeric_limits<intptr_t>::min();
  intptr_t max = std::numeric_limits<intptr_t>::max();
  // An ascending chain of intptr_t
  intptr_t inputs[] = {min, min / 2, -1, 0, 1, max / 2, max};
5315
  for (size_t i = 0; i < arraysize(inputs) - 1; i++) {
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
    IntPtrCompare(inputs[i], inputs[i + 1]);
  }
}


TEST(RunTestIntPtrArithmetic) {
  static const int kInputSize = 10;
  int32_t inputs[kInputSize];
  int32_t outputs[kInputSize];
  for (int i = 0; i < kInputSize; i++) {
    inputs[i] = i;
    outputs[i] = -1;
  }
  RawMachineAssemblerTester<int32_t*> m;
  Node* input = m.PointerConstant(&inputs[0]);
  Node* output = m.PointerConstant(&outputs[kInputSize - 1]);
5332
  Node* elem_size = m.IntPtrConstant(sizeof(inputs[0]));
5333
  for (int i = 0; i < kInputSize; i++) {
5334 5335
    m.Store(MachineRepresentation::kWord32, output,
            m.Load(MachineType::Int32(), input), kNoWriteBarrier);
5336 5337 5338 5339 5340 5341 5342 5343 5344
    input = m.IntPtrAdd(input, elem_size);
    output = m.IntPtrSub(output, elem_size);
  }
  m.Return(input);
  CHECK_EQ(&inputs[kInputSize], m.Call());
  for (int i = 0; i < kInputSize; i++) {
    CHECK_EQ(i, inputs[i]);
    CHECK_EQ(kInputSize - i - 1, outputs[i]);
  }
5345 5346 5347
}


5348 5349
TEST(RunSpillLotsOfThings) {
  static const int kInputSize = 1000;
5350
  RawMachineAssemblerTester<int32_t> m;
5351 5352 5353 5354 5355 5356 5357 5358 5359
  Node* accs[kInputSize];
  int32_t outputs[kInputSize];
  Node* one = m.Int32Constant(1);
  Node* acc = one;
  for (int i = 0; i < kInputSize; i++) {
    acc = m.Int32Add(acc, one);
    accs[i] = acc;
  }
  for (int i = 0; i < kInputSize; i++) {
5360
    m.StoreToPointer(&outputs[i], MachineRepresentation::kWord32, accs[i]);
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
  }
  m.Return(one);
  m.Call();
  for (int i = 0; i < kInputSize; i++) {
    CHECK_EQ(outputs[i], i + 2);
  }
}


TEST(RunSpillConstantsAndParameters) {
5371
  static const int kInputSize = 1000;
5372
  static const int32_t kBase = 987;
5373 5374
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
                                       MachineType::Int32());
5375 5376 5377 5378
  int32_t outputs[kInputSize];
  Node* csts[kInputSize];
  Node* accs[kInputSize];
  Node* acc = m.Int32Constant(0);
5379
  for (int i = 0; i < kInputSize; i++) {
5380
    csts[i] = m.Int32Constant(base::AddWithWraparound(kBase, i));
5381
  }
5382
  for (int i = 0; i < kInputSize; i++) {
5383 5384 5385
    acc = m.Int32Add(acc, csts[i]);
    accs[i] = acc;
  }
5386
  for (int i = 0; i < kInputSize; i++) {
5387
    m.StoreToPointer(&outputs[i], MachineRepresentation::kWord32, accs[i]);
5388 5389 5390 5391
  }
  m.Return(m.Int32Add(acc, m.Int32Add(m.Parameter(0), m.Parameter(1))));
  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
5392
      int32_t expected = base::AddWithWraparound(i, j);
5393
      for (int k = 0; k < kInputSize; k++) {
5394
        expected = base::AddWithWraparound(expected, kBase + k);
5395
      }
5396
      CHECK_EQ(expected, m.Call(i, j));
5397
      expected = 0;
5398
      for (int k = 0; k < kInputSize; k++) {
5399 5400 5401 5402 5403 5404 5405 5406 5407
        expected += kBase + k;
        CHECK_EQ(expected, outputs[k]);
      }
    }
  }
}


TEST(RunNewSpaceConstantsInPhi) {
5408
  RawMachineAssemblerTester<Object> m(MachineType::Int32());
5409 5410 5411 5412 5413 5414 5415

  Isolate* isolate = CcTest::i_isolate();
  Handle<HeapNumber> true_val = isolate->factory()->NewHeapNumber(11.2);
  Handle<HeapNumber> false_val = isolate->factory()->NewHeapNumber(11.3);
  Node* true_node = m.HeapConstant(true_val);
  Node* false_node = m.HeapConstant(false_val);

5416
  RawMachineLabel blocka, blockb, end;
5417 5418 5419 5420 5421 5422 5423
  m.Branch(m.Parameter(0), &blocka, &blockb);
  m.Bind(&blocka);
  m.Goto(&end);
  m.Bind(&blockb);
  m.Goto(&end);

  m.Bind(&end);
5424
  Node* phi = m.Phi(MachineRepresentation::kTagged, true_node, false_node);
5425 5426 5427 5428 5429 5430 5431
  m.Return(phi);

  CHECK_EQ(*false_val, m.Call(0));
  CHECK_EQ(*true_val, m.Call(1));
}


5432 5433 5434 5435
TEST(RunInt32AddWithOverflowP) {
  int32_t actual_val = -1;
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);
5436 5437 5438
  Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1);
  Node* val = m.Projection(0, add);
  Node* ovf = m.Projection(1, add);
5439
  m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
5440 5441 5442 5443
  bt.AddReturn(ovf);
  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
      int32_t expected_val;
5444 5445
      int expected_ovf = base::bits::SignedAddOverflow32(i, j, &expected_val);
      CHECK_EQ(expected_ovf, bt.call(i, j));
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
      CHECK_EQ(expected_val, actual_val);
    }
  }
}


TEST(RunInt32AddWithOverflowImm) {
  int32_t actual_val = -1, expected_val = 0;
  FOR_INT32_INPUTS(i) {
    {
5456
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
5457
      Node* add = m.Int32AddWithOverflow(m.Int32Constant(i), m.Parameter(0));
5458 5459
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
5460
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
5461 5462
      m.Return(ovf);
      FOR_INT32_INPUTS(j) {
5463 5464
        int expected_ovf = base::bits::SignedAddOverflow32(i, j, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
5465 5466 5467 5468
        CHECK_EQ(expected_val, actual_val);
      }
    }
    {
5469
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
5470
      Node* add = m.Int32AddWithOverflow(m.Parameter(0), m.Int32Constant(i));
5471 5472
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
5473
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
5474 5475
      m.Return(ovf);
      FOR_INT32_INPUTS(j) {
5476 5477
        int expected_ovf = base::bits::SignedAddOverflow32(i, j, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
5478 5479 5480 5481 5482
        CHECK_EQ(expected_val, actual_val);
      }
    }
    FOR_INT32_INPUTS(j) {
      RawMachineAssemblerTester<int32_t> m;
5483
      Node* add =
5484
          m.Int32AddWithOverflow(m.Int32Constant(i), m.Int32Constant(j));
5485 5486
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
5487
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
5488
      m.Return(ovf);
5489
      int expected_ovf = base::bits::SignedAddOverflow32(i, j, &expected_val);
5490 5491 5492 5493 5494 5495 5496 5497
      CHECK_EQ(expected_ovf, m.Call());
      CHECK_EQ(expected_val, actual_val);
    }
  }
}


TEST(RunInt32AddWithOverflowInBranchP) {
5498
  int constant = 911777;
5499
  RawMachineLabel blocka, blockb;
5500 5501
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);
5502 5503
  Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1);
  Node* ovf = m.Projection(1, add);
5504 5505
  m.Branch(ovf, &blocka, &blockb);
  m.Bind(&blocka);
5506
  bt.AddReturn(m.Int32Constant(constant));
5507
  m.Bind(&blockb);
5508
  Node* val = m.Projection(0, add);
5509
  bt.AddReturn(val);
5510 5511
  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
5512
      int32_t expected;
5513 5514
      if (base::bits::SignedAddOverflow32(i, j, &expected)) expected = constant;
      CHECK_EQ(expected, bt.call(i, j));
5515 5516 5517 5518
    }
  }
}

5519 5520 5521 5522 5523

TEST(RunInt32SubWithOverflowP) {
  int32_t actual_val = -1;
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);
5524 5525 5526
  Node* add = m.Int32SubWithOverflow(bt.param0, bt.param1);
  Node* val = m.Projection(0, add);
  Node* ovf = m.Projection(1, add);
5527
  m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
5528 5529 5530 5531
  bt.AddReturn(ovf);
  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
      int32_t expected_val;
5532 5533
      int expected_ovf = base::bits::SignedSubOverflow32(i, j, &expected_val);
      CHECK_EQ(expected_ovf, bt.call(i, j));
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
      CHECK_EQ(expected_val, actual_val);
    }
  }
}


TEST(RunInt32SubWithOverflowImm) {
  int32_t actual_val = -1, expected_val = 0;
  FOR_INT32_INPUTS(i) {
    {
5544
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
5545
      Node* add = m.Int32SubWithOverflow(m.Int32Constant(i), m.Parameter(0));
5546 5547
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
5548
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
5549 5550
      m.Return(ovf);
      FOR_INT32_INPUTS(j) {
5551 5552
        int expected_ovf = base::bits::SignedSubOverflow32(i, j, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
5553 5554 5555 5556
        CHECK_EQ(expected_val, actual_val);
      }
    }
    {
5557
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
5558
      Node* add = m.Int32SubWithOverflow(m.Parameter(0), m.Int32Constant(i));
5559 5560
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
5561
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
5562 5563
      m.Return(ovf);
      FOR_INT32_INPUTS(j) {
5564 5565
        int expected_ovf = base::bits::SignedSubOverflow32(j, i, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
5566 5567 5568 5569 5570
        CHECK_EQ(expected_val, actual_val);
      }
    }
    FOR_INT32_INPUTS(j) {
      RawMachineAssemblerTester<int32_t> m;
5571
      Node* add =
5572
          m.Int32SubWithOverflow(m.Int32Constant(i), m.Int32Constant(j));
5573 5574
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
5575
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
5576
      m.Return(ovf);
5577
      int expected_ovf = base::bits::SignedSubOverflow32(i, j, &expected_val);
5578 5579 5580 5581 5582 5583 5584 5585
      CHECK_EQ(expected_ovf, m.Call());
      CHECK_EQ(expected_val, actual_val);
    }
  }
}


TEST(RunInt32SubWithOverflowInBranchP) {
5586
  int constant = 911999;
5587
  RawMachineLabel blocka, blockb;
5588 5589
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);
5590 5591
  Node* sub = m.Int32SubWithOverflow(bt.param0, bt.param1);
  Node* ovf = m.Projection(1, sub);
5592 5593
  m.Branch(ovf, &blocka, &blockb);
  m.Bind(&blocka);
5594
  bt.AddReturn(m.Int32Constant(constant));
5595
  m.Bind(&blockb);
5596
  Node* val = m.Projection(0, sub);
5597
  bt.AddReturn(val);
5598 5599
  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
5600
      int32_t expected;
5601 5602
      if (base::bits::SignedSubOverflow32(i, j, &expected)) expected = constant;
      CHECK_EQ(expected, bt.call(i, j));
5603 5604 5605 5606
    }
  }
}

5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
TEST(RunInt32MulWithOverflowP) {
  int32_t actual_val = -1;
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);
  Node* add = m.Int32MulWithOverflow(bt.param0, bt.param1);
  Node* val = m.Projection(0, add);
  Node* ovf = m.Projection(1, add);
  m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
  bt.AddReturn(ovf);
  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
      int32_t expected_val;
5619 5620
      int expected_ovf = base::bits::SignedMulOverflow32(i, j, &expected_val);
      CHECK_EQ(expected_ovf, bt.call(i, j));
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
      if (!expected_ovf) {
        CHECK_EQ(expected_val, actual_val);
      }
    }
  }
}

TEST(RunInt32MulWithOverflowImm) {
  int32_t actual_val = -1, expected_val = 0;
  FOR_INT32_INPUTS(i) {
    {
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
5633
      Node* add = m.Int32MulWithOverflow(m.Int32Constant(i), m.Parameter(0));
5634 5635 5636 5637 5638
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
      m.Return(ovf);
      FOR_INT32_INPUTS(j) {
5639 5640
        int expected_ovf = base::bits::SignedMulOverflow32(i, j, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
5641 5642 5643 5644 5645 5646 5647
        if (!expected_ovf) {
          CHECK_EQ(expected_val, actual_val);
        }
      }
    }
    {
      RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
5648
      Node* add = m.Int32MulWithOverflow(m.Parameter(0), m.Int32Constant(i));
5649 5650 5651 5652 5653
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
      m.Return(ovf);
      FOR_INT32_INPUTS(j) {
5654 5655
        int expected_ovf = base::bits::SignedMulOverflow32(i, j, &expected_val);
        CHECK_EQ(expected_ovf, m.Call(j));
5656 5657 5658 5659 5660 5661 5662 5663
        if (!expected_ovf) {
          CHECK_EQ(expected_val, actual_val);
        }
      }
    }
    FOR_INT32_INPUTS(j) {
      RawMachineAssemblerTester<int32_t> m;
      Node* add =
5664
          m.Int32MulWithOverflow(m.Int32Constant(i), m.Int32Constant(j));
5665 5666 5667 5668
      Node* val = m.Projection(0, add);
      Node* ovf = m.Projection(1, add);
      m.StoreToPointer(&actual_val, MachineRepresentation::kWord32, val);
      m.Return(ovf);
5669
      int expected_ovf = base::bits::SignedMulOverflow32(i, j, &expected_val);
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
      CHECK_EQ(expected_ovf, m.Call());
      if (!expected_ovf) {
        CHECK_EQ(expected_val, actual_val);
      }
    }
  }
}

TEST(RunInt32MulWithOverflowInBranchP) {
  int constant = 911777;
  RawMachineLabel blocka, blockb;
  RawMachineAssemblerTester<int32_t> m;
  Int32BinopTester bt(&m);
  Node* add = m.Int32MulWithOverflow(bt.param0, bt.param1);
  Node* ovf = m.Projection(1, add);
  m.Branch(ovf, &blocka, &blockb);
  m.Bind(&blocka);
  bt.AddReturn(m.Int32Constant(constant));
  m.Bind(&blockb);
  Node* val = m.Projection(0, add);
  bt.AddReturn(val);
  FOR_INT32_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
      int32_t expected;
5694 5695
      if (base::bits::SignedMulOverflow32(i, j, &expected)) expected = constant;
      CHECK_EQ(expected, bt.call(i, j));
5696 5697 5698
    }
  }
}
5699

5700 5701
TEST(RunWord64EqualInBranchP) {
  int64_t input;
5702
  RawMachineLabel blocka, blockb;
5703
  RawMachineAssemblerTester<int32_t> m;
5704
  if (!m.machine()->Is64()) return;
5705
  Node* value = m.LoadFromPointer(&input, MachineType::Int64());
5706 5707 5708 5709 5710
  m.Branch(m.Word64Equal(value, m.Int64Constant(0)), &blocka, &blockb);
  m.Bind(&blocka);
  m.Return(m.Int32Constant(1));
  m.Bind(&blockb);
  m.Return(m.Int32Constant(2));
5711
  input = int64_t{0};
5712
  CHECK_EQ(1, m.Call());
5713
  input = int64_t{1};
5714
  CHECK_EQ(2, m.Call());
5715
  input = int64_t{0x100000000};
5716 5717 5718 5719
  CHECK_EQ(2, m.Call());
}


5720
TEST(RunChangeInt32ToInt64P) {
5721
  if (kSystemPointerSize < 8) return;
5722
  int64_t actual = -1;
5723
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
5724
  m.StoreToPointer(&actual, MachineRepresentation::kWord64,
5725
                   m.ChangeInt32ToInt64(m.Parameter(0)));
5726 5727
  m.Return(m.Int32Constant(0));
  FOR_INT32_INPUTS(i) {
5728 5729
    int64_t expected = i;
    CHECK_EQ(0, m.Call(i));
5730 5731 5732 5733 5734 5735
    CHECK_EQ(expected, actual);
  }
}


TEST(RunChangeUint32ToUint64P) {
5736
  if (kSystemPointerSize < 8) return;
5737
  int64_t actual = -1;
5738
  RawMachineAssemblerTester<int32_t> m(MachineType::Uint32());
5739
  m.StoreToPointer(&actual, MachineRepresentation::kWord64,
5740 5741 5742
                   m.ChangeUint32ToUint64(m.Parameter(0)));
  m.Return(m.Int32Constant(0));
  FOR_UINT32_INPUTS(i) {
5743 5744
    int64_t expected = static_cast<uint64_t>(i);
    CHECK_EQ(0, m.Call(i));
5745 5746 5747 5748 5749 5750
    CHECK_EQ(expected, actual);
  }
}


TEST(RunTruncateInt64ToInt32P) {
5751
  if (kSystemPointerSize < 8) return;
5752 5753
  int64_t expected = -1;
  RawMachineAssemblerTester<int32_t> m;
5754 5755
  m.Return(m.TruncateInt64ToInt32(
      m.LoadFromPointer(&expected, MachineType::Int64())));
5756 5757
  FOR_UINT32_INPUTS(i) {
    FOR_UINT32_INPUTS(j) {
5758
      expected = (static_cast<uint64_t>(j) << 32) | i;
5759
      CHECK_EQ(static_cast<int32_t>(expected), m.Call());
5760 5761 5762 5763
    }
  }
}

5764
TEST(RunTruncateFloat64ToWord32P) {
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
  struct {
    double from;
    double raw;
  } kValues[] = {{0, 0},
                 {0.5, 0},
                 {-0.5, 0},
                 {1.5, 1},
                 {-1.5, -1},
                 {5.5, 5},
                 {-5.0, -5},
5775
                 {std::numeric_limits<double>::quiet_NaN(), 0},
5776
                 {std::numeric_limits<double>::infinity(), 0},
5777
                 {-std::numeric_limits<double>::quiet_NaN(), 0},
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
                 {-std::numeric_limits<double>::infinity(), 0},
                 {4.94065645841e-324, 0},
                 {-4.94065645841e-324, 0},
                 {0.9999999999999999, 0},
                 {-0.9999999999999999, 0},
                 {4294967296.0, 0},
                 {-4294967296.0, 0},
                 {9223372036854775000.0, 4294966272.0},
                 {-9223372036854775000.0, -4294966272.0},
                 {4.5036e+15, 372629504},
                 {-4.5036e+15, -372629504},
                 {287524199.5377777, 0x11234567},
                 {-287524199.5377777, -0x11234567},
                 {2300193596.302222, 2300193596.0},
                 {-2300193596.302222, -2300193596.0},
                 {4600387192.604444, 305419896},
                 {-4600387192.604444, -305419896},
                 {4823855600872397.0, 1737075661},
                 {-4823855600872397.0, -1737075661},
                 {4503603922337791.0, -1},
                 {-4503603922337791.0, 1},
                 {4503601774854143.0, 2147483647},
                 {-4503601774854143.0, -2147483647},
                 {9007207844675582.0, -2},
                 {-9007207844675582.0, 2},
                 {2.4178527921507624e+24, -536870912},
                 {-2.4178527921507624e+24, 536870912},
                 {2.417853945072267e+24, -536870912},
                 {-2.417853945072267e+24, 536870912},
                 {4.8357055843015248e+24, -1073741824},
                 {-4.8357055843015248e+24, 1073741824},
                 {4.8357078901445341e+24, -1073741824},
                 {-4.8357078901445341e+24, 1073741824},
                 {2147483647.0, 2147483647.0},
                 {-2147483648.0, -2147483648.0},
                 {9.6714111686030497e+24, -2147483648.0},
                 {-9.6714111686030497e+24, -2147483648.0},
                 {9.6714157802890681e+24, -2147483648.0},
                 {-9.6714157802890681e+24, -2147483648.0},
                 {1.9342813113834065e+25, 2147483648.0},
                 {-1.9342813113834065e+25, 2147483648.0},
                 {3.868562622766813e+25, 0},
                 {-3.868562622766813e+25, 0},
                 {1.7976931348623157e+308, 0},
                 {-1.7976931348623157e+308, 0}};
  double input = -1.0;
  RawMachineAssemblerTester<int32_t> m;
5825
  m.Return(m.TruncateFloat64ToWord32(
5826
      m.LoadFromPointer(&input, MachineType::Float64())));
5827
  for (size_t i = 0; i < arraysize(kValues); ++i) {
5828 5829 5830 5831 5832 5833
    input = kValues[i].from;
    uint64_t expected = static_cast<int64_t>(kValues[i].raw);
    CHECK_EQ(static_cast<int>(expected), m.Call());
  }
}

5834 5835 5836 5837 5838 5839
TEST(RunTruncateFloat64ToWord32SignExtension) {
  BufferedRawMachineAssemblerTester<int32_t> r;
  r.Return(r.Int32Sub(r.TruncateFloat64ToWord32(r.Float64Constant(-1.0)),
                      r.Int32Constant(0)));
  CHECK_EQ(-1, r.Call());
}
5840 5841

TEST(RunChangeFloat32ToFloat64) {
5842
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float32());
5843

5844
  m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0)));
5845

5846
  FOR_FLOAT32_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast<double>(i), m.Call(i)); }
5847 5848
}

5849 5850 5851

TEST(RunFloat32Constant) {
  FOR_FLOAT32_INPUTS(i) {
5852
    BufferedRawMachineAssemblerTester<float> m;
5853 5854
    m.Return(m.Float32Constant(i));
    CHECK_FLOAT_EQ(i, m.Call());
5855 5856 5857
  }
}

5858

5859
TEST(RunFloat64ExtractLowWord32) {
5860
  BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Float64());
5861
  m.Return(m.Float64ExtractLowWord32(m.Parameter(0)));
5862
  FOR_FLOAT64_INPUTS(i) {
5863 5864
    uint32_t expected = static_cast<uint32_t>(bit_cast<uint64_t>(i));
    CHECK_EQ(expected, m.Call(i));
5865 5866 5867 5868 5869
  }
}


TEST(RunFloat64ExtractHighWord32) {
5870
  BufferedRawMachineAssemblerTester<uint32_t> m(MachineType::Float64());
5871
  m.Return(m.Float64ExtractHighWord32(m.Parameter(0)));
5872
  FOR_FLOAT64_INPUTS(i) {
5873 5874
    uint32_t expected = static_cast<uint32_t>(bit_cast<uint64_t>(i) >> 32);
    CHECK_EQ(expected, m.Call(i));
5875 5876 5877 5878 5879
  }
}


TEST(RunFloat64InsertLowWord32) {
5880 5881
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Int32());
5882
  m.Return(m.Float64InsertLowWord32(m.Parameter(0), m.Parameter(1)));
5883 5884
  FOR_FLOAT64_INPUTS(i) {
    FOR_INT32_INPUTS(j) {
5885
      double expected =
5886 5887 5888
          bit_cast<double>((bit_cast<uint64_t>(i) & ~(uint64_t{0xFFFFFFFF})) |
                           (static_cast<uint64_t>(bit_cast<uint32_t>(j))));
      CHECK_DOUBLE_EQ(expected, m.Call(i, j));
5889 5890 5891 5892 5893 5894
    }
  }
}


TEST(RunFloat64InsertHighWord32) {
5895 5896
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Uint32());
5897
  m.Return(m.Float64InsertHighWord32(m.Parameter(0), m.Parameter(1)));
5898
  FOR_FLOAT64_INPUTS(i) {
5899
    FOR_UINT32_INPUTS(j) {
5900 5901
      uint64_t expected = (bit_cast<uint64_t>(i) & 0xFFFFFFFF) |
                          (static_cast<uint64_t>(j) << 32);
5902

5903
      CHECK_DOUBLE_EQ(bit_cast<double>(expected), m.Call(i, j));
5904 5905 5906 5907 5908
    }
  }
}


5909
TEST(RunFloat32Abs) {
5910
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
5911
  m.Return(m.Float32Abs(m.Parameter(0)));
5912
  FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(std::abs(i), m.Call(i)); }
5913 5914 5915 5916
}


TEST(RunFloat64Abs) {
5917
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
5918
  m.Return(m.Float64Abs(m.Parameter(0)));
5919
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(std::abs(i), m.Call(i)); }
5920 5921
}

5922 5923 5924
TEST(RunFloat64Acos) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Acos(m.Parameter(0)));
5925
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::acos(i), m.Call(i)); }
5926 5927 5928 5929 5930
}

TEST(RunFloat64Acosh) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Acosh(m.Parameter(0)));
5931
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::acosh(i), m.Call(i)); }
5932 5933 5934 5935 5936
}

TEST(RunFloat64Asin) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Asin(m.Parameter(0)));
5937
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::asin(i), m.Call(i)); }
5938 5939 5940 5941 5942
}

TEST(RunFloat64Asinh) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Asinh(m.Parameter(0)));
5943
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::asinh(i), m.Call(i)); }
5944 5945
}

5946 5947 5948 5949 5950 5951 5952
TEST(RunFloat64Atan) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Atan(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0));
  CHECK_DOUBLE_EQ(0.0, m.Call(0.0));
5953
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::atan(i), m.Call(i)); }
5954 5955
}

5956 5957 5958 5959 5960 5961 5962 5963 5964
TEST(RunFloat64Atanh) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Atanh(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(), m.Call(1.0));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-1.0));
  CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0));
  CHECK_DOUBLE_EQ(0.0, m.Call(0.0));
5965
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::atanh(i), m.Call(i)); }
5966 5967
}

5968 5969 5970 5971 5972 5973
TEST(RunFloat64Atan2) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64(),
                                              MachineType::Float64());
  m.Return(m.Float64Atan2(m.Parameter(0), m.Parameter(1)));
  FOR_FLOAT64_INPUTS(i) {
    FOR_FLOAT64_INPUTS(j) {
5974
      CHECK_DOUBLE_EQ(base::ieee754::atan2(i, j), m.Call(i, j));
5975 5976 5977 5978
    }
  }
}

5979 5980 5981 5982 5983
TEST(RunFloat64Cos) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Cos(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
5984
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::cos(i), m.Call(i)); }
5985 5986
}

5987 5988 5989 5990 5991
TEST(RunFloat64Cosh) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Cosh(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
5992
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::cosh(i), m.Call(i)); }
5993 5994
}

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
TEST(RunFloat64Exp) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Exp(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK_EQ(0.0, m.Call(-std::numeric_limits<double>::infinity()));
  CHECK_DOUBLE_EQ(1.0, m.Call(-0.0));
  CHECK_DOUBLE_EQ(1.0, m.Call(0.0));
  CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
                  m.Call(std::numeric_limits<double>::infinity()));
6005
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::exp(i), m.Call(i)); }
6006 6007
}

6008 6009 6010 6011 6012 6013 6014 6015
TEST(RunFloat64Expm1) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Expm1(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK_EQ(-1.0, m.Call(-std::numeric_limits<double>::infinity()));
  CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
                  m.Call(std::numeric_limits<double>::infinity()));
6016
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::expm1(i), m.Call(i)); }
6017 6018
}

6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
TEST(RunFloat64Log) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Log(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK(std::isnan(m.Call(-std::numeric_limits<double>::infinity())));
  CHECK(std::isnan(m.Call(-1.0)));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-0.0));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(0.0));
  CHECK_DOUBLE_EQ(0.0, m.Call(1.0));
  CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
                  m.Call(std::numeric_limits<double>::infinity()));
6031
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log(i), m.Call(i)); }
6032
}
6033

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
TEST(RunFloat64Log1p) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Log1p(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK(std::isnan(m.Call(-std::numeric_limits<double>::infinity())));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-1.0));
  CHECK_DOUBLE_EQ(0.0, m.Call(0.0));
  CHECK_DOUBLE_EQ(-0.0, m.Call(-0.0));
  CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
                  m.Call(std::numeric_limits<double>::infinity()));
6045
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log1p(i), m.Call(i)); }
6046 6047
}

6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
TEST(RunFloat64Log2) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Log2(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK(std::isnan(m.Call(-std::numeric_limits<double>::infinity())));
  CHECK(std::isnan(m.Call(-1.0)));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-0.0));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(0.0));
  CHECK_DOUBLE_EQ(0.0, m.Call(1.0));
  CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
                  m.Call(std::numeric_limits<double>::infinity()));
6060
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log2(i), m.Call(i)); }
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
}

TEST(RunFloat64Log10) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Log10(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK(std::isnan(m.Call(-std::numeric_limits<double>::infinity())));
  CHECK(std::isnan(m.Call(-1.0)));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(-0.0));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(), m.Call(0.0));
  CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
                  m.Call(std::numeric_limits<double>::infinity()));
6074
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::log10(i), m.Call(i)); }
6075 6076
}

6077 6078 6079 6080 6081 6082 6083 6084 6085
TEST(RunFloat64Cbrt) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Cbrt(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
  CHECK_DOUBLE_EQ(std::numeric_limits<double>::infinity(),
                  m.Call(std::numeric_limits<double>::infinity()));
  CHECK_DOUBLE_EQ(-std::numeric_limits<double>::infinity(),
                  m.Call(-std::numeric_limits<double>::infinity()));
6086
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::cbrt(i), m.Call(i)); }
6087 6088
}

6089 6090 6091 6092 6093
TEST(RunFloat64Sin) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Sin(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
6094
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::sin(i), m.Call(i)); }
6095 6096
}

6097 6098 6099 6100 6101
TEST(RunFloat64Sinh) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Sinh(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
6102
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::sinh(i), m.Call(i)); }
6103 6104
}

6105 6106 6107 6108 6109
TEST(RunFloat64Tan) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Tan(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
6110
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::tan(i), m.Call(i)); }
6111 6112
}

6113 6114 6115 6116 6117
TEST(RunFloat64Tanh) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
  m.Return(m.Float64Tanh(m.Parameter(0)));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::quiet_NaN())));
  CHECK(std::isnan(m.Call(std::numeric_limits<double>::signaling_NaN())));
6118
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(base::ieee754::tanh(i), m.Call(i)); }
6119 6120
}

6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
static double two_30 = 1 << 30;             // 2^30 is a smi boundary.
static double two_52 = two_30 * (1 << 22);  // 2^52 is a precision boundary.
static double kValues[] = {0.1,
                           0.2,
                           0.49999999999999994,
                           0.5,
                           0.7,
                           1.0 - std::numeric_limits<double>::epsilon(),
                           -0.1,
                           -0.49999999999999994,
                           -0.5,
                           -0.7,
                           1.1,
                           1.0 + std::numeric_limits<double>::epsilon(),
                           1.5,
                           1.7,
                           -1,
                           -1 + std::numeric_limits<double>::epsilon(),
                           -1 - std::numeric_limits<double>::epsilon(),
                           -1.1,
                           -1.5,
                           -1.7,
                           std::numeric_limits<double>::min(),
                           -std::numeric_limits<double>::min(),
                           std::numeric_limits<double>::max(),
                           -std::numeric_limits<double>::max(),
                           std::numeric_limits<double>::infinity(),
                           -std::numeric_limits<double>::infinity(),
                           two_30,
                           two_30 + 0.1,
                           two_30 + 0.5,
                           two_30 + 0.7,
                           two_30 - 1,
                           two_30 - 1 + 0.1,
                           two_30 - 1 + 0.5,
                           two_30 - 1 + 0.7,
                           -two_30,
                           -two_30 + 0.1,
                           -two_30 + 0.5,
                           -two_30 + 0.7,
                           -two_30 + 1,
                           -two_30 + 1 + 0.1,
                           -two_30 + 1 + 0.5,
                           -two_30 + 1 + 0.7,
                           two_52,
                           two_52 + 0.1,
                           two_52 + 0.5,
                           two_52 + 0.5,
                           two_52 + 0.7,
                           two_52 + 0.7,
                           two_52 - 1,
                           two_52 - 1 + 0.1,
                           two_52 - 1 + 0.5,
                           two_52 - 1 + 0.7,
                           -two_52,
                           -two_52 + 0.1,
                           -two_52 + 0.5,
                           -two_52 + 0.7,
                           -two_52 + 1,
                           -two_52 + 1 + 0.1,
                           -two_52 + 1 + 0.5,
                           -two_52 + 1 + 0.7,
                           two_30,
                           two_30 - 0.1,
                           two_30 - 0.5,
                           two_30 - 0.7,
                           two_30 - 1,
                           two_30 - 1 - 0.1,
                           two_30 - 1 - 0.5,
                           two_30 - 1 - 0.7,
                           -two_30,
                           -two_30 - 0.1,
                           -two_30 - 0.5,
                           -two_30 - 0.7,
                           -two_30 + 1,
                           -two_30 + 1 - 0.1,
                           -two_30 + 1 - 0.5,
                           -two_30 + 1 - 0.7,
                           two_52,
                           two_52 - 0.1,
                           two_52 - 0.5,
                           two_52 - 0.5,
                           two_52 - 0.7,
                           two_52 - 0.7,
                           two_52 - 1,
                           two_52 - 1 - 0.1,
                           two_52 - 1 - 0.5,
                           two_52 - 1 - 0.7,
                           -two_52,
                           -two_52 - 0.1,
                           -two_52 - 0.5,
                           -two_52 - 0.7,
                           -two_52 + 1,
                           -two_52 + 1 - 0.1,
                           -two_52 + 1 - 0.5,
                           -two_52 + 1 - 0.7};


6219
TEST(RunFloat32RoundDown) {
6220
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
6221 6222 6223 6224
  if (!m.machine()->Float32RoundDown().IsSupported()) return;

  m.Return(m.Float32RoundDown(m.Parameter(0)));

6225
  FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(i), m.Call(i)); }
6226 6227 6228
}


6229
TEST(RunFloat64RoundDown1) {
6230
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
6231
  if (!m.machine()->Float64RoundDown().IsSupported()) return;
6232 6233 6234

  m.Return(m.Float64RoundDown(m.Parameter(0)));

6235
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(i), m.Call(i)); }
6236 6237 6238
}


6239
TEST(RunFloat64RoundDown2) {
6240
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
6241
  if (!m.machine()->Float64RoundDown().IsSupported()) return;
6242 6243 6244 6245
  m.Return(m.Float64Sub(m.Float64Constant(-0.0),
                        m.Float64RoundDown(m.Float64Sub(m.Float64Constant(-0.0),
                                                        m.Parameter(0)))));

6246
  for (size_t i = 0; i < arraysize(kValues); ++i) {
6247
    CHECK_EQ(ceil(kValues[i]), m.Call(kValues[i]));
6248 6249 6250 6251
  }
}


6252
TEST(RunFloat32RoundUp) {
6253
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
6254 6255 6256
  if (!m.machine()->Float32RoundUp().IsSupported()) return;
  m.Return(m.Float32RoundUp(m.Parameter(0)));

6257
  FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(i), m.Call(i)); }
6258 6259 6260
}


6261
TEST(RunFloat64RoundUp) {
6262
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
6263 6264 6265
  if (!m.machine()->Float64RoundUp().IsSupported()) return;
  m.Return(m.Float64RoundUp(m.Parameter(0)));

6266
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(i), m.Call(i)); }
6267 6268 6269
}


6270
TEST(RunFloat32RoundTiesEven) {
6271
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
6272 6273 6274
  if (!m.machine()->Float32RoundTiesEven().IsSupported()) return;
  m.Return(m.Float32RoundTiesEven(m.Parameter(0)));

6275
  FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(nearbyint(i), m.Call(i)); }
6276 6277 6278
}


6279
TEST(RunFloat64RoundTiesEven) {
6280
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
6281 6282 6283
  if (!m.machine()->Float64RoundTiesEven().IsSupported()) return;
  m.Return(m.Float64RoundTiesEven(m.Parameter(0)));

6284
  FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(nearbyint(i), m.Call(i)); }
6285 6286 6287
}


6288
TEST(RunFloat32RoundTruncate) {
6289
  BufferedRawMachineAssemblerTester<float> m(MachineType::Float32());
6290 6291 6292 6293
  if (!m.machine()->Float32RoundTruncate().IsSupported()) return;

  m.Return(m.Float32RoundTruncate(m.Parameter(0)));

6294
  FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(i), m.Call(i)); }
6295 6296 6297
}


6298
TEST(RunFloat64RoundTruncate) {
6299
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
6300
  if (!m.machine()->Float64RoundTruncate().IsSupported()) return;
6301
  m.Return(m.Float64RoundTruncate(m.Parameter(0)));
6302
  for (size_t i = 0; i < arraysize(kValues); ++i) {
6303
    CHECK_EQ(trunc(kValues[i]), m.Call(kValues[i]));
6304 6305 6306 6307 6308
  }
}


TEST(RunFloat64RoundTiesAway) {
6309
  BufferedRawMachineAssemblerTester<double> m(MachineType::Float64());
6310
  if (!m.machine()->Float64RoundTiesAway().IsSupported()) return;
6311
  m.Return(m.Float64RoundTiesAway(m.Parameter(0)));
6312
  for (size_t i = 0; i < arraysize(kValues); ++i) {
6313
    CHECK_EQ(round(kValues[i]), m.Call(kValues[i]));
6314 6315
  }
}
6316

6317 6318 6319 6320 6321

#if !USE_SIMULATOR

namespace {

6322
int32_t const kMagicFoo0 = 0xDEADBEEF;
6323 6324 6325 6326 6327 6328

int32_t foo0() { return kMagicFoo0; }


int32_t foo1(int32_t x) { return x; }

6329
int32_t foo2(int32_t x, int32_t y) { return base::SubWithWraparound(x, y); }
6330

6331 6332
uint32_t foo8(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
              uint32_t f, uint32_t g, uint32_t h) {
6333 6334 6335
  return a + b + c + d + e + f + g + h;
}

6336 6337
uint32_t foo9(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
              uint32_t f, uint32_t g, uint32_t h, uint32_t i) {
6338 6339 6340
  return a + b + c + d + e + f + g + h + i;
}

6341 6342 6343 6344 6345 6346
}  // namespace


TEST(RunCallCFunction0) {
  auto* foo0_ptr = &foo0;
  RawMachineAssemblerTester<int32_t> m;
6347
  Node* function = m.LoadFromPointer(&foo0_ptr, MachineType::Pointer());
6348
  m.Return(m.CallCFunction(function, MachineType::Int32()));
6349 6350 6351 6352 6353 6354
  CHECK_EQ(kMagicFoo0, m.Call());
}


TEST(RunCallCFunction1) {
  auto* foo1_ptr = &foo1;
6355 6356
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
  Node* function = m.LoadFromPointer(&foo1_ptr, MachineType::Pointer());
6357 6358 6359
  m.Return(
      m.CallCFunction(function, MachineType::Int32(),
                      std::make_pair(MachineType::Int32(), m.Parameter(0))));
6360
  FOR_INT32_INPUTS(i) {
6361
    int32_t const expected = i;
6362 6363 6364 6365 6366 6367 6368
    CHECK_EQ(expected, m.Call(expected));
  }
}


TEST(RunCallCFunction2) {
  auto* foo2_ptr = &foo2;
6369 6370 6371
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32(),
                                       MachineType::Int32());
  Node* function = m.LoadFromPointer(&foo2_ptr, MachineType::Pointer());
6372 6373 6374 6375
  m.Return(
      m.CallCFunction(function, MachineType::Int32(),
                      std::make_pair(MachineType::Int32(), m.Parameter(0)),
                      std::make_pair(MachineType::Int32(), m.Parameter(1))));
6376
  FOR_INT32_INPUTS(i) {
6377
    int32_t const x = i;
6378
    FOR_INT32_INPUTS(j) {
6379
      int32_t const y = j;
6380
      CHECK_EQ(base::SubWithWraparound(x, y), m.Call(x, y));
6381 6382 6383 6384 6385 6386 6387
    }
  }
}


TEST(RunCallCFunction8) {
  auto* foo8_ptr = &foo8;
6388 6389
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
  Node* function = m.LoadFromPointer(&foo8_ptr, MachineType::Pointer());
6390
  Node* param = m.Parameter(0);
6391 6392 6393 6394 6395 6396 6397 6398 6399
  m.Return(m.CallCFunction(function, MachineType::Int32(),
      std::make_pair(MachineType::Int32(), param),
      std::make_pair(MachineType::Int32(), param),
      std::make_pair(MachineType::Int32(), param),
      std::make_pair(MachineType::Int32(), param),
      std::make_pair(MachineType::Int32(), param),
      std::make_pair(MachineType::Int32(), param),
      std::make_pair(MachineType::Int32(), param),
      std::make_pair(MachineType::Int32(), param)));
6400
  FOR_INT32_INPUTS(i) {
6401
    int32_t const x = i;
6402
    CHECK_EQ(base::MulWithWraparound(x, 8), m.Call(x));
6403 6404
  }
}
6405 6406 6407 6408 6409 6410

TEST(RunCallCFunction9) {
  auto* foo9_ptr = &foo9;
  RawMachineAssemblerTester<int32_t> m(MachineType::Int32());
  Node* function = m.LoadFromPointer(&foo9_ptr, MachineType::Pointer());
  Node* param = m.Parameter(0);
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
  m.Return(
      m.CallCFunction(function, MachineType::Int32(),
                      std::make_pair(MachineType::Int32(), param),
                      std::make_pair(MachineType::Int32(),
                                     m.Int32Add(param, m.Int32Constant(1))),
                      std::make_pair(MachineType::Int32(),
                                     m.Int32Add(param, m.Int32Constant(2))),
                      std::make_pair(MachineType::Int32(),
                                     m.Int32Add(param, m.Int32Constant(3))),
                      std::make_pair(MachineType::Int32(),
                                     m.Int32Add(param, m.Int32Constant(4))),
                      std::make_pair(MachineType::Int32(),
                                     m.Int32Add(param, m.Int32Constant(5))),
                      std::make_pair(MachineType::Int32(),
                                     m.Int32Add(param, m.Int32Constant(6))),
                      std::make_pair(MachineType::Int32(),
                                     m.Int32Add(param, m.Int32Constant(7))),
                      std::make_pair(MachineType::Int32(),
                                     m.Int32Add(param, m.Int32Constant(8)))));
6430
  FOR_INT32_INPUTS(i) {
6431
    int32_t const x = i;
6432 6433
    CHECK_EQ(base::AddWithWraparound(base::MulWithWraparound(x, 9), 36),
             m.Call(x));
6434 6435
  }
}
6436
#endif  // USE_SIMULATOR
6437 6438

#if V8_TARGET_ARCH_64_BIT
6439
// TODO(titzer): run int64 tests on all platforms when supported.
6440

6441 6442 6443 6444 6445
TEST(RunChangeFloat64ToInt64) {
  BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
  m.Return(m.ChangeFloat64ToInt64(m.Parameter(0)));

  FOR_INT64_INPUTS(i) {
6446 6447
    double input = static_cast<double>(i);
    if (static_cast<int64_t>(input) == i) {
6448 6449 6450 6451 6452
      CHECK_EQ(static_cast<int64_t>(input), m.Call(input));
    }
  }
}

6453 6454 6455 6456
TEST(RunChangeInt64ToFloat64) {
  BufferedRawMachineAssemblerTester<double> m(MachineType::Int64());
  m.Return(m.ChangeInt64ToFloat64(m.Parameter(0)));
  FOR_INT64_INPUTS(i) {
6457 6458 6459
    double output = static_cast<double>(i);
    if (static_cast<int64_t>(output) == i) {
      CHECK_EQ(output, m.Call(i));
6460 6461 6462 6463
    }
  }
}

6464 6465
TEST(RunBitcastInt64ToFloat64) {
  int64_t input = 1;
6466
  Float64 output;
6467 6468
  RawMachineAssemblerTester<int32_t> m;
  m.StoreToPointer(
6469
      output.get_bits_address(), MachineRepresentation::kFloat64,
6470
      m.BitcastInt64ToFloat64(m.LoadFromPointer(&input, MachineType::Int64())));
6471
  m.Return(m.Int32Constant(11));
6472
  FOR_INT64_INPUTS(i) {
6473
    input = i;
6474
    CHECK_EQ(11, m.Call());
6475 6476
    Float64 expected = Float64::FromBits(input);
    CHECK_EQ(expected.get_bits(), output.get_bits());
6477 6478 6479 6480 6481
  }
}


TEST(RunBitcastFloat64ToInt64) {
6482
  BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
6483 6484

  m.Return(m.BitcastFloat64ToInt64(m.Parameter(0)));
6485
  FOR_FLOAT64_INPUTS(i) { CHECK_EQ(bit_cast<int64_t>(i), m.Call(i)); }
6486 6487 6488
}


6489
TEST(RunTryTruncateFloat32ToInt64WithoutCheck) {
6490
  BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float32());
6491
  m.Return(m.TryTruncateFloat32ToInt64(m.Parameter(0)));
6492 6493

  FOR_INT64_INPUTS(i) {
6494
    float input = static_cast<float>(i);
6495 6496
    if (input < static_cast<float>(INT64_MAX) &&
        input >= static_cast<float>(INT64_MIN)) {
6497 6498 6499
      CHECK_EQ(static_cast<int64_t>(input), m.Call(input));
    }
  }
6500 6501 6502 6503 6504
}


TEST(RunTryTruncateFloat32ToInt64WithCheck) {
  int64_t success = 0;
6505
  BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float32());
6506 6507 6508
  Node* trunc = m.TryTruncateFloat32ToInt64(m.Parameter(0));
  Node* val = m.Projection(0, trunc);
  Node* check = m.Projection(1, trunc);
6509
  m.StoreToPointer(&success, MachineRepresentation::kWord64, check);
6510 6511 6512
  m.Return(val);

  FOR_FLOAT32_INPUTS(i) {
6513 6514 6515
    if (i < static_cast<float>(INT64_MAX) &&
        i >= static_cast<float>(INT64_MIN)) {
      CHECK_EQ(static_cast<int64_t>(i), m.Call(i));
6516 6517
      CHECK_NE(0, success);
    } else {
6518
      m.Call(i);
6519
      CHECK_EQ(0, success);
6520 6521 6522 6523 6524
    }
  }
}


6525
TEST(RunTryTruncateFloat64ToInt64WithoutCheck) {
6526
  BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
6527
  m.Return(m.TryTruncateFloat64ToInt64(m.Parameter(0)));
6528 6529

  FOR_INT64_INPUTS(i) {
6530
    double input = static_cast<double>(i);
6531
    CHECK_EQ(static_cast<int64_t>(input), m.Call(input));
6532 6533
  }
}
6534 6535


6536 6537
TEST(RunTryTruncateFloat64ToInt64WithCheck) {
  int64_t success = 0;
6538
  BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
6539 6540 6541
  Node* trunc = m.TryTruncateFloat64ToInt64(m.Parameter(0));
  Node* val = m.Projection(0, trunc);
  Node* check = m.Projection(1, trunc);
6542
  m.StoreToPointer(&success, MachineRepresentation::kWord64, check);
6543 6544 6545
  m.Return(val);

  FOR_FLOAT64_INPUTS(i) {
6546 6547
    if (i < static_cast<double>(INT64_MAX) &&
        i >= static_cast<double>(INT64_MIN)) {
6548
      // Conversions within this range should succeed.
6549
      CHECK_EQ(static_cast<int64_t>(i), m.Call(i));
6550 6551
      CHECK_NE(0, success);
    } else {
6552
      m.Call(i);
6553 6554 6555 6556 6557 6558
      CHECK_EQ(0, success);
    }
  }
}


6559
TEST(RunTryTruncateFloat32ToUint64WithoutCheck) {
6560
  BufferedRawMachineAssemblerTester<uint64_t> m(MachineType::Float32());
6561
  m.Return(m.TryTruncateFloat32ToUint64(m.Parameter(0)));
6562 6563

  FOR_UINT64_INPUTS(i) {
6564
    float input = static_cast<float>(i);
6565 6566 6567
    // This condition on 'input' is required because
    // static_cast<float>(UINT64_MAX) results in a value outside uint64 range.
    if (input < static_cast<float>(UINT64_MAX)) {
6568 6569 6570 6571 6572 6573
      CHECK_EQ(static_cast<uint64_t>(input), m.Call(input));
    }
  }
}


6574 6575 6576 6577 6578 6579
TEST(RunTryTruncateFloat32ToUint64WithCheck) {
  int64_t success = 0;
  BufferedRawMachineAssemblerTester<uint64_t> m(MachineType::Float32());
  Node* trunc = m.TryTruncateFloat32ToUint64(m.Parameter(0));
  Node* val = m.Projection(0, trunc);
  Node* check = m.Projection(1, trunc);
6580
  m.StoreToPointer(&success, MachineRepresentation::kWord64, check);
6581 6582 6583
  m.Return(val);

  FOR_FLOAT32_INPUTS(i) {
6584
    if (i < static_cast<float>(UINT64_MAX) && i > -1.0) {
6585
      // Conversions within this range should succeed.
6586
      CHECK_EQ(static_cast<uint64_t>(i), m.Call(i));
6587 6588
      CHECK_NE(0, success);
    } else {
6589
      m.Call(i);
6590 6591 6592 6593 6594 6595
      CHECK_EQ(0, success);
    }
  }
}


6596
TEST(RunTryTruncateFloat64ToUint64WithoutCheck) {
6597
  BufferedRawMachineAssemblerTester<uint64_t> m(MachineType::Float64());
ahaas's avatar
ahaas committed
6598
  m.Return(m.TryTruncateFloat64ToUint64(m.Parameter(0)));
6599 6600

  FOR_UINT64_INPUTS(j) {
6601
    double input = static_cast<double>(j);
6602

6603
    if (input < static_cast<float>(UINT64_MAX)) {
6604 6605 6606
      CHECK_EQ(static_cast<uint64_t>(input), m.Call(input));
    }
  }
6607 6608 6609 6610 6611
}


TEST(RunTryTruncateFloat64ToUint64WithCheck) {
  int64_t success = 0;
6612
  BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Float64());
6613 6614 6615
  Node* trunc = m.TryTruncateFloat64ToUint64(m.Parameter(0));
  Node* val = m.Projection(0, trunc);
  Node* check = m.Projection(1, trunc);
6616
  m.StoreToPointer(&success, MachineRepresentation::kWord64, check);
6617
  m.Return(val);
6618 6619

  FOR_FLOAT64_INPUTS(i) {
6620
    if (i < 18446744073709551616.0 && i > -1) {
6621
      // Conversions within this range should succeed.
6622
      CHECK_EQ(static_cast<uint64_t>(i), static_cast<uint64_t>(m.Call(i)));
6623 6624
      CHECK_NE(0, success);
    } else {
6625
      m.Call(i);
6626
      CHECK_EQ(0, success);
6627 6628 6629 6630 6631
    }
  }
}


6632
TEST(RunRoundInt64ToFloat32) {
6633
  BufferedRawMachineAssemblerTester<float> m(MachineType::Int64());
6634
  m.Return(m.RoundInt64ToFloat32(m.Parameter(0)));
6635
  FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast<float>(i), m.Call(i)); }
6636 6637 6638
}


6639
TEST(RunRoundInt64ToFloat64) {
6640
  BufferedRawMachineAssemblerTester<double> m(MachineType::Int64());
6641
  m.Return(m.RoundInt64ToFloat64(m.Parameter(0)));
6642
  FOR_INT64_INPUTS(i) { CHECK_EQ(static_cast<double>(i), m.Call(i)); }
6643 6644 6645
}


6646
TEST(RunRoundUint64ToFloat64) {
6647 6648 6649 6650
  struct {
    uint64_t input;
    uint64_t expected;
  } values[] = {{0x0, 0x0},
6651 6652 6653 6654 6655
                {0x1, 0x3FF0000000000000},
                {0xFFFFFFFF, 0x41EFFFFFFFE00000},
                {0x1B09788B, 0x41BB09788B000000},
                {0x4C5FCE8, 0x419317F3A0000000},
                {0xCC0DE5BF, 0x41E981BCB7E00000},
6656 6657 6658 6659 6660 6661
                {0x2, 0x4000000000000000},
                {0x3, 0x4008000000000000},
                {0x4, 0x4010000000000000},
                {0x5, 0x4014000000000000},
                {0x8, 0x4020000000000000},
                {0x9, 0x4022000000000000},
6662 6663 6664 6665 6666 6667 6668 6669
                {0xFFFFFFFFFFFFFFFF, 0x43F0000000000000},
                {0xFFFFFFFFFFFFFFFE, 0x43F0000000000000},
                {0xFFFFFFFFFFFFFFFD, 0x43F0000000000000},
                {0x100000000, 0x41F0000000000000},
                {0xFFFFFFFF00000000, 0x43EFFFFFFFE00000},
                {0x1B09788B00000000, 0x43BB09788B000000},
                {0x4C5FCE800000000, 0x439317F3A0000000},
                {0xCC0DE5BF00000000, 0x43E981BCB7E00000},
6670 6671 6672 6673 6674 6675
                {0x200000000, 0x4200000000000000},
                {0x300000000, 0x4208000000000000},
                {0x400000000, 0x4210000000000000},
                {0x500000000, 0x4214000000000000},
                {0x800000000, 0x4220000000000000},
                {0x900000000, 0x4222000000000000},
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
                {0x273A798E187937A3, 0x43C39D3CC70C3C9C},
                {0xECE3AF835495A16B, 0x43ED9C75F06A92B4},
                {0xB668ECC11223344, 0x43A6CD1D98224467},
                {0x9E, 0x4063C00000000000},
                {0x43, 0x4050C00000000000},
                {0xAF73, 0x40E5EE6000000000},
                {0x116B, 0x40B16B0000000000},
                {0x658ECC, 0x415963B300000000},
                {0x2B3B4C, 0x41459DA600000000},
                {0x88776655, 0x41E10EECCAA00000},
                {0x70000000, 0x41DC000000000000},
                {0x7200000, 0x419C800000000000},
                {0x7FFFFFFF, 0x41DFFFFFFFC00000},
                {0x56123761, 0x41D5848DD8400000},
                {0x7FFFFF00, 0x41DFFFFFC0000000},
                {0x761C4761EEEEEEEE, 0x43DD8711D87BBBBC},
                {0x80000000EEEEEEEE, 0x43E00000001DDDDE},
                {0x88888888DDDDDDDD, 0x43E11111111BBBBC},
                {0xA0000000DDDDDDDD, 0x43E40000001BBBBC},
                {0xDDDDDDDDAAAAAAAA, 0x43EBBBBBBBB55555},
                {0xE0000000AAAAAAAA, 0x43EC000000155555},
                {0xEEEEEEEEEEEEEEEE, 0x43EDDDDDDDDDDDDE},
                {0xFFFFFFFDEEEEEEEE, 0x43EFFFFFFFBDDDDE},
                {0xF0000000DDDDDDDD, 0x43EE0000001BBBBC},
                {0x7FFFFFDDDDDDDD, 0x435FFFFFF7777777},
                {0x3FFFFFAAAAAAAA, 0x434FFFFFD5555555},
                {0x1FFFFFAAAAAAAA, 0x433FFFFFAAAAAAAA},
                {0xFFFFF, 0x412FFFFE00000000},
                {0x7FFFF, 0x411FFFFC00000000},
                {0x3FFFF, 0x410FFFF800000000},
                {0x1FFFF, 0x40FFFFF000000000},
                {0xFFFF, 0x40EFFFE000000000},
                {0x7FFF, 0x40DFFFC000000000},
                {0x3FFF, 0x40CFFF8000000000},
                {0x1FFF, 0x40BFFF0000000000},
                {0xFFF, 0x40AFFE0000000000},
                {0x7FF, 0x409FFC0000000000},
                {0x3FF, 0x408FF80000000000},
                {0x1FF, 0x407FF00000000000},
                {0x3FFFFFFFFFFF, 0x42CFFFFFFFFFFF80},
                {0x1FFFFFFFFFFF, 0x42BFFFFFFFFFFF00},
                {0xFFFFFFFFFFF, 0x42AFFFFFFFFFFE00},
                {0x7FFFFFFFFFF, 0x429FFFFFFFFFFC00},
                {0x3FFFFFFFFFF, 0x428FFFFFFFFFF800},
                {0x1FFFFFFFFFF, 0x427FFFFFFFFFF000},
                {0x8000008000000000, 0x43E0000010000000},
                {0x8000008000000001, 0x43E0000010000000},
                {0x8000000000000400, 0x43E0000000000000},
                {0x8000000000000401, 0x43E0000000000001}};
6725

6726
  BufferedRawMachineAssemblerTester<double> m(MachineType::Uint64());
6727
  m.Return(m.RoundUint64ToFloat64(m.Parameter(0)));
6728

6729
  for (size_t i = 0; i < arraysize(values); i++) {
6730 6731
    CHECK_EQ(bit_cast<double>(values[i].expected), m.Call(values[i].input));
  }
6732 6733 6734
}


6735 6736 6737 6738 6739
TEST(RunRoundUint64ToFloat32) {
  struct {
    uint64_t input;
    uint32_t expected;
  } values[] = {{0x0, 0x0},
6740 6741 6742 6743 6744
                {0x1, 0x3F800000},
                {0xFFFFFFFF, 0x4F800000},
                {0x1B09788B, 0x4DD84BC4},
                {0x4C5FCE8, 0x4C98BF9D},
                {0xCC0DE5BF, 0x4F4C0DE6},
6745 6746 6747
                {0x2, 0x40000000},
                {0x3, 0x40400000},
                {0x4, 0x40800000},
6748
                {0x5, 0x40A00000},
6749 6750
                {0x8, 0x41000000},
                {0x9, 0x41100000},
6751 6752 6753
                {0xFFFFFFFFFFFFFFFF, 0x5F800000},
                {0xFFFFFFFFFFFFFFFE, 0x5F800000},
                {0xFFFFFFFFFFFFFFFD, 0x5F800000},
6754
                {0x0, 0x0},
6755 6756 6757 6758 6759
                {0x100000000, 0x4F800000},
                {0xFFFFFFFF00000000, 0x5F800000},
                {0x1B09788B00000000, 0x5DD84BC4},
                {0x4C5FCE800000000, 0x5C98BF9D},
                {0xCC0DE5BF00000000, 0x5F4C0DE6},
6760 6761 6762
                {0x200000000, 0x50000000},
                {0x300000000, 0x50400000},
                {0x400000000, 0x50800000},
6763
                {0x500000000, 0x50A00000},
6764 6765
                {0x800000000, 0x51000000},
                {0x900000000, 0x51100000},
6766 6767 6768 6769
                {0x273A798E187937A3, 0x5E1CE9E6},
                {0xECE3AF835495A16B, 0x5F6CE3B0},
                {0xB668ECC11223344, 0x5D3668ED},
                {0x9E, 0x431E0000},
6770
                {0x43, 0x42860000},
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
                {0xAF73, 0x472F7300},
                {0x116B, 0x458B5800},
                {0x658ECC, 0x4ACB1D98},
                {0x2B3B4C, 0x4A2CED30},
                {0x88776655, 0x4F087766},
                {0x70000000, 0x4EE00000},
                {0x7200000, 0x4CE40000},
                {0x7FFFFFFF, 0x4F000000},
                {0x56123761, 0x4EAC246F},
                {0x7FFFFF00, 0x4EFFFFFE},
                {0x761C4761EEEEEEEE, 0x5EEC388F},
                {0x80000000EEEEEEEE, 0x5F000000},
                {0x88888888DDDDDDDD, 0x5F088889},
                {0xA0000000DDDDDDDD, 0x5F200000},
                {0xDDDDDDDDAAAAAAAA, 0x5F5DDDDE},
                {0xE0000000AAAAAAAA, 0x5F600000},
                {0xEEEEEEEEEEEEEEEE, 0x5F6EEEEF},
                {0xFFFFFFFDEEEEEEEE, 0x5F800000},
                {0xF0000000DDDDDDDD, 0x5F700000},
                {0x7FFFFFDDDDDDDD, 0x5B000000},
                {0x3FFFFFAAAAAAAA, 0x5A7FFFFF},
                {0x1FFFFFAAAAAAAA, 0x59FFFFFD},
                {0xFFFFF, 0x497FFFF0},
                {0x7FFFF, 0x48FFFFE0},
                {0x3FFFF, 0x487FFFC0},
                {0x1FFFF, 0x47FFFF80},
                {0xFFFF, 0x477FFF00},
                {0x7FFF, 0x46FFFE00},
                {0x3FFF, 0x467FFC00},
                {0x1FFF, 0x45FFF800},
                {0xFFF, 0x457FF000},
                {0x7FF, 0x44FFE000},
                {0x3FF, 0x447FC000},
                {0x1FF, 0x43FF8000},
                {0x3FFFFFFFFFFF, 0x56800000},
                {0x1FFFFFFFFFFF, 0x56000000},
                {0xFFFFFFFFFFF, 0x55800000},
                {0x7FFFFFFFFFF, 0x55000000},
                {0x3FFFFFFFFFF, 0x54800000},
                {0x1FFFFFFFFFF, 0x54000000},
                {0x8000008000000000, 0x5F000000},
                {0x8000008000000001, 0x5F000001},
                {0x8000000000000400, 0x5F000000},
                {0x8000000000000401, 0x5F000000}};
6815

6816
  BufferedRawMachineAssemblerTester<float> m(MachineType::Uint64());
6817 6818
  m.Return(m.RoundUint64ToFloat32(m.Parameter(0)));

6819
  for (size_t i = 0; i < arraysize(values); i++) {
6820 6821 6822 6823 6824
    CHECK_EQ(bit_cast<float>(values[i].expected), m.Call(values[i].input));
  }
}


6825
#endif
6826 6827 6828 6829 6830


TEST(RunBitcastFloat32ToInt32) {
  float input = 32.25;
  RawMachineAssemblerTester<int32_t> m;
6831 6832
  m.Return(m.BitcastFloat32ToInt32(
      m.LoadFromPointer(&input, MachineType::Float32())));
6833
  FOR_FLOAT32_INPUTS(i) {
6834
    input = i;
6835 6836 6837 6838 6839 6840
    int32_t expected = bit_cast<int32_t>(input);
    CHECK_EQ(expected, m.Call());
  }
}


6841 6842 6843
TEST(RunRoundInt32ToFloat32) {
  BufferedRawMachineAssemblerTester<float> m(MachineType::Int32());
  m.Return(m.RoundInt32ToFloat32(m.Parameter(0)));
6844
  FOR_INT32_INPUTS(i) {
6845 6846
    volatile float expected = static_cast<float>(i);
    CHECK_EQ(expected, m.Call(i));
6847
  }
6848 6849 6850
}


6851 6852 6853
TEST(RunRoundUint32ToFloat32) {
  BufferedRawMachineAssemblerTester<float> m(MachineType::Uint32());
  m.Return(m.RoundUint32ToFloat32(m.Parameter(0)));
6854
  FOR_UINT32_INPUTS(i) {
6855 6856
    volatile float expected = static_cast<float>(i);
    CHECK_EQ(expected, m.Call(i));
6857
  }
6858 6859 6860
}


6861 6862
TEST(RunBitcastInt32ToFloat32) {
  int32_t input = 1;
6863
  Float32 output;
6864 6865
  RawMachineAssemblerTester<int32_t> m;
  m.StoreToPointer(
6866
      output.get_bits_address(), MachineRepresentation::kFloat32,
6867
      m.BitcastInt32ToFloat32(m.LoadFromPointer(&input, MachineType::Int32())));
6868 6869
  m.Return(m.Int32Constant(11));
  FOR_INT32_INPUTS(i) {
6870
    input = i;
6871
    CHECK_EQ(11, m.Call());
6872 6873
    Float32 expected = Float32::FromBits(input);
    CHECK_EQ(expected.get_bits(), output.get_bits());
6874 6875
  }
}
6876 6877 6878


TEST(RunComputedCodeObject) {
6879
  RawMachineAssemblerTester<int32_t> a;
6880
  a.Return(a.Int32Constant(33));
6881
  CHECK_EQ(33, a.Call());
6882

6883
  RawMachineAssemblerTester<int32_t> b;
6884
  b.Return(b.Int32Constant(44));
6885
  CHECK_EQ(44, b.Call());
6886

6887
  RawMachineAssemblerTester<int32_t> r(MachineType::Int32());
6888 6889 6890
  RawMachineLabel tlabel;
  RawMachineLabel flabel;
  RawMachineLabel merge;
6891 6892
  r.Branch(r.Parameter(0), &tlabel, &flabel);
  r.Bind(&tlabel);
6893
  Node* fa = r.HeapConstant(a.GetCode());
6894 6895
  r.Goto(&merge);
  r.Bind(&flabel);
6896
  Node* fb = r.HeapConstant(b.GetCode());
6897 6898
  r.Goto(&merge);
  r.Bind(&merge);
6899
  Node* phi = r.Phi(MachineRepresentation::kWord32, fa, fb);
6900 6901 6902

  // TODO(titzer): all this descriptor hackery is just to call the above
  // functions as code objects instead of direct addresses.
6903
  CSignatureOf<int32_t> sig;
6904 6905 6906
  CallDescriptor* c = Linkage::GetSimplifiedCDescriptor(r.zone(), &sig);
  LinkageLocation ret[] = {c->GetReturnLocation(0)};
  Signature<LinkageLocation> loc(1, 0, ret);
6907
  auto call_descriptor = new (r.zone()) CallDescriptor(  // --
6908
      CallDescriptor::kCallCodeObject,                   // kind
6909
      MachineType::AnyTagged(),                          // target_type
6910 6911 6912 6913 6914 6915 6916 6917
      c->GetInputLocation(0),                            // target_loc
      &loc,                                              // location_sig
      0,                                                 // stack count
      Operator::kNoProperties,                           // properties
      c->CalleeSavedRegisters(),                         // callee saved
      c->CalleeSavedFPRegisters(),                       // callee saved FP
      CallDescriptor::kNoFlags,                          // flags
      "c-call-as-code");
6918
  Node* call = r.AddNode(r.common()->Call(call_descriptor), phi);
6919 6920 6921 6922 6923
  r.Return(call);

  CHECK_EQ(33, r.Call(1));
  CHECK_EQ(44, r.Call(0));
}
6924

6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
TEST(ParentFramePointer) {
  RawMachineAssemblerTester<int32_t> r(MachineType::Int32());
  RawMachineLabel tlabel;
  RawMachineLabel flabel;
  RawMachineLabel merge;
  Node* frame = r.LoadFramePointer();
  Node* parent_frame = r.LoadParentFramePointer();
  frame = r.Load(MachineType::IntPtr(), frame);
  r.Branch(r.WordEqual(frame, parent_frame), &tlabel, &flabel);
  r.Bind(&tlabel);
  Node* fa = r.Int32Constant(1);
  r.Goto(&merge);
  r.Bind(&flabel);
  Node* fb = r.Int32Constant(0);
  r.Goto(&merge);
  r.Bind(&merge);
  Node* phi = r.Phi(MachineRepresentation::kWord32, fa, fb);
  r.Return(phi);
  CHECK_EQ(1, r.Call(1));
}

6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
#if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64

TEST(StackSlotAlignment) {
  RawMachineAssemblerTester<int32_t> r;
  RawMachineLabel tlabel;
  RawMachineLabel flabel;
  RawMachineLabel merge;

  int alignments[] = {4, 8, 16};
  int alignment_count = arraysize(alignments);

  Node* alignment_counter = r.Int32Constant(0);
  for (int i = 0; i < alignment_count; i++) {
    for (int j = 0; j < 5; j++) {
      Node* stack_slot =
          r.StackSlot(MachineRepresentation::kWord32, alignments[i]);
      alignment_counter = r.Int32Add(
          alignment_counter,
          r.Word32And(stack_slot, r.Int32Constant(alignments[i] - 1)));
    }
  }

  r.Return(alignment_counter);
6969
  CHECK_EQ(0, r.Call());
6970 6971 6972 6973
}

#endif  // V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64

6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
#if V8_TARGET_ARCH_64_BIT

TEST(Regression5923) {
  {
    BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Int64());
    m.Return(m.Int64Add(
        m.Word64Shr(m.Parameter(0), m.Int64Constant(4611686018427387888)),
        m.Parameter(0)));
    int64_t input = 16;
    m.Call(input);
  }
  {
    BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Int64());
    m.Return(m.Int64Add(
        m.Parameter(0),
        m.Word64Shr(m.Parameter(0), m.Int64Constant(4611686018427387888))));
    int64_t input = 16;
    m.Call(input);
  }
}

6995 6996 6997
TEST(Regression5951) {
  BufferedRawMachineAssemblerTester<int64_t> m(MachineType::Int64());
  m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(0)),
6998
                       m.Int64Constant(0xFFFFFFFFFFFFFFFFl)));
6999 7000 7001 7002
  int64_t input = 1234;
  CHECK_EQ(input, m.Call(input));
}

7003 7004 7005 7006 7007 7008 7009
TEST(Regression6046a) {
  BufferedRawMachineAssemblerTester<int64_t> m;
  m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(0), m.Int64Constant(0)),
                       m.Int64Constant(64)));
  CHECK_EQ(0, m.Call());
}

7010 7011 7012 7013 7014 7015 7016 7017 7018
TEST(Regression6122) {
  BufferedRawMachineAssemblerTester<int64_t> m;
  m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(59), m.Int64Constant(-1)),
                       m.Int64Constant(0)));
  CHECK_EQ(59, m.Call());
}

#endif  // V8_TARGET_ARCH_64_BIT

7019 7020 7021 7022 7023 7024 7025
TEST(Regression6046b) {
  BufferedRawMachineAssemblerTester<int32_t> m;
  m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(0), m.Int32Constant(0)),
                       m.Int32Constant(32)));
  CHECK_EQ(0, m.Call());
}

7026 7027 7028 7029 7030 7031
TEST(Regression6122b) {
  BufferedRawMachineAssemblerTester<int32_t> m;
  m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(59), m.Int32Constant(-1)),
                       m.Int32Constant(0)));
  CHECK_EQ(59, m.Call());
}
7032

7033 7034 7035 7036 7037 7038 7039 7040 7041
TEST(Regression6028) {
  BufferedRawMachineAssemblerTester<int32_t> m;
  m.Return(m.Word32Equal(
      m.Word32And(m.Int32Constant(0x23),
                  m.Word32Sar(m.Int32Constant(1), m.Int32Constant(18))),
      m.Int32Constant(0)));
  CHECK_EQ(1, m.Call());
}

7042 7043 7044
TEST(Regression5951_32bit) {
  BufferedRawMachineAssemblerTester<int32_t> m(MachineType::Int32());
  m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(0)),
7045
                       m.Int32Constant(0xFFFFFFFF)));
7046 7047 7048 7049
  int32_t input = 1234;
  CHECK_EQ(input, m.Call(input));
}

7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
TEST(Regression738952) {
  RawMachineAssemblerTester<int32_t> m;

  int32_t sentinel = 1234;
  // The index can be any value where the lower bits are 0 and the upper bits
  // are not 0;
  int64_t index = 3224;
  index <<= 32;
  double d = static_cast<double>(index);
  m.Return(m.Load(MachineType::Int32(), m.PointerConstant(&sentinel),
                  m.TruncateFloat64ToWord32(m.Float64Constant(d))));
  CHECK_EQ(sentinel, m.Call());
}
7063

7064 7065 7066
}  // namespace compiler
}  // namespace internal
}  // namespace v8