typer.cc 75.2 KB
Newer Older
1 2 3 4
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6
#include "src/compiler/typer.h"

7
#include "src/base/flags.h"
8
#include "src/bootstrapper.h"
9
#include "src/compilation-dependencies.h"
10
#include "src/compiler/common-operator.h"
11
#include "src/compiler/graph-reducer.h"
12 13
#include "src/compiler/js-operator.h"
#include "src/compiler/node-properties.h"
14 15
#include "src/compiler/node.h"
#include "src/compiler/operation-typer.h"
16
#include "src/compiler/simplified-operator.h"
17
#include "src/objects-inl.h"
18
#include "src/type-cache.h"
19 20 21 22 23

namespace v8 {
namespace internal {
namespace compiler {

24
class Typer::Decorator final : public GraphDecorator {
25 26
 public:
  explicit Decorator(Typer* typer) : typer_(typer) {}
27
  void Decorate(Node* node) final;
28 29

 private:
30
  Typer* const typer_;
31 32
};

33
Typer::Typer(Isolate* isolate, Graph* graph, Flags flags,
34
             CompilationDependencies* dependencies, FunctionType* function_type)
35 36
    : isolate_(isolate),
      graph_(graph),
37 38
      flags_(flags),
      dependencies_(dependencies),
39
      function_type_(function_type),
40
      decorator_(nullptr),
41 42
      cache_(TypeCache::Get()),
      operation_typer_(isolate, zone()) {
43
  Zone* zone = this->zone();
44
  Factory* const factory = isolate->factory();
45

46 47
  Type* infinity = Type::Constant(factory->infinity_value(), zone);
  Type* minus_infinity = Type::Constant(factory->minus_infinity_value(), zone);
48 49
  // Unfortunately, the infinities created in other places might be different
  // ones (eg the result of NewNumber in TypeNumberConstant).
50
  Type* truncating_to_zero =
51 52
      Type::Union(Type::Union(infinity, minus_infinity, zone),
                  Type::MinusZeroOrNaN(), zone);
53
  DCHECK(!truncating_to_zero->Maybe(Type::Integral32()));
54 55 56

  singleton_false_ = Type::Constant(factory->false_value(), zone);
  singleton_true_ = Type::Constant(factory->true_value(), zone);
57
  singleton_the_hole_ = Type::Constant(factory->the_hole_value(), zone);
58 59
  signed32ish_ = Type::Union(Type::Signed32(), truncating_to_zero, zone);
  unsigned32ish_ = Type::Union(Type::Unsigned32(), truncating_to_zero, zone);
60 61
  falsish_ = Type::Union(
      Type::Undetectable(),
62 63
      Type::Union(Type::Union(singleton_false_, cache_.kZeroish, zone),
                  singleton_the_hole_, zone),
64
      zone);
65 66
  truish_ = Type::Union(
      singleton_true_,
67
      Type::Union(Type::DetectableReceiver(), Type::Symbol(), zone), zone);
68

69 70 71 72 73 74 75
  decorator_ = new (zone) Decorator(this);
  graph_->AddDecorator(decorator_);
}


Typer::~Typer() {
  graph_->RemoveDecorator(decorator_);
76 77 78
}


79
class Typer::Visitor : public Reducer {
80
 public:
81 82
  explicit Visitor(Typer* typer)
      : typer_(typer), weakened_nodes_(typer->zone()) {}
83

84
  Reduction Reduce(Node* node) override {
85 86 87 88
    if (node->op()->ValueOutputCount() == 0) return NoChange();
    switch (node->opcode()) {
#define DECLARE_CASE(x) \
  case IrOpcode::k##x:  \
89
    return UpdateType(node, TypeBinaryOp(node, x##Typer));
90 91 92 93 94
      JS_SIMPLE_BINOP_LIST(DECLARE_CASE)
#undef DECLARE_CASE

#define DECLARE_CASE(x) \
  case IrOpcode::k##x:  \
95
    return UpdateType(node, Type##x(node));
96
      DECLARE_CASE(Start)
97
      DECLARE_CASE(IfException)
98 99 100 101
      // VALUE_OP_LIST without JS_SIMPLE_BINOP_LIST:
      COMMON_OP_LIST(DECLARE_CASE)
      SIMPLIFIED_OP_LIST(DECLARE_CASE)
      MACHINE_OP_LIST(DECLARE_CASE)
102
      MACHINE_SIMD_OP_LIST(DECLARE_CASE)
103 104 105 106 107 108 109
      JS_SIMPLE_UNOP_LIST(DECLARE_CASE)
      JS_OBJECT_OP_LIST(DECLARE_CASE)
      JS_CONTEXT_OP_LIST(DECLARE_CASE)
      JS_OTHER_OP_LIST(DECLARE_CASE)
#undef DECLARE_CASE

#define DECLARE_CASE(x) case IrOpcode::k##x:
110 111 112 113 114 115 116 117 118 119
      DECLARE_CASE(Loop)
      DECLARE_CASE(Branch)
      DECLARE_CASE(IfTrue)
      DECLARE_CASE(IfFalse)
      DECLARE_CASE(IfSuccess)
      DECLARE_CASE(Switch)
      DECLARE_CASE(IfValue)
      DECLARE_CASE(IfDefault)
      DECLARE_CASE(Merge)
      DECLARE_CASE(Deoptimize)
120 121
      DECLARE_CASE(DeoptimizeIf)
      DECLARE_CASE(DeoptimizeUnless)
122
      DECLARE_CASE(Return)
123
      DECLARE_CASE(TailCall)
124
      DECLARE_CASE(Terminate)
125 126 127
      DECLARE_CASE(OsrNormalEntry)
      DECLARE_CASE(OsrLoopEntry)
      DECLARE_CASE(Throw)
128 129 130 131 132 133 134
      DECLARE_CASE(End)
#undef DECLARE_CASE
      break;
    }
    return NoChange();
  }

135
  Type* TypeNode(Node* node) {
136
    switch (node->opcode()) {
137 138 139 140 141
#define DECLARE_CASE(x) \
      case IrOpcode::k##x: return TypeBinaryOp(node, x##Typer);
      JS_SIMPLE_BINOP_LIST(DECLARE_CASE)
#undef DECLARE_CASE

142
#define DECLARE_CASE(x) case IrOpcode::k##x: return Type##x(node);
143
      DECLARE_CASE(Start)
144
      DECLARE_CASE(IfException)
145 146 147 148
      // VALUE_OP_LIST without JS_SIMPLE_BINOP_LIST:
      COMMON_OP_LIST(DECLARE_CASE)
      SIMPLIFIED_OP_LIST(DECLARE_CASE)
      MACHINE_OP_LIST(DECLARE_CASE)
149
      MACHINE_SIMD_OP_LIST(DECLARE_CASE)
150 151 152 153
      JS_SIMPLE_UNOP_LIST(DECLARE_CASE)
      JS_OBJECT_OP_LIST(DECLARE_CASE)
      JS_CONTEXT_OP_LIST(DECLARE_CASE)
      JS_OTHER_OP_LIST(DECLARE_CASE)
154 155 156
#undef DECLARE_CASE

#define DECLARE_CASE(x) case IrOpcode::k##x:
157 158 159 160 161 162 163 164 165 166
      DECLARE_CASE(Loop)
      DECLARE_CASE(Branch)
      DECLARE_CASE(IfTrue)
      DECLARE_CASE(IfFalse)
      DECLARE_CASE(IfSuccess)
      DECLARE_CASE(Switch)
      DECLARE_CASE(IfValue)
      DECLARE_CASE(IfDefault)
      DECLARE_CASE(Merge)
      DECLARE_CASE(Deoptimize)
167 168
      DECLARE_CASE(DeoptimizeIf)
      DECLARE_CASE(DeoptimizeUnless)
169
      DECLARE_CASE(Return)
170
      DECLARE_CASE(TailCall)
171
      DECLARE_CASE(Terminate)
172 173 174
      DECLARE_CASE(OsrNormalEntry)
      DECLARE_CASE(OsrLoopEntry)
      DECLARE_CASE(Throw)
175
      DECLARE_CASE(End)
176 177 178
#undef DECLARE_CASE
      break;
    }
179
    UNREACHABLE();
180
    return nullptr;
181 182 183 184
  }

  Type* TypeConstant(Handle<Object> value);

185 186
 private:
  Typer* typer_;
187
  ZoneSet<NodeId> weakened_nodes_;
188

189
#define DECLARE_METHOD(x) inline Type* Type##x(Node* node);
190
  DECLARE_METHOD(Start)
191
  DECLARE_METHOD(IfException)
192 193 194
  VALUE_OP_LIST(DECLARE_METHOD)
#undef DECLARE_METHOD

195 196 197
  Type* TypeOrNone(Node* node) {
    return NodeProperties::IsTyped(node) ? NodeProperties::GetType(node)
                                         : Type::None();
198 199
  }

200
  Type* Operand(Node* node, int i) {
201
    Node* operand_node = NodeProperties::GetValueInput(node, i);
202
    return TypeOrNone(operand_node);
203 204
  }

205
  Type* WrapContextTypeForInput(Node* node);
206
  Type* Weaken(Node* node, Type* current_type, Type* previous_type);
207

208 209
  Zone* zone() { return typer_->zone(); }
  Isolate* isolate() { return typer_->isolate(); }
210
  Graph* graph() { return typer_->graph(); }
211 212 213 214
  Typer::Flags flags() const { return typer_->flags(); }
  CompilationDependencies* dependencies() const {
    return typer_->dependencies();
  }
215

216 217 218 219 220
  void SetWeakened(NodeId node_id) { weakened_nodes_.insert(node_id); }
  bool IsWeakened(NodeId node_id) {
    return weakened_nodes_.find(node_id) != weakened_nodes_.end();
  }

221 222 223
  typedef Type* (*UnaryTyperFun)(Type*, Typer* t);
  typedef Type* (*BinaryTyperFun)(Type*, Type*, Typer* t);

224 225
  Type* TypeUnaryOp(Node* node, UnaryTyperFun);
  Type* TypeBinaryOp(Node* node, BinaryTyperFun);
226

227 228 229 230 231 232 233 234
  enum ComparisonOutcomeFlags {
    kComparisonTrue = 1,
    kComparisonFalse = 2,
    kComparisonUndefined = 4
  };
  typedef base::Flags<ComparisonOutcomeFlags> ComparisonOutcome;

  static ComparisonOutcome Invert(ComparisonOutcome, Typer*);
235
  static Type* Invert(Type*, Typer*);
236
  static Type* FalsifyUndefined(ComparisonOutcome, Typer*);
237 238 239

  static Type* ToPrimitive(Type*, Typer*);
  static Type* ToBoolean(Type*, Typer*);
240 241 242
  static Type* ToInteger(Type*, Typer*);
  static Type* ToLength(Type*, Typer*);
  static Type* ToName(Type*, Typer*);
243
  static Type* ToNumber(Type*, Typer*);
244
  static Type* ToObject(Type*, Typer*);
245
  static Type* ToString(Type*, Typer*);
246
  static Type* NumberCeil(Type*, Typer*);
247
  static Type* NumberFloor(Type*, Typer*);
248 249
  static Type* NumberRound(Type*, Typer*);
  static Type* NumberTrunc(Type*, Typer*);
250 251 252
  static Type* NumberToInt32(Type*, Typer*);
  static Type* NumberToUint32(Type*, Typer*);

253
  static Type* ObjectIsCallable(Type*, Typer*);
254 255 256
  static Type* ObjectIsNumber(Type*, Typer*);
  static Type* ObjectIsReceiver(Type*, Typer*);
  static Type* ObjectIsSmi(Type*, Typer*);
257
  static Type* ObjectIsString(Type*, Typer*);
258
  static Type* ObjectIsUndetectable(Type*, Typer*);
259

260
  static ComparisonOutcome JSCompareTyper(Type*, Type*, Typer*);
261 262 263 264 265

#define DECLARE_METHOD(x) static Type* x##Typer(Type*, Type*, Typer*);
  JS_SIMPLE_BINOP_LIST(DECLARE_METHOD)
#undef DECLARE_METHOD

266
  static Type* JSTypeOfTyper(Type*, Typer*);
267 268
  static Type* JSLoadPropertyTyper(Type*, Type*, Typer*);
  static Type* JSCallFunctionTyper(Type*, Typer*);
269

270
  static Type* ReferenceEqualTyper(Type*, Type*, Typer*);
271
  static Type* StringFromCharCodeTyper(Type*, Typer*);
272

273
  Reduction UpdateType(Node* node, Type* current) {
274
    if (NodeProperties::IsTyped(node)) {
275 276
      // Widen the type of a previously typed node.
      Type* previous = NodeProperties::GetType(node);
277 278
      if (node->opcode() == IrOpcode::kPhi) {
        // Speed up termination in the presence of range types:
279
        current = Weaken(node, current, previous);
280
      }
281

282
      CHECK(previous->Is(current));
283

284
      NodeProperties::SetType(node, current);
285
      if (!current->Is(previous)) {
286 287 288 289 290
        // If something changed, revisit all uses.
        return Changed(node);
      }
      return NoChange();
    } else {
291 292
      // No previous type, simply update the type.
      NodeProperties::SetType(node, current);
293
      return Changed(node);
294 295 296 297 298
    }
  }
};


299 300
void Typer::Run() { Run(NodeVector(zone())); }

301

302
void Typer::Run(const NodeVector& roots) {
303
  Visitor visitor(this);
304
  GraphReducer graph_reducer(zone(), graph());
305
  graph_reducer.AddReducer(&visitor);
306
  for (Node* const root : roots) graph_reducer.ReduceNode(root);
307
  graph_reducer.ReduceGraph();
308 309 310
}


311
void Typer::Decorator::Decorate(Node* node) {
312
  if (node->op()->ValueOutputCount() > 0) {
313 314 315 316 317
    // Only eagerly type-decorate nodes with known input types.
    // Other cases will generally require a proper fixpoint iteration with Run.
    bool is_typed = NodeProperties::IsTyped(node);
    if (is_typed || NodeProperties::AllValueInputsAreTyped(node)) {
      Visitor typing(typer_);
318
      Type* type = typing.TypeNode(node);
319
      if (is_typed) {
320 321
        type = Type::Intersect(type, NodeProperties::GetType(node),
                               typer_->zone());
322
      }
323
      NodeProperties::SetType(node, type);
324
    }
325 326 327 328
  }
}


329 330 331 332 333 334 335
// -----------------------------------------------------------------------------

// Helper functions that lift a function f on types to a function on bounds,
// and uses that to type the given node.  Note that f is never called with None
// as an argument.


336 337 338
Type* Typer::Visitor::TypeUnaryOp(Node* node, UnaryTyperFun f) {
  Type* input = Operand(node, 0);
  return input->IsInhabited() ? f(input, typer_) : Type::None();
339 340 341
}


342 343 344 345 346
Type* Typer::Visitor::TypeBinaryOp(Node* node, BinaryTyperFun f) {
  Type* left = Operand(node, 0);
  Type* right = Operand(node, 1);
  return left->IsInhabited() && right->IsInhabited() ? f(left, right, typer_)
                                                     : Type::None();
347 348 349 350
}


Type* Typer::Visitor::Invert(Type* type, Typer* t) {
351 352
  DCHECK(type->Is(Type::Boolean()));
  DCHECK(type->IsInhabited());
353 354
  if (type->Is(t->singleton_false_)) return t->singleton_true_;
  if (type->Is(t->singleton_true_)) return t->singleton_false_;
355 356 357 358
  return type;
}


359 360 361 362 363 364 365 366 367 368 369 370 371 372
Typer::Visitor::ComparisonOutcome Typer::Visitor::Invert(
    ComparisonOutcome outcome, Typer* t) {
  ComparisonOutcome result(0);
  if ((outcome & kComparisonUndefined) != 0) result |= kComparisonUndefined;
  if ((outcome & kComparisonTrue) != 0) result |= kComparisonFalse;
  if ((outcome & kComparisonFalse) != 0) result |= kComparisonTrue;
  return result;
}


Type* Typer::Visitor::FalsifyUndefined(ComparisonOutcome outcome, Typer* t) {
  if ((outcome & kComparisonFalse) != 0 ||
      (outcome & kComparisonUndefined) != 0) {
    return (outcome & kComparisonTrue) != 0 ? Type::Boolean()
373
                                            : t->singleton_false_;
374 375 376
  }
  // Type should be non empty, so we know it should be true.
  DCHECK((outcome & kComparisonTrue) != 0);
377
  return t->singleton_true_;
378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

// Type conversion.

Type* Typer::Visitor::ToPrimitive(Type* type, Typer* t) {
  if (type->Is(Type::Primitive()) && !type->Maybe(Type::Receiver())) {
    return type;
  }
  return Type::Primitive();
}


Type* Typer::Visitor::ToBoolean(Type* type, Typer* t) {
  if (type->Is(Type::Boolean())) return type;
392 393
  if (type->Is(t->falsish_)) return t->singleton_false_;
  if (type->Is(t->truish_)) return t->singleton_true_;
394
  if (type->Is(Type::PlainNumber()) && (type->Max() < 0 || 0 < type->Min())) {
395
    return t->singleton_true_;  // Ruled out nan, -0 and +0.
396 397 398 399 400
  }
  return Type::Boolean();
}


401 402 403 404 405
// static
Type* Typer::Visitor::ToInteger(Type* type, Typer* t) {
  // ES6 section 7.1.4 ToInteger ( argument )
  type = ToNumber(type, t);
  if (type->Is(t->cache_.kIntegerOrMinusZero)) return type;
406 407 408 409 410
  if (type->Is(t->cache_.kIntegerOrMinusZeroOrNaN)) {
    return Type::Union(
        Type::Intersect(type, t->cache_.kIntegerOrMinusZero, t->zone()),
        t->cache_.kSingletonZero, t->zone());
  }
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  return t->cache_.kIntegerOrMinusZero;
}


// static
Type* Typer::Visitor::ToLength(Type* type, Typer* t) {
  // ES6 section 7.1.15 ToLength ( argument )
  type = ToInteger(type, t);
  double min = type->Min();
  double max = type->Max();
  if (min <= 0.0) min = 0.0;
  if (max > kMaxSafeInteger) max = kMaxSafeInteger;
  if (max <= min) max = min;
  return Type::Range(min, max, t->zone());
}


// static
Type* Typer::Visitor::ToName(Type* type, Typer* t) {
  // ES6 section 7.1.14 ToPropertyKey ( argument )
  type = ToPrimitive(type, t);
  if (type->Is(Type::Name())) return type;
  if (type->Maybe(Type::Symbol())) return Type::Name();
  return ToString(type, t);
}


// static
439 440
Type* Typer::Visitor::ToNumber(Type* type, Typer* t) {
  if (type->Is(Type::Number())) return type;
441
  if (type->Is(Type::NullOrUndefined())) {
442
    if (type->Is(Type::Null())) return t->cache_.kSingletonZero;
443
    if (type->Is(Type::Undefined())) return Type::NaN();
444
    return Type::Union(Type::NaN(), t->cache_.kSingletonZero, t->zone());
445
  }
446
  if (type->Is(Type::NumberOrUndefined())) {
447 448 449
    return Type::Union(Type::Intersect(type, Type::Number(), t->zone()),
                       Type::NaN(), t->zone());
  }
450 451 452
  if (type->Is(t->singleton_false_)) return t->cache_.kSingletonZero;
  if (type->Is(t->singleton_true_)) return t->cache_.kSingletonOne;
  if (type->Is(Type::Boolean())) return t->cache_.kZeroOrOne;
453
  if (type->Is(Type::BooleanOrNumber())) {
454
    return Type::Union(Type::Intersect(type, Type::Number(), t->zone()),
455
                       t->cache_.kZeroOrOne, t->zone());
456
  }
457 458 459 460
  return Type::Number();
}


461 462 463 464 465
// static
Type* Typer::Visitor::ToObject(Type* type, Typer* t) {
  // ES6 section 7.1.13 ToObject ( argument )
  if (type->Is(Type::Receiver())) return type;
  if (type->Is(Type::Primitive())) return Type::OtherObject();
466 467 468
  if (!type->Maybe(Type::OtherUndetectable())) {
    return Type::DetectableReceiver();
  }
469 470 471 472 473
  return Type::Receiver();
}


// static
474
Type* Typer::Visitor::ToString(Type* type, Typer* t) {
475 476
  // ES6 section 7.1.12 ToString ( argument )
  type = ToPrimitive(type, t);
477 478 479 480
  if (type->Is(Type::String())) return type;
  return Type::String();
}

481 482 483 484 485 486 487 488
// static
Type* Typer::Visitor::NumberCeil(Type* type, Typer* t) {
  DCHECK(type->Is(Type::Number()));
  if (type->Is(t->cache_.kIntegerOrMinusZeroOrNaN)) return type;
  // TODO(bmeurer): We could infer a more precise type here.
  return t->cache_.kIntegerOrMinusZeroOrNaN;
}

489 490 491 492
// static
Type* Typer::Visitor::NumberFloor(Type* type, Typer* t) {
  DCHECK(type->Is(Type::Number()));
  if (type->Is(t->cache_.kIntegerOrMinusZeroOrNaN)) return type;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  // TODO(bmeurer): We could infer a more precise type here.
  return t->cache_.kIntegerOrMinusZeroOrNaN;
}

// static
Type* Typer::Visitor::NumberRound(Type* type, Typer* t) {
  DCHECK(type->Is(Type::Number()));
  if (type->Is(t->cache_.kIntegerOrMinusZeroOrNaN)) return type;
  // TODO(bmeurer): We could infer a more precise type here.
  return t->cache_.kIntegerOrMinusZeroOrNaN;
}

// static
Type* Typer::Visitor::NumberTrunc(Type* type, Typer* t) {
  DCHECK(type->Is(Type::Number()));
  if (type->Is(t->cache_.kIntegerOrMinusZeroOrNaN)) return type;
  // TODO(bmeurer): We could infer a more precise type here.
510 511
  return t->cache_.kIntegerOrMinusZeroOrNaN;
}
512 513 514

Type* Typer::Visitor::NumberToInt32(Type* type, Typer* t) {
  if (type->Is(Type::Signed32())) return type;
515
  if (type->Is(t->cache_.kZeroish)) return t->cache_.kSingletonZero;
516
  if (type->Is(t->signed32ish_)) {
517 518 519
    return Type::Intersect(
        Type::Union(type, t->cache_.kSingletonZero, t->zone()),
        Type::Signed32(), t->zone());
520
  }
521 522 523 524 525 526
  return Type::Signed32();
}


Type* Typer::Visitor::NumberToUint32(Type* type, Typer* t) {
  if (type->Is(Type::Unsigned32())) return type;
527
  if (type->Is(t->cache_.kZeroish)) return t->cache_.kSingletonZero;
528
  if (type->Is(t->unsigned32ish_)) {
529 530 531
    return Type::Intersect(
        Type::Union(type, t->cache_.kSingletonZero, t->zone()),
        Type::Unsigned32(), t->zone());
532
  }
533 534 535
  return Type::Unsigned32();
}

536 537
// Type checks.

538 539 540 541 542
Type* Typer::Visitor::ObjectIsCallable(Type* type, Typer* t) {
  if (type->Is(Type::Function())) return t->singleton_true_;
  if (type->Is(Type::Primitive())) return t->singleton_false_;
  return Type::Boolean();
}
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

Type* Typer::Visitor::ObjectIsNumber(Type* type, Typer* t) {
  if (type->Is(Type::Number())) return t->singleton_true_;
  if (!type->Maybe(Type::Number())) return t->singleton_false_;
  return Type::Boolean();
}


Type* Typer::Visitor::ObjectIsReceiver(Type* type, Typer* t) {
  if (type->Is(Type::Receiver())) return t->singleton_true_;
  if (!type->Maybe(Type::Receiver())) return t->singleton_false_;
  return Type::Boolean();
}


Type* Typer::Visitor::ObjectIsSmi(Type* type, Typer* t) {
  if (type->Is(Type::TaggedSigned())) return t->singleton_true_;
  if (type->Is(Type::TaggedPointer())) return t->singleton_false_;
  return Type::Boolean();
}

564 565 566 567 568
Type* Typer::Visitor::ObjectIsString(Type* type, Typer* t) {
  if (type->Is(Type::String())) return t->singleton_true_;
  if (!type->Maybe(Type::String())) return t->singleton_false_;
  return Type::Boolean();
}
569

570 571 572 573 574 575 576
Type* Typer::Visitor::ObjectIsUndetectable(Type* type, Typer* t) {
  if (type->Is(Type::Undetectable())) return t->singleton_true_;
  if (!type->Maybe(Type::Undetectable())) return t->singleton_false_;
  return Type::Boolean();
}


577 578 579 580 581
// -----------------------------------------------------------------------------


// Control operators.

582
Type* Typer::Visitor::TypeStart(Node* node) { return Type::Internal(); }
583

584
Type* Typer::Visitor::TypeIfException(Node* node) { return Type::Any(); }
585 586


587
// Common operators.
588

589

590
Type* Typer::Visitor::TypeParameter(Node* node) {
591
  if (FunctionType* function_type = typer_->function_type()) {
592 593
    int const index = ParameterIndexOf(node->op());
    if (index >= 0 && index < function_type->Arity()) {
594
      return function_type->Parameter(index);
595
    }
596
  }
597
  return Type::Any();
598 599 600
}


601
Type* Typer::Visitor::TypeOsrValue(Node* node) { return Type::Any(); }
602 603


604
Type* Typer::Visitor::TypeInt32Constant(Node* node) {
605
  double number = OpParameter<int32_t>(node);
606
  return Type::Intersect(Type::Range(number, number, zone()),
607
                         Type::UntaggedIntegral32(), zone());
608 609 610
}


611
Type* Typer::Visitor::TypeInt64Constant(Node* node) {
612
  // TODO(rossberg): This actually seems to be a PointerConstant so far...
613
  return Type::Internal();  // TODO(rossberg): Add int64 bitset type?
614 615
}

616 617 618 619 620 621 622 623
// TODO(gdeepti) : Fix this to do something meaningful.
Type* Typer::Visitor::TypeRelocatableInt32Constant(Node* node) {
  return Type::Internal();
}

Type* Typer::Visitor::TypeRelocatableInt64Constant(Node* node) {
  return Type::Internal();
}
624

625 626 627
Type* Typer::Visitor::TypeFloat32Constant(Node* node) {
  return Type::Intersect(Type::Of(OpParameter<float>(node), zone()),
                         Type::UntaggedFloat32(), zone());
628 629 630
}


631 632 633
Type* Typer::Visitor::TypeFloat64Constant(Node* node) {
  return Type::Intersect(Type::Of(OpParameter<double>(node), zone()),
                         Type::UntaggedFloat64(), zone());
634 635 636
}


637
Type* Typer::Visitor::TypeNumberConstant(Node* node) {
638
  Factory* f = isolate()->factory();
639 640
  double number = OpParameter<double>(node);
  if (Type::IsInteger(number)) {
641
    return Type::Range(number, number, zone());
642
  }
643
  return Type::Constant(f->NewNumber(number), zone());
644 645 646
}


647 648
Type* Typer::Visitor::TypeHeapConstant(Node* node) {
  return TypeConstant(OpParameter<Handle<HeapObject>>(node));
649 650 651
}


652
Type* Typer::Visitor::TypeExternalConstant(Node* node) {
653
  return Type::Internal();
654 655 656
}


657 658
Type* Typer::Visitor::TypeSelect(Node* node) {
  return Type::Union(Operand(node, 1), Operand(node, 2), zone());
659 660 661
}


662
Type* Typer::Visitor::TypePhi(Node* node) {
663
  int arity = node->op()->ValueInputCount();
664
  Type* type = Operand(node, 0);
665
  for (int i = 1; i < arity; ++i) {
666
    type = Type::Union(type, Operand(node, i), zone());
667
  }
668
  return type;
669 670 671
}


672
Type* Typer::Visitor::TypeEffectPhi(Node* node) {
673
  UNREACHABLE();
674
  return nullptr;
675 676
}

677
Type* Typer::Visitor::TypeTypeGuard(Node* node) {
678
  Type* input_type = Operand(node, 0);
679
  Type* guard_type = TypeOf(node->op());
680 681 682
  return Type::Intersect(input_type, guard_type, zone());
}

683
Type* Typer::Visitor::TypeCheckpoint(Node* node) {
684 685 686
  UNREACHABLE();
  return nullptr;
}
687

688
Type* Typer::Visitor::TypeBeginRegion(Node* node) {
689
  UNREACHABLE();
690
  return nullptr;
691 692 693
}


694
Type* Typer::Visitor::TypeFinishRegion(Node* node) { return Operand(node, 0); }
695 696


697
Type* Typer::Visitor::TypeFrameState(Node* node) {
698
  // TODO(rossberg): Ideally FrameState wouldn't have a value output.
699
  return Type::Internal();
700 701
}

702
Type* Typer::Visitor::TypeStateValues(Node* node) { return Type::Internal(); }
703

704
Type* Typer::Visitor::TypeObjectState(Node* node) { return Type::Internal(); }
705

706
Type* Typer::Visitor::TypeTypedStateValues(Node* node) {
707
  return Type::Internal();
708 709 710
}


711
Type* Typer::Visitor::TypeCall(Node* node) { return Type::Any(); }
712 713


714
Type* Typer::Visitor::TypeProjection(Node* node) {
715 716 717 718 719
  Type* const type = Operand(node, 0);
  if (type->Is(Type::None())) return Type::None();
  int const index = static_cast<int>(ProjectionIndexOf(node->op()));
  if (type->IsTuple() && index < type->AsTuple()->Arity()) {
    return type->AsTuple()->Element(index);
720
  }
721
  return Type::Any();
722 723 724
}


725
Type* Typer::Visitor::TypeDead(Node* node) { return Type::Any(); }
726 727


728 729
// JS comparison operators.

730 731

Type* Typer::Visitor::JSEqualTyper(Type* lhs, Type* rhs, Typer* t) {
732 733 734
  if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return t->singleton_false_;
  if (lhs->Is(Type::NullOrUndefined()) && rhs->Is(Type::NullOrUndefined())) {
    return t->singleton_true_;
735 736 737
  }
  if (lhs->Is(Type::Number()) && rhs->Is(Type::Number()) &&
      (lhs->Max() < rhs->Min() || lhs->Min() > rhs->Max())) {
738
    return t->singleton_false_;
739
  }
740 741 742
  if (lhs->IsConstant() && rhs->Is(lhs)) {
    // Types are equal and are inhabited only by a single semantic value,
    // which is not nan due to the earlier check.
743
    return t->singleton_true_;
744 745 746
  }
  return Type::Boolean();
}
747 748


749 750 751
Type* Typer::Visitor::JSNotEqualTyper(Type* lhs, Type* rhs, Typer* t) {
  return Invert(JSEqualTyper(lhs, rhs, t), t);
}
752

753 754 755 756 757 758 759 760 761 762

static Type* JSType(Type* type) {
  if (type->Is(Type::Boolean())) return Type::Boolean();
  if (type->Is(Type::String())) return Type::String();
  if (type->Is(Type::Number())) return Type::Number();
  if (type->Is(Type::Undefined())) return Type::Undefined();
  if (type->Is(Type::Null())) return Type::Null();
  if (type->Is(Type::Symbol())) return Type::Symbol();
  if (type->Is(Type::Receiver())) return Type::Receiver();  // JS "Object"
  return Type::Any();
763 764 765
}


766
Type* Typer::Visitor::JSStrictEqualTyper(Type* lhs, Type* rhs, Typer* t) {
767 768
  if (!JSType(lhs)->Maybe(JSType(rhs))) return t->singleton_false_;
  if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return t->singleton_false_;
769 770
  if (lhs->Is(Type::Number()) && rhs->Is(Type::Number()) &&
      (lhs->Max() < rhs->Min() || lhs->Min() > rhs->Max())) {
771
    return t->singleton_false_;
772 773 774 775
  }
  if ((lhs->Is(t->singleton_the_hole_) || rhs->Is(t->singleton_the_hole_)) &&
      !lhs->Maybe(rhs)) {
    return t->singleton_false_;
776 777 778 779
  }
  if (lhs->IsConstant() && rhs->Is(lhs)) {
    // Types are equal and are inhabited only by a single semantic value,
    // which is not nan due to the earlier check.
780
    return t->singleton_true_;
781 782 783 784 785 786 787 788 789 790 791 792 793 794
  }
  return Type::Boolean();
}


Type* Typer::Visitor::JSStrictNotEqualTyper(Type* lhs, Type* rhs, Typer* t) {
  return Invert(JSStrictEqualTyper(lhs, rhs, t), t);
}


// The EcmaScript specification defines the four relational comparison operators
// (<, <=, >=, >) with the help of a single abstract one.  It behaves like <
// but returns undefined when the inputs cannot be compared.
// We implement the typing analogously.
795 796 797
Typer::Visitor::ComparisonOutcome Typer::Visitor::JSCompareTyper(Type* lhs,
                                                                 Type* rhs,
                                                                 Typer* t) {
798 799 800
  lhs = ToPrimitive(lhs, t);
  rhs = ToPrimitive(rhs, t);
  if (lhs->Maybe(Type::String()) && rhs->Maybe(Type::String())) {
801 802
    return ComparisonOutcome(kComparisonTrue) |
           ComparisonOutcome(kComparisonFalse);
803 804 805
  }
  lhs = ToNumber(lhs, t);
  rhs = ToNumber(rhs, t);
806 807 808 809 810

  // Shortcut for NaNs.
  if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return kComparisonUndefined;

  ComparisonOutcome result;
811
  if (lhs->IsConstant() && rhs->Is(lhs)) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    // Types are equal and are inhabited only by a single semantic value.
    result = kComparisonFalse;
  } else if (lhs->Min() >= rhs->Max()) {
    result = kComparisonFalse;
  } else if (lhs->Max() < rhs->Min()) {
    result = kComparisonTrue;
  } else {
    // We cannot figure out the result, return both true and false. (We do not
    // have to return undefined because that cannot affect the result of
    // FalsifyUndefined.)
    return ComparisonOutcome(kComparisonTrue) |
           ComparisonOutcome(kComparisonFalse);
  }
  // Add the undefined if we could see NaN.
  if (lhs->Maybe(Type::NaN()) || rhs->Maybe(Type::NaN())) {
    result |= kComparisonUndefined;
  }
  return result;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}


Type* Typer::Visitor::JSLessThanTyper(Type* lhs, Type* rhs, Typer* t) {
  return FalsifyUndefined(JSCompareTyper(lhs, rhs, t), t);
}


Type* Typer::Visitor::JSGreaterThanTyper(Type* lhs, Type* rhs, Typer* t) {
  return FalsifyUndefined(JSCompareTyper(rhs, lhs, t), t);
}


Type* Typer::Visitor::JSLessThanOrEqualTyper(Type* lhs, Type* rhs, Typer* t) {
  return FalsifyUndefined(Invert(JSCompareTyper(rhs, lhs, t), t), t);
}


Type* Typer::Visitor::JSGreaterThanOrEqualTyper(
    Type* lhs, Type* rhs, Typer* t) {
  return FalsifyUndefined(Invert(JSCompareTyper(lhs, rhs, t), t), t);
}

// JS bitwise operators.


Type* Typer::Visitor::JSBitwiseOrTyper(Type* lhs, Type* rhs, Typer* t) {
  lhs = NumberToInt32(ToNumber(lhs, t), t);
  rhs = NumberToInt32(ToNumber(rhs, t), t);
  double lmin = lhs->Min();
  double rmin = rhs->Min();
  double lmax = lhs->Max();
  double rmax = rhs->Max();
  // Or-ing any two values results in a value no smaller than their minimum.
  // Even no smaller than their maximum if both values are non-negative.
865 866 867 868 869 870 871 872 873 874 875 876 877 878
  double min =
      lmin >= 0 && rmin >= 0 ? std::max(lmin, rmin) : std::min(lmin, rmin);
  double max = Type::Signed32()->Max();

  // Or-ing with 0 is essentially a conversion to int32.
  if (rmin == 0 && rmax == 0) {
    min = lmin;
    max = lmax;
  }
  if (lmin == 0 && lmax == 0) {
    min = rmin;
    max = rmax;
  }

879 880 881
  if (lmax < 0 || rmax < 0) {
    // Or-ing two values of which at least one is negative results in a negative
    // value.
882
    max = std::min(max, -1.0);
883
  }
884
  return Type::Range(min, max, t->zone());
885 886 887 888 889 890 891 892 893 894
}


Type* Typer::Visitor::JSBitwiseAndTyper(Type* lhs, Type* rhs, Typer* t) {
  lhs = NumberToInt32(ToNumber(lhs, t), t);
  rhs = NumberToInt32(ToNumber(rhs, t), t);
  double lmin = lhs->Min();
  double rmin = rhs->Min();
  double lmax = lhs->Max();
  double rmax = rhs->Max();
895
  double min = Type::Signed32()->Min();
896 897
  // And-ing any two values results in a value no larger than their maximum.
  // Even no larger than their minimum if both values are non-negative.
898 899 900 901 902 903 904 905 906 907 908 909
  double max =
      lmin >= 0 && rmin >= 0 ? std::min(lmax, rmax) : std::max(lmax, rmax);
  // And-ing with a non-negative value x causes the result to be between
  // zero and x.
  if (lmin >= 0) {
    min = 0;
    max = std::min(max, lmax);
  }
  if (rmin >= 0) {
    min = 0;
    max = std::min(max, rmax);
  }
910
  return Type::Range(min, max, t->zone());
911 912 913
}


914 915 916 917 918 919 920 921 922
Type* Typer::Visitor::JSBitwiseXorTyper(Type* lhs, Type* rhs, Typer* t) {
  lhs = NumberToInt32(ToNumber(lhs, t), t);
  rhs = NumberToInt32(ToNumber(rhs, t), t);
  double lmin = lhs->Min();
  double rmin = rhs->Min();
  double lmax = lhs->Max();
  double rmax = rhs->Max();
  if ((lmin >= 0 && rmin >= 0) || (lmax < 0 && rmax < 0)) {
    // Xor-ing negative or non-negative values results in a non-negative value.
923
    return Type::Unsigned31();
924 925 926
  }
  if ((lmax < 0 && rmin >= 0) || (lmin >= 0 && rmax < 0)) {
    // Xor-ing a negative and a non-negative value results in a negative value.
927
    // TODO(jarin) Use a range here.
928
    return Type::Negative32();
929 930
  }
  return Type::Signed32();
931 932 933
}


934 935
Type* Typer::Visitor::JSShiftLeftTyper(Type* lhs, Type* rhs, Typer* t) {
  return Type::Signed32();
936 937 938
}


939 940
Type* Typer::Visitor::JSShiftRightTyper(Type* lhs, Type* rhs, Typer* t) {
  lhs = NumberToInt32(ToNumber(lhs, t), t);
941 942 943
  rhs = NumberToUint32(ToNumber(rhs, t), t);
  double min = kMinInt;
  double max = kMaxInt;
944 945
  if (lhs->Min() >= 0) {
    // Right-shifting a non-negative value cannot make it negative, nor larger.
946 947
    min = std::max(min, 0.0);
    max = std::min(max, lhs->Max());
948 949 950
    if (rhs->Min() > 0 && rhs->Max() <= 31) {
      max = static_cast<int>(max) >> static_cast<int>(rhs->Min());
    }
951 952 953
  }
  if (lhs->Max() < 0) {
    // Right-shifting a negative value cannot make it non-negative, nor smaller.
954 955
    min = std::max(min, lhs->Min());
    max = std::min(max, -1.0);
956 957 958
    if (rhs->Min() > 0 && rhs->Max() <= 31) {
      min = static_cast<int>(min) >> static_cast<int>(rhs->Min());
    }
959 960 961 962 963 964 965 966 967 968 969
  }
  if (rhs->Min() > 0 && rhs->Max() <= 31) {
    // Right-shifting by a positive value yields a small integer value.
    double shift_min = kMinInt >> static_cast<int>(rhs->Min());
    double shift_max = kMaxInt >> static_cast<int>(rhs->Min());
    min = std::max(min, shift_min);
    max = std::min(max, shift_max);
  }
  // TODO(jarin) Ideally, the following micro-optimization should be performed
  // by the type constructor.
  if (max != Type::Signed32()->Max() || min != Type::Signed32()->Min()) {
970
    return Type::Range(min, max, t->zone());
971 972
  }
  return Type::Signed32();
973 974 975
}


976 977 978
Type* Typer::Visitor::JSShiftRightLogicalTyper(Type* lhs, Type* rhs, Typer* t) {
  lhs = NumberToUint32(ToNumber(lhs, t), t);
  // Logical right-shifting any value cannot make it larger.
979
  return Type::Range(0.0, lhs->Max(), t->zone());
980 981 982 983 984
}


// JS arithmetic operators.

985 986 987 988 989 990 991 992 993 994
Type* Typer::Visitor::JSAddTyper(Type* lhs, Type* rhs, Typer* t) {
  lhs = ToPrimitive(lhs, t);
  rhs = ToPrimitive(rhs, t);
  if (lhs->Maybe(Type::String()) || rhs->Maybe(Type::String())) {
    if (lhs->Is(Type::String()) || rhs->Is(Type::String())) {
      return Type::String();
    } else {
      return Type::NumberOrString();
    }
  }
995
  // The addition must be numeric.
996
  return t->operation_typer()->NumericAdd(ToNumber(lhs, t), ToNumber(rhs, t));
997 998
}

999
Type* Typer::Visitor::JSSubtractTyper(Type* lhs, Type* rhs, Typer* t) {
1000 1001
  return t->operation_typer()->NumericSubtract(ToNumber(lhs, t),
                                               ToNumber(rhs, t));
1002 1003
}

1004
Type* Typer::Visitor::JSMultiplyTyper(Type* lhs, Type* rhs, Typer* t) {
1005 1006
  return t->operation_typer()->NumericMultiply(ToNumber(lhs, t),
                                               ToNumber(rhs, t));
1007 1008
}

1009
Type* Typer::Visitor::JSDivideTyper(Type* lhs, Type* rhs, Typer* t) {
1010 1011
  return t->operation_typer()->NumericDivide(ToNumber(lhs, t),
                                             ToNumber(rhs, t));
1012 1013 1014
  lhs = ToNumber(lhs, t);
  rhs = ToNumber(rhs, t);
  if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
1015
  // Division is tricky, so all we do is try ruling out nan.
1016
  bool maybe_nan =
1017
      lhs->Maybe(Type::NaN()) || rhs->Maybe(t->cache_.kZeroish) ||
1018 1019
      ((lhs->Min() == -V8_INFINITY || lhs->Max() == +V8_INFINITY) &&
       (rhs->Min() == -V8_INFINITY || rhs->Max() == +V8_INFINITY));
1020
  return maybe_nan ? Type::Number() : Type::OrderedNumber();
1021 1022
}

1023
Type* Typer::Visitor::JSModulusTyper(Type* lhs, Type* rhs, Typer* t) {
1024 1025
  return t->operation_typer()->NumericModulus(ToNumber(lhs, t),
                                              ToNumber(rhs, t));
1026 1027 1028 1029 1030
}


// JS unary operators.

1031

1032 1033 1034 1035 1036 1037
Type* Typer::Visitor::JSTypeOfTyper(Type* type, Typer* t) {
  Factory* const f = t->isolate()->factory();
  if (type->Is(Type::Boolean())) {
    return Type::Constant(f->boolean_string(), t->zone());
  } else if (type->Is(Type::Number())) {
    return Type::Constant(f->number_string(), t->zone());
1038 1039
  } else if (type->Is(Type::String())) {
    return Type::Constant(f->string_string(), t->zone());
1040 1041
  } else if (type->Is(Type::Symbol())) {
    return Type::Constant(f->symbol_string(), t->zone());
1042
  } else if (type->Is(Type::Union(Type::Undefined(), Type::OtherUndetectable(),
1043
                                  t->zone()))) {
1044 1045 1046
    return Type::Constant(f->undefined_string(), t->zone());
  } else if (type->Is(Type::Null())) {
    return Type::Constant(f->object_string(), t->zone());
1047 1048
  } else if (type->Is(Type::Function())) {
    return Type::Constant(f->function_string(), t->zone());
1049 1050 1051
  } else if (type->IsConstant()) {
    return Type::Constant(
        Object::TypeOf(t->isolate(), type->AsConstant()->Value()), t->zone());
1052 1053 1054 1055 1056
  }
  return Type::InternalizedString();
}


1057
Type* Typer::Visitor::TypeJSTypeOf(Node* node) {
1058
  return TypeUnaryOp(node, JSTypeOfTyper);
1059 1060 1061 1062 1063
}


// JS conversion operators.

1064

1065
Type* Typer::Visitor::TypeJSToBoolean(Node* node) {
1066
  return TypeUnaryOp(node, ToBoolean);
1067 1068
}

1069 1070
Type* Typer::Visitor::TypeJSToInteger(Node* node) {
  return TypeUnaryOp(node, ToInteger);
1071 1072
}

1073 1074
Type* Typer::Visitor::TypeJSToLength(Node* node) {
  return TypeUnaryOp(node, ToLength);
1075 1076
}

1077 1078 1079
Type* Typer::Visitor::TypeJSToName(Node* node) {
  return TypeUnaryOp(node, ToName);
}
1080

1081 1082 1083
Type* Typer::Visitor::TypeJSToNumber(Node* node) {
  return TypeUnaryOp(node, ToNumber);
}
1084

1085 1086 1087
Type* Typer::Visitor::TypeJSToObject(Node* node) {
  return TypeUnaryOp(node, ToObject);
}
1088

1089 1090 1091
Type* Typer::Visitor::TypeJSToString(Node* node) {
  return TypeUnaryOp(node, ToString);
}
1092 1093 1094

// JS object operators.

1095

1096
Type* Typer::Visitor::TypeJSCreate(Node* node) { return Type::Object(); }
1097 1098


1099 1100
Type* Typer::Visitor::TypeJSCreateArguments(Node* node) {
  return Type::OtherObject();
1101 1102 1103
}


1104 1105 1106 1107 1108
Type* Typer::Visitor::TypeJSCreateArray(Node* node) {
  return Type::OtherObject();
}


1109
Type* Typer::Visitor::TypeJSCreateClosure(Node* node) {
1110
  return Type::Function();
1111 1112 1113
}


1114 1115 1116 1117 1118
Type* Typer::Visitor::TypeJSCreateIterResultObject(Node* node) {
  return Type::OtherObject();
}


1119
Type* Typer::Visitor::TypeJSCreateLiteralArray(Node* node) {
1120
  return Type::OtherObject();
1121 1122 1123
}


1124 1125
Type* Typer::Visitor::TypeJSCreateLiteralObject(Node* node) {
  return Type::OtherObject();
1126 1127 1128
}


1129 1130 1131 1132 1133
Type* Typer::Visitor::TypeJSCreateLiteralRegExp(Node* node) {
  return Type::OtherObject();
}


1134
Type* Typer::Visitor::JSLoadPropertyTyper(Type* object, Type* name, Typer* t) {
1135
  // TODO(rossberg): Use range types and sized array types to filter undefined.
1136 1137 1138
  if (object->IsArray() && name->Is(Type::Integral32())) {
    return Type::Union(
        object->AsArray()->Element(), Type::Undefined(), t->zone());
1139
  }
1140 1141 1142 1143
  return Type::Any();
}


1144
Type* Typer::Visitor::TypeJSLoadProperty(Node* node) {
1145
  return TypeBinaryOp(node, JSLoadPropertyTyper);
1146 1147 1148
}


1149 1150 1151
Type* Typer::Visitor::TypeJSLoadNamed(Node* node) {
  return Type::Any();
}
1152 1153


1154
Type* Typer::Visitor::TypeJSLoadGlobal(Node* node) { return Type::Any(); }
1155 1156


1157 1158 1159 1160 1161
// Returns a somewhat larger range if we previously assigned
// a (smaller) range to this node. This is used  to speed up
// the fixpoint calculation in case there appears to be a loop
// in the graph. In the current implementation, we are
// increasing the limits to the closest power of two.
1162 1163
Type* Typer::Visitor::Weaken(Node* node, Type* current_type,
                             Type* previous_type) {
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
  static const double kWeakenMinLimits[] = {
      0.0, -1073741824.0, -2147483648.0, -4294967296.0, -8589934592.0,
      -17179869184.0, -34359738368.0, -68719476736.0, -137438953472.0,
      -274877906944.0, -549755813888.0, -1099511627776.0, -2199023255552.0,
      -4398046511104.0, -8796093022208.0, -17592186044416.0, -35184372088832.0,
      -70368744177664.0, -140737488355328.0, -281474976710656.0,
      -562949953421312.0};
  static const double kWeakenMaxLimits[] = {
      0.0, 1073741823.0, 2147483647.0, 4294967295.0, 8589934591.0,
      17179869183.0, 34359738367.0, 68719476735.0, 137438953471.0,
      274877906943.0, 549755813887.0, 1099511627775.0, 2199023255551.0,
      4398046511103.0, 8796093022207.0, 17592186044415.0, 35184372088831.0,
      70368744177663.0, 140737488355327.0, 281474976710655.0,
      562949953421311.0};
  STATIC_ASSERT(arraysize(kWeakenMinLimits) == arraysize(kWeakenMaxLimits));

1180
  // If the types have nothing to do with integers, return the types.
1181
  Type* const integer = typer_->cache_.kInteger;
1182
  if (!previous_type->Maybe(integer)) {
1183 1184
    return current_type;
  }
1185
  DCHECK(current_type->Maybe(integer));
1186

1187 1188
  Type* current_integer = Type::Intersect(current_type, integer, zone());
  Type* previous_integer = Type::Intersect(previous_type, integer, zone());
1189 1190 1191 1192 1193 1194

  // Once we start weakening a node, we should always weaken.
  if (!IsWeakened(node->id())) {
    // Only weaken if there is range involved; we should converge quickly
    // for all other types (the exception is a union of many constants,
    // but we currently do not increase the number of constants in unions).
1195 1196
    Type* previous = previous_integer->GetRange();
    Type* current = current_integer->GetRange();
1197 1198 1199 1200 1201
    if (current == nullptr || previous == nullptr) {
      return current_type;
    }
    // Range is involved => we are weakening.
    SetWeakened(node->id());
1202 1203
  }

1204
  double current_min = current_integer->Min();
1205
  double new_min = current_min;
1206 1207
  // Find the closest lower entry in the list of allowed
  // minima (or negative infinity if there is no such entry).
1208
  if (current_min != previous_integer->Min()) {
1209
    new_min = -V8_INFINITY;
1210 1211 1212
    for (double const min : kWeakenMinLimits) {
      if (min <= current_min) {
        new_min = min;
1213
        break;
1214 1215
      }
    }
1216
  }
1217

1218
  double current_max = current_integer->Max();
1219
  double new_max = current_max;
1220 1221
  // Find the closest greater entry in the list of allowed
  // maxima (or infinity if there is no such entry).
1222
  if (current_max != previous_integer->Max()) {
1223
    new_max = V8_INFINITY;
1224 1225 1226
    for (double const max : kWeakenMaxLimits) {
      if (max >= current_max) {
        new_max = max;
1227
        break;
1228 1229
      }
    }
1230
  }
1231 1232 1233 1234

  return Type::Union(current_type,
                     Type::Range(new_min, new_max, typer_->zone()),
                     typer_->zone());
1235 1236 1237
}


1238
Type* Typer::Visitor::TypeJSStoreProperty(Node* node) {
1239
  UNREACHABLE();
1240
  return nullptr;
1241 1242 1243
}


1244
Type* Typer::Visitor::TypeJSStoreNamed(Node* node) {
1245
  UNREACHABLE();
1246
  return nullptr;
1247 1248 1249
}


1250
Type* Typer::Visitor::TypeJSStoreGlobal(Node* node) {
1251
  UNREACHABLE();
1252
  return nullptr;
1253 1254 1255
}


1256
Type* Typer::Visitor::TypeJSDeleteProperty(Node* node) {
1257
  return Type::Boolean();
1258 1259
}

1260
Type* Typer::Visitor::TypeJSHasProperty(Node* node) { return Type::Boolean(); }
1261

1262
Type* Typer::Visitor::TypeJSInstanceOf(Node* node) { return Type::Boolean(); }
1263 1264 1265

// JS context operators.

1266

1267
Type* Typer::Visitor::TypeJSLoadContext(Node* node) {
1268 1269 1270 1271
  ContextAccess const& access = ContextAccessOf(node->op());
  if (access.index() == Context::EXTENSION_INDEX) {
    return Type::TaggedPointer();
  }
1272 1273
  // Since contexts are mutable, we just return the top.
  return Type::Any();
1274 1275 1276
}


1277
Type* Typer::Visitor::TypeJSStoreContext(Node* node) {
1278
  UNREACHABLE();
1279
  return nullptr;
1280 1281 1282
}


1283 1284 1285 1286
Type* Typer::Visitor::WrapContextTypeForInput(Node* node) {
  Type* outer = TypeOrNone(NodeProperties::GetContextInput(node));
  if (outer->Is(Type::None())) {
    return Type::None();
1287
  } else {
1288 1289
    DCHECK(outer->Maybe(Type::Internal()));
    return Type::Context(outer, zone());
1290 1291 1292 1293
  }
}


1294 1295
Type* Typer::Visitor::TypeJSCreateFunctionContext(Node* node) {
  return WrapContextTypeForInput(node);
1296 1297 1298
}


1299 1300
Type* Typer::Visitor::TypeJSCreateCatchContext(Node* node) {
  return WrapContextTypeForInput(node);
1301 1302 1303
}


1304 1305
Type* Typer::Visitor::TypeJSCreateWithContext(Node* node) {
  return WrapContextTypeForInput(node);
1306 1307 1308
}


1309 1310
Type* Typer::Visitor::TypeJSCreateBlockContext(Node* node) {
  return WrapContextTypeForInput(node);
1311 1312 1313
}


1314
Type* Typer::Visitor::TypeJSCreateModuleContext(Node* node) {
1315
  // TODO(rossberg): this is probably incorrect
1316
  return WrapContextTypeForInput(node);
1317 1318 1319
}


1320 1321
Type* Typer::Visitor::TypeJSCreateScriptContext(Node* node) {
  return WrapContextTypeForInput(node);
1322 1323 1324 1325 1326
}


// JS other operators.

1327

1328 1329
Type* Typer::Visitor::TypeJSCallConstruct(Node* node) {
  return Type::Receiver();
1330 1331 1332 1333
}


Type* Typer::Visitor::JSCallFunctionTyper(Type* fun, Typer* t) {
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
  if (fun->IsFunction()) {
    return fun->AsFunction()->Result();
  }
  if (fun->IsConstant() && fun->AsConstant()->Value()->IsJSFunction()) {
    Handle<JSFunction> function =
        Handle<JSFunction>::cast(fun->AsConstant()->Value());
    if (function->shared()->HasBuiltinFunctionId()) {
      switch (function->shared()->builtin_function_id()) {
        case kMathRandom:
          return Type::OrderedNumber();
        case kMathFloor:
        case kMathCeil:
1346 1347
        case kMathRound:
        case kMathTrunc:
1348
          return t->cache_.kIntegerOrMinusZeroOrNaN;
1349
        // Unary math functions.
1350 1351
        case kMathExp:
          return Type::Union(Type::PlainNumber(), Type::NaN(), t->zone());
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        case kMathAbs:
        case kMathLog:
        case kMathSqrt:
        case kMathCos:
        case kMathSin:
        case kMathTan:
        case kMathAcos:
        case kMathAsin:
        case kMathAtan:
        case kMathFround:
          return Type::Number();
        // Binary math functions.
        case kMathAtan2:
        case kMathPow:
        case kMathMax:
        case kMathMin:
          return Type::Number();
        case kMathImul:
          return Type::Signed32();
        case kMathClz32:
          return t->cache_.kZeroToThirtyTwo;
        // String functions.
1374 1375 1376
        case kStringCharCodeAt:
          return Type::Union(Type::Range(0, kMaxUInt16, t->zone()), Type::NaN(),
                             t->zone());
1377
        case kStringCharAt:
1378
        case kStringConcat:
1379
        case kStringFromCharCode:
1380 1381
        case kStringToLowerCase:
        case kStringToUpperCase:
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
          return Type::String();
        // Array functions.
        case kArrayIndexOf:
        case kArrayLastIndexOf:
          return Type::Number();
        default:
          break;
      }
    }
  }
  return Type::Any();
1393 1394 1395
}


1396
Type* Typer::Visitor::TypeJSCallFunction(Node* node) {
1397 1398 1399
  // TODO(bmeurer): We could infer better types if we wouldn't ignore the
  // argument types for the JSCallFunctionTyper above.
  return TypeUnaryOp(node, JSCallFunctionTyper);
1400 1401 1402
}


1403
Type* Typer::Visitor::TypeJSCallRuntime(Node* node) {
1404
  switch (CallRuntimeParametersOf(node->op()).id()) {
1405 1406
    case Runtime::kInlineIsJSReceiver:
      return TypeUnaryOp(node, ObjectIsReceiver);
1407
    case Runtime::kInlineIsSmi:
1408
      return TypeUnaryOp(node, ObjectIsSmi);
1409
    case Runtime::kInlineIsArray:
1410
    case Runtime::kInlineIsDate:
1411
    case Runtime::kInlineIsTypedArray:
1412
    case Runtime::kInlineIsRegExp:
1413
      return Type::Boolean();
1414 1415
    case Runtime::kInlineDoubleLo:
    case Runtime::kInlineDoubleHi:
1416
      return Type::Signed32();
1417
    case Runtime::kInlineCreateIterResultObject:
1418 1419 1420
    case Runtime::kInlineRegExpConstructResult:
      return Type::OtherObject();
    case Runtime::kInlineSubString:
1421
    case Runtime::kInlineStringCharFromCode:
1422
      return Type::String();
1423 1424 1425 1426 1427 1428 1429 1430
    case Runtime::kInlineToInteger:
      return TypeUnaryOp(node, ToInteger);
    case Runtime::kInlineToLength:
      return TypeUnaryOp(node, ToLength);
    case Runtime::kInlineToName:
      return TypeUnaryOp(node, ToName);
    case Runtime::kInlineToNumber:
      return TypeUnaryOp(node, ToNumber);
1431
    case Runtime::kInlineToObject:
1432 1433 1434 1435 1436 1437 1438
      return TypeUnaryOp(node, ToObject);
    case Runtime::kInlineToPrimitive:
    case Runtime::kInlineToPrimitive_Number:
    case Runtime::kInlineToPrimitive_String:
      return TypeUnaryOp(node, ToPrimitive);
    case Runtime::kInlineToString:
      return TypeUnaryOp(node, ToString);
1439 1440
    case Runtime::kHasInPrototypeChain:
      return Type::Boolean();
1441 1442 1443
    default:
      break;
  }
1444
  return Type::Any();
1445 1446 1447
}


1448 1449 1450 1451 1452
Type* Typer::Visitor::TypeJSConvertReceiver(Node* node) {
  return Type::Receiver();
}


1453 1454
Type* Typer::Visitor::TypeJSForInNext(Node* node) {
  return Type::Union(Type::Name(), Type::Undefined(), zone());
1455 1456 1457
}


1458
Type* Typer::Visitor::TypeJSForInPrepare(Node* node) {
1459 1460 1461 1462 1463 1464 1465
  STATIC_ASSERT(Map::EnumLengthBits::kMax <= FixedArray::kMaxLength);
  Factory* const f = isolate()->factory();
  Type* const cache_type = Type::Union(
      typer_->cache_.kSmi, Type::Class(f->meta_map(), zone()), zone());
  Type* const cache_array = Type::Class(f->fixed_array_map(), zone());
  Type* const cache_length = typer_->cache_.kFixedArrayLengthType;
  return Type::Tuple(cache_type, cache_array, cache_length, zone());
1466 1467
}

1468
Type* Typer::Visitor::TypeJSForInDone(Node* node) { return Type::Boolean(); }
1469

1470
Type* Typer::Visitor::TypeJSForInStep(Node* node) {
1471
  STATIC_ASSERT(Map::EnumLengthBits::kMax <= FixedArray::kMaxLength);
1472
  return Type::Range(1, FixedArray::kMaxLength + 1, zone());
1473 1474 1475
}


1476 1477 1478 1479 1480 1481 1482 1483
Type* Typer::Visitor::TypeJSLoadMessage(Node* node) { return Type::Any(); }


Type* Typer::Visitor::TypeJSStoreMessage(Node* node) {
  UNREACHABLE();
  return nullptr;
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
Type* Typer::Visitor::TypeJSGeneratorStore(Node* node) {
  UNREACHABLE();
  return nullptr;
}

Type* Typer::Visitor::TypeJSGeneratorRestoreContinuation(Node* node) {
  return typer_->cache_.kSmi;
}

Type* Typer::Visitor::TypeJSGeneratorRestoreRegister(Node* node) {
  return Type::Any();
}
1496

1497
Type* Typer::Visitor::TypeJSStackCheck(Node* node) { return Type::Any(); }
1498 1499 1500

// Simplified operators.

1501
Type* Typer::Visitor::TypeBooleanNot(Node* node) { return Type::Boolean(); }
1502

1503
Type* Typer::Visitor::TypeBooleanToNumber(Node* node) {
1504
  return TypeUnaryOp(node, ToNumber);
1505 1506
}

1507
Type* Typer::Visitor::TypeNumberEqual(Node* node) { return Type::Boolean(); }
1508

1509
Type* Typer::Visitor::TypeNumberLessThan(Node* node) { return Type::Boolean(); }
1510

1511
Type* Typer::Visitor::TypeNumberLessThanOrEqual(Node* node) {
1512
  return Type::Boolean();
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
Type* Typer::Visitor::TypeSpeculativeNumberEqual(Node* node) {
  return Type::Boolean();
}

Type* Typer::Visitor::TypeSpeculativeNumberLessThan(Node* node) {
  return Type::Boolean();
}

Type* Typer::Visitor::TypeSpeculativeNumberLessThanOrEqual(Node* node) {
  return Type::Boolean();
}

1527
Type* Typer::Visitor::TypeNumberAdd(Node* node) { return Type::Number(); }
1528

1529
Type* Typer::Visitor::TypeNumberSubtract(Node* node) { return Type::Number(); }
1530

1531 1532 1533 1534 1535 1536 1537 1538
Type* Typer::Visitor::TypeSpeculativeNumberAdd(Node* node) {
  return Type::Number();
}

Type* Typer::Visitor::TypeSpeculativeNumberSubtract(Node* node) {
  return Type::Number();
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
Type* Typer::Visitor::TypeSpeculativeNumberMultiply(Node* node) {
  return Type::Number();
}

Type* Typer::Visitor::TypeSpeculativeNumberDivide(Node* node) {
  return Type::Number();
}

Type* Typer::Visitor::TypeSpeculativeNumberModulus(Node* node) {
  return Type::Number();
}

1551
Type* Typer::Visitor::TypeNumberMultiply(Node* node) { return Type::Number(); }
1552

1553
Type* Typer::Visitor::TypeNumberDivide(Node* node) { return Type::Number(); }
1554

1555
Type* Typer::Visitor::TypeNumberModulus(Node* node) { return Type::Number(); }
1556

1557
Type* Typer::Visitor::TypeNumberBitwiseOr(Node* node) {
1558
  return Type::Signed32();
1559 1560 1561 1562
}


Type* Typer::Visitor::TypeNumberBitwiseXor(Node* node) {
1563
  return Type::Signed32();
1564 1565 1566 1567
}


Type* Typer::Visitor::TypeNumberBitwiseAnd(Node* node) {
1568
  return Type::Signed32();
1569 1570 1571
}


1572
Type* Typer::Visitor::TypeNumberShiftLeft(Node* node) {
1573
  return Type::Signed32();
1574 1575 1576
}


1577
Type* Typer::Visitor::TypeNumberShiftRight(Node* node) {
1578
  return Type::Signed32();
1579 1580 1581
}


1582
Type* Typer::Visitor::TypeNumberShiftRightLogical(Node* node) {
1583
  return Type::Unsigned32();
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
Type* Typer::Visitor::TypePlainPrimitiveToNumber(Node* node) {
  return TypeUnaryOp(node, ToNumber);
}

Type* Typer::Visitor::TypePlainPrimitiveToWord32(Node* node) {
  return Type::Integral32();
}

Type* Typer::Visitor::TypePlainPrimitiveToFloat64(Node* node) {
  return Type::Number();
}

1598 1599
Type* Typer::Visitor::TypeNumberImul(Node* node) { return Type::Signed32(); }

1600 1601 1602 1603
Type* Typer::Visitor::TypeNumberClz32(Node* node) {
  return typer_->cache_.kZeroToThirtyTwo;
}

1604 1605 1606 1607
Type* Typer::Visitor::TypeNumberCeil(Node* node) {
  return TypeUnaryOp(node, NumberCeil);
}

1608 1609 1610
Type* Typer::Visitor::TypeNumberFloor(Node* node) {
  return TypeUnaryOp(node, NumberFloor);
}
1611

1612 1613
Type* Typer::Visitor::TypeNumberFround(Node* node) { return Type::Number(); }

1614 1615 1616 1617
Type* Typer::Visitor::TypeNumberAtan(Node* node) { return Type::Number(); }

Type* Typer::Visitor::TypeNumberAtan2(Node* node) { return Type::Number(); }

1618 1619
Type* Typer::Visitor::TypeNumberAtanh(Node* node) { return Type::Number(); }

1620 1621
Type* Typer::Visitor::TypeNumberCos(Node* node) { return Type::Number(); }

1622 1623 1624 1625
Type* Typer::Visitor::TypeNumberExp(Node* node) {
  return Type::Union(Type::PlainNumber(), Type::NaN(), zone());
}

1626 1627 1628
// TODO(mvstanton): Is this type sufficient, or should it look like Exp()?
Type* Typer::Visitor::TypeNumberExpm1(Node* node) { return Type::Number(); }

1629 1630
Type* Typer::Visitor::TypeNumberLog(Node* node) { return Type::Number(); }

1631 1632
Type* Typer::Visitor::TypeNumberLog1p(Node* node) { return Type::Number(); }

1633 1634 1635 1636
Type* Typer::Visitor::TypeNumberLog2(Node* node) { return Type::Number(); }

Type* Typer::Visitor::TypeNumberLog10(Node* node) { return Type::Number(); }

1637 1638
Type* Typer::Visitor::TypeNumberCbrt(Node* node) { return Type::Number(); }

1639 1640 1641 1642
Type* Typer::Visitor::TypeNumberRound(Node* node) {
  return TypeUnaryOp(node, NumberRound);
}

1643 1644
Type* Typer::Visitor::TypeNumberSin(Node* node) { return Type::Number(); }

1645 1646
Type* Typer::Visitor::TypeNumberSqrt(Node* node) { return Type::Number(); }

1647 1648
Type* Typer::Visitor::TypeNumberTan(Node* node) { return Type::Number(); }

1649 1650 1651 1652
Type* Typer::Visitor::TypeNumberTrunc(Node* node) {
  return TypeUnaryOp(node, NumberTrunc);
}

1653
Type* Typer::Visitor::TypeNumberToInt32(Node* node) {
1654
  return TypeUnaryOp(node, NumberToInt32);
1655 1656 1657
}


1658
Type* Typer::Visitor::TypeNumberToUint32(Node* node) {
1659
  return TypeUnaryOp(node, NumberToUint32);
1660 1661 1662
}


1663 1664 1665 1666 1667 1668 1669 1670 1671
// static
Type* Typer::Visitor::ReferenceEqualTyper(Type* lhs, Type* rhs, Typer* t) {
  if (lhs->IsConstant() && rhs->Is(lhs)) {
    return t->singleton_true_;
  }
  return Type::Boolean();
}


1672
Type* Typer::Visitor::TypeReferenceEqual(Node* node) {
1673
  return TypeBinaryOp(node, ReferenceEqualTyper);
1674 1675
}

1676
Type* Typer::Visitor::TypeStringEqual(Node* node) { return Type::Boolean(); }
1677

1678
Type* Typer::Visitor::TypeStringLessThan(Node* node) { return Type::Boolean(); }
1679

1680
Type* Typer::Visitor::TypeStringLessThanOrEqual(Node* node) {
1681
  return Type::Boolean();
1682 1683
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
Type* Typer::Visitor::StringFromCharCodeTyper(Type* type, Typer* t) {
  type = NumberToUint32(ToNumber(type, t), t);
  Factory* f = t->isolate()->factory();
  double min = type->Min();
  double max = type->Max();
  if (min == max) {
    uint32_t code = static_cast<uint32_t>(min) & String::kMaxUtf16CodeUnitU;
    Handle<String> string = f->LookupSingleCharacterStringFromCode(code);
    return Type::Constant(string, t->zone());
  }
  return Type::String();
}

Type* Typer::Visitor::TypeStringFromCharCode(Node* node) {
  return TypeUnaryOp(node, StringFromCharCodeTyper);
}

1701 1702 1703
Type* Typer::Visitor::TypeStringToNumber(Node* node) {
  return TypeUnaryOp(node, ToNumber);
}
1704

1705 1706 1707 1708 1709
namespace {

Type* ChangeRepresentation(Type* type, Type* rep, Zone* zone) {
  return Type::Union(Type::Semantic(type, zone),
                     Type::Representation(rep, zone), zone);
1710 1711
}

1712 1713
}  // namespace

1714
Type* Typer::Visitor::TypeChangeTaggedSignedToInt32(Node* node) {
1715
  Type* arg = Operand(node, 0);
1716 1717
  // TODO(jarin): DCHECK(arg->Is(Type::Signed32()));
  // Many tests fail this check.
1718 1719
  return ChangeRepresentation(arg, Type::UntaggedIntegral32(), zone());
}
1720

1721 1722
Type* Typer::Visitor::TypeChangeTaggedToInt32(Node* node) {
  Type* arg = Operand(node, 0);
1723
  DCHECK(arg->Is(Type::Signed32()));
1724
  return ChangeRepresentation(arg, Type::UntaggedIntegral32(), zone());
1725 1726 1727
}


1728 1729
Type* Typer::Visitor::TypeChangeTaggedToUint32(Node* node) {
  Type* arg = Operand(node, 0);
1730
  DCHECK(arg->Is(Type::Unsigned32()));
1731
  return ChangeRepresentation(arg, Type::UntaggedIntegral32(), zone());
1732 1733 1734
}


1735 1736
Type* Typer::Visitor::TypeChangeTaggedToFloat64(Node* node) {
  Type* arg = Operand(node, 0);
1737
  DCHECK(arg->Is(Type::Number()));
1738
  return ChangeRepresentation(arg, Type::UntaggedFloat64(), zone());
1739 1740
}

1741 1742
Type* Typer::Visitor::TypeTruncateTaggedToFloat64(Node* node) {
  Type* arg = Operand(node, 0);
1743 1744 1745
  // TODO(jarin) This DCHECK does not work because of speculative feedback.
  // Re-enable once we record the speculative feedback in types.
  // DCHECK(arg->Is(Type::NumberOrOddball()));
1746 1747 1748
  return ChangeRepresentation(arg, Type::UntaggedFloat64(), zone());
}

1749
Type* Typer::Visitor::TypeChangeInt31ToTaggedSigned(Node* node) {
1750
  Type* arg = Operand(node, 0);
1751 1752 1753 1754
  // TODO(jarin): DCHECK(arg->Is(Type::Signed31()));
  // Some mjsunit/asm and mjsunit/wasm tests fail this check.
  // For instance, asm/int32-umod fails with Signed32/UntaggedIntegral32 in
  // simplified-lowering (after propagation).
1755 1756 1757 1758
  Type* rep =
      arg->Is(Type::SignedSmall()) ? Type::TaggedSigned() : Type::Tagged();
  return ChangeRepresentation(arg, rep, zone());
}
1759

1760 1761
Type* Typer::Visitor::TypeChangeInt32ToTagged(Node* node) {
  Type* arg = Operand(node, 0);
1762 1763 1764 1765
  // TODO(jarin): DCHECK(arg->Is(Type::Signed32()));
  // Two tests fail this check: mjsunit/asm/sqlite3/sqlite-safe-heap and
  // mjsunit/wasm/embenchen/lua_binarytrees. The first one fails with Any/Any in
  // simplified-lowering (after propagation).
1766 1767 1768
  Type* rep =
      arg->Is(Type::SignedSmall()) ? Type::TaggedSigned() : Type::Tagged();
  return ChangeRepresentation(arg, rep, zone());
1769 1770
}

1771 1772
Type* Typer::Visitor::TypeChangeUint32ToTagged(Node* node) {
  Type* arg = Operand(node, 0);
1773 1774
  // TODO(jarin): DCHECK(arg->Is(Type::Unsigned32()));
  // This fails in benchmarks/octane/mandreel (--turbo).
1775
  return ChangeRepresentation(arg, Type::Tagged(), zone());
1776 1777
}

1778 1779
Type* Typer::Visitor::TypeChangeFloat64ToTagged(Node* node) {
  Type* arg = Operand(node, 0);
1780 1781 1782
  // TODO(jarin): DCHECK(arg->Is(Type::Number()));
  // Some (or all) mjsunit/wasm/embenchen/ tests fail this check when run with
  // --turbo and --always-opt.
1783
  return ChangeRepresentation(arg, Type::Tagged(), zone());
1784 1785
}

1786
Type* Typer::Visitor::TypeChangeTaggedToBit(Node* node) {
1787
  Type* arg = Operand(node, 0);
1788
  DCHECK(arg->Is(Type::Boolean()));
1789
  return ChangeRepresentation(arg, Type::UntaggedBit(), zone());
1790 1791
}

1792
Type* Typer::Visitor::TypeChangeBitToTagged(Node* node) {
1793 1794
  Type* arg = Operand(node, 0);
  return ChangeRepresentation(arg, Type::TaggedPointer(), zone());
1795 1796
}

1797 1798 1799 1800 1801
Type* Typer::Visitor::TypeCheckBounds(Node* node) {
  // TODO(bmeurer): We could do better here based on the limit.
  return Type::Unsigned31();
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
Type* Typer::Visitor::TypeCheckTaggedPointer(Node* node) {
  Type* arg = Operand(node, 0);
  return Type::Intersect(arg, Type::TaggedPointer(), zone());
}

Type* Typer::Visitor::TypeCheckTaggedSigned(Node* node) {
  Type* arg = Operand(node, 0);
  return Type::Intersect(arg, typer_->cache_.kSmi, zone());
}

1812 1813 1814 1815 1816 1817 1818 1819
Type* Typer::Visitor::TypeCheckedInt32Add(Node* node) {
  return Type::Integral32();
}

Type* Typer::Visitor::TypeCheckedInt32Sub(Node* node) {
  return Type::Integral32();
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
Type* Typer::Visitor::TypeCheckedUint32ToInt32(Node* node) {
  return Type::Signed32();
}

Type* Typer::Visitor::TypeCheckedFloat64ToInt32(Node* node) {
  return Type::Signed32();
}

Type* Typer::Visitor::TypeCheckedTaggedToInt32(Node* node) {
  return Type::Signed32();
}

Type* Typer::Visitor::TypeCheckedTaggedToFloat64(Node* node) {
  return Type::Number();
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
Type* Typer::Visitor::TypeCheckFloat64Hole(Node* node) {
  Type* type = Operand(node, 0);
  return type;
}

Type* Typer::Visitor::TypeCheckTaggedHole(Node* node) {
  CheckTaggedHoleMode mode = CheckTaggedHoleModeOf(node->op());
  Type* type = Operand(node, 0);
  type = Type::Intersect(type, Type::NonInternal(), zone());
  switch (mode) {
    case CheckTaggedHoleMode::kConvertHoleToUndefined: {
      // The hole is turned into undefined.
      type = Type::Union(type, Type::Undefined(), zone());
      break;
    }
    case CheckTaggedHoleMode::kNeverReturnHole: {
      // We deoptimize in case of the hole.
      break;
    }
  }
  return type;
}

1859 1860
Type* Typer::Visitor::TypeTruncateTaggedToWord32(Node* node) {
  Type* arg = Operand(node, 0);
1861 1862 1863 1864
  // TODO(jarin): DCHECK(arg->Is(Type::NumberOrUndefined()));
  // Several mjsunit and cctest tests fail this check. For instance,
  // mjsunit/compiler/regress-607493 fails with Any/Any in simplified-lowering
  // (after propagation).
1865 1866
  return ChangeRepresentation(arg, Type::UntaggedIntegral32(), zone());
}
1867

1868
Type* Typer::Visitor::TypeAllocate(Node* node) { return Type::TaggedPointer(); }
1869 1870


1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
namespace {

MaybeHandle<Map> GetStableMapFromObjectType(Type* object_type) {
  if (object_type->IsConstant() &&
      object_type->AsConstant()->Value()->IsHeapObject()) {
    Handle<Map> object_map(
        Handle<HeapObject>::cast(object_type->AsConstant()->Value())->map());
    if (object_map->is_stable()) return object_map;
  } else if (object_type->IsClass()) {
    Handle<Map> object_map = object_type->AsClass()->Map();
    if (object_map->is_stable()) return object_map;
  }
  return MaybeHandle<Map>();
}

}  // namespace


1889
Type* Typer::Visitor::TypeLoadField(Node* node) {
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
  FieldAccess const& access = FieldAccessOf(node->op());
  if (access.base_is_tagged == kTaggedBase &&
      access.offset == HeapObject::kMapOffset) {
    // The type of LoadField[Map](o) is Constant(map) if map is stable and
    // either
    //  (a) o has type Constant(object) and map == object->map, or
    //  (b) o has type Class(map),
    // and either
    //  (1) map cannot transition further, or
    //  (2) deoptimization is enabled and we can add a code dependency on the
    //      stability of map (to guard the Constant type information).
    Type* const object = Operand(node, 0);
    if (object->Is(Type::None())) return Type::None();
    Handle<Map> object_map;
    if (GetStableMapFromObjectType(object).ToHandle(&object_map)) {
      if (object_map->CanTransition()) {
        if (flags() & kDeoptimizationEnabled) {
          dependencies()->AssumeMapStable(object_map);
        } else {
          return access.type;
        }
      }
      Type* object_map_type = Type::Constant(object_map, zone());
      DCHECK(object_map_type->Is(access.type));
      return object_map_type;
    }
  }
  return access.type;
1918 1919 1920
}


1921
Type* Typer::Visitor::TypeLoadBuffer(Node* node) {
1922 1923
  // TODO(bmeurer): This typing is not yet correct. Since we can still access
  // out of bounds, the type in the general case has to include Undefined.
1924
  switch (BufferAccessOf(node->op()).external_array_type()) {
1925 1926 1927
#define TYPED_ARRAY_CASE(ElemType, type, TYPE, ctype, size) \
  case kExternal##ElemType##Array:                          \
    return Type::Union(typer_->cache_.k##ElemType, Type::Undefined(), zone());
1928 1929
    TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
1930 1931
  }
  UNREACHABLE();
1932
  return nullptr;
1933 1934 1935
}


1936 1937
Type* Typer::Visitor::TypeLoadElement(Node* node) {
  return ElementAccessOf(node->op()).type;
1938 1939 1940
}


1941
Type* Typer::Visitor::TypeStoreField(Node* node) {
1942
  UNREACHABLE();
1943
  return nullptr;
1944 1945 1946
}


1947
Type* Typer::Visitor::TypeStoreBuffer(Node* node) {
1948
  UNREACHABLE();
1949
  return nullptr;
1950 1951 1952
}


1953
Type* Typer::Visitor::TypeStoreElement(Node* node) {
1954
  UNREACHABLE();
1955
  return nullptr;
1956 1957
}

1958 1959 1960
Type* Typer::Visitor::TypeObjectIsCallable(Node* node) {
  return TypeUnaryOp(node, ObjectIsCallable);
}
1961

1962
Type* Typer::Visitor::TypeObjectIsNumber(Node* node) {
1963 1964 1965 1966 1967 1968
  return TypeUnaryOp(node, ObjectIsNumber);
}


Type* Typer::Visitor::TypeObjectIsReceiver(Node* node) {
  return TypeUnaryOp(node, ObjectIsReceiver);
1969 1970 1971
}


1972
Type* Typer::Visitor::TypeObjectIsSmi(Node* node) {
1973
  return TypeUnaryOp(node, ObjectIsSmi);
1974
}
1975

1976 1977 1978
Type* Typer::Visitor::TypeObjectIsString(Node* node) {
  return TypeUnaryOp(node, ObjectIsString);
}
1979

1980 1981 1982 1983 1984
Type* Typer::Visitor::TypeObjectIsUndetectable(Node* node) {
  return TypeUnaryOp(node, ObjectIsUndetectable);
}


1985 1986
// Machine operators.

1987 1988
Type* Typer::Visitor::TypeDebugBreak(Node* node) { return Type::None(); }

1989 1990
Type* Typer::Visitor::TypeComment(Node* node) { return Type::None(); }

1991
Type* Typer::Visitor::TypeLoad(Node* node) { return Type::Any(); }
1992

1993
Type* Typer::Visitor::TypeStackSlot(Node* node) { return Type::Any(); }
1994

1995
Type* Typer::Visitor::TypeStore(Node* node) {
1996
  UNREACHABLE();
1997
  return nullptr;
1998 1999 2000
}


2001
Type* Typer::Visitor::TypeWord32And(Node* node) { return Type::Integral32(); }
2002 2003


2004
Type* Typer::Visitor::TypeWord32Or(Node* node) { return Type::Integral32(); }
2005 2006


2007
Type* Typer::Visitor::TypeWord32Xor(Node* node) { return Type::Integral32(); }
2008 2009


2010
Type* Typer::Visitor::TypeWord32Shl(Node* node) { return Type::Integral32(); }
2011 2012


2013
Type* Typer::Visitor::TypeWord32Shr(Node* node) { return Type::Integral32(); }
2014 2015


2016
Type* Typer::Visitor::TypeWord32Sar(Node* node) { return Type::Integral32(); }
2017 2018


2019
Type* Typer::Visitor::TypeWord32Ror(Node* node) { return Type::Integral32(); }
2020 2021


2022
Type* Typer::Visitor::TypeWord32Equal(Node* node) { return Type::Boolean(); }
2023 2024


2025
Type* Typer::Visitor::TypeWord32Clz(Node* node) { return Type::Integral32(); }
2026 2027


2028 2029 2030
Type* Typer::Visitor::TypeWord32Ctz(Node* node) { return Type::Integral32(); }


2031 2032 2033 2034 2035
Type* Typer::Visitor::TypeWord32ReverseBits(Node* node) {
  return Type::Integral32();
}


2036 2037 2038 2039 2040
Type* Typer::Visitor::TypeWord32Popcnt(Node* node) {
  return Type::Integral32();
}


2041
Type* Typer::Visitor::TypeWord64And(Node* node) { return Type::Internal(); }
2042 2043


2044
Type* Typer::Visitor::TypeWord64Or(Node* node) { return Type::Internal(); }
2045 2046


2047
Type* Typer::Visitor::TypeWord64Xor(Node* node) { return Type::Internal(); }
2048 2049


2050
Type* Typer::Visitor::TypeWord64Shl(Node* node) { return Type::Internal(); }
2051 2052


2053
Type* Typer::Visitor::TypeWord64Shr(Node* node) { return Type::Internal(); }
2054 2055


2056
Type* Typer::Visitor::TypeWord64Sar(Node* node) { return Type::Internal(); }
2057 2058


2059
Type* Typer::Visitor::TypeWord64Ror(Node* node) { return Type::Internal(); }
2060 2061


2062 2063 2064
Type* Typer::Visitor::TypeWord64Clz(Node* node) { return Type::Internal(); }


2065 2066 2067
Type* Typer::Visitor::TypeWord64Ctz(Node* node) { return Type::Internal(); }


2068 2069 2070 2071 2072
Type* Typer::Visitor::TypeWord64ReverseBits(Node* node) {
  return Type::Internal();
}


2073 2074 2075
Type* Typer::Visitor::TypeWord64Popcnt(Node* node) { return Type::Internal(); }


2076
Type* Typer::Visitor::TypeWord64Equal(Node* node) { return Type::Boolean(); }
2077 2078


2079
Type* Typer::Visitor::TypeInt32Add(Node* node) { return Type::Integral32(); }
2080 2081


2082 2083
Type* Typer::Visitor::TypeInt32AddWithOverflow(Node* node) {
  return Type::Internal();
2084 2085 2086
}


2087
Type* Typer::Visitor::TypeInt32Sub(Node* node) { return Type::Integral32(); }
2088 2089


2090 2091
Type* Typer::Visitor::TypeInt32SubWithOverflow(Node* node) {
  return Type::Internal();
2092 2093 2094
}


2095
Type* Typer::Visitor::TypeInt32Mul(Node* node) { return Type::Integral32(); }
2096 2097


2098
Type* Typer::Visitor::TypeInt32MulHigh(Node* node) { return Type::Signed32(); }
2099 2100


2101
Type* Typer::Visitor::TypeInt32Div(Node* node) { return Type::Integral32(); }
2102 2103


2104
Type* Typer::Visitor::TypeInt32Mod(Node* node) { return Type::Integral32(); }
2105 2106


2107
Type* Typer::Visitor::TypeInt32LessThan(Node* node) { return Type::Boolean(); }
2108 2109


2110 2111
Type* Typer::Visitor::TypeInt32LessThanOrEqual(Node* node) {
  return Type::Boolean();
2112 2113 2114
}


2115
Type* Typer::Visitor::TypeUint32Div(Node* node) { return Type::Unsigned32(); }
2116 2117


2118
Type* Typer::Visitor::TypeUint32LessThan(Node* node) { return Type::Boolean(); }
2119 2120


2121 2122
Type* Typer::Visitor::TypeUint32LessThanOrEqual(Node* node) {
  return Type::Boolean();
2123 2124 2125
}


2126
Type* Typer::Visitor::TypeUint32Mod(Node* node) { return Type::Unsigned32(); }
2127 2128


2129 2130
Type* Typer::Visitor::TypeUint32MulHigh(Node* node) {
  return Type::Unsigned32();
2131 2132 2133
}


2134
Type* Typer::Visitor::TypeInt64Add(Node* node) { return Type::Internal(); }
2135 2136


2137 2138 2139 2140 2141
Type* Typer::Visitor::TypeInt64AddWithOverflow(Node* node) {
  return Type::Internal();
}


2142
Type* Typer::Visitor::TypeInt64Sub(Node* node) { return Type::Internal(); }
2143 2144


2145 2146 2147 2148 2149
Type* Typer::Visitor::TypeInt64SubWithOverflow(Node* node) {
  return Type::Internal();
}


2150
Type* Typer::Visitor::TypeInt64Mul(Node* node) { return Type::Internal(); }
2151 2152


2153
Type* Typer::Visitor::TypeInt64Div(Node* node) { return Type::Internal(); }
2154 2155


2156
Type* Typer::Visitor::TypeInt64Mod(Node* node) { return Type::Internal(); }
2157 2158


2159
Type* Typer::Visitor::TypeInt64LessThan(Node* node) { return Type::Boolean(); }
2160 2161


2162 2163
Type* Typer::Visitor::TypeInt64LessThanOrEqual(Node* node) {
  return Type::Boolean();
2164 2165 2166
}


2167
Type* Typer::Visitor::TypeUint64Div(Node* node) { return Type::Internal(); }
2168 2169


2170
Type* Typer::Visitor::TypeUint64LessThan(Node* node) { return Type::Boolean(); }
2171 2172


2173 2174
Type* Typer::Visitor::TypeUint64LessThanOrEqual(Node* node) {
  return Type::Boolean();
2175 2176 2177
}


2178
Type* Typer::Visitor::TypeUint64Mod(Node* node) { return Type::Internal(); }
2179

2180 2181 2182
Type* Typer::Visitor::TypeBitcastWordToTagged(Node* node) {
  return Type::TaggedPointer();
}
2183

2184 2185
Type* Typer::Visitor::TypeChangeFloat32ToFloat64(Node* node) {
  return Type::Intersect(Type::Number(), Type::UntaggedFloat64(), zone());
2186 2187 2188
}


2189
Type* Typer::Visitor::TypeChangeFloat64ToInt32(Node* node) {
2190
  return Type::Intersect(Type::Signed32(), Type::UntaggedIntegral32(), zone());
2191 2192
}

2193 2194 2195
Type* Typer::Visitor::TypeNumberSilenceNaN(Node* node) {
  return Type::Number();
}
2196

2197
Type* Typer::Visitor::TypeChangeFloat64ToUint32(Node* node) {
2198
  return Type::Intersect(Type::Unsigned32(), Type::UntaggedIntegral32(),
2199
                         zone());
2200 2201
}

2202 2203 2204 2205
Type* Typer::Visitor::TypeTruncateFloat64ToUint32(Node* node) {
  return Type::Intersect(Type::Unsigned32(), Type::UntaggedIntegral32(),
                         zone());
}
2206

2207 2208 2209 2210 2211
Type* Typer::Visitor::TypeTruncateFloat32ToInt32(Node* node) {
  return Type::Intersect(Type::Signed32(), Type::UntaggedIntegral32(), zone());
}


2212 2213 2214 2215 2216 2217
Type* Typer::Visitor::TypeTruncateFloat32ToUint32(Node* node) {
  return Type::Intersect(Type::Unsigned32(), Type::UntaggedIntegral32(),
                         zone());
}


2218
Type* Typer::Visitor::TypeTryTruncateFloat32ToInt64(Node* node) {
2219 2220 2221 2222
  return Type::Internal();
}


2223
Type* Typer::Visitor::TypeTryTruncateFloat64ToInt64(Node* node) {
2224 2225 2226 2227
  return Type::Internal();
}


2228
Type* Typer::Visitor::TypeTryTruncateFloat32ToUint64(Node* node) {
2229 2230 2231 2232
  return Type::Internal();
}


2233
Type* Typer::Visitor::TypeTryTruncateFloat64ToUint64(Node* node) {
2234 2235 2236 2237
  return Type::Internal();
}


2238 2239
Type* Typer::Visitor::TypeChangeInt32ToFloat64(Node* node) {
  return Type::Intersect(Type::Signed32(), Type::UntaggedFloat64(), zone());
2240 2241
}

2242 2243 2244
Type* Typer::Visitor::TypeFloat64SilenceNaN(Node* node) {
  return Type::UntaggedFloat64();
}
2245

2246 2247
Type* Typer::Visitor::TypeChangeInt32ToInt64(Node* node) {
  return Type::Internal();
2248 2249 2250
}


2251 2252
Type* Typer::Visitor::TypeChangeUint32ToFloat64(Node* node) {
  return Type::Intersect(Type::Unsigned32(), Type::UntaggedFloat64(), zone());
2253 2254 2255
}


2256 2257
Type* Typer::Visitor::TypeChangeUint32ToUint64(Node* node) {
  return Type::Internal();
2258 2259 2260
}


2261 2262
Type* Typer::Visitor::TypeTruncateFloat64ToFloat32(Node* node) {
  return Type::Intersect(Type::Number(), Type::UntaggedFloat32(), zone());
2263 2264
}

2265 2266 2267
Type* Typer::Visitor::TypeTruncateFloat64ToWord32(Node* node) {
  return Type::Intersect(Type::Integral32(), Type::UntaggedIntegral32(),
                         zone());
2268 2269 2270
}


2271
Type* Typer::Visitor::TypeTruncateInt64ToInt32(Node* node) {
2272
  return Type::Intersect(Type::Signed32(), Type::UntaggedIntegral32(), zone());
2273 2274
}

2275 2276 2277
Type* Typer::Visitor::TypeRoundFloat64ToInt32(Node* node) {
  return Type::Intersect(Type::Signed32(), Type::UntaggedIntegral32(), zone());
}
2278

2279 2280 2281 2282 2283
Type* Typer::Visitor::TypeRoundInt32ToFloat32(Node* node) {
  return Type::Intersect(Type::PlainNumber(), Type::UntaggedFloat32(), zone());
}


2284 2285 2286 2287 2288
Type* Typer::Visitor::TypeRoundInt64ToFloat32(Node* node) {
  return Type::Intersect(Type::PlainNumber(), Type::UntaggedFloat32(), zone());
}


2289 2290 2291 2292 2293
Type* Typer::Visitor::TypeRoundInt64ToFloat64(Node* node) {
  return Type::Intersect(Type::PlainNumber(), Type::UntaggedFloat64(), zone());
}


2294 2295 2296 2297 2298
Type* Typer::Visitor::TypeRoundUint32ToFloat32(Node* node) {
  return Type::Intersect(Type::PlainNumber(), Type::UntaggedFloat32(), zone());
}


2299 2300 2301 2302 2303
Type* Typer::Visitor::TypeRoundUint64ToFloat32(Node* node) {
  return Type::Intersect(Type::PlainNumber(), Type::UntaggedFloat32(), zone());
}


2304 2305 2306 2307 2308
Type* Typer::Visitor::TypeRoundUint64ToFloat64(Node* node) {
  return Type::Intersect(Type::PlainNumber(), Type::UntaggedFloat64(), zone());
}


2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
Type* Typer::Visitor::TypeBitcastFloat32ToInt32(Node* node) {
  return Type::Number();
}


Type* Typer::Visitor::TypeBitcastFloat64ToInt64(Node* node) {
  return Type::Number();
}


Type* Typer::Visitor::TypeBitcastInt32ToFloat32(Node* node) {
  return Type::Number();
}


Type* Typer::Visitor::TypeBitcastInt64ToFloat64(Node* node) {
  return Type::Number();
}


2329
Type* Typer::Visitor::TypeFloat32Add(Node* node) { return Type::Number(); }
2330 2331


2332
Type* Typer::Visitor::TypeFloat32Sub(Node* node) { return Type::Number(); }
2333

2334 2335 2336
Type* Typer::Visitor::TypeFloat32SubPreserveNan(Node* node) {
  return Type::Number();
}
2337

2338 2339
Type* Typer::Visitor::TypeFloat32Neg(Node* node) { return Type::Number(); }

2340
Type* Typer::Visitor::TypeFloat32Mul(Node* node) { return Type::Number(); }
2341 2342


2343
Type* Typer::Visitor::TypeFloat32Div(Node* node) { return Type::Number(); }
2344 2345


2346
Type* Typer::Visitor::TypeFloat32Max(Node* node) { return Type::Number(); }
2347 2348


2349
Type* Typer::Visitor::TypeFloat32Min(Node* node) { return Type::Number(); }
2350 2351


2352
Type* Typer::Visitor::TypeFloat32Abs(Node* node) {
2353
  // TODO(turbofan): We should be able to infer a better type here.
2354
  return Type::Number();
2355 2356 2357
}


2358
Type* Typer::Visitor::TypeFloat32Sqrt(Node* node) { return Type::Number(); }
2359 2360


2361
Type* Typer::Visitor::TypeFloat32Equal(Node* node) { return Type::Boolean(); }
2362 2363


2364 2365
Type* Typer::Visitor::TypeFloat32LessThan(Node* node) {
  return Type::Boolean();
2366 2367 2368
}


2369 2370
Type* Typer::Visitor::TypeFloat32LessThanOrEqual(Node* node) {
  return Type::Boolean();
2371 2372 2373
}


2374
Type* Typer::Visitor::TypeFloat64Add(Node* node) { return Type::Number(); }
2375 2376


2377
Type* Typer::Visitor::TypeFloat64Sub(Node* node) { return Type::Number(); }
2378

2379 2380 2381
Type* Typer::Visitor::TypeFloat64SubPreserveNan(Node* node) {
  return Type::Number();
}
2382

2383 2384
Type* Typer::Visitor::TypeFloat64Neg(Node* node) { return Type::Number(); }

2385
Type* Typer::Visitor::TypeFloat64Mul(Node* node) { return Type::Number(); }
2386 2387


2388
Type* Typer::Visitor::TypeFloat64Div(Node* node) { return Type::Number(); }
2389 2390


2391
Type* Typer::Visitor::TypeFloat64Mod(Node* node) { return Type::Number(); }
2392 2393


2394
Type* Typer::Visitor::TypeFloat64Max(Node* node) { return Type::Number(); }
2395 2396


2397
Type* Typer::Visitor::TypeFloat64Min(Node* node) { return Type::Number(); }
2398 2399


2400
Type* Typer::Visitor::TypeFloat64Abs(Node* node) {
2401
  // TODO(turbofan): We should be able to infer a better type here.
2402
  return Type::Number();
2403 2404
}

2405 2406 2407 2408
Type* Typer::Visitor::TypeFloat64Atan(Node* node) { return Type::Number(); }

Type* Typer::Visitor::TypeFloat64Atan2(Node* node) { return Type::Number(); }

2409 2410
Type* Typer::Visitor::TypeFloat64Atanh(Node* node) { return Type::Number(); }

2411 2412
Type* Typer::Visitor::TypeFloat64Cos(Node* node) { return Type::Number(); }

2413 2414
Type* Typer::Visitor::TypeFloat64Exp(Node* node) { return Type::Number(); }

2415 2416
Type* Typer::Visitor::TypeFloat64Expm1(Node* node) { return Type::Number(); }

2417
Type* Typer::Visitor::TypeFloat64Log(Node* node) { return Type::Number(); }
2418

2419 2420
Type* Typer::Visitor::TypeFloat64Log1p(Node* node) { return Type::Number(); }

2421 2422 2423 2424
Type* Typer::Visitor::TypeFloat64Log2(Node* node) { return Type::Number(); }

Type* Typer::Visitor::TypeFloat64Log10(Node* node) { return Type::Number(); }

2425 2426
Type* Typer::Visitor::TypeFloat64Cbrt(Node* node) { return Type::Number(); }

2427 2428
Type* Typer::Visitor::TypeFloat64Sin(Node* node) { return Type::Number(); }

2429
Type* Typer::Visitor::TypeFloat64Sqrt(Node* node) { return Type::Number(); }
2430

2431
Type* Typer::Visitor::TypeFloat64Tan(Node* node) { return Type::Number(); }
2432

2433
Type* Typer::Visitor::TypeFloat64Equal(Node* node) { return Type::Boolean(); }
2434 2435


2436 2437
Type* Typer::Visitor::TypeFloat64LessThan(Node* node) {
  return Type::Boolean();
2438 2439 2440
}


2441 2442
Type* Typer::Visitor::TypeFloat64LessThanOrEqual(Node* node) {
  return Type::Boolean();
2443 2444 2445
}


2446 2447 2448 2449 2450 2451
Type* Typer::Visitor::TypeFloat32RoundDown(Node* node) {
  // TODO(sigurds): We could have a tighter bound here.
  return Type::Number();
}


2452
Type* Typer::Visitor::TypeFloat64RoundDown(Node* node) {
2453
  // TODO(sigurds): We could have a tighter bound here.
2454
  return Type::Number();
2455 2456 2457
}


2458 2459 2460 2461 2462 2463
Type* Typer::Visitor::TypeFloat32RoundUp(Node* node) {
  // TODO(sigurds): We could have a tighter bound here.
  return Type::Number();
}


2464 2465 2466 2467 2468 2469
Type* Typer::Visitor::TypeFloat64RoundUp(Node* node) {
  // TODO(sigurds): We could have a tighter bound here.
  return Type::Number();
}


2470 2471 2472 2473 2474 2475
Type* Typer::Visitor::TypeFloat32RoundTruncate(Node* node) {
  // TODO(sigurds): We could have a tighter bound here.
  return Type::Number();
}


2476
Type* Typer::Visitor::TypeFloat64RoundTruncate(Node* node) {
2477
  // TODO(sigurds): We could have a tighter bound here.
2478
  return Type::Number();
2479 2480 2481
}


2482
Type* Typer::Visitor::TypeFloat64RoundTiesAway(Node* node) {
2483
  // TODO(sigurds): We could have a tighter bound here.
2484
  return Type::Number();
2485 2486 2487
}


2488 2489 2490 2491 2492 2493
Type* Typer::Visitor::TypeFloat32RoundTiesEven(Node* node) {
  // TODO(sigurds): We could have a tighter bound here.
  return Type::Number();
}


2494 2495 2496 2497 2498 2499
Type* Typer::Visitor::TypeFloat64RoundTiesEven(Node* node) {
  // TODO(sigurds): We could have a tighter bound here.
  return Type::Number();
}


2500 2501
Type* Typer::Visitor::TypeFloat64ExtractLowWord32(Node* node) {
  return Type::Signed32();
2502 2503 2504
}


2505 2506
Type* Typer::Visitor::TypeFloat64ExtractHighWord32(Node* node) {
  return Type::Signed32();
2507 2508 2509
}


2510 2511
Type* Typer::Visitor::TypeFloat64InsertLowWord32(Node* node) {
  return Type::Number();
2512 2513 2514
}


2515 2516
Type* Typer::Visitor::TypeFloat64InsertHighWord32(Node* node) {
  return Type::Number();
2517 2518 2519
}


2520 2521
Type* Typer::Visitor::TypeLoadStackPointer(Node* node) {
  return Type::Internal();
2522
}
2523 2524


2525 2526
Type* Typer::Visitor::TypeLoadFramePointer(Node* node) {
  return Type::Internal();
2527 2528
}

2529 2530 2531
Type* Typer::Visitor::TypeLoadParentFramePointer(Node* node) {
  return Type::Internal();
}
2532

2533
Type* Typer::Visitor::TypeCheckedLoad(Node* node) { return Type::Any(); }
2534

2535 2536 2537 2538 2539
Type* Typer::Visitor::TypeCheckedStore(Node* node) {
  UNREACHABLE();
  return nullptr;
}

2540
Type* Typer::Visitor::TypeAtomicLoad(Node* node) { return Type::Any(); }
2541

2542
Type* Typer::Visitor::TypeAtomicStore(Node* node) {
2543
  UNREACHABLE();
2544
  return nullptr;
2545 2546
}

2547 2548
Type* Typer::Visitor::TypeInt32PairAdd(Node* node) { return Type::Internal(); }

2549 2550
Type* Typer::Visitor::TypeInt32PairSub(Node* node) { return Type::Internal(); }

2551 2552
Type* Typer::Visitor::TypeInt32PairMul(Node* node) { return Type::Internal(); }

2553
Type* Typer::Visitor::TypeWord32PairShl(Node* node) { return Type::Internal(); }
2554

2555 2556 2557 2558
Type* Typer::Visitor::TypeWord32PairShr(Node* node) { return Type::Internal(); }

Type* Typer::Visitor::TypeWord32PairSar(Node* node) { return Type::Internal(); }

2559 2560 2561 2562 2563
// SIMD type methods.

#define SIMD_RETURN_SIMD(Name) \
  Type* Typer::Visitor::Type##Name(Node* node) { return Type::Simd(); }
MACHINE_SIMD_RETURN_SIMD_OP_LIST(SIMD_RETURN_SIMD)
gdeepti's avatar
gdeepti committed
2564
MACHINE_SIMD_GENERIC_OP_LIST(SIMD_RETURN_SIMD)
2565 2566 2567 2568 2569 2570
#undef SIMD_RETURN_SIMD

#define SIMD_RETURN_NUM(Name) \
  Type* Typer::Visitor::Type##Name(Node* node) { return Type::Number(); }
MACHINE_SIMD_RETURN_NUM_OP_LIST(SIMD_RETURN_NUM)
#undef SIMD_RETURN_NUM
2571

2572 2573 2574 2575 2576 2577
#define SIMD_RETURN_BOOL(Name) \
  Type* Typer::Visitor::Type##Name(Node* node) { return Type::Boolean(); }
MACHINE_SIMD_RETURN_BOOL_OP_LIST(SIMD_RETURN_BOOL)
#undef SIMD_RETURN_BOOL

// Heap constants.
2578

2579
Type* Typer::Visitor::TypeConstant(Handle<Object> value) {
2580
  if (value->IsJSTypedArray()) {
2581
    switch (JSTypedArray::cast(*value)->type()) {
2582 2583
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
  case kExternal##Type##Array:                          \
2584
    return typer_->cache_.k##Type##Array;
2585 2586
      TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
2587
    }
2588
  }
2589 2590 2591
  if (Type::IsInteger(*value)) {
    return Type::Range(value->Number(), value->Number(), zone());
  }
2592 2593 2594
  return Type::Constant(value, zone());
}

2595 2596 2597
}  // namespace compiler
}  // namespace internal
}  // namespace v8