builtins-mips64.cc 142 KB
Newer Older
1 2 3 4 5 6
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_MIPS64

7
#include "src/api/api-arguments.h"
8
#include "src/codegen/code-factory.h"
9
#include "src/codegen/interface-descriptors-inl.h"
10
#include "src/debug/debug.h"
11
#include "src/deoptimizer/deoptimizer.h"
12 13
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
14
#include "src/logging/counters.h"
15
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
16
#include "src/codegen/macro-assembler-inl.h"
17
#include "src/codegen/mips64/constants-mips64.h"
18
#include "src/codegen/register-configuration.h"
19
#include "src/heap/heap-inl.h"
20
#include "src/objects/cell.h"
21
#include "src/objects/foreign.h"
22
#include "src/objects/heap-number.h"
23
#include "src/objects/js-generator.h"
24
#include "src/objects/objects-inl.h"
25
#include "src/objects/smi.h"
26
#include "src/runtime/runtime.h"
27 28

#if V8_ENABLE_WEBASSEMBLY
29
#include "src/wasm/wasm-linkage.h"
30
#include "src/wasm/wasm-objects.h"
31
#endif  // V8_ENABLE_WEBASSEMBLY
32 33 34 35 36 37

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

38
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
39
  __ li(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
40 41
  __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
          RelocInfo::CODE_TARGET);
42 43
}

44 45 46
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
                                           Runtime::FunctionId function_id) {
  // ----------- S t a t e -------------
47
  //  -- a0 : actual argument count
48 49 50 51 52
  //  -- a1 : target function (preserved for callee)
  //  -- a3 : new target (preserved for callee)
  // -----------------------------------
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
53 54 55 56 57 58
    // Push a copy of the target function, the new target and the actual
    // argument count.
    // Push function as parameter to the runtime call.
    __ SmiTag(kJavaScriptCallArgCountRegister);
    __ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
            kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister);
59 60

    __ CallRuntime(function_id, 1);
61 62 63 64
    // Restore target function, new target and actual argument count.
    __ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
           kJavaScriptCallArgCountRegister);
    __ SmiUntag(kJavaScriptCallArgCountRegister);
65
  }
66

67 68 69
  static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
  __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ Jump(a2);
70 71
}

72 73
namespace {

74
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
75 76 77
  // ----------- S t a t e -------------
  //  -- a0     : number of arguments
  //  -- a1     : constructor function
78
  //  -- a3     : new target
79
  //  -- cp     : context
80 81 82 83 84 85 86 87
  //  -- ra     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  // Enter a construct frame.
  {
    FrameScope scope(masm, StackFrame::CONSTRUCT);

88 89
    // Preserve the incoming parameters on the stack.
    __ SmiTag(a0);
90
    __ Push(cp, a0);
91
    __ SmiUntag(a0);
92

93 94 95 96 97 98 99 100
    // Set up pointer to last argument (skip receiver).
    __ Daddu(
        t2, fp,
        Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize));
    // Copy arguments and receiver to the expression stack.
    __ PushArray(t2, a0, t3, t0);
    // The receiver for the builtin/api call.
    __ PushRoot(RootIndex::kTheHoleValue);
101 102

    // Call the function.
103
    // a0: number of arguments (untagged)
104
    // a1: constructor function
105
    // a3: new target
106
    __ InvokeFunctionWithNewTarget(a1, a3, a0, InvokeType::kCall);
107 108

    // Restore context from the frame.
109
    __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
110
    // Restore smi-tagged arguments count from the frame.
111
    __ Ld(t3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
112 113 114
    // Leave construct frame.
  }

115
  // Remove caller arguments from the stack and return.
116 117
  __ SmiScale(t3, t3, kPointerSizeLog2);
  __ Daddu(sp, sp, t3);
118 119
  __ Daddu(sp, sp, kPointerSize);
  __ Ret();
120
}
121

122 123
}  // namespace

124
// The construct stub for ES5 constructor functions and ES6 class constructors.
125
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
126 127 128 129 130 131 132 133 134 135
  // ----------- S t a t e -------------
  //  --      a0: number of arguments (untagged)
  //  --      a1: constructor function
  //  --      a3: new target
  //  --      cp: context
  //  --      ra: return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  // Enter a construct frame.
136 137 138
  FrameScope scope(masm, StackFrame::MANUAL);
  Label post_instantiation_deopt_entry, not_create_implicit_receiver;
  __ EnterFrame(StackFrame::CONSTRUCT);
139

140 141 142 143 144
  // Preserve the incoming parameters on the stack.
  __ SmiTag(a0);
  __ Push(cp, a0, a1);
  __ PushRoot(RootIndex::kUndefinedValue);
  __ Push(a3);
145

146 147 148 149 150 151 152
  // ----------- S t a t e -------------
  //  --        sp[0*kPointerSize]: new target
  //  --        sp[1*kPointerSize]: padding
  //  -- a1 and sp[2*kPointerSize]: constructor function
  //  --        sp[3*kPointerSize]: number of arguments (tagged)
  //  --        sp[4*kPointerSize]: context
  // -----------------------------------
153

154 155 156 157 158
  __ Ld(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
  __ lwu(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset));
  __ DecodeField<SharedFunctionInfo::FunctionKindBits>(t2);
  __ JumpIfIsInRange(t2, kDefaultDerivedConstructor, kDerivedConstructor,
                     &not_create_implicit_receiver);
159

160 161 162 163 164 165
  // If not derived class constructor: Allocate the new receiver object.
  __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
                      t2, t3);
  __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
          RelocInfo::CODE_TARGET);
  __ Branch(&post_instantiation_deopt_entry);
166

167 168 169
  // Else: use TheHoleValue as receiver for constructor call
  __ bind(&not_create_implicit_receiver);
  __ LoadRoot(v0, RootIndex::kTheHoleValue);
170

171 172 173 174 175 176 177 178 179 180 181 182
  // ----------- S t a t e -------------
  //  --                          v0: receiver
  //  -- Slot 4 / sp[0*kPointerSize]: new target
  //  -- Slot 3 / sp[1*kPointerSize]: padding
  //  -- Slot 2 / sp[2*kPointerSize]: constructor function
  //  -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
  //  -- Slot 0 / sp[4*kPointerSize]: context
  // -----------------------------------
  // Deoptimizer enters here.
  masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
      masm->pc_offset());
  __ bind(&post_instantiation_deopt_entry);
183

184 185
  // Restore new target.
  __ Pop(a3);
186

187 188
  // Push the allocated receiver to the stack.
  __ Push(v0);
189

190 191 192 193 194
  // We need two copies because we may have to return the original one
  // and the calling conventions dictate that the called function pops the
  // receiver. The second copy is pushed after the arguments, we saved in a6
  // since v0 will store the return value of callRuntime.
  __ mov(a6, v0);
195

196 197 198
  // Set up pointer to last argument.
  __ Daddu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset +
                           kSystemPointerSize));
199

200 201 202 203 204 205 206 207 208
  // ----------- S t a t e -------------
  //  --                 r3: new target
  //  -- sp[0*kPointerSize]: implicit receiver
  //  -- sp[1*kPointerSize]: implicit receiver
  //  -- sp[2*kPointerSize]: padding
  //  -- sp[3*kPointerSize]: constructor function
  //  -- sp[4*kPointerSize]: number of arguments (tagged)
  //  -- sp[5*kPointerSize]: context
  // -----------------------------------
209

210 211 212 213
  // Restore constructor function and argument count.
  __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
  __ Ld(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
  __ SmiUntag(a0);
214

215 216
  Label stack_overflow;
  __ StackOverflowCheck(a0, t0, t1, &stack_overflow);
217

218 219 220 221
  // TODO(victorgomes): When the arguments adaptor is completely removed, we
  // should get the formal parameter count and copy the arguments in its
  // correct position (including any undefined), instead of delaying this to
  // InvokeFunction.
222

223 224 225 226 227 228
  // Copy arguments and receiver to the expression stack.
  __ PushArray(t2, a0, t0, t1);
  // We need two copies because we may have to return the original one
  // and the calling conventions dictate that the called function pops the
  // receiver. The second copy is pushed after the arguments,
  __ Push(a6);
229

230
  // Call the function.
231
  __ InvokeFunctionWithNewTarget(a1, a3, a0, InvokeType::kCall);
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  // ----------- S t a t e -------------
  //  --                 v0: constructor result
  //  -- sp[0*kPointerSize]: implicit receiver
  //  -- sp[1*kPointerSize]: padding
  //  -- sp[2*kPointerSize]: constructor function
  //  -- sp[3*kPointerSize]: number of arguments
  //  -- sp[4*kPointerSize]: context
  // -----------------------------------

  // Store offset of return address for deoptimizer.
  masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
      masm->pc_offset());

  // If the result is an object (in the ECMA sense), we should get rid
  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
  // on page 74.
  Label use_receiver, do_throw, leave_and_return, check_receiver;

  // If the result is undefined, we jump out to using the implicit receiver.
  __ JumpIfNotRoot(v0, RootIndex::kUndefinedValue, &check_receiver);

  // Otherwise we do a smi check and fall through to check if the return value
  // is a valid receiver.

  // Throw away the result of the constructor invocation and use the
  // on-stack receiver as the result.
  __ bind(&use_receiver);
  __ Ld(v0, MemOperand(sp, 0 * kPointerSize));
  __ JumpIfRoot(v0, RootIndex::kTheHoleValue, &do_throw);

  __ bind(&leave_and_return);
  // Restore smi-tagged arguments count from the frame.
  __ Ld(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
  // Leave construct frame.
  __ LeaveFrame(StackFrame::CONSTRUCT);
268 269 270 271 272 273

  // Remove caller arguments from the stack and return.
  __ SmiScale(a4, a1, kPointerSizeLog2);
  __ Daddu(sp, sp, a4);
  __ Daddu(sp, sp, kPointerSize);
  __ Ret();
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

  __ bind(&check_receiver);
  __ JumpIfSmi(v0, &use_receiver);

  // If the type of the result (stored in its map) is less than
  // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
  __ GetObjectType(v0, t2, t2);
  STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
  __ Branch(&leave_and_return, greater_equal, t2,
            Operand(FIRST_JS_RECEIVER_TYPE));
  __ Branch(&use_receiver);

  __ bind(&do_throw);
  // Restore the context from the frame.
  __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
  __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
  __ break_(0xCC);

  __ bind(&stack_overflow);
  // Restore the context from the frame.
  __ Ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
  __ CallRuntime(Runtime::kThrowStackOverflow);
  __ break_(0xCC);
297 298
}

299
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
300
  Generate_JSBuiltinsConstructStubHelper(masm);
301 302
}

303 304 305 306 307 308
// TODO(v8:11429): Add a path for "not_compiled" and unify the two uses under
// the more general dispatch.
static void GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler* masm,
                                                    Register sfi_data,
                                                    Register scratch1,
                                                    Label* is_baseline) {
309 310 311
  Label done;

  __ GetObjectType(sfi_data, scratch1, scratch1);
312
  __ Branch(is_baseline, eq, scratch1, Operand(BASELINE_DATA_TYPE));
313 314 315 316 317 318 319
  __ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE));
  __ Ld(sfi_data,
        FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));

  __ bind(&done);
}

320 321 322 323 324 325 326 327
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- v0 : the value to pass to the generator
  //  -- a1 : the JSGeneratorObject to resume
  //  -- ra : return address
  // -----------------------------------
  // Store input value into generator object.
328
  __ Sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset));
329
  __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3,
330
                      kRAHasNotBeenSaved, SaveFPRegsMode::kIgnore);
331 332
  // Check that a1 is still valid, RecordWrite might have clobbered it.
  __ AssertGeneratorObject(a1);
333 334

  // Load suspended function and context.
335 336
  __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
  __ Ld(cp, FieldMemOperand(a4, JSFunction::kContextOffset));
337 338

  // Flood function if we are stepping.
339 340
  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
  Label stepping_prepared;
341 342
  ExternalReference debug_hook =
      ExternalReference::debug_hook_on_function_call_address(masm->isolate());
343
  __ li(a5, debug_hook);
344
  __ Lb(a5, MemOperand(a5));
345
  __ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg));
346 347 348 349

  // Flood function if we need to continue stepping in the suspended generator.
  ExternalReference debug_suspended_generator =
      ExternalReference::debug_suspended_generator_address(masm->isolate());
350
  __ li(a5, debug_suspended_generator);
351
  __ Ld(a5, MemOperand(a5));
352
  __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5));
353
  __ bind(&stepping_prepared);
354

355 356 357
  // Check the stack for overflow. We are not trying to catch interruptions
  // (i.e. debug break and preemption) here, so check the "real stack limit".
  Label stack_overflow;
358 359
  __ LoadStackLimit(kScratchReg,
                    MacroAssembler::StackLimitKind::kRealStackLimit);
360
  __ Branch(&stack_overflow, lo, sp, Operand(kScratchReg));
361

362 363 364 365 366 367 368 369 370 371 372
  // ----------- S t a t e -------------
  //  -- a1    : the JSGeneratorObject to resume
  //  -- a4    : generator function
  //  -- cp    : generator context
  //  -- ra    : return address
  // -----------------------------------

  // Push holes for arguments to generator function. Since the parser forced
  // context allocation for any variables in generators, the actual argument
  // values have already been copied into the context and these dummy values
  // will never be used.
373
  __ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
374 375
  __ Lhu(a3,
         FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
376 377
  __ Ld(t1,
        FieldMemOperand(a1, JSGeneratorObject::kParametersAndRegistersOffset));
378
  {
379 380 381 382 383 384 385 386 387 388 389 390
    Label done_loop, loop;
    __ bind(&loop);
    __ Dsubu(a3, a3, Operand(1));
    __ Branch(&done_loop, lt, a3, Operand(zero_reg));
    __ Dlsa(kScratchReg, t1, a3, kPointerSizeLog2);
    __ Ld(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize));
    __ Push(kScratchReg);
    __ Branch(&loop);
    __ bind(&done_loop);
    // Push receiver.
    __ Ld(kScratchReg, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
    __ Push(kScratchReg);
391 392
  }

393 394
  // Underlying function needs to have bytecode available.
  if (FLAG_debug_code) {
395
    Label is_baseline;
396 397
    __ Ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
    __ Ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset));
398
    GetSharedFunctionInfoBytecodeOrBaseline(masm, a3, a0, &is_baseline);
399
    __ GetObjectType(a3, a3, a3);
400 401
    __ Assert(eq, AbortReason::kMissingBytecodeArray, a3,
              Operand(BYTECODE_ARRAY_TYPE));
402
    __ bind(&is_baseline);
403
  }
404

405
  // Resume (Ignition/TurboFan) generator object.
406
  {
407
    __ Ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
408 409
    __ Lhu(a0, FieldMemOperand(
                   a0, SharedFunctionInfo::kFormalParameterCountOffset));
410 411 412 413 414
    // We abuse new.target both to indicate that this is a resume call and to
    // pass in the generator object.  In ordinary calls, new.target is always
    // undefined because generator functions are non-constructable.
    __ Move(a3, a1);
    __ Move(a1, a4);
415
    static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
416 417
    __ Ld(a2, FieldMemOperand(a1, JSFunction::kCodeOffset));
    __ Daddu(a2, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
418
    __ Jump(a2);
419 420
  }

421 422 423
  __ bind(&prepare_step_in_if_stepping);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
424
    __ Push(a1, a4);
425
    // Push hole as receiver since we do not use it for stepping.
426
    __ PushRoot(RootIndex::kTheHoleValue);
427
    __ CallRuntime(Runtime::kDebugOnFunctionCall);
428
    __ Pop(a1);
429 430
  }
  __ Branch(USE_DELAY_SLOT, &stepping_prepared);
431
  __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
432 433 434 435

  __ bind(&prepare_step_in_suspended_generator);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
436
    __ Push(a1);
437
    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
438
    __ Pop(a1);
439 440
  }
  __ Branch(USE_DELAY_SLOT, &stepping_prepared);
441
  __ Ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
442 443 444 445 446 447 448

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ break_(0xCC);  // This should be unreachable.
  }
449
}
450

451 452 453
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
  FrameScope scope(masm, StackFrame::INTERNAL);
  __ Push(a1);
454
  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
455 456
}

457 458 459
// Clobbers scratch1 and scratch2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
                                        Register scratch1, Register scratch2) {
460 461 462 463
  // Check the stack for overflow. We are not trying to catch
  // interruptions (e.g. debug break and preemption) here, so the "real stack
  // limit" is checked.
  Label okay;
464
  __ LoadStackLimit(scratch1, MacroAssembler::StackLimitKind::kRealStackLimit);
465 466
  // Make a2 the space we have left. The stack might already be overflowed
  // here which will cause r2 to become negative.
467
  __ dsubu(scratch1, sp, scratch1);
468
  // Check if the arguments will overflow the stack.
469 470
  __ dsll(scratch2, argc, kPointerSizeLog2);
  __ Branch(&okay, gt, scratch1, Operand(scratch2));  // Signed comparison.
471 472

  // Out of stack space.
473
  __ CallRuntime(Runtime::kThrowStackOverflow);
474 475 476 477

  __ bind(&okay);
}

478 479 480
namespace {

// Called with the native C calling convention. The corresponding function
481
// signature is either:
482
//
483 484 485 486 487 488
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, Address new_target, Address target,
//       Address receiver, intptr_t argc, Address** args)>;
// or
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, MicrotaskQueue* microtask_queue)>;
489
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
490
                             Builtin entry_trampoline) {
491 492 493 494 495 496 497
  Label invoke, handler_entry, exit;

  {
    NoRootArrayScope no_root_array(masm);

    // TODO(plind): unify the ABI description here.
    // Registers:
498 499 500 501 502 503 504 505 506 507
    //  either
    //   a0: root register value
    //   a1: entry address
    //   a2: function
    //   a3: receiver
    //   a4: argc
    //   a5: argv
    //  or
    //   a0: root register value
    //   a1: microtask_queue
508 509 510 511 512 513 514 515 516 517 518 519 520
    //
    // Stack:
    // 0 arg slots on mips64 (4 args slots on mips)

    // Save callee saved registers on the stack.
    __ MultiPush(kCalleeSaved | ra.bit());

    // Save callee-saved FPU registers.
    __ MultiPushFPU(kCalleeSavedFPU);
    // Set up the reserved register for 0.0.
    __ Move(kDoubleRegZero, 0.0);

    // Initialize the root register.
521 522
    // C calling convention. The first argument is passed in a0.
    __ mov(kRootRegister, a0);
523 524
  }

525 526 527 528 529
  // a1: entry address
  // a2: function
  // a3: receiver
  // a4: argc
  // a5: argv
530 531

  // We build an EntryFrame.
532 533 534
  __ li(s1, Operand(-1));  // Push a bad frame pointer to fail if it is used.
  __ li(s2, Operand(StackFrame::TypeToMarker(type)));
  __ li(s3, Operand(StackFrame::TypeToMarker(type)));
535 536
  ExternalReference c_entry_fp = ExternalReference::Create(
      IsolateAddressId::kCEntryFPAddress, masm->isolate());
537 538
  __ li(s5, c_entry_fp);
  __ Ld(s4, MemOperand(s5));
539
  __ Push(s1, s2, s3, s4);
540 541 542 543 544 545 546

  // Clear c_entry_fp, now we've pushed its previous value to the stack.
  // If the c_entry_fp is not already zero and we don't clear it, the
  // SafeStackFrameIterator will assume we are executing C++ and miss the JS
  // frames on top.
  __ Sd(zero_reg, MemOperand(s5));

547 548 549 550
  // Set up frame pointer for the frame to be pushed.
  __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);

  // Registers:
551 552 553 554 555 556 557 558
  //  either
  //   a1: entry address
  //   a2: function
  //   a3: receiver
  //   a4: argc
  //   a5: argv
  //  or
  //   a1: microtask_queue
559 560 561 562 563 564 565 566 567 568 569 570 571 572
  //
  // Stack:
  // caller fp          |
  // function slot      | entry frame
  // context slot       |
  // bad fp (0xFF...F)  |
  // callee saved registers + ra
  // [ O32: 4 args slots]
  // args

  // If this is the outermost JS call, set js_entry_sp value.
  Label non_outermost_js;
  ExternalReference js_entry_sp = ExternalReference::Create(
      IsolateAddressId::kJSEntrySPAddress, masm->isolate());
573 574 575 576 577
  __ li(s1, js_entry_sp);
  __ Ld(s2, MemOperand(s1));
  __ Branch(&non_outermost_js, ne, s2, Operand(zero_reg));
  __ Sd(fp, MemOperand(s1));
  __ li(s3, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
578 579 580 581
  Label cont;
  __ b(&cont);
  __ nop();  // Branch delay slot nop.
  __ bind(&non_outermost_js);
582
  __ li(s3, Operand(StackFrame::INNER_JSENTRY_FRAME));
583
  __ bind(&cont);
584
  __ push(s3);
585 586 587 588 589 590 591 592 593 594 595 596 597 598

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ jmp(&invoke);
  __ bind(&handler_entry);

  // Store the current pc as the handler offset. It's used later to create the
  // handler table.
  masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());

  // Caught exception: Store result (exception) in the pending exception
  // field in the JSEnv and return a failure sentinel.  Coming in here the
  // fp will be invalid because the PushStackHandler below sets it to 0 to
  // signal the existence of the JSEntry frame.
599
  __ li(s1, ExternalReference::Create(
600
                IsolateAddressId::kPendingExceptionAddress, masm->isolate()));
601
  __ Sd(v0, MemOperand(s1));  // We come back from 'invoke'. result is in v0.
602 603 604 605 606 607 608 609 610 611 612 613 614
  __ LoadRoot(v0, RootIndex::kException);
  __ b(&exit);  // b exposes branch delay slot.
  __ nop();     // Branch delay slot nop.

  // Invoke: Link this frame into the handler chain.
  __ bind(&invoke);
  __ PushStackHandler();
  // If an exception not caught by another handler occurs, this handler
  // returns control to the code after the bal(&invoke) above, which
  // restores all kCalleeSaved registers (including cp and fp) to their
  // saved values before returning a failure to C.
  //
  // Registers:
615 616 617 618 619 620 621 622 623 624
  //  either
  //   a0: root register value
  //   a1: entry address
  //   a2: function
  //   a3: receiver
  //   a4: argc
  //   a5: argv
  //  or
  //   a0: root register value
  //   a1: microtask_queue
625 626 627 628 629 630 631 632 633 634
  //
  // Stack:
  // handler frame
  // entry frame
  // callee saved registers + ra
  // [ O32: 4 args slots]
  // args
  //
  // Invoke the function by calling through JS entry trampoline builtin and
  // pop the faked function when we return.
635

636
  Handle<Code> trampoline_code =
637
      masm->isolate()->builtins()->code_handle(entry_trampoline);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
  __ Call(trampoline_code, RelocInfo::CODE_TARGET);

  // Unlink this frame from the handler chain.
  __ PopStackHandler();

  __ bind(&exit);  // v0 holds result
  // Check if the current stack frame is marked as the outermost JS frame.
  Label non_outermost_js_2;
  __ pop(a5);
  __ Branch(&non_outermost_js_2, ne, a5,
            Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
  __ li(a5, js_entry_sp);
  __ Sd(zero_reg, MemOperand(a5));
  __ bind(&non_outermost_js_2);

  // Restore the top frame descriptors from the stack.
  __ pop(a5);
  __ li(a4, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                      masm->isolate()));
  __ Sd(a5, MemOperand(a4));

  // Reset the stack to the callee saved registers.
  __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);

  // Restore callee-saved fpu registers.
  __ MultiPopFPU(kCalleeSavedFPU);

  // Restore callee saved registers from the stack.
  __ MultiPop(kCalleeSaved | ra.bit());
  // Return.
  __ Jump(ra);
}

}  // namespace

void Builtins::Generate_JSEntry(MacroAssembler* masm) {
674
  Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline);
675 676 677 678
}

void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
679
                          Builtin::kJSConstructEntryTrampoline);
680 681 682
}

void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
683
  Generate_JSEntryVariant(masm, StackFrame::ENTRY,
684
                          Builtin::kRunMicrotasksTrampoline);
685 686
}

687 688 689
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // ----------- S t a t e -------------
690 691 692 693 694
  //  -- a1: new.target
  //  -- a2: function
  //  -- a3: receiver_pointer
  //  -- a4: argc
  //  -- a5: argv
695 696 697 698 699 700
  // -----------------------------------

  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

701
    // Setup the context (we need to use the caller context from the isolate).
702 703
    ExternalReference context_address = ExternalReference::Create(
        IsolateAddressId::kContextAddress, masm->isolate());
704
    __ li(cp, context_address);
705
    __ Ld(cp, MemOperand(cp));
706

707 708
    // Push the function onto the stack.
    __ Push(a2);
709

710
    // Check if we have enough stack space to push all arguments.
711 712
    __ daddiu(a6, a4, 1);
    Generate_CheckStackOverflow(masm, a6, a0, s2);
713

714
    // Copy arguments to the stack in a loop.
715
    // a4: argc
716
    // a5: argv, i.e. points to first arg
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    Label loop, entry;
    __ Dlsa(s1, a5, a4, kPointerSizeLog2);
    __ b(&entry);
    __ nop();  // Branch delay slot nop.
    // s1 points past last arg.
    __ bind(&loop);
    __ daddiu(s1, s1, -kPointerSize);
    __ Ld(s2, MemOperand(s1));  // Read next parameter.
    __ Ld(s2, MemOperand(s2));  // Dereference handle.
    __ push(s2);                // Push parameter.
    __ bind(&entry);
    __ Branch(&loop, ne, a5, Operand(s1));

    // Push the receive.
    __ Push(a3);

733 734 735
    // a0: argc
    // a1: function
    // a3: new.target
736 737 738
    __ mov(a3, a1);
    __ mov(a1, a2);
    __ mov(a0, a4);
739

740 741
    // Initialize all JavaScript callee-saved registers, since they will be seen
    // by the garbage collector as part of handlers.
742
    __ LoadRoot(a4, RootIndex::kUndefinedValue);
743
    __ mov(a5, a4);
744 745 746 747 748 749 750 751
    __ mov(s1, a4);
    __ mov(s2, a4);
    __ mov(s3, a4);
    __ mov(s4, a4);
    __ mov(s5, a4);
    // s6 holds the root address. Do not clobber.
    // s7 is cp. Do not init.

752 753
    // Invoke the code.
    Handle<Code> builtin = is_construct
754
                               ? BUILTIN_CODE(masm->isolate(), Construct)
755 756
                               : masm->isolate()->builtins()->Call();
    __ Call(builtin, RelocInfo::CODE_TARGET);
757 758 759 760 761 762 763 764 765 766 767 768 769 770

    // Leave internal frame.
  }
  __ Jump(ra);
}

void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}

void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}

771 772 773 774 775 776
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
  // a1: microtask_queue
  __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), a1);
  __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}

777 778 779 780 781
static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
                                                Register optimized_code,
                                                Register closure,
                                                Register scratch1,
                                                Register scratch2) {
782
  DCHECK(!AreAliased(optimized_code, closure, scratch1, scratch2));
783
  // Store code entry in the closure.
784 785 786
  __ Sd(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset));
  __ mov(scratch1, optimized_code);  // Write barrier clobbers scratch1 below.
  __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
787
                      kRAHasNotBeenSaved, SaveFPRegsMode::kIgnore,
788
                      RememberedSetAction::kOmit, SmiCheck::kOmit);
789 790
}

791 792 793
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
                                  Register scratch2) {
  Register params_size = scratch1;
794

795 796
  // Get the size of the formal parameters + receiver (in bytes).
  __ Ld(params_size,
797
        MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
798 799 800 801 802 803 804 805 806 807 808 809 810 811
  __ Lw(params_size,
        FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset));

  Register actual_params_size = scratch2;
  // Compute the size of the actual parameters + receiver (in bytes).
  __ Ld(actual_params_size,
        MemOperand(fp, StandardFrameConstants::kArgCOffset));
  __ dsll(actual_params_size, actual_params_size, kPointerSizeLog2);
  __ Daddu(actual_params_size, actual_params_size, Operand(kSystemPointerSize));

  // If actual is bigger than formal, then we should use it to free up the stack
  // arguments.
  __ slt(t2, params_size, actual_params_size);
  __ movn(params_size, actual_params_size, t2);
812 813

  // Leave the frame (also dropping the register file).
814
  __ LeaveFrame(StackFrame::INTERPRETED);
815 816

  // Drop receiver + arguments.
817
  __ Daddu(sp, sp, params_size);
818 819
}

820
// Tail-call |function_id| if |actual_marker| == |expected_marker|
821
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
822 823
                                          Register actual_marker,
                                          OptimizationMarker expected_marker,
824 825
                                          Runtime::FunctionId function_id) {
  Label no_match;
826
  __ Branch(&no_match, ne, actual_marker, Operand(expected_marker));
827 828 829 830
  GenerateTailCallToReturnedCode(masm, function_id);
  __ bind(&no_match);
}

831 832 833
static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
                                      Register optimized_code_entry,
                                      Register scratch1, Register scratch2) {
834
  // ----------- S t a t e -------------
835
  //  -- a0 : actual argument count
836 837 838
  //  -- a3 : new target (preserved for callee if needed, and caller)
  //  -- a1 : target function (preserved for callee if needed, and caller)
  // -----------------------------------
839
  DCHECK(!AreAliased(optimized_code_entry, a1, a3, scratch1, scratch2));
840 841

  Register closure = a1;
842 843 844 845 846 847
  Label heal_optimized_code_slot;

  // If the optimized code is cleared, go to runtime to update the optimization
  // marker field.
  __ LoadWeakValue(optimized_code_entry, optimized_code_entry,
                   &heal_optimized_code_slot);
848

849 850
  // Check if the optimized code is marked for deopt. If it is, call the
  // runtime to clear it.
851
  __ Ld(scratch1,
852
        FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
853 854 855 856
  __ Lw(scratch1,
        FieldMemOperand(scratch1, CodeDataContainer::kKindSpecificFlagsOffset));
  __ And(scratch1, scratch1, Operand(1 << Code::kMarkedForDeoptimizationBit));
  __ Branch(&heal_optimized_code_slot, ne, scratch1, Operand(zero_reg));
857 858 859 860 861 862 863

  // Optimized code is good, get it into the closure and link the closure into
  // the optimized functions list, then tail call the optimized code.
  // The feedback vector is no longer used, so re-use it as a scratch
  // register.
  ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
                                      scratch1, scratch2);
864

865 866 867 868
  static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
  __ Daddu(a2, optimized_code_entry,
           Operand(Code::kHeaderSize - kHeapObjectTag));
  __ Jump(a2);
869

870 871 872 873 874
  // Optimized code slot contains deoptimized code or code is cleared and
  // optimized code marker isn't updated. Evict the code, update the marker
  // and re-enter the closure's code.
  __ bind(&heal_optimized_code_slot);
  GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
875
}
876

877 878 879
static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
                              Register optimization_marker) {
  // ----------- S t a t e -------------
880
  //  -- a0 : actual argument count
881 882 883
  //  -- a3 : new target (preserved for callee if needed, and caller)
  //  -- a1 : target function (preserved for callee if needed, and caller)
  //  -- feedback vector (preserved for caller if needed)
884 885
  //  -- optimization_marker : a int32 containing a non-zero optimization
  //  marker.
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
  // -----------------------------------
  DCHECK(!AreAliased(feedback_vector, a1, a3, optimization_marker));

  // TODO(v8:8394): The logging of first execution will break if
  // feedback vectors are not allocated. We need to find a different way of
  // logging these events if required.
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kLogFirstExecution,
                                Runtime::kFunctionFirstExecution);
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kCompileOptimized,
                                Runtime::kCompileOptimized_NotConcurrent);
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kCompileOptimizedConcurrent,
                                Runtime::kCompileOptimized_Concurrent);

902 903 904
  // Marker should be one of LogFirstExecution / CompileOptimized /
  // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
  // here.
905
  if (FLAG_debug_code) {
906
    __ stop();
907 908 909
  }
}

910
// Advance the current bytecode offset. This simulates what all bytecode
911
// handlers do upon completion of the underlying operation. Will bail out to a
912 913 914
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
915 916 917 918
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
                                          Register bytecode_array,
                                          Register bytecode_offset,
                                          Register bytecode, Register scratch1,
919 920
                                          Register scratch2, Register scratch3,
                                          Label* if_return) {
921
  Register bytecode_size_table = scratch1;
922 923 924 925 926 927 928 929 930

  // The bytecode offset value will be increased by one in wide and extra wide
  // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
  // will restore the original bytecode. In order to simplify the code, we have
  // a backup of it.
  Register original_bytecode_offset = scratch3;
  DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode,
                     bytecode_size_table, original_bytecode_offset));
  __ Move(original_bytecode_offset, bytecode_offset);
931
  __ li(bytecode_size_table, ExternalReference::bytecode_size_table_address());
932 933

  // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
934
  Label process_bytecode, extra_wide;
935 936
  STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
  STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
937 938 939 940 941 942
  STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
  STATIC_ASSERT(3 ==
                static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
  __ Branch(&process_bytecode, hi, bytecode, Operand(3));
  __ And(scratch2, bytecode, Operand(1));
  __ Branch(&extra_wide, ne, scratch2, Operand(zero_reg));
943 944 945

  // Load the next bytecode and update table to the wide scaled table.
  __ Daddu(bytecode_offset, bytecode_offset, Operand(1));
946 947
  __ Daddu(scratch2, bytecode_array, bytecode_offset);
  __ Lbu(bytecode, MemOperand(scratch2));
948
  __ Daddu(bytecode_size_table, bytecode_size_table,
949
           Operand(kByteSize * interpreter::Bytecodes::kBytecodeCount));
950
  __ jmp(&process_bytecode);
951 952 953 954

  __ bind(&extra_wide);
  // Load the next bytecode and update table to the extra wide scaled table.
  __ Daddu(bytecode_offset, bytecode_offset, Operand(1));
955 956
  __ Daddu(scratch2, bytecode_array, bytecode_offset);
  __ Lbu(bytecode, MemOperand(scratch2));
957
  __ Daddu(bytecode_size_table, bytecode_size_table,
958
           Operand(2 * kByteSize * interpreter::Bytecodes::kBytecodeCount));
959

960 961 962 963 964 965 966 967 968
  __ bind(&process_bytecode);

// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME)          \
  __ Branch(if_return, eq, bytecode, \
            Operand(static_cast<int>(interpreter::Bytecode::k##NAME)));
  RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL

969 970 971 972 973 974 975 976 977 978 979
  // If this is a JumpLoop, re-execute it to perform the jump to the beginning
  // of the loop.
  Label end, not_jump_loop;
  __ Branch(&not_jump_loop, ne, bytecode,
            Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
  // We need to restore the original bytecode_offset since we might have
  // increased it to skip the wide / extra-wide prefix bytecode.
  __ Move(bytecode_offset, original_bytecode_offset);
  __ jmp(&end);

  __ bind(&not_jump_loop);
980
  // Otherwise, load the size of the current bytecode and advance the offset.
981 982
  __ Daddu(scratch2, bytecode_size_table, bytecode);
  __ Lb(scratch2, MemOperand(scratch2));
983
  __ Daddu(bytecode_offset, bytecode_offset, scratch2);
984 985

  __ bind(&end);
986 987
}

988 989 990 991 992
// Read off the optimization state in the feedback vector and check if there
// is optimized code or a optimization marker that needs to be processed.
static void LoadOptimizationStateAndJumpIfNeedsProcessing(
    MacroAssembler* masm, Register optimization_state, Register feedback_vector,
    Label* has_optimized_code_or_marker) {
993
  ASM_CODE_COMMENT(masm);
994 995 996 997 998 999 1000 1001 1002
  Register scratch = t2;
  __ Lw(optimization_state,
        FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset));
  __ And(
      scratch, optimization_state,
      Operand(FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask));
  __ Branch(has_optimized_code_or_marker, ne, scratch, Operand(zero_reg));
}

1003 1004 1005
static void MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(
    MacroAssembler* masm, Register optimization_state,
    Register feedback_vector) {
1006
  ASM_CODE_COMMENT(masm);
1007 1008
  Label maybe_has_optimized_code;
  // Check if optimized code marker is available
1009 1010 1011 1012 1013 1014 1015 1016
  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.Acquire();
    __ And(
        scratch, optimization_state,
        Operand(FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker));
    __ Branch(&maybe_has_optimized_code, eq, scratch, Operand(zero_reg));
  }
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

  Register optimization_marker = optimization_state;
  __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
  MaybeOptimizeCode(masm, feedback_vector, optimization_marker);

  __ bind(&maybe_has_optimized_code);
  Register optimized_code_entry = optimization_state;
  __ Ld(optimization_marker,
        FieldMemOperand(feedback_vector,
                        FeedbackVector::kMaybeOptimizedCodeOffset));
  TailCallOptimizedCodeSlot(masm, optimized_code_entry, t3, a5);
}

1030 1031 1032
// static
void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) {
  UseScratchRegisterScope temps(masm);
Liu Yu's avatar
Liu Yu committed
1033
  temps.Include(s1.bit() | s2.bit());
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
  auto descriptor =
      Builtins::CallInterfaceDescriptorFor(Builtin::kBaselineOutOfLinePrologue);
  Register closure = descriptor.GetRegisterParameter(
      BaselineOutOfLinePrologueDescriptor::kClosure);
  // Load the feedback vector from the closure.
  Register feedback_vector = temps.Acquire();
  __ Ld(feedback_vector,
        FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
  __ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
  if (FLAG_debug_code) {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.Acquire();
    __ GetObjectType(feedback_vector, scratch, scratch);
    __ Assert(eq, AbortReason::kExpectedFeedbackVector, scratch,
              Operand(FEEDBACK_VECTOR_TYPE));
  }
  // Check for an optimization marker.
  Label has_optimized_code_or_marker;
  Register optimization_state = no_reg;
  {
    UseScratchRegisterScope temps(masm);
    optimization_state = temps.Acquire();
    // optimization_state will be used only in |has_optimized_code_or_marker|
    // and outside it can be reused.
    LoadOptimizationStateAndJumpIfNeedsProcessing(
        masm, optimization_state, feedback_vector,
        &has_optimized_code_or_marker);
  }
  // Increment invocation count for the function.
  {
    UseScratchRegisterScope temps(masm);
    Register invocation_count = temps.Acquire();
    __ Lw(invocation_count,
          FieldMemOperand(feedback_vector,
                          FeedbackVector::kInvocationCountOffset));
    __ Addu(invocation_count, invocation_count, Operand(1));
    __ Sw(invocation_count,
          FieldMemOperand(feedback_vector,
                          FeedbackVector::kInvocationCountOffset));
  }

  FrameScope frame_scope(masm, StackFrame::MANUAL);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
  {
    ASM_CODE_COMMENT_STRING(masm, "Frame Setup");
    // Normally the first thing we'd do here is Push(ra, fp), but we already
    // entered the frame in BaselineCompiler::Prologue, as we had to use the
    // value lr before the call to this BaselineOutOfLinePrologue builtin.
    Register callee_context = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kCalleeContext);
    Register callee_js_function = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kClosure);
    __ Push(callee_context, callee_js_function);
    DCHECK_EQ(callee_js_function, kJavaScriptCallTargetRegister);
    DCHECK_EQ(callee_js_function, kJSFunctionRegister);

    Register argc = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kJavaScriptCallArgCount);
    // We'll use the bytecode for both code age/OSR resetting, and pushing onto
    // the frame, so load it into a register.
    Register bytecodeArray = descriptor.GetRegisterParameter(
        BaselineOutOfLinePrologueDescriptor::kInterpreterBytecodeArray);

    // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset
    // are 8-bit fields next to each other, so we could just optimize by writing
    // a 16-bit. These static asserts guard our assumption is valid.
    STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
1100
                  BytecodeArray::kOsrLoopNestingLevelOffset + kCharSize);
1101 1102
    STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
    __ Sh(zero_reg, FieldMemOperand(bytecodeArray,
1103
                                    BytecodeArray::kOsrLoopNestingLevelOffset));
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

    __ Push(argc, bytecodeArray);

    // Baseline code frames store the feedback vector where interpreter would
    // store the bytecode offset.
    if (FLAG_debug_code) {
      UseScratchRegisterScope temps(masm);
      Register invocation_count = temps.Acquire();
      __ GetObjectType(feedback_vector, invocation_count, invocation_count);
      __ Assert(eq, AbortReason::kExpectedFeedbackVector, invocation_count,
                Operand(FEEDBACK_VECTOR_TYPE));
    }
    // Our stack is currently aligned. We have have to push something along with
    // the feedback vector to keep it that way -- we may as well start
    // initialising the register frame.
    // TODO(v8:11429,leszeks): Consider guaranteeing that this call leaves
    // `undefined` in the accumulator register, to skip the load in the baseline
    // code.
    __ Push(feedback_vector);
1123
  }
1124

1125 1126 1127 1128
  Label call_stack_guard;
  Register frame_size = descriptor.GetRegisterParameter(
      BaselineOutOfLinePrologueDescriptor::kStackFrameSize);
  {
1129
    ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt check");
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    // Stack check. This folds the checks for both the interrupt stack limit
    // check and the real stack limit into one by just checking for the
    // interrupt limit. The interrupt limit is either equal to the real stack
    // limit or tighter. By ensuring we have space until that limit after
    // building the frame we can quickly precheck both at once.
    UseScratchRegisterScope temps(masm);
    Register sp_minus_frame_size = temps.Acquire();
    __ Dsubu(sp_minus_frame_size, sp, frame_size);
    Register interrupt_limit = temps.Acquire();
    __ LoadStackLimit(interrupt_limit,
                      MacroAssembler::StackLimitKind::kInterruptStackLimit);
    __ Branch(&call_stack_guard, Uless, sp_minus_frame_size,
              Operand(interrupt_limit));
  }

  // Do "fast" return to the caller pc in ra.
  // TODO(v8:11429): Document this frame setup better.
  __ Ret();

  __ bind(&has_optimized_code_or_marker);
  {
1151
    ASM_CODE_COMMENT_STRING(masm, "Optimized marker check");
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    UseScratchRegisterScope temps(masm);
    temps.Exclude(optimization_state);
    // Ensure the optimization_state is not allocated again.
    // Drop the frame created by the baseline call.
    __ Pop(ra, fp);
    MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(masm, optimization_state,
                                                 feedback_vector);
    __ Trap();
  }

  __ bind(&call_stack_guard);
  {
1164
    ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt call");
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    FrameScope frame_scope(masm, StackFrame::INTERNAL);
    // Save incoming new target or generator
    __ Push(kJavaScriptCallNewTargetRegister);
    __ SmiTag(frame_size);
    __ Push(frame_size);
    __ CallRuntime(Runtime::kStackGuardWithGap);
    __ Pop(kJavaScriptCallNewTargetRegister);
  }
  __ Ret();
  temps.Exclude(kScratchReg.bit() | kScratchReg2.bit());
}

1177 1178
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
1179
// stack left to right.
1180 1181
//
// The live registers are:
1182
//   o a0 : actual argument count (not including the receiver)
1183
//   o a1: the JS function object being called.
1184
//   o a3: the incoming new target or generator object
1185 1186 1187 1188 1189
//   o cp: our context
//   o fp: the caller's frame pointer
//   o sp: stack pointer
//   o ra: return address
//
1190
// The function builds an interpreter frame.  See InterpreterFrameConstants in
1191
// frame-constants.h for its layout.
1192
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
1193 1194 1195
  Register closure = a1;
  Register feedback_vector = a2;

1196 1197
  // Get the bytecode array from the function object and load it into
  // kInterpreterBytecodeArrayRegister.
1198 1199
  __ Ld(kScratchReg,
        FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
1200
  __ Ld(kInterpreterBytecodeArrayRegister,
1201
        FieldMemOperand(kScratchReg, SharedFunctionInfo::kFunctionDataOffset));
1202 1203 1204
  Label is_baseline;
  GetSharedFunctionInfoBytecodeOrBaseline(
      masm, kInterpreterBytecodeArrayRegister, kScratchReg, &is_baseline);
1205 1206 1207 1208

  // The bytecode array could have been flushed from the shared function info,
  // if so, call into CompileLazy.
  Label compile_lazy;
1209 1210
  __ GetObjectType(kInterpreterBytecodeArrayRegister, kScratchReg, kScratchReg);
  __ Branch(&compile_lazy, ne, kScratchReg, Operand(BYTECODE_ARRAY_TYPE));
1211

1212 1213
  // Load the feedback vector from the closure.
  __ Ld(feedback_vector,
1214
        FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
1215
  __ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
1216 1217 1218 1219 1220 1221 1222 1223

  Label push_stack_frame;
  // Check if feedback vector is valid. If valid, check for optimized code
  // and update invocation count. Otherwise, setup the stack frame.
  __ Ld(a4, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
  __ Lhu(a4, FieldMemOperand(a4, Map::kInstanceTypeOffset));
  __ Branch(&push_stack_frame, ne, a4, Operand(FEEDBACK_VECTOR_TYPE));

1224
  // Read off the optimization state in the feedback vector, and if there
1225
  // is optimized code or an optimization marker, call that instead.
1226
  Register optimization_state = a4;
1227
  __ Lw(optimization_state,
1228
        FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset));
1229

1230 1231
  // Check if the optimized code slot is not empty or has a optimization marker.
  Label has_optimized_code_or_marker;
1232

1233 1234 1235
  __ andi(t0, optimization_state,
          FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask);
  __ Branch(&has_optimized_code_or_marker, ne, t0, Operand(zero_reg));
1236 1237 1238

  Label not_optimized;
  __ bind(&not_optimized);
1239

1240
  // Increment invocation count for the function.
1241 1242 1243 1244 1245
  __ Lw(a4, FieldMemOperand(feedback_vector,
                            FeedbackVector::kInvocationCountOffset));
  __ Addu(a4, a4, Operand(1));
  __ Sw(a4, FieldMemOperand(feedback_vector,
                            FeedbackVector::kInvocationCountOffset));
1246

1247 1248 1249 1250 1251 1252 1253
  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done below).
  __ bind(&push_stack_frame);
  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ PushStandardFrame(closure);

1254 1255 1256 1257
  // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
  // 8-bit fields next to each other, so we could just optimize by writing a
  // 16-bit. These static asserts guard our assumption is valid.
  STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
1258
                BytecodeArray::kOsrLoopNestingLevelOffset + kCharSize);
1259 1260
  STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
  __ sh(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister,
1261
                                  BytecodeArray::kOsrLoopNestingLevelOffset));
1262

1263 1264 1265 1266
  // Load initial bytecode offset.
  __ li(kInterpreterBytecodeOffsetRegister,
        Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));

1267
  // Push bytecode array and Smi tagged bytecode array offset.
1268
  __ SmiTag(a4, kInterpreterBytecodeOffsetRegister);
1269
  __ Push(kInterpreterBytecodeArrayRegister, a4);
1270

1271
  // Allocate the local and temporary register file on the stack.
1272
  Label stack_overflow;
1273
  {
1274
    // Load frame size (word) from the BytecodeArray object.
1275
    __ Lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
1276 1277 1278 1279
                              BytecodeArray::kFrameSizeOffset));

    // Do a stack check to ensure we don't go over the limit.
    __ Dsubu(a5, sp, Operand(a4));
1280
    __ LoadStackLimit(a2, MacroAssembler::StackLimitKind::kRealStackLimit);
1281
    __ Branch(&stack_overflow, lo, a5, Operand(a2));
1282 1283 1284

    // If ok, push undefined as the initial value for all register file entries.
    Label loop_header;
1285
    Label loop_check;
1286
    __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1287
    __ Branch(&loop_check);
1288 1289
    __ bind(&loop_header);
    // TODO(rmcilroy): Consider doing more than one push per loop iteration.
1290
    __ push(kInterpreterAccumulatorRegister);
1291
    // Continue loop if not done.
1292
    __ bind(&loop_check);
1293 1294 1295 1296
    __ Dsubu(a4, a4, Operand(kPointerSize));
    __ Branch(&loop_header, ge, a4, Operand(zero_reg));
  }

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
  // If the bytecode array has a valid incoming new target or generator object
  // register, initialize it with incoming value which was passed in r3.
  Label no_incoming_new_target_or_generator_register;
  __ Lw(a5, FieldMemOperand(
                kInterpreterBytecodeArrayRegister,
                BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
  __ Branch(&no_incoming_new_target_or_generator_register, eq, a5,
            Operand(zero_reg));
  __ Dlsa(a5, fp, a5, kPointerSizeLog2);
  __ Sd(a3, MemOperand(a5));
  __ bind(&no_incoming_new_target_or_generator_register);

1309 1310 1311
  // Perform interrupt stack check.
  // TODO(solanes): Merge with the real stack limit check above.
  Label stack_check_interrupt, after_stack_check_interrupt;
1312
  __ LoadStackLimit(a5, MacroAssembler::StackLimitKind::kInterruptStackLimit);
1313 1314 1315
  __ Branch(&stack_check_interrupt, lo, sp, Operand(a5));
  __ bind(&after_stack_check_interrupt);

1316
  // The accumulator is already loaded with undefined.
1317 1318 1319 1320 1321

  // Load the dispatch table into a register and dispatch to the bytecode
  // handler at the current bytecode offset.
  Label do_dispatch;
  __ bind(&do_dispatch);
1322
  __ li(kInterpreterDispatchTableRegister,
1323
        ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1324 1325
  __ Daddu(a0, kInterpreterBytecodeArrayRegister,
           kInterpreterBytecodeOffsetRegister);
1326
  __ Lbu(a7, MemOperand(a0));
1327 1328
  __ Dlsa(kScratchReg, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2);
  __ Ld(kJavaScriptCallCodeStartRegister, MemOperand(kScratchReg));
1329
  __ Call(kJavaScriptCallCodeStartRegister);
1330 1331
  masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());

1332 1333 1334
  // Any returns to the entry trampoline are either due to the return bytecode
  // or the interpreter tail calling a builtin and then a dispatch.

1335 1336 1337 1338 1339 1340 1341
  // Get bytecode array and bytecode offset from the stack frame.
  __ Ld(kInterpreterBytecodeArrayRegister,
        MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ Ld(kInterpreterBytecodeOffsetRegister,
        MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

1342
  // Either return, or advance to the next bytecode and dispatch.
1343 1344 1345 1346
  Label do_return;
  __ Daddu(a1, kInterpreterBytecodeArrayRegister,
           kInterpreterBytecodeOffsetRegister);
  __ Lbu(a1, MemOperand(a1));
1347 1348
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, a1, a2, a3,
1349
                                a4, &do_return);
1350
  __ jmp(&do_dispatch);
1351

1352 1353
  __ bind(&do_return);
  // The return value is in v0.
1354
  LeaveInterpreterFrame(masm, t0, t1);
1355
  __ Jump(ra);
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
  __ bind(&stack_check_interrupt);
  // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
  // for the call to the StackGuard.
  __ li(kInterpreterBytecodeOffsetRegister,
        Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
                             kFunctionEntryBytecodeOffset)));
  __ Sd(kInterpreterBytecodeOffsetRegister,
        MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ CallRuntime(Runtime::kStackGuard);

  // After the call, restore the bytecode array, bytecode offset and accumulator
  // registers again. Also, restore the bytecode offset in the stack to its
  // previous value.
  __ Ld(kInterpreterBytecodeArrayRegister,
        MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ li(kInterpreterBytecodeOffsetRegister,
        Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
  __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);

  __ SmiTag(a5, kInterpreterBytecodeOffsetRegister);
  __ Sd(a5, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  __ jmp(&after_stack_check_interrupt);

1381
  __ bind(&has_optimized_code_or_marker);
1382 1383
  MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(masm, optimization_state,
                                               feedback_vector);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
  __ bind(&is_baseline);
  {
    // Load the feedback vector from the closure.
    __ Ld(feedback_vector,
          FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
    __ Ld(feedback_vector,
          FieldMemOperand(feedback_vector, Cell::kValueOffset));

    Label install_baseline_code;
    // Check if feedback vector is valid. If not, call prepare for baseline to
    // allocate it.
    __ Ld(t0, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
    __ Lhu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
    __ Branch(&install_baseline_code, ne, t0, Operand(FEEDBACK_VECTOR_TYPE));

    // Check for an optimization marker.
    LoadOptimizationStateAndJumpIfNeedsProcessing(
        masm, optimization_state, feedback_vector,
        &has_optimized_code_or_marker);

    // Load the baseline code into the closure.
    __ Ld(a2, FieldMemOperand(kInterpreterBytecodeArrayRegister,
                              BaselineData::kBaselineCodeOffset));
    static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch");
    ReplaceClosureCodeWithOptimizedCode(masm, a2, closure, t0, t1);
    __ JumpCodeObject(a2);
1410

1411 1412 1413
    __ bind(&install_baseline_code);
    GenerateTailCallToReturnedCode(masm, Runtime::kInstallBaselineCode);
  }
1414 1415 1416 1417
  __ bind(&compile_lazy);
  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
  // Unreachable code.
  __ break_(0xCC);
1418 1419 1420 1421 1422

  __ bind(&stack_overflow);
  __ CallRuntime(Runtime::kThrowStackOverflow);
  // Unreachable code.
  __ break_(0xCC);
1423 1424
}

1425 1426 1427
static void GenerateInterpreterPushArgs(MacroAssembler* masm, Register num_args,
                                        Register start_address,
                                        Register scratch, Register scratch2) {
1428
  // Find the address of the last argument.
1429 1430 1431
  __ Dsubu(scratch, num_args, Operand(1));
  __ dsll(scratch, scratch, kPointerSizeLog2);
  __ Dsubu(start_address, start_address, scratch);
1432 1433

  // Push the arguments.
1434 1435
  __ PushArray(start_address, num_args, scratch, scratch2,
               TurboAssembler::PushArrayOrder::kReverse);
1436 1437
}

1438
// static
1439 1440
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
    MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1441
    InterpreterPushArgsMode mode) {
1442
  DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1443 1444 1445 1446 1447 1448
  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a2 : the address of the first argument to be pushed. Subsequent
  //          arguments should be consecutive above this, in the same order as
  //          they are to be pushed onto the stack.
  //  -- a1 : the target to call (can be any Object).
1449
  // -----------------------------------
1450
  Label stack_overflow;
1451 1452 1453 1454 1455
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // The spread argument should not be pushed.
    __ Dsubu(a0, a0, Operand(1));
  }

1456
  __ Daddu(a3, a0, Operand(1));  // Add one for receiver.
1457

1458
  __ StackOverflowCheck(a3, a4, t0, &stack_overflow);
1459 1460 1461 1462 1463 1464 1465

  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
    // Don't copy receiver.
    __ mov(a3, a0);
  }

  // This function modifies a2, t0 and a4.
1466
  GenerateInterpreterPushArgs(masm, a3, a2, a4, t0);
1467

1468
  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1469
    __ PushRoot(RootIndex::kUndefinedValue);
1470 1471
  }

1472 1473 1474 1475 1476 1477
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Pass the spread in the register a2.
    // a2 already points to the penultime argument, the spread
    // is below that.
    __ Ld(a2, MemOperand(a2, -kSystemPointerSize));
  }
1478

1479
  // Call the target.
1480
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1481
    __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1482
            RelocInfo::CODE_TARGET);
1483
  } else {
1484
    __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
1485 1486
            RelocInfo::CODE_TARGET);
  }
1487 1488 1489 1490 1491 1492 1493

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable code.
    __ break_(0xCC);
  }
1494 1495
}

1496
// static
1497
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1498
    MacroAssembler* masm, InterpreterPushArgsMode mode) {
1499 1500
  // ----------- S t a t e -------------
  // -- a0 : argument count (not including receiver)
1501
  // -- a3 : new target
1502
  // -- a1 : constructor to call
1503 1504
  // -- a2 : allocation site feedback if available, undefined otherwise.
  // -- a4 : address of the first argument
1505
  // -----------------------------------
1506
  Label stack_overflow;
1507
  __ daddiu(a6, a0, 1);
1508
  __ StackOverflowCheck(a6, a5, t0, &stack_overflow);
1509 1510 1511 1512 1513 1514 1515

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // The spread argument should not be pushed.
    __ Dsubu(a0, a0, Operand(1));
  }

  // Push the arguments, This function modifies t0, a4 and a5.
1516
  GenerateInterpreterPushArgs(masm, a0, a4, a5, t0);
1517 1518 1519 1520

  // Push a slot for the receiver.
  __ push(zero_reg);

1521 1522 1523 1524 1525 1526 1527 1528
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Pass the spread in the register a2.
    // a4 already points to the penultimate argument, the spread
    // lies in the next interpreter register.
    __ Ld(a2, MemOperand(a4, -kSystemPointerSize));
  } else {
    __ AssertUndefinedOrAllocationSite(a2, t0);
  }
1529

1530
  if (mode == InterpreterPushArgsMode::kArrayFunction) {
1531 1532 1533 1534
    __ AssertFunction(a1);

    // Tail call to the function-specific construct stub (still in the caller
    // context at this point).
1535 1536
    __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
            RelocInfo::CODE_TARGET);
1537
  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1538
    // Call the constructor with a0, a1, and a3 unmodified.
1539
    __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1540
            RelocInfo::CODE_TARGET);
1541
  } else {
1542
    DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1543
    // Call the constructor with a0, a1, and a3 unmodified.
1544
    __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1545
  }
1546 1547 1548 1549 1550 1551 1552

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable code.
    __ break_(0xCC);
  }
1553 1554
}

1555
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1556 1557
  // Set the return address to the correct point in the interpreter entry
  // trampoline.
1558
  Label builtin_trampoline, trampoline_loaded;
1559
  Smi interpreter_entry_return_pc_offset(
1560
      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1561
  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
1562

1563 1564 1565 1566
  // If the SFI function_data is an InterpreterData, the function will have a
  // custom copy of the interpreter entry trampoline for profiling. If so,
  // get the custom trampoline, otherwise grab the entry address of the global
  // trampoline.
1567 1568 1569 1570 1571 1572 1573 1574 1575
  __ Ld(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ Ld(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset));
  __ Ld(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset));
  __ GetObjectType(t0, kInterpreterDispatchTableRegister,
                   kInterpreterDispatchTableRegister);
  __ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister,
            Operand(INTERPRETER_DATA_TYPE));

  __ Ld(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset));
1576
  __ Daddu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag));
1577 1578 1579
  __ Branch(&trampoline_loaded);

  __ bind(&builtin_trampoline);
1580 1581 1582 1583
  __ li(t0, ExternalReference::
                address_of_interpreter_entry_trampoline_instruction_start(
                    masm->isolate()));
  __ Ld(t0, MemOperand(t0));
1584 1585

  __ bind(&trampoline_loaded);
1586
  __ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset.value()));
1587

1588
  // Initialize the dispatch table register.
1589
  __ li(kInterpreterDispatchTableRegister,
1590
        ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1591 1592

  // Get the bytecode array pointer from the frame.
1593
  __ Ld(kInterpreterBytecodeArrayRegister,
1594
        MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1595 1596 1597

  if (FLAG_debug_code) {
    // Check function data field is actually a BytecodeArray object.
1598
    __ SmiTst(kInterpreterBytecodeArrayRegister, kScratchReg);
1599 1600
    __ Assert(ne,
              AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
1601
              kScratchReg, Operand(zero_reg));
1602
    __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1);
1603 1604 1605
    __ Assert(eq,
              AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
              a1, Operand(BYTECODE_ARRAY_TYPE));
1606 1607 1608
  }

  // Get the target bytecode offset from the frame.
1609 1610
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620
  if (FLAG_debug_code) {
    Label okay;
    __ Branch(&okay, ge, kInterpreterBytecodeOffsetRegister,
              Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
    // Unreachable code.
    __ break_(0xCC);
    __ bind(&okay);
  }

1621 1622 1623
  // Dispatch to the target bytecode.
  __ Daddu(a1, kInterpreterBytecodeArrayRegister,
           kInterpreterBytecodeOffsetRegister);
1624 1625 1626 1627
  __ Lbu(a7, MemOperand(a1));
  __ Dlsa(a1, kInterpreterDispatchTableRegister, a7, kPointerSizeLog2);
  __ Ld(kJavaScriptCallCodeStartRegister, MemOperand(a1));
  __ Jump(kJavaScriptCallCodeStartRegister);
1628 1629
}

1630
void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) {
1631 1632 1633
  // Advance the current bytecode offset stored within the given interpreter
  // stack frame. This simulates what all bytecode handlers do upon completion
  // of the underlying operation.
1634 1635 1636 1637 1638 1639
  __ Ld(kInterpreterBytecodeArrayRegister,
        MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ Ld(kInterpreterBytecodeOffsetRegister,
        MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

1640 1641 1642 1643 1644
  Label enter_bytecode, function_entry_bytecode;
  __ Branch(&function_entry_bytecode, eq, kInterpreterBytecodeOffsetRegister,
            Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
                    kFunctionEntryBytecodeOffset));

1645 1646 1647 1648 1649
  // Load the current bytecode.
  __ Daddu(a1, kInterpreterBytecodeArrayRegister,
           kInterpreterBytecodeOffsetRegister);
  __ Lbu(a1, MemOperand(a1));

1650
  // Advance to the next bytecode.
1651 1652 1653
  Label if_return;
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, a1, a2, a3,
1654
                                a4, &if_return);
1655

1656
  __ bind(&enter_bytecode);
1657 1658
  // Convert new bytecode offset to a Smi and save in the stackframe.
  __ SmiTag(a2, kInterpreterBytecodeOffsetRegister);
1659
  __ Sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1660 1661

  Generate_InterpreterEnterBytecode(masm);
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671
  __ bind(&function_entry_bytecode);
  // If the code deoptimizes during the implicit function entry stack interrupt
  // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
  // not a valid bytecode offset. Detect this case and advance to the first
  // actual bytecode.
  __ li(kInterpreterBytecodeOffsetRegister,
        Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
  __ Branch(&enter_bytecode);

1672 1673 1674
  // We should never take the if_return path.
  __ bind(&if_return);
  __ Abort(AbortReason::kInvalidBytecodeAdvance);
1675 1676
}

1677
void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) {
1678 1679 1680
  Generate_InterpreterEnterBytecode(masm);
}

1681 1682 1683 1684
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
                                      bool java_script_builtin,
                                      bool with_result) {
1685
  const RegisterConfiguration* config(RegisterConfiguration::Default());
1686
  int allocatable_register_count = config->num_allocatable_general_registers();
1687 1688 1689
  UseScratchRegisterScope temps(masm);
  Register scratch = temps.Acquire();

1690
  if (with_result) {
1691 1692 1693
  if (java_script_builtin) {
    __ mov(scratch, v0);
  } else {
1694 1695 1696 1697 1698 1699 1700
    // Overwrite the hole inserted by the deoptimizer with the return value from
    // the LAZY deopt point.
    __ Sd(v0,
          MemOperand(
              sp, config->num_allocatable_general_registers() * kPointerSize +
                      BuiltinContinuationFrameConstants::kFixedFrameSize));
  }
1701
  }
1702 1703 1704 1705 1706 1707 1708
  for (int i = allocatable_register_count - 1; i >= 0; --i) {
    int code = config->GetAllocatableGeneralCode(i);
    __ Pop(Register::from_code(code));
    if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
      __ SmiUntag(Register::from_code(code));
    }
  }
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

  if (with_result && java_script_builtin) {
    // Overwrite the hole inserted by the deoptimizer with the return value from
    // the LAZY deopt point. t0 contains the arguments count, the return value
    // from LAZY is always the last argument.
    __ Daddu(a0, a0,
            Operand(BuiltinContinuationFrameConstants::kFixedSlotCount));
    __ Dlsa(t0, sp, a0, kSystemPointerSizeLog2);
    __ Sd(scratch, MemOperand(t0));
    // Recover arguments count.
    __ Dsubu(a0, a0,
            Operand(BuiltinContinuationFrameConstants::kFixedSlotCount));
  }

1723 1724
  __ Ld(fp, MemOperand(
                sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1725 1726
  // Load builtin index (stored as a Smi) and use it to get the builtin start
  // address from the builtins table.
1727 1728 1729 1730
  __ Pop(t0);
  __ Daddu(sp, sp,
           Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  __ Pop(ra);
1731
  __ LoadEntryFromBuiltinIndex(t0);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
  __ Jump(t0);
}
}  // namespace

void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, false);
}

void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, true);
}

void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, false);
}

void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, true);
}

1754
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1755 1756
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
1757
    __ CallRuntime(Runtime::kNotifyDeoptimized);
1758 1759
  }

1760
  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code());
1761
  __ Ld(v0, MemOperand(sp, 0 * kPointerSize));
1762 1763
  __ Ret(USE_DELAY_SLOT);
  // Safe to fill delay slot Addu will emit one instruction.
1764
  __ Daddu(sp, sp, Operand(1 * kPointerSize));  // Remove state.
1765 1766
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
namespace {

void Generate_OSREntry(MacroAssembler* masm, Register entry_address,
                       Operand offset = Operand(zero_reg)) {
  __ Daddu(ra, entry_address, offset);
  // And "return" to the OSR entry point of the function.
  __ Ret();
}

void OnStackReplacement(MacroAssembler* masm, bool is_interpreter) {
1777 1778
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
1779
    __ CallRuntime(Runtime::kCompileForOnStackReplacement);
1780 1781
  }

1782
  // If the code object is null, just return to the caller.
1783
  __ Ret(eq, v0, Operand(Smi::zero()));
1784 1785 1786 1787 1788
  if (is_interpreter) {
    // Drop the handler frame that is be sitting on top of the actual
    // JavaScript frame. This is the case then OSR is triggered from bytecode.
    __ LeaveFrame(StackFrame::STUB);
  }
1789 1790
  // Load deoptimization data from the code object.
  // <deopt_data> = <code>[#deoptimization_data_offset]
1791
  __ Ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1792 1793 1794

  // Load the OSR entrypoint offset from the deoptimization data.
  // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1795 1796 1797
  __ SmiUntag(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
                                     DeoptimizationData::kOsrPcOffsetIndex) -
                                     kHeapObjectTag));
1798 1799 1800

  // Compute the target address = code_obj + header_size + osr_offset
  // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1801
  __ Daddu(v0, v0, a1);
1802 1803 1804
  Generate_OSREntry(masm, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
}
}  // namespace
1805

1806 1807 1808 1809 1810 1811 1812 1813
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
  return OnStackReplacement(masm, true);
}

void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) {
  __ Ld(kContextRegister,
        MemOperand(fp, StandardFrameConstants::kContextOffset));
  return OnStackReplacement(masm, false);
1814 1815
}

1816
// static
1817
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1818 1819
  // ----------- S t a t e -------------
  //  -- a0    : argc
1820
  //  -- sp[0] : receiver
1821
  //  -- sp[4] : thisArg
1822
  //  -- sp[8] : argArray
1823
  // -----------------------------------
1824

1825
  Register argc = a0;
1826
  Register arg_array = a2;
1827
  Register receiver = a1;
1828
  Register this_arg = a5;
1829 1830 1831
  Register undefined_value = a3;
  Register scratch = a4;

1832
  __ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
1833

1834
  // 1. Load receiver into a1, argArray into a2 (if present), remove all
1835 1836
  // arguments from the stack (including the receiver), and push thisArg (if
  // present) instead.
1837
  {
1838 1839 1840
    // Claim (2 - argc) dummy arguments form the stack, to put the stack in a
    // consistent state for a simple pop operation.

1841 1842 1843 1844 1845 1846 1847 1848
    __ mov(scratch, argc);
    __ Ld(this_arg, MemOperand(sp, kPointerSize));
    __ Ld(arg_array, MemOperand(sp, 2 * kPointerSize));
    __ Movz(arg_array, undefined_value, scratch);  // if argc == 0
    __ Movz(this_arg, undefined_value, scratch);   // if argc == 0
    __ Dsubu(scratch, scratch, Operand(1));
    __ Movz(arg_array, undefined_value, scratch);  // if argc == 1
    __ Ld(receiver, MemOperand(sp));
1849
    __ Dlsa(sp, sp, argc, kSystemPointerSizeLog2);
1850
    __ Sd(this_arg, MemOperand(sp));
1851
  }
1852

1853
  // ----------- S t a t e -------------
1854
  //  -- a2    : argArray
1855
  //  -- a1    : receiver
1856
  //  -- a3    : undefined root value
1857 1858
  //  -- sp[0] : thisArg
  // -----------------------------------
1859

1860 1861 1862
  // 2. We don't need to check explicitly for callable receiver here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.
1863

1864 1865
  // 3. Tail call with no arguments if argArray is null or undefined.
  Label no_arguments;
1866
  __ JumpIfRoot(arg_array, RootIndex::kNullValue, &no_arguments);
1867
  __ Branch(&no_arguments, eq, arg_array, Operand(undefined_value));
1868

1869
  // 4a. Apply the receiver to the given argArray.
1870
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1871
          RelocInfo::CODE_TARGET);
1872

1873 1874 1875 1876 1877
  // 4b. The argArray is either null or undefined, so we tail call without any
  // arguments to the receiver.
  __ bind(&no_arguments);
  {
    __ mov(a0, zero_reg);
1878
    DCHECK(receiver == a1);
1879
    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1880
  }
1881 1882
}

1883 1884
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
  // 1. Get the callable to call (passed as receiver) from the stack.
  {
    __ Pop(a1);
  }

  // 2. Make sure we have at least one argument.
  // a0: actual number of arguments
  {
    Label done;
    __ Branch(&done, ne, a0, Operand(zero_reg));
    __ PushRoot(RootIndex::kUndefinedValue);
    __ Daddu(a0, a0, Operand(1));
    __ bind(&done);
  }

  // 3. Adjust the actual number of arguments.
  __ daddiu(a0, a0, -1);
1902 1903 1904 1905 1906

  // 4. Call the callable.
  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}

1907 1908 1909
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- a0     : argc
1910 1911 1912 1913
  //  -- sp[0]  : receiver
  //  -- sp[8]  : target         (if argc >= 1)
  //  -- sp[16] : thisArgument   (if argc >= 2)
  //  -- sp[24] : argumentsList  (if argc == 3)
1914
  // -----------------------------------
1915

1916
  Register argc = a0;
1917
  Register arguments_list = a2;
1918
  Register target = a1;
1919
  Register this_argument = a5;
1920 1921 1922
  Register undefined_value = a3;
  Register scratch = a4;

1923
  __ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
1924

1925
  // 1. Load target into a1 (if present), argumentsList into a2 (if present),
1926 1927
  // remove all arguments from the stack (including the receiver), and push
  // thisArgument (if present) instead.
1928
  {
1929 1930 1931
    // Claim (3 - argc) dummy arguments form the stack, to put the stack in a
    // consistent state for a simple pop operation.

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    __ mov(scratch, argc);
    __ Ld(target, MemOperand(sp, kPointerSize));
    __ Ld(this_argument, MemOperand(sp, 2 * kPointerSize));
    __ Ld(arguments_list, MemOperand(sp, 3 * kPointerSize));
    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 0
    __ Movz(this_argument, undefined_value, scratch);   // if argc == 0
    __ Movz(target, undefined_value, scratch);          // if argc == 0
    __ Dsubu(scratch, scratch, Operand(1));
    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 1
    __ Movz(this_argument, undefined_value, scratch);   // if argc == 1
    __ Dsubu(scratch, scratch, Operand(1));
    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 2

1945
    __ Dlsa(sp, sp, argc, kSystemPointerSizeLog2);
1946
    __ Sd(this_argument, MemOperand(sp, 0));  // Overwrite receiver
1947
  }
1948

1949
  // ----------- S t a t e -------------
1950
  //  -- a2    : argumentsList
1951
  //  -- a1    : target
1952
  //  -- a3    : undefined root value
1953 1954
  //  -- sp[0] : thisArgument
  // -----------------------------------
1955

1956 1957 1958
  // 2. We don't need to check explicitly for callable target here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.
1959

1960
  // 3. Apply the target to the given argumentsList.
1961
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1962
          RelocInfo::CODE_TARGET);
1963 1964
}

1965 1966 1967
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- a0     : argc
1968 1969 1970 1971
  //  -- sp[0]   : receiver
  //  -- sp[8]   : target
  //  -- sp[16]  : argumentsList
  //  -- sp[24]  : new.target (optional)
1972
  // -----------------------------------
1973

1974
  Register argc = a0;
1975
  Register arguments_list = a2;
1976 1977 1978 1979
  Register target = a1;
  Register new_target = a3;
  Register undefined_value = a4;
  Register scratch = a5;
1980

1981
  __ LoadRoot(undefined_value, RootIndex::kUndefinedValue);
1982

1983
  // 1. Load target into a1 (if present), argumentsList into a2 (if present),
1984 1985 1986 1987
  // new.target into a3 (if present, otherwise use target), remove all
  // arguments from the stack (including the receiver), and push thisArgument
  // (if present) instead.
  {
1988 1989 1990
    // Claim (3 - argc) dummy arguments form the stack, to put the stack in a
    // consistent state for a simple pop operation.

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    __ mov(scratch, argc);
    __ Ld(target, MemOperand(sp, kPointerSize));
    __ Ld(arguments_list, MemOperand(sp, 2 * kPointerSize));
    __ Ld(new_target, MemOperand(sp, 3 * kPointerSize));
    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 0
    __ Movz(new_target, undefined_value, scratch);      // if argc == 0
    __ Movz(target, undefined_value, scratch);          // if argc == 0
    __ Dsubu(scratch, scratch, Operand(1));
    __ Movz(arguments_list, undefined_value, scratch);  // if argc == 1
    __ Movz(new_target, target, scratch);               // if argc == 1
    __ Dsubu(scratch, scratch, Operand(1));
    __ Movz(new_target, target, scratch);               // if argc == 2

2004
    __ Dlsa(sp, sp, argc, kSystemPointerSizeLog2);
2005
    __ Sd(undefined_value, MemOperand(sp, 0));    // Overwrite receiver
2006
  }
2007

2008
  // ----------- S t a t e -------------
2009
  //  -- a2    : argumentsList
2010
  //  -- a1    : target
2011
  //  -- a3    : new.target
2012 2013
  //  -- sp[0] : receiver (undefined)
  // -----------------------------------
2014

2015 2016 2017
  // 2. We don't need to check explicitly for constructor target here,
  // since that's the first thing the Construct/ConstructWithArrayLike
  // builtins will do.
2018

2019 2020 2021
  // 3. We don't need to check explicitly for constructor new.target here,
  // since that's the second thing the Construct/ConstructWithArrayLike
  // builtins will do.
2022

2023
  // 4. Construct the target with the given new.target and argumentsList.
2024
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
2025
          RelocInfo::CODE_TARGET);
2026 2027
}

2028
// static
2029 2030
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
                                               Handle<Code> code) {
2031
  // ----------- S t a t e -------------
2032 2033 2034 2035 2036
  //  -- a1 : target
  //  -- a0 : number of parameters on the stack (not including the receiver)
  //  -- a2 : arguments list (a FixedArray)
  //  -- a4 : len (number of elements to push from args)
  //  -- a3 : new.target (for [[Construct]])
2037
  // -----------------------------------
2038
  if (FLAG_debug_code) {
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    // Allow a2 to be a FixedArray, or a FixedDoubleArray if a4 == 0.
    Label ok, fail;
    __ AssertNotSmi(a2);
    __ GetObjectType(a2, t8, t8);
    __ Branch(&ok, eq, t8, Operand(FIXED_ARRAY_TYPE));
    __ Branch(&fail, ne, t8, Operand(FIXED_DOUBLE_ARRAY_TYPE));
    __ Branch(&ok, eq, a4, Operand(zero_reg));
    // Fall through.
    __ bind(&fail);
    __ Abort(AbortReason::kOperandIsNotAFixedArray);

    __ bind(&ok);
  }
2052

2053 2054
  Register args = a2;
  Register len = a4;
2055 2056

  // Check for stack overflow.
2057
  Label stack_overflow;
2058
  __ StackOverflowCheck(len, kScratchReg, a5, &stack_overflow);
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
  // Move the arguments already in the stack,
  // including the receiver and the return address.
  {
    Label copy;
    Register src = a6, dest = a7;
    __ mov(src, sp);
    __ dsll(t0, a4, kSystemPointerSizeLog2);
    __ Dsubu(sp, sp, Operand(t0));
    // Update stack pointer.
    __ mov(dest, sp);
    __ Daddu(t0, a0, Operand(zero_reg));

    __ bind(&copy);
    __ Ld(t1, MemOperand(src, 0));
    __ Sd(t1, MemOperand(dest, 0));
    __ Dsubu(t0, t0, Operand(1));
    __ Daddu(src, src, Operand(kSystemPointerSize));
    __ Daddu(dest, dest, Operand(kSystemPointerSize));
    __ Branch(&copy, ge, t0, Operand(zero_reg));
  }

2081 2082
  // Push arguments onto the stack (thisArgument is already on the stack).
  {
2083
    Label done, push, loop;
2084
    Register src = a6;
2085 2086 2087 2088
    Register scratch = len;

    __ daddiu(src, args, FixedArray::kHeaderSize - kHeapObjectTag);
    __ Branch(&done, eq, len, Operand(zero_reg), i::USE_DELAY_SLOT);
2089
    __ Daddu(a0, a0, len);  // The 'len' argument for Call() or Construct().
2090 2091
    __ dsll(scratch, len, kPointerSizeLog2);
    __ Dsubu(scratch, sp, Operand(scratch));
2092
    __ LoadRoot(t1, RootIndex::kTheHoleValue);
2093
    __ bind(&loop);
2094
    __ Ld(a5, MemOperand(src));
2095
    __ daddiu(src, src, kPointerSize);
2096
    __ Branch(&push, ne, a5, Operand(t1));
2097
    __ LoadRoot(a5, RootIndex::kUndefinedValue);
2098
    __ bind(&push);
2099 2100 2101
    __ Sd(a5, MemOperand(a7, 0));
    __ Daddu(a7, a7, Operand(kSystemPointerSize));
    __ Daddu(scratch, scratch, Operand(kSystemPointerSize));
2102
    __ Branch(&loop, ne, scratch, Operand(sp));
2103 2104 2105
    __ bind(&done);
  }

2106 2107
  // Tail-call to the actual Call or Construct builtin.
  __ Jump(code, RelocInfo::CODE_TARGET);
2108 2109 2110

  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
2111 2112
}

2113
// static
2114
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
2115
                                                      CallOrConstructMode mode,
2116
                                                      Handle<Code> code) {
2117
  // ----------- S t a t e -------------
2118 2119 2120 2121
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a3 : the new.target (for [[Construct]] calls)
  //  -- a1 : the target to call (can be any Object)
  //  -- a2 : start index (to support rest parameters)
2122 2123
  // -----------------------------------

2124 2125 2126 2127 2128 2129
  // Check if new.target has a [[Construct]] internal method.
  if (mode == CallOrConstructMode::kConstruct) {
    Label new_target_constructor, new_target_not_constructor;
    __ JumpIfSmi(a3, &new_target_not_constructor);
    __ ld(t1, FieldMemOperand(a3, HeapObject::kMapOffset));
    __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
2130
    __ And(t1, t1, Operand(Map::Bits1::IsConstructorBit::kMask));
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
    __ Branch(&new_target_constructor, ne, t1, Operand(zero_reg));
    __ bind(&new_target_not_constructor);
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
      __ Push(a3);
      __ CallRuntime(Runtime::kThrowNotConstructor);
    }
    __ bind(&new_target_constructor);
  }

2142
  Label stack_done, stack_overflow;
2143
  __ Ld(a7, MemOperand(fp, StandardFrameConstants::kArgCOffset));
2144 2145
  __ Subu(a7, a7, a2);
  __ Branch(&stack_done, le, a7, Operand(zero_reg));
2146 2147
  {
    // Check for stack overflow.
2148
    __ StackOverflowCheck(a7, a4, a5, &stack_overflow);
2149 2150

    // Forward the arguments from the caller frame.
2151 2152

    // Point to the first argument to copy (skipping the receiver).
2153
    __ Daddu(a6, fp,
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
             Operand(CommonFrameConstants::kFixedFrameSizeAboveFp +
                     kSystemPointerSize));
    __ Dlsa(a6, a6, a2, kSystemPointerSizeLog2);

    // Move the arguments already in the stack,
    // including the receiver and the return address.
    {
      Label copy;
      Register src = t0, dest = a2;
      __ mov(src, sp);
      // Update stack pointer.
      __ dsll(t1, a7, kSystemPointerSizeLog2);
      __ Dsubu(sp, sp, Operand(t1));
      __ mov(dest, sp);
      __ Daddu(t2, a0, Operand(zero_reg));

      __ bind(&copy);
      __ Ld(t1, MemOperand(src, 0));
      __ Sd(t1, MemOperand(dest, 0));
      __ Dsubu(t2, t2, Operand(1));
      __ Daddu(src, src, Operand(kSystemPointerSize));
      __ Daddu(dest, dest, Operand(kSystemPointerSize));
      __ Branch(&copy, ge, t2, Operand(zero_reg));
    }

    // Copy arguments from the caller frame.
    // TODO(victorgomes): Consider using forward order as potentially more cache
    // friendly.
2182 2183
    {
      Label loop;
2184
      __ Daddu(a0, a0, a7);
2185 2186
      __ bind(&loop);
      {
2187
        __ Subu(a7, a7, Operand(1));
2188 2189 2190 2191
        __ Dlsa(t0, a6, a7, kPointerSizeLog2);
        __ Ld(kScratchReg, MemOperand(t0));
        __ Dlsa(t0, a2, a7, kPointerSizeLog2);
        __ Sd(kScratchReg, MemOperand(t0));
2192
        __ Branch(&loop, ne, a7, Operand(zero_reg));
2193 2194 2195 2196 2197 2198 2199 2200
      }
    }
  }
  __ Branch(&stack_done);
  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
  __ bind(&stack_done);

2201
  // Tail-call to the {code} handler.
2202 2203 2204
  __ Jump(code, RelocInfo::CODE_TARGET);
}

2205
// static
2206
void Builtins::Generate_CallFunction(MacroAssembler* masm,
2207
                                     ConvertReceiverMode mode) {
2208 2209 2210 2211 2212
  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the function to call (checked to be a JSFunction)
  // -----------------------------------
  __ AssertFunction(a1);
2213

2214 2215 2216
  // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
  // Check that function is not a "classConstructor".
  Label class_constructor;
2217
  __ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2218
  __ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset));
2219 2220 2221
  __ And(kScratchReg, a3,
         Operand(SharedFunctionInfo::IsClassConstructorBit::kMask));
  __ Branch(&class_constructor, ne, kScratchReg, Operand(zero_reg));
2222

2223 2224 2225
  // Enter the context of the function; ToObject has to run in the function
  // context, and we also need to take the global proxy from the function
  // context in case of conversion.
2226
  __ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
2227
  // We need to convert the receiver for non-native sloppy mode functions.
2228
  Label done_convert;
2229
  __ Lwu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset));
2230
  __ And(kScratchReg, a3,
2231 2232
         Operand(SharedFunctionInfo::IsNativeBit::kMask |
                 SharedFunctionInfo::IsStrictBit::kMask));
2233
  __ Branch(&done_convert, ne, kScratchReg, Operand(zero_reg));
2234 2235 2236 2237 2238 2239 2240 2241
  {
    // ----------- S t a t e -------------
    //  -- a0 : the number of arguments (not including the receiver)
    //  -- a1 : the function to call (checked to be a JSFunction)
    //  -- a2 : the shared function info.
    //  -- cp : the function context.
    // -----------------------------------

2242
    if (mode == ConvertReceiverMode::kNullOrUndefined) {
2243 2244
      // Patch receiver to global proxy.
      __ LoadGlobalProxy(a3);
2245 2246
    } else {
      Label convert_to_object, convert_receiver;
2247
      __ LoadReceiver(a3, a0);
2248 2249 2250 2251 2252 2253
      __ JumpIfSmi(a3, &convert_to_object);
      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
      __ GetObjectType(a3, a4, a4);
      __ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE));
      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
        Label convert_global_proxy;
2254 2255
        __ JumpIfRoot(a3, RootIndex::kUndefinedValue, &convert_global_proxy);
        __ JumpIfNotRoot(a3, RootIndex::kNullValue, &convert_to_object);
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
        __ bind(&convert_global_proxy);
        {
          // Patch receiver to global proxy.
          __ LoadGlobalProxy(a3);
        }
        __ Branch(&convert_receiver);
      }
      __ bind(&convert_to_object);
      {
        // Convert receiver using ToObject.
        // TODO(bmeurer): Inline the allocation here to avoid building the frame
        // in the fast case? (fall back to AllocateInNewSpace?)
        FrameScope scope(masm, StackFrame::INTERNAL);
        __ SmiTag(a0);
        __ Push(a0, a1);
        __ mov(a0, a3);
2272
        __ Push(cp);
2273
        __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
2274
                RelocInfo::CODE_TARGET);
2275
        __ Pop(cp);
2276 2277 2278 2279
        __ mov(a3, v0);
        __ Pop(a0, a1);
        __ SmiUntag(a0);
      }
2280
      __ Ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2281
      __ bind(&convert_receiver);
2282
    }
2283
    __ StoreReceiver(a3, a0, kScratchReg);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
  }
  __ bind(&done_convert);

  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the function to call (checked to be a JSFunction)
  //  -- a2 : the shared function info.
  //  -- cp : the function context.
  // -----------------------------------

2294 2295
  __ Lhu(a2,
         FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
2296
  __ InvokeFunctionCode(a1, no_reg, a2, a0, InvokeType::kJump);
2297 2298 2299 2300 2301

  // The function is a "classConstructor", need to raise an exception.
  __ bind(&class_constructor);
  {
    FrameScope frame(masm, StackFrame::INTERNAL);
2302
    __ Push(a1);
2303
    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2304
  }
2305 2306
}

2307
// static
2308
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
2309 2310 2311 2312 2313 2314 2315 2316
  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the function to call (checked to be a JSBoundFunction)
  // -----------------------------------
  __ AssertBoundFunction(a1);

  // Patch the receiver to [[BoundThis]].
  {
2317 2318
    __ Ld(t0, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset));
    __ StoreReceiver(t0, a0, kScratchReg);
2319 2320 2321
  }

  // Load [[BoundArguments]] into a2 and length of that into a4.
2322
  __ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
2323
  __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the function to call (checked to be a JSBoundFunction)
  //  -- a2 : the [[BoundArguments]] (implemented as FixedArray)
  //  -- a4 : the number of [[BoundArguments]]
  // -----------------------------------

  // Reserve stack space for the [[BoundArguments]].
  {
    Label done;
    __ dsll(a5, a4, kPointerSizeLog2);
2336
    __ Dsubu(t0, sp, Operand(a5));
2337 2338
    // Check the stack for overflow. We are not trying to catch interruptions
    // (i.e. debug break and preemption) here, so check the "real stack limit".
2339 2340
    __ LoadStackLimit(kScratchReg,
                      MacroAssembler::StackLimitKind::kRealStackLimit);
2341
    __ Branch(&done, hs, t0, Operand(kScratchReg));
2342 2343 2344
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
2345
      __ CallRuntime(Runtime::kThrowStackOverflow);
2346 2347 2348 2349
    }
    __ bind(&done);
  }

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
  // Pop receiver.
  __ Pop(t0);

  // Push [[BoundArguments]].
  {
    Label loop, done_loop;
    __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
    __ Daddu(a0, a0, Operand(a4));
    __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    __ bind(&loop);
    __ Dsubu(a4, a4, Operand(1));
    __ Branch(&done_loop, lt, a4, Operand(zero_reg));
    __ Dlsa(a5, a2, a4, kPointerSizeLog2);
    __ Ld(kScratchReg, MemOperand(a5));
    __ Push(kScratchReg);
    __ Branch(&loop);
    __ bind(&done_loop);
  }

  // Push receiver.
  __ Push(t0);
2371 2372

  // Call the [[BoundTargetFunction]] via the Call builtin.
2373
  __ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
2374 2375
  __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
          RelocInfo::CODE_TARGET);
2376 2377
}

2378
// static
2379
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2380 2381 2382 2383 2384
  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the target to call (can be any Object).
  // -----------------------------------

2385
  Label non_callable, non_smi;
2386
  __ JumpIfSmi(a1, &non_callable);
2387
  __ bind(&non_smi);
2388 2389
  __ LoadMap(t1, a1);
  __ GetInstanceTypeRange(t1, t2, FIRST_JS_FUNCTION_TYPE, t8);
2390
  __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2391 2392
          RelocInfo::CODE_TARGET, ls, t8,
          Operand(LAST_JS_FUNCTION_TYPE - FIRST_JS_FUNCTION_TYPE));
2393
  __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2394
          RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
2395 2396

  // Check if target has a [[Call]] internal method.
2397
  __ Lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
2398
  __ And(t1, t1, Operand(Map::Bits1::IsCallableBit::kMask));
2399 2400
  __ Branch(&non_callable, eq, t1, Operand(zero_reg));

2401 2402
  __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy),
          RelocInfo::CODE_TARGET, eq, t2, Operand(JS_PROXY_TYPE));
2403 2404 2405 2406

  // 2. Call to something else, which might have a [[Call]] internal method (if
  // not we raise an exception).
  // Overwrite the original receiver with the (original) target.
2407
  __ StoreReceiver(a1, a0, kScratchReg);
2408
  // Let the "call_as_function_delegate" take care of the rest.
2409
  __ LoadNativeContextSlot(a1, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
2410
  __ Jump(masm->isolate()->builtins()->CallFunction(
2411
              ConvertReceiverMode::kNotNullOrUndefined),
2412
          RelocInfo::CODE_TARGET);
2413 2414 2415

  // 3. Call to something that is not callable.
  __ bind(&non_callable);
2416
  {
2417
    FrameScope scope(masm, StackFrame::INTERNAL);
2418
    __ Push(a1);
2419
    __ CallRuntime(Runtime::kThrowCalledNonCallable);
2420 2421 2422
  }
}

2423 2424 2425 2426
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the constructor to call (checked to be a JSFunction)
2427
  //  -- a3 : the new target (checked to be a constructor)
2428
  // -----------------------------------
2429
  __ AssertConstructor(a1);
2430 2431 2432 2433
  __ AssertFunction(a1);

  // Calling convention for function specific ConstructStubs require
  // a2 to contain either an AllocationSite or undefined.
2434
  __ LoadRoot(a2, RootIndex::kUndefinedValue);
2435

2436 2437 2438
  Label call_generic_stub;

  // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2439
  __ Ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2440 2441 2442 2443 2444 2445 2446 2447
  __ lwu(a4, FieldMemOperand(a4, SharedFunctionInfo::kFlagsOffset));
  __ And(a4, a4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
  __ Branch(&call_generic_stub, eq, a4, Operand(zero_reg));

  __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
          RelocInfo::CODE_TARGET);

  __ bind(&call_generic_stub);
2448
  __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2449
          RelocInfo::CODE_TARGET);
2450 2451
}

2452 2453 2454 2455 2456 2457 2458
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the function to call (checked to be a JSBoundFunction)
  //  -- a3 : the new target (checked to be a constructor)
  // -----------------------------------
2459
  __ AssertConstructor(a1);
2460 2461 2462
  __ AssertBoundFunction(a1);

  // Load [[BoundArguments]] into a2 and length of that into a4.
2463
  __ Ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
2464
  __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the function to call (checked to be a JSBoundFunction)
  //  -- a2 : the [[BoundArguments]] (implemented as FixedArray)
  //  -- a3 : the new target (checked to be a constructor)
  //  -- a4 : the number of [[BoundArguments]]
  // -----------------------------------

  // Reserve stack space for the [[BoundArguments]].
  {
    Label done;
    __ dsll(a5, a4, kPointerSizeLog2);
2478
    __ Dsubu(t0, sp, Operand(a5));
2479 2480
    // Check the stack for overflow. We are not trying to catch interruptions
    // (i.e. debug break and preemption) here, so check the "real stack limit".
2481 2482
    __ LoadStackLimit(kScratchReg,
                      MacroAssembler::StackLimitKind::kRealStackLimit);
2483
    __ Branch(&done, hs, t0, Operand(kScratchReg));
2484 2485 2486
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
2487
      __ CallRuntime(Runtime::kThrowStackOverflow);
2488 2489 2490 2491
    }
    __ bind(&done);
  }

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
  // Pop receiver.
  __ Pop(t0);

  // Push [[BoundArguments]].
  {
    Label loop, done_loop;
    __ SmiUntag(a4, FieldMemOperand(a2, FixedArray::kLengthOffset));
    __ Daddu(a0, a0, Operand(a4));
    __ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    __ bind(&loop);
    __ Dsubu(a4, a4, Operand(1));
    __ Branch(&done_loop, lt, a4, Operand(zero_reg));
    __ Dlsa(a5, a2, a4, kPointerSizeLog2);
    __ Ld(kScratchReg, MemOperand(a5));
    __ Push(kScratchReg);
    __ Branch(&loop);
    __ bind(&done_loop);
  }

  // Push receiver.
  __ Push(t0);
2513 2514 2515 2516 2517

  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
  {
    Label skip_load;
    __ Branch(&skip_load, ne, a1, Operand(a3));
2518
    __ Ld(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
2519 2520 2521 2522
    __ bind(&skip_load);
  }

  // Construct the [[BoundTargetFunction]] via the Construct builtin.
2523
  __ Ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
2524
  __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2525 2526
}

2527 2528 2529 2530 2531
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- a0 : the number of arguments (not including the receiver)
  //  -- a1 : the constructor to call (can be any Object)
2532
  //  -- a3 : the new target (either the same as the constructor or
2533 2534 2535
  //          the JSFunction on which new was invoked initially)
  // -----------------------------------

2536
  // Check if target is a Smi.
2537
  Label non_constructor, non_proxy;
2538 2539
  __ JumpIfSmi(a1, &non_constructor);

2540
  // Check if target has a [[Construct]] internal method.
2541
  __ ld(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
2542
  __ Lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset));
2543
  __ And(t3, t3, Operand(Map::Bits1::IsConstructorBit::kMask));
2544
  __ Branch(&non_constructor, eq, t3, Operand(zero_reg));
2545

2546
  // Dispatch based on instance type.
2547
  __ GetInstanceTypeRange(t1, t2, FIRST_JS_FUNCTION_TYPE, t8);
2548
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
2549 2550
          RelocInfo::CODE_TARGET, ls, t8,
          Operand(LAST_JS_FUNCTION_TYPE - FIRST_JS_FUNCTION_TYPE));
2551

2552 2553
  // Only dispatch to bound functions after checking whether they are
  // constructors.
2554
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2555 2556
          RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));

2557
  // Only dispatch to proxies after checking whether they are constructors.
2558
  __ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE));
2559 2560
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
          RelocInfo::CODE_TARGET);
2561

2562
  // Called Construct on an exotic Object with a [[Construct]] internal method.
2563
  __ bind(&non_proxy);
2564 2565
  {
    // Overwrite the original receiver with the (original) target.
2566
    __ StoreReceiver(a1, a0, kScratchReg);
2567
    // Let the "call_as_constructor_delegate" take care of the rest.
2568
    __ LoadNativeContextSlot(a1, Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
2569 2570 2571
    __ Jump(masm->isolate()->builtins()->CallFunction(),
            RelocInfo::CODE_TARGET);
  }
2572

2573 2574 2575
  // Called Construct on an Object that doesn't have a [[Construct]] internal
  // method.
  __ bind(&non_constructor);
2576
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2577
          RelocInfo::CODE_TARGET);
2578 2579
}

2580
#if V8_ENABLE_WEBASSEMBLY
2581
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2582 2583
  // The function index was put in t0 by the jump table trampoline.
  // Convert to Smi for the runtime call
2584
  __ SmiTag(kWasmCompileLazyFuncIndexRegister);
2585
  {
2586
    HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2587
    FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2588

2589
    // Save all parameter registers (see wasm-linkage.h). They might be
2590 2591
    // overwritten in the runtime call below. We don't have any callee-saved
    // registers in wasm, so no need to store anything else.
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
    RegList gp_regs = 0;
    for (Register gp_param_reg : wasm::kGpParamRegisters) {
      gp_regs |= gp_param_reg.bit();
    }

    RegList fp_regs = 0;
    for (DoubleRegister fp_param_reg : wasm::kFpParamRegisters) {
      fp_regs |= fp_param_reg.bit();
    }

    CHECK_EQ(NumRegs(gp_regs), arraysize(wasm::kGpParamRegisters));
    CHECK_EQ(NumRegs(fp_regs), arraysize(wasm::kFpParamRegisters));
    CHECK_EQ(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs,
             NumRegs(gp_regs));
    CHECK_EQ(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs,
             NumRegs(fp_regs));

2609
    __ MultiPush(gp_regs);
2610 2611 2612 2613 2614 2615 2616 2617
    // Check if machine has simd enabled, if so push vector registers. If not
    // then only push double registers.
    Label push_doubles, simd_pushed;
    __ li(a1, ExternalReference::supports_wasm_simd_128_address());
    // If > 0 then simd is available.
    __ Lbu(a1, MemOperand(a1));
    __ Branch(&push_doubles, le, a1, Operand(zero_reg));
    // Save vector registers.
2618 2619 2620 2621 2622
    {
      CpuFeatureScope msa_scope(
          masm, MIPS_SIMD, CpuFeatureScope::CheckPolicy::kDontCheckSupported);
      __ MultiPushMSA(fp_regs);
    }
2623 2624 2625 2626 2627 2628 2629 2630
    __ Branch(&simd_pushed);
    __ bind(&push_doubles);
    __ MultiPushFPU(fp_regs);
    // kFixedFrameSizeFromFp is hard coded to include space for Simd
    // registers, so we still need to allocate extra (unused) space on the stack
    // as if they were saved.
    __ Dsubu(sp, sp, base::bits::CountPopulation(fp_regs) * kDoubleSize);
    __ bind(&simd_pushed);
2631 2632
    // Pass instance and function index as an explicit arguments to the runtime
    // function.
2633
    __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister);
2634
    // Initialize the JavaScript context with 0. CEntry will use it to
2635
    // set the current context on the isolate.
2636
    __ Move(kContextRegister, Smi::zero());
2637
    __ CallRuntime(Runtime::kWasmCompileLazy, 2);
2638 2639

    // Restore registers.
2640 2641 2642 2643 2644 2645
    Label pop_doubles, simd_popped;
    __ li(a1, ExternalReference::supports_wasm_simd_128_address());
    // If > 0 then simd is available.
    __ Lbu(a1, MemOperand(a1));
    __ Branch(&pop_doubles, le, a1, Operand(zero_reg));
    // Pop vector registers.
2646 2647 2648 2649 2650
    {
      CpuFeatureScope msa_scope(
          masm, MIPS_SIMD, CpuFeatureScope::CheckPolicy::kDontCheckSupported);
      __ MultiPopMSA(fp_regs);
    }
2651 2652 2653 2654 2655
    __ Branch(&simd_popped);
    __ bind(&pop_doubles);
    __ Daddu(sp, sp, base::bits::CountPopulation(fp_regs) * kDoubleSize);
    __ MultiPopFPU(fp_regs);
    __ bind(&simd_popped);
2656 2657
    __ MultiPop(gp_regs);
  }
2658
  // Finally, jump to the entrypoint.
2659
  __ Jump(v0);
2660 2661
}

2662 2663 2664
void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
  {
2665
    FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
2666 2667 2668

    // Save all parameter registers. They might hold live values, we restore
    // them after the runtime call.
2669 2670
    __ MultiPush(WasmDebugBreakFrameConstants::kPushedGpRegs);
    __ MultiPushFPU(WasmDebugBreakFrameConstants::kPushedFpRegs);
2671 2672 2673 2674 2675 2676 2677

    // Initialize the JavaScript context with 0. CEntry will use it to
    // set the current context on the isolate.
    __ Move(cp, Smi::zero());
    __ CallRuntime(Runtime::kWasmDebugBreak, 0);

    // Restore registers.
2678 2679
    __ MultiPopFPU(WasmDebugBreakFrameConstants::kPushedFpRegs);
    __ MultiPop(WasmDebugBreakFrameConstants::kPushedGpRegs);
2680 2681 2682 2683
  }
  __ Ret();
}

2684 2685 2686
void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
  __ Trap();
}
2687 2688 2689 2690 2691 2692

void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) {
  // Only needed on x64.
  __ Trap();
}

2693 2694
#endif  // V8_ENABLE_WEBASSEMBLY

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
                               SaveFPRegsMode save_doubles, ArgvMode argv_mode,
                               bool builtin_exit_frame) {
  // Called from JavaScript; parameters are on stack as if calling JS function
  // a0: number of arguments including receiver
  // a1: pointer to builtin function
  // fp: frame pointer    (restored after C call)
  // sp: stack pointer    (restored as callee's sp after C call)
  // cp: current context  (C callee-saved)
  //
2705
  // If argv_mode == ArgvMode::kRegister:
2706 2707
  // a2: pointer to the first argument

2708
  if (argv_mode == ArgvMode::kRegister) {
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    // Move argv into the correct register.
    __ mov(s1, a2);
  } else {
    // Compute the argv pointer in a callee-saved register.
    __ Dlsa(s1, sp, a0, kPointerSizeLog2);
    __ Dsubu(s1, s1, kPointerSize);
  }

  // Enter the exit frame that transitions from JavaScript to C++.
  FrameScope scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(
2720
      save_doubles == SaveFPRegsMode::kSave, 0,
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
      builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);

  // s0: number of arguments  including receiver (C callee-saved)
  // s1: pointer to first argument (C callee-saved)
  // s2: pointer to builtin function (C callee-saved)

  // Prepare arguments for C routine.
  // a0 = argc
  __ mov(s0, a0);
  __ mov(s2, a1);

  // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
  // also need to reserve the 4 argument slots on the stack.

  __ AssertStackIsAligned();

  // a0 = argc, a1 = argv, a2 = isolate
  __ li(a2, ExternalReference::isolate_address(masm->isolate()));
  __ mov(a1, s1);

2741
  __ StoreReturnAddressAndCall(s2);
2742 2743 2744 2745 2746

  // Result returned in v0 or v1:v0 - do not destroy these registers!

  // Check result for exception sentinel.
  Label exception_returned;
2747
  __ LoadRoot(a4, RootIndex::kException);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
  __ Branch(&exception_returned, eq, a4, Operand(v0));

  // Check that there is no pending exception, otherwise we
  // should have returned the exception sentinel.
  if (FLAG_debug_code) {
    Label okay;
    ExternalReference pending_exception_address = ExternalReference::Create(
        IsolateAddressId::kPendingExceptionAddress, masm->isolate());
    __ li(a2, pending_exception_address);
    __ Ld(a2, MemOperand(a2));
2758
    __ LoadRoot(a4, RootIndex::kTheHoleValue);
2759 2760
    // Cannot use check here as it attempts to generate call into runtime.
    __ Branch(&okay, eq, a4, Operand(a2));
2761
    __ stop();
2762 2763 2764 2765 2766 2767 2768
    __ bind(&okay);
  }

  // Exit C frame and return.
  // v0:v1: result
  // sp: stack pointer
  // fp: frame pointer
2769
  Register argc = argv_mode == ArgvMode::kRegister
2770 2771 2772 2773
                      // We don't want to pop arguments so set argc to no_reg.
                      ? no_reg
                      // s0: still holds argc (callee-saved).
                      : s0;
2774
  __ LeaveExitFrame(save_doubles == SaveFPRegsMode::kSave, argc, EMIT_RETURN);
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816

  // Handling of exception.
  __ bind(&exception_returned);

  ExternalReference pending_handler_context_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
  ExternalReference pending_handler_entrypoint_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
  ExternalReference pending_handler_fp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
  ExternalReference pending_handler_sp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());

  // Ask the runtime for help to determine the handler. This will set v0 to
  // contain the current pending exception, don't clobber it.
  ExternalReference find_handler =
      ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ PrepareCallCFunction(3, 0, a0);
    __ mov(a0, zero_reg);
    __ mov(a1, zero_reg);
    __ li(a2, ExternalReference::isolate_address(masm->isolate()));
    __ CallCFunction(find_handler, 3);
  }

  // Retrieve the handler context, SP and FP.
  __ li(cp, pending_handler_context_address);
  __ Ld(cp, MemOperand(cp));
  __ li(sp, pending_handler_sp_address);
  __ Ld(sp, MemOperand(sp));
  __ li(fp, pending_handler_fp_address);
  __ Ld(fp, MemOperand(fp));

  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (cp == 0) for non-JS frames.
  Label zero;
  __ Branch(&zero, eq, cp, Operand(zero_reg));
  __ Sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ bind(&zero);

2817 2818 2819 2820 2821 2822 2823 2824 2825
  // Clear c_entry_fp, like we do in `LeaveExitFrame`.
  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.Acquire();
    __ li(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                             masm->isolate()));
    __ Sd(zero_reg, MemOperand(scratch));
  }

2826 2827 2828 2829 2830 2831
  // Compute the handler entry address and jump to it.
  __ li(t9, pending_handler_entrypoint_address);
  __ Ld(t9, MemOperand(t9));
  __ Jump(t9);
}

2832
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Yu Yin's avatar
Yu Yin committed
2833
  Label done;
2834 2835 2836 2837 2838
  Register result_reg = t0;

  Register scratch = GetRegisterThatIsNotOneOf(result_reg);
  Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch);
  Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2);
2839
  DoubleRegister double_scratch = kScratchDoubleReg;
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

  // Account for saved regs.
  const int kArgumentOffset = 4 * kPointerSize;

  __ Push(result_reg);
  __ Push(scratch, scratch2, scratch3);

  // Load double input.
  __ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset));

  // Try a conversion to a signed integer.
  __ Trunc_w_d(double_scratch, double_scratch);
  // Move the converted value into the result register.
  __ mfc1(scratch3, double_scratch);

2855
  // Retrieve the FCSR.
2856 2857 2858
  __ cfc1(scratch, FCSR);

  // Check for overflow and NaNs.
2859 2860 2861
  __ And(scratch, scratch,
         kFCSROverflowCauseMask | kFCSRUnderflowCauseMask |
             kFCSRInvalidOpCauseMask);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
  // If we had no exceptions then set result_reg and we are done.
  Label error;
  __ Branch(&error, ne, scratch, Operand(zero_reg));
  __ Move(result_reg, scratch3);
  __ Branch(&done);
  __ bind(&error);

  // Load the double value and perform a manual truncation.
  Register input_high = scratch2;
  Register input_low = scratch3;

  __ Lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset));
  __ Lw(input_high,
        MemOperand(sp, kArgumentOffset + Register::kExponentOffset));

Yu Yin's avatar
Yu Yin committed
2877
  Label normal_exponent;
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
  // Extract the biased exponent in result.
  __ Ext(result_reg, input_high, HeapNumber::kExponentShift,
         HeapNumber::kExponentBits);

  // Check for Infinity and NaNs, which should return 0.
  __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
  __ Movz(result_reg, zero_reg, scratch);
  __ Branch(&done, eq, scratch, Operand(zero_reg));

  // Express exponent as delta to (number of mantissa bits + 31).
  __ Subu(result_reg, result_reg,
          Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));

  // If the delta is strictly positive, all bits would be shifted away,
  // which means that we can return 0.
  __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
  __ mov(result_reg, zero_reg);
  __ Branch(&done);

  __ bind(&normal_exponent);
  const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
  // Calculate shift.
  __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));

  // Save the sign.
  Register sign = result_reg;
  result_reg = no_reg;
  __ And(sign, input_high, Operand(HeapNumber::kSignMask));

  // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
  // to check for this specific case.
  Label high_shift_needed, high_shift_done;
  __ Branch(&high_shift_needed, lt, scratch, Operand(32));
  __ mov(input_high, zero_reg);
  __ Branch(&high_shift_done);
  __ bind(&high_shift_needed);

  // Set the implicit 1 before the mantissa part in input_high.
  __ Or(input_high, input_high,
        Operand(1 << HeapNumber::kMantissaBitsInTopWord));
  // Shift the mantissa bits to the correct position.
  // We don't need to clear non-mantissa bits as they will be shifted away.
  // If they weren't, it would mean that the answer is in the 32bit range.
  __ sllv(input_high, input_high, scratch);

  __ bind(&high_shift_done);

  // Replace the shifted bits with bits from the lower mantissa word.
  Label pos_shift, shift_done;
2927 2928
  __ li(kScratchReg, 32);
  __ subu(scratch, kScratchReg, scratch);
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
  __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));

  // Negate scratch.
  __ Subu(scratch, zero_reg, scratch);
  __ sllv(input_low, input_low, scratch);
  __ Branch(&shift_done);

  __ bind(&pos_shift);
  __ srlv(input_low, input_low, scratch);

  __ bind(&shift_done);
  __ Or(input_high, input_high, Operand(input_low));
  // Restore sign if necessary.
  __ mov(scratch, sign);
  result_reg = sign;
  sign = no_reg;
  __ Subu(result_reg, zero_reg, input_high);
  __ Movz(result_reg, input_high, scratch);

  __ bind(&done);

  __ Sd(result_reg, MemOperand(sp, kArgumentOffset));
  __ Pop(scratch, scratch2, scratch3);
  __ Pop(result_reg);
  __ Ret();
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
namespace {

int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
  int64_t offset = (ref0.address() - ref1.address());
  DCHECK(static_cast<int>(offset) == offset);
  return static_cast<int>(offset);
}

// Calls an API function.  Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.  Restores context.  stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
                              ExternalReference thunk_ref, int stack_space,
                              MemOperand* stack_space_operand,
                              MemOperand return_value_operand) {
  Isolate* isolate = masm->isolate();
  ExternalReference next_address =
      ExternalReference::handle_scope_next_address(isolate);
  const int kNextOffset = 0;
  const int kLimitOffset = AddressOffset(
      ExternalReference::handle_scope_limit_address(isolate), next_address);
  const int kLevelOffset = AddressOffset(
      ExternalReference::handle_scope_level_address(isolate), next_address);

  DCHECK(function_address == a1 || function_address == a2);

2983
  Label profiler_enabled, end_profiler_check;
2984 2985
  __ li(t9, ExternalReference::is_profiling_address(isolate));
  __ Lb(t9, MemOperand(t9, 0));
2986 2987
  __ Branch(&profiler_enabled, ne, t9, Operand(zero_reg));
  __ li(t9, ExternalReference::address_of_runtime_stats_flag());
2988
  __ Lw(t9, MemOperand(t9, 0));
2989 2990 2991 2992 2993 2994
  __ Branch(&profiler_enabled, ne, t9, Operand(zero_reg));
  {
    // Call the api function directly.
    __ mov(t9, function_address);
    __ Branch(&end_profiler_check);
  }
2995

2996 2997 2998 2999 3000
  __ bind(&profiler_enabled);
  {
    // Additional parameter is the address of the actual callback.
    __ li(t9, thunk_ref);
  }
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
  __ bind(&end_profiler_check);

  // Allocate HandleScope in callee-save registers.
  __ li(s5, next_address);
  __ Ld(s0, MemOperand(s5, kNextOffset));
  __ Ld(s1, MemOperand(s5, kLimitOffset));
  __ Lw(s2, MemOperand(s5, kLevelOffset));
  __ Addu(s2, s2, Operand(1));
  __ Sw(s2, MemOperand(s5, kLevelOffset));

3011
  __ StoreReturnAddressAndCall(t9);
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

  Label promote_scheduled_exception;
  Label delete_allocated_handles;
  Label leave_exit_frame;
  Label return_value_loaded;

  // Load value from ReturnValue.
  __ Ld(v0, return_value_operand);
  __ bind(&return_value_loaded);

  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  __ Sd(s0, MemOperand(s5, kNextOffset));
3025
  if (FLAG_debug_code) {
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
    __ Lw(a1, MemOperand(s5, kLevelOffset));
    __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1,
             Operand(s2));
  }
  __ Subu(s2, s2, Operand(1));
  __ Sw(s2, MemOperand(s5, kLevelOffset));
  __ Ld(kScratchReg, MemOperand(s5, kLimitOffset));
  __ Branch(&delete_allocated_handles, ne, s1, Operand(kScratchReg));

  // Leave the API exit frame.
  __ bind(&leave_exit_frame);

  if (stack_space_operand == nullptr) {
3039
    DCHECK_NE(stack_space, 0);
3040 3041
    __ li(s0, Operand(stack_space));
  } else {
3042
    DCHECK_EQ(stack_space, 0);
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
    STATIC_ASSERT(kCArgSlotCount == 0);
    __ Ld(s0, *stack_space_operand);
  }

  static constexpr bool kDontSaveDoubles = false;
  static constexpr bool kRegisterContainsSlotCount = false;
  __ LeaveExitFrame(kDontSaveDoubles, s0, NO_EMIT_RETURN,
                    kRegisterContainsSlotCount);

  // Check if the function scheduled an exception.
  __ LoadRoot(a4, RootIndex::kTheHoleValue);
  __ li(kScratchReg, ExternalReference::scheduled_exception_address(isolate));
  __ Ld(a5, MemOperand(kScratchReg));
  __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));

  __ Ret();

  // Re-throw by promoting a scheduled exception.
  __ bind(&promote_scheduled_exception);
  __ TailCallRuntime(Runtime::kPromoteScheduledException);

  // HandleScope limit has changed. Delete allocated extensions.
  __ bind(&delete_allocated_handles);
  __ Sd(s1, MemOperand(s5, kLimitOffset));
  __ mov(s0, v0);
  __ mov(a0, v0);
  __ PrepareCallCFunction(1, s1);
  __ li(a0, ExternalReference::isolate_address(isolate));
  __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
  __ mov(v0, s0);
  __ jmp(&leave_exit_frame);
}

}  // namespace

void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
  // ----------- S t a t e -------------
3080 3081 3082 3083 3084
  //  -- cp                  : context
  //  -- a1                  : api function address
  //  -- a2                  : arguments count (not including the receiver)
  //  -- a3                  : call data
  //  -- a0                  : holder
3085 3086
  //  -- sp[0]               : receiver
  //  -- sp[8]               : first argument
3087
  //  -- ...
3088
  //  -- sp[(argc) * 8]      : last argument
3089 3090 3091 3092
  // -----------------------------------

  Register api_function_address = a1;
  Register argc = a2;
3093 3094
  Register call_data = a3;
  Register holder = a0;
3095 3096 3097
  Register scratch = t0;
  Register base = t1;  // For addressing MemOperands on the stack.

3098 3099
  DCHECK(!AreAliased(api_function_address, argc, call_data,
                     holder, scratch, base));
3100

3101
  using FCA = FunctionCallbackArguments;
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128

  STATIC_ASSERT(FCA::kArgsLength == 6);
  STATIC_ASSERT(FCA::kNewTargetIndex == 5);
  STATIC_ASSERT(FCA::kDataIndex == 4);
  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(FCA::kIsolateIndex == 1);
  STATIC_ASSERT(FCA::kHolderIndex == 0);

  // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
  //
  // Target state:
  //   sp[0 * kPointerSize]: kHolder
  //   sp[1 * kPointerSize]: kIsolate
  //   sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue)
  //   sp[3 * kPointerSize]: undefined (kReturnValue)
  //   sp[4 * kPointerSize]: kData
  //   sp[5 * kPointerSize]: undefined (kNewTarget)

  // Set up the base register for addressing through MemOperands. It will point
  // at the receiver (located at sp + argc * kPointerSize).
  __ Dlsa(base, sp, argc, kPointerSizeLog2);

  // Reserve space on the stack.
  __ Dsubu(sp, sp, Operand(FCA::kArgsLength * kPointerSize));

  // kHolder.
3129
  __ Sd(holder, MemOperand(sp, 0 * kPointerSize));
3130 3131 3132 3133 3134

  // kIsolate.
  __ li(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ Sd(scratch, MemOperand(sp, 1 * kPointerSize));

3135
  // kReturnValueDefaultValue and kReturnValue.
3136 3137 3138 3139 3140
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ Sd(scratch, MemOperand(sp, 2 * kPointerSize));
  __ Sd(scratch, MemOperand(sp, 3 * kPointerSize));

  // kData.
3141 3142 3143 3144
  __ Sd(call_data, MemOperand(sp, 4 * kPointerSize));

  // kNewTarget.
  __ Sd(scratch, MemOperand(sp, 5 * kPointerSize));
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164

  // Keep a pointer to kHolder (= implicit_args) in a scratch register.
  // We use it below to set up the FunctionCallbackInfo object.
  __ mov(scratch, sp);

  // Allocate the v8::Arguments structure in the arguments' space since
  // it's not controlled by GC.
  static constexpr int kApiStackSpace = 4;
  static constexpr bool kDontSaveDoubles = false;
  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace);

  // EnterExitFrame may align the sp.

  // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
  // Arguments are after the return address (pushed by EnterExitFrame()).
  __ Sd(scratch, MemOperand(sp, 1 * kPointerSize));

  // FunctionCallbackInfo::values_ (points at the first varargs argument passed
  // on the stack).
3165 3166 3167
  __ Daddu(scratch, scratch,
          Operand((FCA::kArgsLength + 1) * kSystemPointerSize));

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
  __ Sd(scratch, MemOperand(sp, 2 * kPointerSize));

  // FunctionCallbackInfo::length_.
  // Stored as int field, 32-bit integers within struct on stack always left
  // justified by n64 ABI.
  __ Sw(argc, MemOperand(sp, 3 * kPointerSize));

  // We also store the number of bytes to drop from the stack after returning
  // from the API function here.
  // Note: Unlike on other architectures, this stores the number of slots to
  // drop, not the number of bytes.
3179
  __ Daddu(scratch, argc, Operand(FCA::kArgsLength + 1 /* receiver */));
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
  __ Sd(scratch, MemOperand(sp, 4 * kPointerSize));

  // v8::InvocationCallback's argument.
  DCHECK(!AreAliased(api_function_address, scratch, a0));
  __ Daddu(a0, sp, Operand(1 * kPointerSize));

  ExternalReference thunk_ref = ExternalReference::invoke_function_callback();

  // There are two stack slots above the arguments we constructed on the stack.
  // TODO(jgruber): Document what these arguments are.
  static constexpr int kStackSlotsAboveFCA = 2;
  MemOperand return_value_operand(
      fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize);

  static constexpr int kUseStackSpaceOperand = 0;
  MemOperand stack_space_operand(sp, 4 * kPointerSize);

  AllowExternalCallThatCantCauseGC scope(masm);
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kUseStackSpaceOperand, &stack_space_operand,
                           return_value_operand);
}

void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
  // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
  // name below the exit frame to make GC aware of them.
  STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);

  Register receiver = ApiGetterDescriptor::ReceiverRegister();
  Register holder = ApiGetterDescriptor::HolderRegister();
  Register callback = ApiGetterDescriptor::CallbackRegister();
  Register scratch = a4;
  DCHECK(!AreAliased(receiver, holder, callback, scratch));

  Register api_function_address = a2;

  // Here and below +1 is for name() pushed after the args_ array.
3224
  using PCA = PropertyCallbackArguments;
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
  __ Dsubu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize);
  __ Sd(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize));
  __ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
  __ Sd(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize));
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ Sd(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize));
  __ Sd(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) *
                                    kPointerSize));
  __ li(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ Sd(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize));
  __ Sd(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize));
  // should_throw_on_error -> false
3237
  DCHECK_EQ(0, Smi::zero().ptr());
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
  __ Sd(zero_reg,
        MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize));
  __ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
  __ Sd(scratch, MemOperand(sp, 0 * kPointerSize));

  // v8::PropertyCallbackInfo::args_ array and name handle.
  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;

  // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
  __ mov(a0, sp);                               // a0 = Handle<Name>
  __ Daddu(a1, a0, Operand(1 * kPointerSize));  // a1 = v8::PCI::args_

  const int kApiStackSpace = 1;
  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(false, kApiStackSpace);

  // Create v8::PropertyCallbackInfo object on the stack and initialize
  // it's args_ field.
  __ Sd(a1, MemOperand(sp, 1 * kPointerSize));
  __ Daddu(a1, sp, Operand(1 * kPointerSize));
  // a1 = v8::PropertyCallbackInfo&

  ExternalReference thunk_ref =
      ExternalReference::invoke_accessor_getter_callback();

  __ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
  __ Ld(api_function_address,
        FieldMemOperand(scratch, Foreign::kForeignAddressOffset));

  // +3 is to skip prolog, return address and name handle.
  MemOperand return_value_operand(
      fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
  MemOperand* const kUseStackSpaceConstant = nullptr;
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kStackUnwindSpace, kUseStackSpaceConstant,
                           return_value_operand);
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
  // The sole purpose of DirectCEntry is for movable callers (e.g. any general
  // purpose Code object) to be able to call into C functions that may trigger
  // GC and thus move the caller.
  //
  // DirectCEntry places the return address on the stack (updated by the GC),
  // making the call GC safe. The irregexp backend relies on this.

  // Make place for arguments to fit C calling convention. Callers use
  // EnterExitFrame/LeaveExitFrame so they handle stack restoring and we don't
  // have to do that here. Any caller must drop kCArgsSlotsSize stack space
  // after the call.
  __ daddiu(sp, sp, -kCArgsSlotsSize);

  __ Sd(ra, MemOperand(sp, kCArgsSlotsSize));  // Store the return address.
  __ Call(t9);                                 // Call the C++ function.
  __ Ld(t9, MemOperand(sp, kCArgsSlotsSize));  // Return to calling code.

  if (FLAG_debug_code && FLAG_enable_slow_asserts) {
    // In case of an error the return address may point to a memory area
    // filled with kZapValue by the GC. Dereference the address and check for
    // this.
    __ Uld(a4, MemOperand(t9));
    __ Assert(ne, AbortReason::kReceivedInvalidReturnAddress, a4,
              Operand(reinterpret_cast<uint64_t>(kZapValue)));
  }

  __ Jump(t9);
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
namespace {

// This code tries to be close to ia32 code so that any changes can be
// easily ported.
void Generate_DeoptimizationEntry(MacroAssembler* masm,
                                  DeoptimizeKind deopt_kind) {
  Isolate* isolate = masm->isolate();

  // Unlike on ARM we don't save all the registers, just the useful ones.
  // For the rest, there are gaps on the stack, so the offsets remain the same.
  const int kNumberOfRegisters = Register::kNumRegisters;

  RegList restored_regs = kJSCallerSaved | kCalleeSaved;
  RegList saved_regs = restored_regs | sp.bit() | ra.bit();

  const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters;

  // Save all double FPU registers before messing with them.
  __ Dsubu(sp, sp, Operand(kDoubleRegsSize));
  const RegisterConfiguration* config = RegisterConfiguration::Default();
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    const DoubleRegister fpu_reg = DoubleRegister::from_code(code);
    int offset = code * kDoubleSize;
    __ Sdc1(fpu_reg, MemOperand(sp, offset));
  }

  // Push saved_regs (needed to populate FrameDescription::registers_).
  // Leave gaps for other registers.
  __ Dsubu(sp, sp, kNumberOfRegisters * kPointerSize);
  for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) {
    if ((saved_regs & (1 << i)) != 0) {
      __ Sd(ToRegister(i), MemOperand(sp, kPointerSize * i));
    }
  }

  __ li(a2,
        ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate));
  __ Sd(fp, MemOperand(a2));

  const int kSavedRegistersAreaSize =
      (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize;

  __ li(a2, Operand(Deoptimizer::kFixedExitSizeMarker));
  // Get the address of the location in the code object (a3) (return
  // address for lazy deoptimization) and compute the fp-to-sp delta in
  // register a4.
  __ mov(a3, ra);
  __ Daddu(a4, sp, Operand(kSavedRegistersAreaSize));

  __ Dsubu(a4, fp, a4);

  // Allocate a new deoptimizer object.
  __ PrepareCallCFunction(6, a5);
  // Pass six arguments, according to n64 ABI.
  __ mov(a0, zero_reg);
  Label context_check;
  __ Ld(a1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
  __ JumpIfSmi(a1, &context_check);
  __ Ld(a0, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ bind(&context_check);
  __ li(a1, Operand(static_cast<int>(deopt_kind)));
  // a2: bailout id already loaded.
  // a3: code address or 0 already loaded.
  // a4: already has fp-to-sp delta.
  __ li(a5, ExternalReference::isolate_address(isolate));

  // Call Deoptimizer::New().
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
  }

  // Preserve "deoptimizer" object in register v0 and get the input
  // frame descriptor pointer to a1 (deoptimizer->input_);
  // Move deopt-obj to a0 for call to Deoptimizer::ComputeOutputFrames() below.
  __ mov(a0, v0);
  __ Ld(a1, MemOperand(v0, Deoptimizer::input_offset()));

  // Copy core registers into FrameDescription::registers_[kNumRegisters].
  DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters);
  for (int i = 0; i < kNumberOfRegisters; i++) {
    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    if ((saved_regs & (1 << i)) != 0) {
      __ Ld(a2, MemOperand(sp, i * kPointerSize));
      __ Sd(a2, MemOperand(a1, offset));
    } else if (FLAG_debug_code) {
      __ li(a2, kDebugZapValue);
      __ Sd(a2, MemOperand(a1, offset));
    }
  }

  int double_regs_offset = FrameDescription::double_registers_offset();
  // Copy FPU registers to
  // double_registers_[DoubleRegister::kNumAllocatableRegisters]
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    int dst_offset = code * kDoubleSize + double_regs_offset;
    int src_offset = code * kDoubleSize + kNumberOfRegisters * kPointerSize;
    __ Ldc1(f0, MemOperand(sp, src_offset));
    __ Sdc1(f0, MemOperand(a1, dst_offset));
  }

  // Remove the saved registers from the stack.
  __ Daddu(sp, sp, Operand(kSavedRegistersAreaSize));

  // Compute a pointer to the unwinding limit in register a2; that is
  // the first stack slot not part of the input frame.
  __ Ld(a2, MemOperand(a1, FrameDescription::frame_size_offset()));
  __ Daddu(a2, a2, sp);

  // Unwind the stack down to - but not including - the unwinding
  // limit and copy the contents of the activation frame to the input
  // frame description.
  __ Daddu(a3, a1, Operand(FrameDescription::frame_content_offset()));
  Label pop_loop;
  Label pop_loop_header;
  __ BranchShort(&pop_loop_header);
  __ bind(&pop_loop);
  __ pop(a4);
  __ Sd(a4, MemOperand(a3, 0));
  __ daddiu(a3, a3, sizeof(uint64_t));
  __ bind(&pop_loop_header);
  __ BranchShort(&pop_loop, ne, a2, Operand(sp));
  // Compute the output frame in the deoptimizer.
  __ push(a0);  // Preserve deoptimizer object across call.
  // a0: deoptimizer object; a1: scratch.
  __ PrepareCallCFunction(1, a1);
  // Call Deoptimizer::ComputeOutputFrames().
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
  }
  __ pop(a0);  // Restore deoptimizer object (class Deoptimizer).

  __ Ld(sp, MemOperand(a0, Deoptimizer::caller_frame_top_offset()));

  // Replace the current (input) frame with the output frames.
  Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
  // Outer loop state: a4 = current "FrameDescription** output_",
  // a1 = one past the last FrameDescription**.
  __ Lw(a1, MemOperand(a0, Deoptimizer::output_count_offset()));
  __ Ld(a4, MemOperand(a0, Deoptimizer::output_offset()));  // a4 is output_.
  __ Dlsa(a1, a4, a1, kPointerSizeLog2);
  __ BranchShort(&outer_loop_header);
  __ bind(&outer_push_loop);
  // Inner loop state: a2 = current FrameDescription*, a3 = loop index.
  __ Ld(a2, MemOperand(a4, 0));  // output_[ix]
  __ Ld(a3, MemOperand(a2, FrameDescription::frame_size_offset()));
  __ BranchShort(&inner_loop_header);
  __ bind(&inner_push_loop);
  __ Dsubu(a3, a3, Operand(sizeof(uint64_t)));
  __ Daddu(a6, a2, Operand(a3));
  __ Ld(a7, MemOperand(a6, FrameDescription::frame_content_offset()));
  __ push(a7);
  __ bind(&inner_loop_header);
  __ BranchShort(&inner_push_loop, ne, a3, Operand(zero_reg));

  __ Daddu(a4, a4, Operand(kPointerSize));
  __ bind(&outer_loop_header);
  __ BranchShort(&outer_push_loop, lt, a4, Operand(a1));

  __ Ld(a1, MemOperand(a0, Deoptimizer::input_offset()));
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    const DoubleRegister fpu_reg = DoubleRegister::from_code(code);
    int src_offset = code * kDoubleSize + double_regs_offset;
    __ Ldc1(fpu_reg, MemOperand(a1, src_offset));
  }

  // Push pc and continuation from the last output frame.
  __ Ld(a6, MemOperand(a2, FrameDescription::pc_offset()));
  __ push(a6);
  __ Ld(a6, MemOperand(a2, FrameDescription::continuation_offset()));
  __ push(a6);

  // Technically restoring 'at' should work unless zero_reg is also restored
  // but it's safer to check for this.
  DCHECK(!(at.bit() & restored_regs));
  // Restore the registers from the last output frame.
  __ mov(at, a2);
  for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    if ((restored_regs & (1 << i)) != 0) {
      __ Ld(ToRegister(i), MemOperand(at, offset));
    }
  }

  __ pop(at);  // Get continuation, leave pc on stack.
  __ pop(ra);
  __ Jump(at);
  __ stop();
}

}  // namespace

void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}

void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
}

void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
}

void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}

3518 3519
namespace {

3520 3521 3522 3523 3524 3525 3526
// Restarts execution either at the current or next (in execution order)
// bytecode. If there is baseline code on the shared function info, converts an
// interpreter frame into a baseline frame and continues execution in baseline
// code. Otherwise execution continues with bytecode.
void Generate_BaselineOrInterpreterEntry(MacroAssembler* masm,
                                         bool next_bytecode,
                                         bool is_osr = false) {
3527 3528 3529 3530 3531 3532 3533
  Label start;
  __ bind(&start);

  // Get function from the frame.
  Register closure = a1;
  __ Ld(closure, MemOperand(fp, StandardFrameConstants::kFunctionOffset));

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
  // Get the Code object from the shared function info.
  Register code_obj = s1;
  __ Ld(code_obj,
        FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
  __ Ld(code_obj,
        FieldMemOperand(code_obj, SharedFunctionInfo::kFunctionDataOffset));

  // Check if we have baseline code. For OSR entry it is safe to assume we
  // always have baseline code.
  if (!is_osr) {
    Label start_with_baseline;
    __ GetObjectType(code_obj, t2, t2);
    __ Branch(&start_with_baseline, eq, t2, Operand(BASELINE_DATA_TYPE));

    // Start with bytecode as there is no baseline code.
    Builtin builtin_id = next_bytecode
                             ? Builtin::kInterpreterEnterAtNextBytecode
                             : Builtin::kInterpreterEnterAtBytecode;
    __ Jump(masm->isolate()->builtins()->code_handle(builtin_id),
            RelocInfo::CODE_TARGET);

    // Start with baseline code.
    __ bind(&start_with_baseline);
  } else if (FLAG_debug_code) {
    __ GetObjectType(code_obj, t2, t2);
    __ Assert(eq, AbortReason::kExpectedBaselineData, t2,
              Operand(BASELINE_DATA_TYPE));
  }

  // Load baseline code from baseline data.
  __ Ld(code_obj, FieldMemOperand(code_obj, BaselineData::kBaselineCodeOffset));

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
  // Replace BytecodeOffset with the feedback vector.
  Register feedback_vector = a2;
  __ Ld(feedback_vector,
        FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
  __ Ld(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));

  Label install_baseline_code;
  // Check if feedback vector is valid. If not, call prepare for baseline to
  // allocate it.
  __ GetObjectType(feedback_vector, t2, t2);
  __ Branch(&install_baseline_code, ne, t2, Operand(FEEDBACK_VECTOR_TYPE));

  // Save BytecodeOffset from the stack frame.
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  // Replace BytecodeOffset with the feedback vector.
  __ Sd(feedback_vector,
        MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  feedback_vector = no_reg;

  // Compute baseline pc for bytecode offset.
  ExternalReference get_baseline_pc_extref;
  if (next_bytecode || is_osr) {
    get_baseline_pc_extref =
        ExternalReference::baseline_pc_for_next_executed_bytecode();
  } else {
    get_baseline_pc_extref =
        ExternalReference::baseline_pc_for_bytecode_offset();
  }

  Register get_baseline_pc = a3;
  __ li(get_baseline_pc, get_baseline_pc_extref);

  // If the code deoptimizes during the implicit function entry stack interrupt
  // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
  // not a valid bytecode offset.
  // TODO(pthier): Investigate if it is feasible to handle this special case
  // in TurboFan instead of here.
  Label valid_bytecode_offset, function_entry_bytecode;
  if (!is_osr) {
    __ Branch(&function_entry_bytecode, eq, kInterpreterBytecodeOffsetRegister,
              Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
                      kFunctionEntryBytecodeOffset));
  }

  __ Dsubu(kInterpreterBytecodeOffsetRegister,
           kInterpreterBytecodeOffsetRegister,
           (BytecodeArray::kHeaderSize - kHeapObjectTag));

  __ bind(&valid_bytecode_offset);
  // Get bytecode array from the stack frame.
  __ Ld(kInterpreterBytecodeArrayRegister,
        MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
3619 3620
  // Save the accumulator register, since it's clobbered by the below call.
  __ Push(kInterpreterAccumulatorRegister);
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
  {
    Register arg_reg_1 = a0;
    Register arg_reg_2 = a1;
    Register arg_reg_3 = a2;
    __ Move(arg_reg_1, code_obj);
    __ Move(arg_reg_2, kInterpreterBytecodeOffsetRegister);
    __ Move(arg_reg_3, kInterpreterBytecodeArrayRegister);
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallCFunction(get_baseline_pc, 3, 0);
  }
  __ Daddu(code_obj, code_obj, kReturnRegister0);
  __ Pop(kInterpreterAccumulatorRegister);

  if (is_osr) {
    // Reset the OSR loop nesting depth to disarm back edges.
    // TODO(pthier): Separate baseline Sparkplug from TF arming and don't disarm
    // Sparkplug here.
    // TODO(liuyu): Remove Ld as arm64 after register reallocation.
    __ Ld(kInterpreterBytecodeArrayRegister,
          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
    __ Sh(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister,
3642
                                    BytecodeArray::kOsrLoopNestingLevelOffset));
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
    Generate_OSREntry(masm, code_obj,
                      Operand(Code::kHeaderSize - kHeapObjectTag));
  } else {
    __ Daddu(code_obj, code_obj, Code::kHeaderSize - kHeapObjectTag);
    __ Jump(code_obj);
  }
  __ Trap();  // Unreachable.

  if (!is_osr) {
    __ bind(&function_entry_bytecode);
    // If the bytecode offset is kFunctionEntryOffset, get the start address of
    // the first bytecode.
    __ mov(kInterpreterBytecodeOffsetRegister, zero_reg);
    if (next_bytecode) {
      __ li(get_baseline_pc,
            ExternalReference::baseline_pc_for_bytecode_offset());
    }
    __ Branch(&valid_bytecode_offset);
  }

  __ bind(&install_baseline_code);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
3666
    __ Push(kInterpreterAccumulatorRegister);
3667 3668
    __ Push(closure);
    __ CallRuntime(Runtime::kInstallBaselineCode, 1);
3669
    __ Pop(kInterpreterAccumulatorRegister);
3670 3671 3672 3673 3674 3675 3676
  }
  // Retry from the start after installing baseline code.
  __ Branch(&start);
}

}  // namespace

3677 3678 3679
void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode(
    MacroAssembler* masm) {
  Generate_BaselineOrInterpreterEntry(masm, false);
3680 3681
}

3682 3683 3684
void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode(
    MacroAssembler* masm) {
  Generate_BaselineOrInterpreterEntry(masm, true);
3685 3686 3687 3688
}

void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline(
    MacroAssembler* masm) {
3689
  Generate_BaselineOrInterpreterEntry(masm, false, true);
3690 3691
}

3692
void Builtins::Generate_DynamicCheckMapsTrampoline(MacroAssembler* masm) {
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
  Generate_DynamicCheckMapsTrampoline<DynamicCheckMapsDescriptor>(
      masm, BUILTIN_CODE(masm->isolate(), DynamicCheckMaps));
}

void Builtins::Generate_DynamicCheckMapsWithFeedbackVectorTrampoline(
    MacroAssembler* masm) {
  Generate_DynamicCheckMapsTrampoline<
      DynamicCheckMapsWithFeedbackVectorDescriptor>(
      masm, BUILTIN_CODE(masm->isolate(), DynamicCheckMapsWithFeedbackVector));
}

template <class Descriptor>
void Builtins::Generate_DynamicCheckMapsTrampoline(
    MacroAssembler* masm, Handle<Code> builtin_target) {
3707 3708 3709
  FrameScope scope(masm, StackFrame::MANUAL);
  __ EnterFrame(StackFrame::INTERNAL);

3710
  // Only save the registers that the DynamicCheckMaps builtin can clobber.
3711
  Descriptor descriptor;
3712 3713 3714 3715
  RegList registers = descriptor.allocatable_registers();
  // FLAG_debug_code is enabled CSA checks will call C function and so we need
  // to save all CallerSaved registers too.
  if (FLAG_debug_code) registers |= kJSCallerSaved;
3716
  __ MaybeSaveRegisters(registers);
3717 3718

  // Load the immediate arguments from the deopt exit to pass to the builtin.
3719 3720
  Register slot_arg = descriptor.GetRegisterParameter(Descriptor::kSlot);
  Register handler_arg = descriptor.GetRegisterParameter(Descriptor::kHandler);
3721 3722 3723 3724 3725 3726
  __ Ld(handler_arg, MemOperand(fp, CommonFrameConstants::kCallerPCOffset));
  __ Uld(slot_arg, MemOperand(handler_arg,
                              Deoptimizer::kEagerWithResumeImmedArgs1PcOffset));
  __ Uld(
      handler_arg,
      MemOperand(handler_arg, Deoptimizer::kEagerWithResumeImmedArgs2PcOffset));
3727
  __ Call(builtin_target, RelocInfo::CODE_TARGET);
3728 3729 3730

  Label deopt, bailout;
  __ Branch(&deopt, ne, v0,
3731
            Operand(static_cast<int>(DynamicCheckMapsStatus::kSuccess)));
3732

3733
  __ MaybeRestoreRegisters(registers);
3734 3735 3736 3737 3738
  __ LeaveFrame(StackFrame::INTERNAL);
  __ Ret();

  __ bind(&deopt);
  __ Branch(&bailout, eq, v0,
3739
            Operand(static_cast<int>(DynamicCheckMapsStatus::kBailout)));
3740 3741

  if (FLAG_debug_code) {
3742 3743
    __ Assert(eq, AbortReason::kUnexpectedDynamicCheckMapsStatus, v0,
              Operand(static_cast<int>(DynamicCheckMapsStatus::kDeopt)));
3744
  }
3745
  __ MaybeRestoreRegisters(registers);
3746
  __ LeaveFrame(StackFrame::INTERNAL);
3747
  Handle<Code> deopt_eager = masm->isolate()->builtins()->code_handle(
3748 3749 3750 3751
      Deoptimizer::GetDeoptimizationEntry(DeoptimizeKind::kEager));
  __ Jump(deopt_eager, RelocInfo::CODE_TARGET);

  __ bind(&bailout);
3752
  __ MaybeRestoreRegisters(registers);
3753
  __ LeaveFrame(StackFrame::INTERNAL);
3754
  Handle<Code> deopt_bailout = masm->isolate()->builtins()->code_handle(
3755 3756 3757 3758
      Deoptimizer::GetDeoptimizationEntry(DeoptimizeKind::kBailout));
  __ Jump(deopt_bailout, RelocInfo::CODE_TARGET);
}

3759 3760
#undef __

3761 3762
}  // namespace internal
}  // namespace v8
3763 3764

#endif  // V8_TARGET_ARCH_MIPS64