disasm-mips.cc 48.2 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4 5 6 7 8 9 10 11 12

// A Disassembler object is used to disassemble a block of code instruction by
// instruction. The default implementation of the NameConverter object can be
// overriden to modify register names or to do symbol lookup on addresses.
//
// The example below will disassemble a block of code and print it to stdout.
//
//   NameConverter converter;
//   Disassembler d(converter);
13
//   for (byte* pc = begin; pc < end;) {
14 15 16
//     v8::internal::EmbeddedVector<char, 256> buffer;
//     byte* prev_pc = pc;
//     pc += d.InstructionDecode(buffer, pc);
17 18 19 20 21 22 23 24 25 26
//     printf("%p    %08x      %s\n",
//            prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
//   }
//
// The Disassembler class also has a convenience method to disassemble a block
// of code into a FILE*, meaning that the above functionality could also be
// achieved by just calling Disassembler::Disassemble(stdout, begin, end);

#include <assert.h>
#include <stdarg.h>
27
#include <stdio.h>
28 29
#include <string.h>

30
#if V8_TARGET_ARCH_MIPS
31

32
#include "src/base/platform/platform.h"
33 34
#include "src/disasm.h"
#include "src/macro-assembler.h"
35
#include "src/mips/constants-mips.h"
36

37 38
namespace v8 {
namespace internal {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

//------------------------------------------------------------------------------

// Decoder decodes and disassembles instructions into an output buffer.
// It uses the converter to convert register names and call destinations into
// more informative description.
class Decoder {
 public:
  Decoder(const disasm::NameConverter& converter,
          v8::internal::Vector<char> out_buffer)
    : converter_(converter),
      out_buffer_(out_buffer),
      out_buffer_pos_(0) {
    out_buffer_[out_buffer_pos_] = '\0';
  }

  ~Decoder() {}

  // Writes one disassembled instruction into 'buffer' (0-terminated).
  // Returns the length of the disassembled machine instruction in bytes.
59
  int InstructionDecode(byte* instruction);
60 61 62 63 64 65 66 67

 private:
  // Bottleneck functions to print into the out_buffer.
  void PrintChar(const char ch);
  void Print(const char* str);

  // Printing of common values.
  void PrintRegister(int reg);
68
  void PrintFPURegister(int freg);
69 70 71 72 73 74 75
  void PrintRs(Instruction* instr);
  void PrintRt(Instruction* instr);
  void PrintRd(Instruction* instr);
  void PrintFs(Instruction* instr);
  void PrintFt(Instruction* instr);
  void PrintFd(Instruction* instr);
  void PrintSa(Instruction* instr);
76
  void PrintSd(Instruction* instr);
77 78
  void PrintSs1(Instruction* instr);
  void PrintSs2(Instruction* instr);
79 80
  void PrintBc(Instruction* instr);
  void PrintCc(Instruction* instr);
81
  void PrintBp2(Instruction* instr);
82 83 84 85 86
  void PrintFunction(Instruction* instr);
  void PrintSecondaryField(Instruction* instr);
  void PrintUImm16(Instruction* instr);
  void PrintSImm16(Instruction* instr);
  void PrintXImm16(Instruction* instr);
87
  void PrintPCImm16(Instruction* instr, int delta_pc, int n_bits);
88 89 90 91
  void PrintXImm18(Instruction* instr);
  void PrintSImm18(Instruction* instr);
  void PrintXImm19(Instruction* instr);
  void PrintSImm19(Instruction* instr);
92
  void PrintXImm21(Instruction* instr);
93
  void PrintSImm21(Instruction* instr);
94
  void PrintPCImm21(Instruction* instr, int delta_pc, int n_bits);
95
  void PrintXImm26(Instruction* instr);
96
  void PrintSImm26(Instruction* instr);
97 98
  void PrintPCImm26(Instruction* instr, int delta_pc, int n_bits);
  void PrintPCImm26(Instruction* instr);
99
  void PrintCode(Instruction* instr);   // For break and trap instructions.
100
  void PrintFormat(Instruction* instr);  // For floating format postfix.
101 102 103 104 105
  // Printing of instruction name.
  void PrintInstructionName(Instruction* instr);

  // Handle formatting of instructions and their options.
  int FormatRegister(Instruction* instr, const char* option);
106
  int FormatFPURegister(Instruction* instr, const char* option);
107 108 109 110
  int FormatOption(Instruction* instr, const char* option);
  void Format(Instruction* instr, const char* format);
  void Unknown(Instruction* instr);

111

112
  // Each of these functions decodes one particular instruction type.
113 114
  bool DecodeTypeRegisterRsType(Instruction* instr);
  void DecodeTypeRegisterSRsType(Instruction* instr);
115 116
  void DecodeTypeRegisterDRsType(Instruction* instr);
  void DecodeTypeRegisterLRsType(Instruction* instr);
117
  void DecodeTypeRegisterWRsType(Instruction* instr);
118 119 120
  void DecodeTypeRegisterSPECIAL(Instruction* instr);
  void DecodeTypeRegisterSPECIAL2(Instruction* instr);
  void DecodeTypeRegisterSPECIAL3(Instruction* instr);
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  void DecodeTypeRegister(Instruction* instr);
  void DecodeTypeImmediate(Instruction* instr);
  void DecodeTypeJump(Instruction* instr);

  const disasm::NameConverter& converter_;
  v8::internal::Vector<char> out_buffer_;
  int out_buffer_pos_;

  DISALLOW_COPY_AND_ASSIGN(Decoder);
};


// Support for assertions in the Decoder formatting functions.
#define STRING_STARTS_WITH(string, compare_string) \
  (strncmp(string, compare_string, strlen(compare_string)) == 0)


// Append the ch to the output buffer.
void Decoder::PrintChar(const char ch) {
  out_buffer_[out_buffer_pos_++] = ch;
}


// Append the str to the output buffer.
void Decoder::Print(const char* str) {
  char cur = *str++;
  while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    PrintChar(cur);
    cur = *str++;
  }
  out_buffer_[out_buffer_pos_] = 0;
}


// Print the register name according to the active name converter.
void Decoder::PrintRegister(int reg) {
  Print(converter_.NameOfCPURegister(reg));
}


void Decoder::PrintRs(Instruction* instr) {
162
  int reg = instr->RsValue();
163 164 165 166 167
  PrintRegister(reg);
}


void Decoder::PrintRt(Instruction* instr) {
168
  int reg = instr->RtValue();
169 170 171 172 173
  PrintRegister(reg);
}


void Decoder::PrintRd(Instruction* instr) {
174
  int reg = instr->RdValue();
175 176 177 178
  PrintRegister(reg);
}


179 180 181
// Print the FPUregister name according to the active name converter.
void Decoder::PrintFPURegister(int freg) {
  Print(converter_.NameOfXMMRegister(freg));
182 183 184 185
}


void Decoder::PrintFs(Instruction* instr) {
186 187
  int freg = instr->RsValue();
  PrintFPURegister(freg);
188 189 190 191
}


void Decoder::PrintFt(Instruction* instr) {
192 193
  int freg = instr->RtValue();
  PrintFPURegister(freg);
194 195 196 197
}


void Decoder::PrintFd(Instruction* instr) {
198 199
  int freg = instr->RdValue();
  PrintFPURegister(freg);
200 201 202 203 204
}


// Print the integer value of the sa field.
void Decoder::PrintSa(Instruction* instr) {
205
  int sa = instr->SaValue();
206
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sa);
207 208 209
}


210
// Print the integer value of the rd field, when it is not used as reg.
211 212
void Decoder::PrintSd(Instruction* instr) {
  int sd = instr->RdValue();
213
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sd);
214 215 216
}


217 218 219
// Print the integer value of the rd field, when used as 'ext' size.
void Decoder::PrintSs1(Instruction* instr) {
  int ss = instr->RdValue();
220
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", ss + 1);
221 222 223 224 225 226 227 228
}


// Print the integer value of the rd field, when used as 'ins' size.
void Decoder::PrintSs2(Instruction* instr) {
  int ss = instr->RdValue();
  int pos = instr->SaValue();
  out_buffer_pos_ +=
229
      SNPrintF(out_buffer_ + out_buffer_pos_, "%d", ss - pos + 1);
230 231 232
}


233 234 235
// Print the integer value of the cc field for the bc1t/f instructions.
void Decoder::PrintBc(Instruction* instr) {
  int cc = instr->FBccValue();
236
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", cc);
237 238 239 240 241 242
}


// Print the integer value of the cc field for the FP compare instructions.
void Decoder::PrintCc(Instruction* instr) {
  int cc = instr->FCccValue();
243
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "cc(%d)", cc);
244 245 246
}


247 248 249 250 251 252
void Decoder::PrintBp2(Instruction* instr) {
  int bp2 = instr->Bp2Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", bp2);
}


253 254
// Print 16-bit unsigned immediate value.
void Decoder::PrintUImm16(Instruction* instr) {
255
  int32_t imm = instr->Imm16Value();
256
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%u", imm);
257 258 259 260 261
}


// Print 16-bit signed immediate value.
void Decoder::PrintSImm16(Instruction* instr) {
262
  int32_t imm = ((instr->Imm16Value()) << 16) >> 16;
263
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm);
264 265 266 267 268
}


// Print 16-bit hexa immediate value.
void Decoder::PrintXImm16(Instruction* instr) {
269
  int32_t imm = instr->Imm16Value();
270
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
271 272 273
}


274 275 276 277 278 279 280 281 282 283 284 285
// Print absoulte address for 16-bit offset or immediate value.
// The absolute address is calculated according following expression:
//      PC + delta_pc + (offset << n_bits)
void Decoder::PrintPCImm16(Instruction* instr, int delta_pc, int n_bits) {
  int16_t offset = instr->Imm16Value();
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
               converter_.NameOfAddress(reinterpret_cast<byte*>(instr) +
                                        delta_pc + (offset << n_bits)));
}


286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
// Print 18-bit signed immediate value.
void Decoder::PrintSImm18(Instruction* instr) {
  int32_t imm =
      ((instr->Imm18Value()) << (32 - kImm18Bits)) >> (32 - kImm18Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm);
}


// Print 18-bit hexa immediate value.
void Decoder::PrintXImm18(Instruction* instr) {
  int32_t imm = instr->Imm18Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}


// Print 19-bit hexa immediate value.
void Decoder::PrintXImm19(Instruction* instr) {
  int32_t imm = instr->Imm19Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}


// Print 19-bit signed immediate value.
void Decoder::PrintSImm19(Instruction* instr) {
  int32_t imm19 = instr->Imm19Value();
  // set sign
  imm19 <<= (32 - kImm19Bits);
  imm19 >>= (32 - kImm19Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm19);
}


318 319 320 321 322 323 324
// Print 21-bit immediate value.
void Decoder::PrintXImm21(Instruction* instr) {
  uint32_t imm = instr->Imm21Value();
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}


325 326 327 328 329 330 331 332 333 334
// Print 21-bit signed immediate value.
void Decoder::PrintSImm21(Instruction* instr) {
  int32_t imm21 = instr->Imm21Value();
  // set sign
  imm21 <<= (32 - kImm21Bits);
  imm21 >>= (32 - kImm21Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm21);
}


335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
// Print absoulte address for 21-bit offset or immediate value.
// The absolute address is calculated according following expression:
//      PC + delta_pc + (offset << n_bits)
void Decoder::PrintPCImm21(Instruction* instr, int delta_pc, int n_bits) {
  int32_t imm21 = instr->Imm21Value();
  // set sign
  imm21 <<= (32 - kImm21Bits);
  imm21 >>= (32 - kImm21Bits);
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
               converter_.NameOfAddress(reinterpret_cast<byte*>(instr) +
                                        delta_pc + (imm21 << n_bits)));
}


350
// Print 26-bit hex immediate value.
351
void Decoder::PrintXImm26(Instruction* instr) {
352 353 354 355
  uint32_t target = static_cast<uint32_t>(instr->Imm26Value())
                    << kImmFieldShift;
  target = (reinterpret_cast<uint32_t>(instr) & ~0xfffffff) | target;
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", target);
356 357 358
}


359 360 361 362 363 364 365 366 367 368
// Print 26-bit signed immediate value.
void Decoder::PrintSImm26(Instruction* instr) {
  int32_t imm26 = instr->Imm26Value();
  // set sign
  imm26 <<= (32 - kImm26Bits);
  imm26 >>= (32 - kImm26Bits);
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm26);
}


369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
// Print absoulte address for 26-bit offset or immediate value.
// The absolute address is calculated according following expression:
//      PC + delta_pc + (offset << n_bits)
void Decoder::PrintPCImm26(Instruction* instr, int delta_pc, int n_bits) {
  int32_t imm26 = instr->Imm26Value();
  // set sign
  imm26 <<= (32 - kImm26Bits);
  imm26 >>= (32 - kImm26Bits);
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
               converter_.NameOfAddress(reinterpret_cast<byte*>(instr) +
                                        delta_pc + (imm26 << n_bits)));
}


// Print absoulte address for 26-bit offset or immediate value.
// The absolute address is calculated according following expression:
//      PC[GPRLEN-1 .. 28] || instr_index26 || 00
void Decoder::PrintPCImm26(Instruction* instr) {
  int32_t imm26 = instr->Imm26Value();
  uint32_t pc_mask = ~0xfffffff;
  uint32_t pc = ((uint32_t)(instr + 1) & pc_mask) | (imm26 << 2);
  out_buffer_pos_ +=
      SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
               converter_.NameOfAddress((reinterpret_cast<byte*>(pc))));
}


397 398 399 400 401 402 403
// Print 26-bit immediate value.
void Decoder::PrintCode(Instruction* instr) {
  if (instr->OpcodeFieldRaw() != SPECIAL)
    return;  // Not a break or trap instruction.
  switch (instr->FunctionFieldRaw()) {
    case BREAK: {
      int32_t code = instr->Bits(25, 6);
404 405
      out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
                                  "0x%05x (%d)", code, code);
406 407 408 409 410 411 412 413 414 415
      break;
                }
    case TGE:
    case TGEU:
    case TLT:
    case TLTU:
    case TEQ:
    case TNE: {
      int32_t code = instr->Bits(15, 6);
      out_buffer_pos_ +=
416
          SNPrintF(out_buffer_ + out_buffer_pos_, "0x%03x", code);
417 418 419 420
      break;
    }
    default:  // Not a break or trap instruction.
    break;
421
  }
422 423 424
}


425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
void Decoder::PrintFormat(Instruction* instr) {
  char formatLetter = ' ';
  switch (instr->RsFieldRaw()) {
    case S:
      formatLetter = 's';
      break;
    case D:
      formatLetter = 'd';
      break;
    case W:
      formatLetter = 'w';
      break;
    case L:
      formatLetter = 'l';
      break;
    default:
      UNREACHABLE();
      break;
  }
  PrintChar(formatLetter);
}


448 449 450 451 452 453 454 455
// Printing of instruction name.
void Decoder::PrintInstructionName(Instruction* instr) {
}


// Handle all register based formatting in this function to reduce the
// complexity of FormatOption.
int Decoder::FormatRegister(Instruction* instr, const char* format) {
456
  DCHECK(format[0] == 'r');
457
  if (format[1] == 's') {  // 'rs: Rs register.
458
    int reg = instr->RsValue();
459 460
    PrintRegister(reg);
    return 2;
461
  } else if (format[1] == 't') {  // 'rt: rt register.
462
    int reg = instr->RtValue();
463 464
    PrintRegister(reg);
    return 2;
465
  } else if (format[1] == 'd') {  // 'rd: rd register.
466
    int reg = instr->RdValue();
467 468 469 470 471 472 473 474
    PrintRegister(reg);
    return 2;
  }
  UNREACHABLE();
  return -1;
}


475
// Handle all FPUregister based formatting in this function to reduce the
476
// complexity of FormatOption.
477
int Decoder::FormatFPURegister(Instruction* instr, const char* format) {
478
  DCHECK(format[0] == 'f');
479
  if (format[1] == 's') {  // 'fs: fs register.
480 481
    int reg = instr->FsValue();
    PrintFPURegister(reg);
482
    return 2;
483
  } else if (format[1] == 't') {  // 'ft: ft register.
484 485
    int reg = instr->FtValue();
    PrintFPURegister(reg);
486
    return 2;
487
  } else if (format[1] == 'd') {  // 'fd: fd register.
488 489
    int reg = instr->FdValue();
    PrintFPURegister(reg);
490
    return 2;
491 492 493 494
  } else if (format[1] == 'r') {  // 'fr: fr register.
    int reg = instr->FrValue();
    PrintFPURegister(reg);
    return 2;
495 496 497 498 499 500 501 502 503 504 505 506 507
  }
  UNREACHABLE();
  return -1;
}


// FormatOption takes a formatting string and interprets it based on
// the current instructions. The format string points to the first
// character of the option string (the option escape has already been
// consumed by the caller.)  FormatOption returns the number of
// characters that were consumed from the formatting string.
int Decoder::FormatOption(Instruction* instr, const char* format) {
  switch (format[0]) {
508
    case 'c': {   // 'code for break or trap instructions.
509
      DCHECK(STRING_STARTS_WITH(format, "code"));
510 511 512
      PrintCode(instr);
      return 4;
    }
513
    case 'i': {   // 'imm16u or 'imm26.
514
      if (format[3] == '1') {
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        if (format[4] == '6') {
          DCHECK(STRING_STARTS_WITH(format, "imm16"));
          switch (format[5]) {
            case 's':
              DCHECK(STRING_STARTS_WITH(format, "imm16s"));
              PrintSImm16(instr);
              break;
            case 'u':
              DCHECK(STRING_STARTS_WITH(format, "imm16u"));
              PrintSImm16(instr);
              break;
            case 'x':
              DCHECK(STRING_STARTS_WITH(format, "imm16x"));
              PrintXImm16(instr);
              break;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            case 'p': {  // The PC relative address.
              DCHECK(STRING_STARTS_WITH(format, "imm16p"));
              int delta_pc = 0;
              int n_bits = 0;
              switch (format[6]) {
                case '4': {
                  DCHECK(STRING_STARTS_WITH(format, "imm16p4"));
                  delta_pc = 4;
                  switch (format[8]) {
                    case '2':
                      DCHECK(STRING_STARTS_WITH(format, "imm16p4s2"));
                      n_bits = 2;
                      PrintPCImm16(instr, delta_pc, n_bits);
                      return 9;
                  }
                }
              }
            }
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
          }
          return 6;
        } else if (format[4] == '8') {
          DCHECK(STRING_STARTS_WITH(format, "imm18"));
          switch (format[5]) {
            case 's':
              DCHECK(STRING_STARTS_WITH(format, "imm18s"));
              PrintSImm18(instr);
              break;
            case 'x':
              DCHECK(STRING_STARTS_WITH(format, "imm18x"));
              PrintXImm18(instr);
              break;
          }
          return 6;
        } else if (format[4] == '9') {
          DCHECK(STRING_STARTS_WITH(format, "imm19"));
          switch (format[5]) {
            case 's':
              DCHECK(STRING_STARTS_WITH(format, "imm19s"));
              PrintSImm19(instr);
              break;
            case 'x':
              DCHECK(STRING_STARTS_WITH(format, "imm19x"));
              PrintXImm19(instr);
              break;
          }
          return 6;
576
        }
577
      } else if (format[3] == '2' && format[4] == '1') {
578 579 580 581 582 583 584 585 586 587
        DCHECK(STRING_STARTS_WITH(format, "imm21"));
        switch (format[5]) {
          case 's':
            DCHECK(STRING_STARTS_WITH(format, "imm21s"));
            PrintSImm21(instr);
            break;
          case 'x':
            DCHECK(STRING_STARTS_WITH(format, "imm21x"));
            PrintXImm21(instr);
            break;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
          case 'p': {  // The PC relative address.
            DCHECK(STRING_STARTS_WITH(format, "imm21p"));
            int delta_pc = 0;
            int n_bits = 0;
            switch (format[6]) {
              case '4': {
                DCHECK(STRING_STARTS_WITH(format, "imm21p4"));
                delta_pc = 4;
                switch (format[8]) {
                  case '2':
                    DCHECK(STRING_STARTS_WITH(format, "imm21p4s2"));
                    n_bits = 2;
                    PrintPCImm21(instr, delta_pc, n_bits);
                    return 9;
                }
              }
            }
          }
606
        }
607 608
        return 6;
      } else if (format[3] == '2' && format[4] == '6') {
609 610 611 612 613 614 615 616 617 618
        DCHECK(STRING_STARTS_WITH(format, "imm26"));
        switch (format[5]) {
          case 's':
            DCHECK(STRING_STARTS_WITH(format, "imm26s"));
            PrintSImm26(instr);
            break;
          case 'x':
            DCHECK(STRING_STARTS_WITH(format, "imm26x"));
            PrintXImm26(instr);
            break;
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
          case 'p': {  // The PC relative address.
            DCHECK(STRING_STARTS_WITH(format, "imm26p"));
            int delta_pc = 0;
            int n_bits = 0;
            switch (format[6]) {
              case '4': {
                DCHECK(STRING_STARTS_WITH(format, "imm26p4"));
                delta_pc = 4;
                switch (format[8]) {
                  case '2':
                    DCHECK(STRING_STARTS_WITH(format, "imm26p4s2"));
                    n_bits = 2;
                    PrintPCImm26(instr, delta_pc, n_bits);
                    return 9;
                }
              }
            }
          }
          case 'j': {  // Absolute address for jump instructions.
            DCHECK(STRING_STARTS_WITH(format, "imm26j"));
            PrintPCImm26(instr);
            break;
          }
642
        }
643
        return 6;
644 645
      }
    }
646
    case 'r': {   // 'r: registers.
647 648
      return FormatRegister(instr, format);
    }
649
    case 'f': {   // 'f: FPUregisters.
650
      return FormatFPURegister(instr, format);
651
    }
652
    case 's': {   // 'sa.
653 654
      switch (format[1]) {
        case 'a': {
655
          DCHECK(STRING_STARTS_WITH(format, "sa"));
656 657 658 659
          PrintSa(instr);
          return 2;
        }
        case 'd': {
660
          DCHECK(STRING_STARTS_WITH(format, "sd"));
661 662 663
          PrintSd(instr);
          return 2;
        }
664 665
        case 's': {
          if (format[2] == '1') {
666
              DCHECK(STRING_STARTS_WITH(format, "ss1"));  /* ext size */
667 668 669
              PrintSs1(instr);
              return 3;
          } else {
670
              DCHECK(STRING_STARTS_WITH(format, "ss2"));  /* ins size */
671 672 673 674
              PrintSs2(instr);
              return 3;
          }
        }
675 676
      }
    }
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    case 'b': {
      switch (format[1]) {
        case 'c': {  // 'bc - Special for bc1 cc field.
          DCHECK(STRING_STARTS_WITH(format, "bc"));
          PrintBc(instr);
          return 2;
        }
        case 'p': {
          switch (format[2]) {
            case '2': {  // 'bp2
              DCHECK(STRING_STARTS_WITH(format, "bp2"));
              PrintBp2(instr);
              return 3;
            }
          }
        }
      }
694 695
    }
    case 'C': {   // 'Cc - Special for c.xx.d cc field.
696
      DCHECK(STRING_STARTS_WITH(format, "Cc"));
697
      PrintCc(instr);
698 699
      return 2;
    }
700 701 702
    case 't':
      PrintFormat(instr);
      return 1;
703
  }
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
  UNREACHABLE();
  return -1;
}


// Format takes a formatting string for a whole instruction and prints it into
// the output buffer. All escaped options are handed to FormatOption to be
// parsed further.
void Decoder::Format(Instruction* instr, const char* format) {
  char cur = *format++;
  while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    if (cur == '\'') {  // Single quote is used as the formatting escape.
      format += FormatOption(instr, format);
    } else {
      out_buffer_[out_buffer_pos_++] = cur;
    }
    cur = *format++;
  }
  out_buffer_[out_buffer_pos_]  = '\0';
}


// For currently unimplemented decodings the disassembler calls Unknown(instr)
// which will just print "unknown" of the instruction bits.
void Decoder::Unknown(Instruction* instr) {
  Format(instr, "unknown");
}


733
bool Decoder::DecodeTypeRegisterRsType(Instruction* instr) {
734
  switch (instr->FunctionFieldRaw()) {
735 736 737
    case RINT:
      Format(instr, "rint.'t    'fd, 'fs");
      break;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    case MIN:
      Format(instr, "min.'t    'fd, 'fs, 'ft");
      break;
    case MAX:
      Format(instr, "max.'t    'fd, 'fs, 'ft");
      break;
    case MINA:
      Format(instr, "mina.'t   'fd, 'fs, 'ft");
      break;
    case MAXA:
      Format(instr, "maxa.'t   'fd, 'fs, 'ft");
      break;
    case SEL:
      Format(instr, "sel.'t      'fd, 'fs, 'ft");
      break;
    case SELEQZ_C:
      Format(instr, "seleqz.'t    'fd, 'fs, 'ft");
      break;
    case SELNEZ_C:
      Format(instr, "selnez.'t    'fd, 'fs, 'ft");
      break;
759 760 761 762 763 764 765 766 767 768 769 770 771
    case MOVZ_C:
      Format(instr, "movz.'t    'fd, 'fs, 'rt");
      break;
    case MOVN_C:
      Format(instr, "movn.'t    'fd, 'fs, 'rt");
      break;
    case MOVF:
      if (instr->Bit(16)) {
        Format(instr, "movt.'t    'fd, 'fs, 'Cc");
      } else {
        Format(instr, "movf.'t    'fd, 'fs, 'Cc");
      }
      break;
772
    case ADD_D:
773
      Format(instr, "add.'t   'fd, 'fs, 'ft");
774 775
      break;
    case SUB_D:
776
      Format(instr, "sub.'t   'fd, 'fs, 'ft");
777 778
      break;
    case MUL_D:
779
      Format(instr, "mul.'t   'fd, 'fs, 'ft");
780 781
      break;
    case DIV_D:
782
      Format(instr, "div.'t   'fd, 'fs, 'ft");
783 784
      break;
    case ABS_D:
785
      Format(instr, "abs.'t   'fd, 'fs");
786 787
      break;
    case MOV_D:
788
      Format(instr, "mov.'t   'fd, 'fs");
789 790
      break;
    case NEG_D:
791
      Format(instr, "neg.'t   'fd, 'fs");
792 793
      break;
    case SQRT_D:
794
      Format(instr, "sqrt.'t  'fd, 'fs");
795
      break;
796 797 798 799 800 801
    case RECIP_D:
      Format(instr, "recip.'t  'fd, 'fs");
      break;
    case RSQRT_D:
      Format(instr, "rsqrt.'t  'fd, 'fs");
      break;
802
    case CVT_W_D:
803
      Format(instr, "cvt.w.'t 'fd, 'fs");
804 805
      break;
    case CVT_L_D:
806
      Format(instr, "cvt.l.'t 'fd, 'fs");
807 808
      break;
    case TRUNC_W_D:
809
      Format(instr, "trunc.w.'t 'fd, 'fs");
810 811
      break;
    case TRUNC_L_D:
812
      Format(instr, "trunc.l.'t 'fd, 'fs");
813 814
      break;
    case ROUND_W_D:
815
      Format(instr, "round.w.'t 'fd, 'fs");
816
      break;
817 818 819
    case ROUND_L_D:
      Format(instr, "round.l.'t 'fd, 'fs");
      break;
820
    case FLOOR_W_D:
821
      Format(instr, "floor.w.'t 'fd, 'fs");
822
      break;
823 824 825
    case FLOOR_L_D:
      Format(instr, "floor.l.'t 'fd, 'fs");
      break;
826
    case CEIL_W_D:
827
      Format(instr, "ceil.w.'t 'fd, 'fs");
828
      break;
829 830 831
    case CLASS_D:
      Format(instr, "class.'t 'fd, 'fs");
      break;
832 833 834
    case CEIL_L_D:
      Format(instr, "ceil.l.'t 'fd, 'fs");
      break;
835
    case CVT_S_D:
836
      Format(instr, "cvt.s.'t 'fd, 'fs");
837 838
      break;
    case C_F_D:
839
      Format(instr, "c.f.'t   'fs, 'ft, 'Cc");
840 841
      break;
    case C_UN_D:
842
      Format(instr, "c.un.'t  'fs, 'ft, 'Cc");
843 844
      break;
    case C_EQ_D:
845
      Format(instr, "c.eq.'t  'fs, 'ft, 'Cc");
846 847
      break;
    case C_UEQ_D:
848
      Format(instr, "c.ueq.'t 'fs, 'ft, 'Cc");
849 850
      break;
    case C_OLT_D:
851
      Format(instr, "c.olt.'t 'fs, 'ft, 'Cc");
852 853
      break;
    case C_ULT_D:
854
      Format(instr, "c.ult.'t 'fs, 'ft, 'Cc");
855 856
      break;
    case C_OLE_D:
857
      Format(instr, "c.ole.'t 'fs, 'ft, 'Cc");
858 859
      break;
    case C_ULE_D:
860
      Format(instr, "c.ule.'t 'fs, 'ft, 'Cc");
861 862
      break;
    default:
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
      return false;
  }
  return true;
}


void Decoder::DecodeTypeRegisterSRsType(Instruction* instr) {
  if (!DecodeTypeRegisterRsType(instr)) {
    switch (instr->FunctionFieldRaw()) {
      case CVT_D_S:
        Format(instr, "cvt.d.'t 'fd, 'fs");
        break;
      default:
        Format(instr, "unknown.cop1.'t");
        break;
    }
  }
}


void Decoder::DecodeTypeRegisterDRsType(Instruction* instr) {
  if (!DecodeTypeRegisterRsType(instr)) {
    Format(instr, "unknown.cop1.'t");
886 887 888 889 890 891 892 893 894 895 896 897
  }
}


void Decoder::DecodeTypeRegisterLRsType(Instruction* instr) {
  switch (instr->FunctionFieldRaw()) {
    case CVT_D_L:
      Format(instr, "cvt.d.l 'fd, 'fs");
      break;
    case CVT_S_L:
      Format(instr, "cvt.s.l 'fd, 'fs");
      break;
898 899 900
    case CMP_AF:
      Format(instr, "cmp.af.d  'fd,  'fs, 'ft");
      break;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
    case CMP_UN:
      Format(instr, "cmp.un.d  'fd,  'fs, 'ft");
      break;
    case CMP_EQ:
      Format(instr, "cmp.eq.d  'fd,  'fs, 'ft");
      break;
    case CMP_UEQ:
      Format(instr, "cmp.ueq.d  'fd,  'fs, 'ft");
      break;
    case CMP_LT:
      Format(instr, "cmp.lt.d  'fd,  'fs, 'ft");
      break;
    case CMP_ULT:
      Format(instr, "cmp.ult.d  'fd,  'fs, 'ft");
      break;
    case CMP_LE:
      Format(instr, "cmp.le.d  'fd,  'fs, 'ft");
      break;
    case CMP_ULE:
      Format(instr, "cmp.ule.d  'fd,  'fs, 'ft");
      break;
    case CMP_OR:
      Format(instr, "cmp.or.d  'fd,  'fs, 'ft");
      break;
    case CMP_UNE:
      Format(instr, "cmp.une.d  'fd,  'fs, 'ft");
      break;
    case CMP_NE:
      Format(instr, "cmp.ne.d  'fd,  'fs, 'ft");
      break;
    default:
      UNREACHABLE();
  }
}


937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
void Decoder::DecodeTypeRegisterWRsType(Instruction* instr) {
  switch (instr->FunctionValue()) {
    case CVT_S_W:  // Convert word to float (single).
      Format(instr, "cvt.s.w 'fd, 'fs");
      break;
    case CVT_D_W:  // Convert word to double.
      Format(instr, "cvt.d.w 'fd, 'fs");
      break;
    case CMP_AF:
      Format(instr, "cmp.af.s    'fd, 'fs, 'ft");
      break;
    case CMP_UN:
      Format(instr, "cmp.un.s    'fd, 'fs, 'ft");
      break;
    case CMP_EQ:
      Format(instr, "cmp.eq.s    'fd, 'fs, 'ft");
      break;
    case CMP_UEQ:
      Format(instr, "cmp.ueq.s   'fd, 'fs, 'ft");
      break;
    case CMP_LT:
      Format(instr, "cmp.lt.s    'fd, 'fs, 'ft");
      break;
    case CMP_ULT:
      Format(instr, "cmp.ult.s   'fd, 'fs, 'ft");
      break;
    case CMP_LE:
      Format(instr, "cmp.le.s    'fd, 'fs, 'ft");
      break;
    case CMP_ULE:
      Format(instr, "cmp.ule.s   'fd, 'fs, 'ft");
      break;
    case CMP_OR:
      Format(instr, "cmp.or.s    'fd, 'fs, 'ft");
      break;
    case CMP_UNE:
      Format(instr, "cmp.une.s   'fd, 'fs, 'ft");
      break;
    case CMP_NE:
      Format(instr, "cmp.ne.s    'fd, 'fs, 'ft");
      break;
    default:
      UNREACHABLE();
  }
}


984 985 986 987 988 989
void Decoder::DecodeTypeRegisterSPECIAL(Instruction* instr) {
  switch (instr->FunctionFieldRaw()) {
    case JR:
      Format(instr, "jr      'rs");
      break;
    case JALR:
990
      Format(instr, "jalr    'rs, 'rd");
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
      break;
    case SLL:
      if (0x0 == static_cast<int>(instr->InstructionBits()))
        Format(instr, "nop");
      else
        Format(instr, "sll     'rd, 'rt, 'sa");
      break;
    case SRL:
      if (instr->RsValue() == 0) {
        Format(instr, "srl     'rd, 'rt, 'sa");
      } else {
        if (IsMipsArchVariant(kMips32r2)) {
          Format(instr, "rotr    'rd, 'rt, 'sa");
        } else {
          Unknown(instr);
        }
      }
      break;
    case SRA:
      Format(instr, "sra     'rd, 'rt, 'sa");
      break;
    case SLLV:
      Format(instr, "sllv    'rd, 'rt, 'rs");
      break;
    case SRLV:
      if (instr->SaValue() == 0) {
        Format(instr, "srlv    'rd, 'rt, 'rs");
      } else {
        if (IsMipsArchVariant(kMips32r2)) {
          Format(instr, "rotrv   'rd, 'rt, 'rs");
        } else {
          Unknown(instr);
        }
      }
      break;
    case SRAV:
      Format(instr, "srav    'rd, 'rt, 'rs");
      break;
    case MFHI:
      if (instr->Bits(25, 16) == 0) {
        Format(instr, "mfhi    'rd");
      } else {
        if ((instr->FunctionFieldRaw() == CLZ_R6) && (instr->FdValue() == 1)) {
          Format(instr, "clz     'rd, 'rs");
        } else if ((instr->FunctionFieldRaw() == CLO_R6) &&
                   (instr->FdValue() == 1)) {
          Format(instr, "clo     'rd, 'rs");
        }
      }
      break;
    case MFLO:
      Format(instr, "mflo    'rd");
      break;
    case MULT:  // @Mips32r6 == MUL_MUH.
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "mult    'rs, 'rt");
      } else {
        if (instr->SaValue() == MUL_OP) {
          Format(instr, "mul    'rd, 'rs, 'rt");
        } else {
          Format(instr, "muh    'rd, 'rs, 'rt");
        }
      }
      break;
    case MULTU:  // @Mips32r6 == MUL_MUH_U.
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "multu   'rs, 'rt");
      } else {
        if (instr->SaValue() == MUL_OP) {
          Format(instr, "mulu   'rd, 'rs, 'rt");
        } else {
          Format(instr, "muhu   'rd, 'rs, 'rt");
        }
      }
      break;
    case DIV:  // @Mips32r6 == DIV_MOD.
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "div     'rs, 'rt");
      } else {
        if (instr->SaValue() == DIV_OP) {
          Format(instr, "div    'rd, 'rs, 'rt");
        } else {
          Format(instr, "mod    'rd, 'rs, 'rt");
        }
      }
      break;
    case DIVU:  // @Mips32r6 == DIV_MOD_U.
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "divu    'rs, 'rt");
      } else {
        if (instr->SaValue() == DIV_OP) {
          Format(instr, "divu   'rd, 'rs, 'rt");
        } else {
          Format(instr, "modu   'rd, 'rs, 'rt");
        }
      }
      break;
    case ADD:
      Format(instr, "add     'rd, 'rs, 'rt");
      break;
    case ADDU:
      Format(instr, "addu    'rd, 'rs, 'rt");
      break;
    case SUB:
      Format(instr, "sub     'rd, 'rs, 'rt");
      break;
    case SUBU:
      Format(instr, "subu    'rd, 'rs, 'rt");
      break;
    case AND:
      Format(instr, "and     'rd, 'rs, 'rt");
      break;
    case OR:
      if (0 == instr->RsValue()) {
        Format(instr, "mov     'rd, 'rt");
      } else if (0 == instr->RtValue()) {
        Format(instr, "mov     'rd, 'rs");
      } else {
        Format(instr, "or      'rd, 'rs, 'rt");
      }
      break;
    case XOR:
      Format(instr, "xor     'rd, 'rs, 'rt");
      break;
    case NOR:
      Format(instr, "nor     'rd, 'rs, 'rt");
      break;
    case SLT:
      Format(instr, "slt     'rd, 'rs, 'rt");
      break;
    case SLTU:
      Format(instr, "sltu    'rd, 'rs, 'rt");
      break;
    case BREAK:
      Format(instr, "break, code: 'code");
      break;
    case TGE:
      Format(instr, "tge     'rs, 'rt, code: 'code");
      break;
    case TGEU:
      Format(instr, "tgeu    'rs, 'rt, code: 'code");
      break;
    case TLT:
      Format(instr, "tlt     'rs, 'rt, code: 'code");
      break;
    case TLTU:
      Format(instr, "tltu    'rs, 'rt, code: 'code");
      break;
    case TEQ:
      Format(instr, "teq     'rs, 'rt, code: 'code");
      break;
    case TNE:
      Format(instr, "tne     'rs, 'rt, code: 'code");
      break;
    case MOVZ:
      Format(instr, "movz    'rd, 'rs, 'rt");
      break;
    case MOVN:
      Format(instr, "movn    'rd, 'rs, 'rt");
      break;
    case MOVCI:
      if (instr->Bit(16)) {
        Format(instr, "movt    'rd, 'rs, 'bc");
      } else {
        Format(instr, "movf    'rd, 'rs, 'bc");
      }
      break;
    case SELEQZ_S:
1159
      Format(instr, "seleqz    'rd, 'rs, 'rt");
1160 1161
      break;
    case SELNEZ_S:
1162
      Format(instr, "selnez    'rd, 'rs, 'rt");
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
      break;
    default:
      UNREACHABLE();
  }
}


void Decoder::DecodeTypeRegisterSPECIAL2(Instruction* instr) {
  switch (instr->FunctionFieldRaw()) {
    case MUL:
      Format(instr, "mul     'rd, 'rs, 'rt");
      break;
    case CLZ:
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "clz     'rd, 'rs");
      }
      break;
    default:
      UNREACHABLE();
  }
}


void Decoder::DecodeTypeRegisterSPECIAL3(Instruction* instr) {
  switch (instr->FunctionFieldRaw()) {
    case INS: {
1189
      if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
1190 1191 1192 1193 1194 1195 1196
        Format(instr, "ins     'rt, 'rs, 'sa, 'ss2");
      } else {
        Unknown(instr);
      }
      break;
    }
    case EXT: {
1197
      if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) {
1198 1199 1200 1201 1202 1203
        Format(instr, "ext     'rt, 'rs, 'sa, 'ss1");
      } else {
        Unknown(instr);
      }
      break;
    }
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    case BSHFL: {
      int sa = instr->SaFieldRaw() >> kSaShift;
      switch (sa) {
        case BITSWAP: {
          if (IsMipsArchVariant(kMips32r6)) {
            Format(instr, "bitswap 'rd, 'rt");
          } else {
            Unknown(instr);
          }
          break;
        }
        case SEB:
        case SEH:
        case WSBH:
          UNREACHABLE();
          break;
        default: {
          sa >>= kBp2Bits;
          switch (sa) {
            case ALIGN: {
              if (IsMipsArchVariant(kMips32r6)) {
                Format(instr, "align  'rd, 'rs, 'rt, 'bp2");
              } else {
                Unknown(instr);
              }
              break;
            }
            default:
              UNREACHABLE();
              break;
          }
        }
1236 1237 1238
      }
      break;
    }
1239 1240 1241 1242 1243 1244
    default:
      UNREACHABLE();
  }
}


1245 1246
void Decoder::DecodeTypeRegister(Instruction* instr) {
  switch (instr->OpcodeFieldRaw()) {
1247
    case COP1:    // Coprocessor instructions.
1248
      switch (instr->RsFieldRaw()) {
1249
        case BC1:   // bc1 handled in DecodeTypeImmediate.
1250 1251 1252
          UNREACHABLE();
          break;
        case MFC1:
1253
          Format(instr, "mfc1    'rt, 'fs");
1254 1255
          break;
        case MFHC1:
1256
          Format(instr, "mfhc1   'rt, 'fs");
1257 1258
          break;
        case MTC1:
1259
          Format(instr, "mtc1    'rt, 'fs");
1260 1261 1262
          break;
        // These are called "fs" too, although they are not FPU registers.
        case CTC1:
1263
          Format(instr, "ctc1    'rt, 'fs");
1264 1265
          break;
        case CFC1:
1266
          Format(instr, "cfc1    'rt, 'fs");
1267 1268
          break;
        case MTHC1:
1269
          Format(instr, "mthc1   'rt, 'fs");
1270
          break;
1271 1272 1273
        case S:
          DecodeTypeRegisterSRsType(instr);
          break;
1274
        case D:
1275
          DecodeTypeRegisterDRsType(instr);
1276
          break;
1277
        case L:
1278
          DecodeTypeRegisterLRsType(instr);
1279
          break;
1280 1281 1282
        case W:
          DecodeTypeRegisterWRsType(instr);
          break;
1283 1284 1285 1286 1287
        case PS:
          UNIMPLEMENTED_MIPS();
          break;
        default:
          UNREACHABLE();
1288
      }
1289
      break;
1290 1291 1292 1293 1294 1295 1296
    case COP1X:
      switch (instr->FunctionFieldRaw()) {
        case MADD_D:
          Format(instr, "madd.d  'fd, 'fr, 'fs, 'ft");
          break;
        default:
          UNREACHABLE();
1297
      }
1298
      break;
1299
    case SPECIAL:
1300
      DecodeTypeRegisterSPECIAL(instr);
1301 1302
      break;
    case SPECIAL2:
1303
      DecodeTypeRegisterSPECIAL2(instr);
1304 1305
      break;
    case SPECIAL3:
1306
      DecodeTypeRegisterSPECIAL3(instr);
1307 1308 1309
      break;
    default:
      UNREACHABLE();
1310
  }
1311 1312 1313 1314 1315
}


void Decoder::DecodeTypeImmediate(Instruction* instr) {
  switch (instr->OpcodeFieldRaw()) {
1316 1317 1318 1319
    case COP1:
      switch (instr->RsFieldRaw()) {
        case BC1:
          if (instr->FBtrueValue()) {
1320
            Format(instr, "bc1t    'bc, 'imm16u -> 'imm16p4s2");
1321
          } else {
1322
            Format(instr, "bc1f    'bc, 'imm16u -> 'imm16p4s2");
1323 1324
          }
          break;
1325
        case BC1EQZ:
1326
          Format(instr, "bc1eqz    'ft, 'imm16u -> 'imm16p4s2");
1327 1328
          break;
        case BC1NEZ:
1329
          Format(instr, "bc1nez    'ft, 'imm16u -> 'imm16p4s2");
1330
          break;
1331 1332
        default:
          UNREACHABLE();
1333
      }
1334

1335
      break;  // Case COP1.
1336
    // ------------- REGIMM class.
1337 1338 1339
    case REGIMM:
      switch (instr->RtFieldRaw()) {
        case BLTZ:
1340
          Format(instr, "bltz    'rs, 'imm16u -> 'imm16p4s2");
1341 1342
          break;
        case BLTZAL:
1343
          Format(instr, "bltzal  'rs, 'imm16u -> 'imm16p4s2");
1344 1345
          break;
        case BGEZ:
1346
          Format(instr, "bgez    'rs, 'imm16u -> 'imm16p4s2");
1347
          break;
1348 1349 1350 1351 1352
        case BGEZAL: {
          if (instr->RsValue() == 0)
            Format(instr, "bal     'imm16s -> 'imm16p4s2");
          else
            Format(instr, "bgezal  'rs, 'imm16u -> 'imm16p4s2");
1353
          break;
1354
        }
1355
        case BGEZALL:
1356
          Format(instr, "bgezall 'rs, 'imm16u -> 'imm16p4s2");
1357
          break;
1358 1359
        default:
          UNREACHABLE();
1360 1361
      }
    break;  // Case REGIMM.
1362 1363
    // ------------- Branch instructions.
    case BEQ:
1364
      Format(instr, "beq     'rs, 'rt, 'imm16u -> 'imm16p4s2");
1365
      break;
1366
    case BC:
1367
      Format(instr, "bc      'imm26s -> 'imm26p4s2");
1368 1369
      break;
    case BALC:
1370
      Format(instr, "balc    'imm26s -> 'imm26p4s2");
1371
      break;
1372
    case BNE:
1373
      Format(instr, "bne     'rs, 'rt, 'imm16u -> 'imm16p4s2");
1374 1375
      break;
    case BLEZ:
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
      if ((instr->RtValue() == 0) && (instr->RsValue() != 0)) {
        Format(instr, "blez    'rs, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() != instr->RsValue()) &&
                 (instr->RsValue() != 0) && (instr->RtValue() != 0)) {
        Format(instr, "bgeuc    'rs, 'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() == instr->RsValue()) &&
                 (instr->RtValue() != 0)) {
        Format(instr, "bgezalc  'rs, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RsValue() == 0) && (instr->RtValue() != 0)) {
        Format(instr, "blezalc  'rt, 'imm16u -> 'imm16p4s2");
1386 1387 1388
      } else {
        UNREACHABLE();
      }
1389 1390
      break;
    case BGTZ:
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
      if ((instr->RtValue() == 0) && (instr->RsValue() != 0)) {
        Format(instr, "bgtz    'rs, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() != instr->RsValue()) &&
                 (instr->RsValue() != 0) && (instr->RtValue() != 0)) {
        Format(instr, "bltuc   'rs, 'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() == instr->RsValue()) &&
                 (instr->RtValue() != 0)) {
        Format(instr, "bltzalc 'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RsValue() == 0) && (instr->RtValue() != 0)) {
        Format(instr, "bgtzalc 'rt, 'imm16u -> 'imm16p4s2");
1401 1402 1403 1404 1405
      } else {
        UNREACHABLE();
      }
      break;
    case BLEZL:
1406 1407 1408 1409 1410 1411 1412
      if ((instr->RtValue() == instr->RsValue()) && (instr->RtValue() != 0)) {
        Format(instr, "bgezc    'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() != instr->RsValue()) &&
                 (instr->RsValue() != 0) && (instr->RtValue() != 0)) {
        Format(instr, "bgec     'rs, 'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RsValue() == 0) && (instr->RtValue() != 0)) {
        Format(instr, "blezc    'rt, 'imm16u -> 'imm16p4s2");
1413 1414 1415 1416 1417
      } else {
        UNREACHABLE();
      }
      break;
    case BGTZL:
1418 1419 1420 1421 1422 1423 1424
      if ((instr->RtValue() == instr->RsValue()) && (instr->RtValue() != 0)) {
        Format(instr, "bltzc    'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RtValue() != instr->RsValue()) &&
                 (instr->RsValue() != 0) && (instr->RtValue() != 0)) {
        Format(instr, "bltc     'rs, 'rt, 'imm16u -> 'imm16p4s2");
      } else if ((instr->RsValue() == 0) && (instr->RtValue() != 0)) {
        Format(instr, "bgtzc    'rt, 'imm16u -> 'imm16p4s2");
1425 1426 1427 1428
      } else {
        UNREACHABLE();
      }
      break;
1429 1430 1431 1432
    case POP66:
      if (instr->RsValue() == JIC) {
        Format(instr, "jic     'rt, 'imm16s");
      } else {
1433
        Format(instr, "beqzc   'rs, 'imm21s -> 'imm21p4s2");
1434 1435
      }
      break;
1436 1437 1438 1439
    case POP76:
      if (instr->RsValue() == JIALC) {
        Format(instr, "jialc   'rt, 'imm16x");
      } else {
1440
        Format(instr, "bnezc   'rs, 'imm21x -> 'imm21p4s2");
1441
      }
1442 1443 1444
      break;
    // ------------- Arithmetic instructions.
    case ADDI:
1445 1446 1447 1448
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "addi    'rt, 'rs, 'imm16s");
      } else {
        // Check if BOVC or BEQC instruction.
1449 1450 1451 1452
        if (instr->RsValue() >= instr->RtValue()) {
          Format(instr, "bovc  'rs, 'rt, 'imm16s -> 'imm16p4s2");
        } else if (instr->RsValue() < instr->RtValue()) {
          Format(instr, "beqc  'rs, 'rt, 'imm16s -> 'imm16p4s2");
1453 1454 1455 1456 1457 1458 1459 1460
        } else {
          UNREACHABLE();
        }
      }
      break;
    case DADDI:
      if (IsMipsArchVariant(kMips32r6)) {
        // Check if BNVC or BNEC instruction.
1461 1462 1463 1464
        if (instr->RsValue() >= instr->RtValue()) {
          Format(instr, "bnvc  'rs, 'rt, 'imm16s -> 'imm16p4s2");
        } else if (instr->RsValue() < instr->RtValue()) {
          Format(instr, "bnec  'rs, 'rt, 'imm16s -> 'imm16p4s2");
1465 1466 1467 1468
        } else {
          UNREACHABLE();
        }
      }
1469 1470
      break;
    case ADDIU:
1471
      Format(instr, "addiu   'rt, 'rs, 'imm16s");
1472 1473
      break;
    case SLTI:
1474
      Format(instr, "slti    'rt, 'rs, 'imm16s");
1475 1476
      break;
    case SLTIU:
1477
      Format(instr, "sltiu   'rt, 'rs, 'imm16u");
1478 1479
      break;
    case ANDI:
1480
      Format(instr, "andi    'rt, 'rs, 'imm16x");
1481 1482
      break;
    case ORI:
1483
      Format(instr, "ori     'rt, 'rs, 'imm16x");
1484 1485
      break;
    case XORI:
1486
      Format(instr, "xori    'rt, 'rs, 'imm16x");
1487 1488
      break;
    case LUI:
1489 1490 1491 1492 1493 1494 1495 1496 1497
      if (!IsMipsArchVariant(kMips32r6)) {
        Format(instr, "lui     'rt, 'imm16x");
      } else {
        if (instr->RsValue() != 0) {
          Format(instr, "aui     'rt, 'imm16x");
        } else {
          Format(instr, "lui     'rt, 'imm16x");
        }
      }
1498 1499 1500
      break;
    // ------------- Memory instructions.
    case LB:
1501
      Format(instr, "lb      'rt, 'imm16s('rs)");
1502
      break;
1503
    case LH:
1504
      Format(instr, "lh      'rt, 'imm16s('rs)");
1505 1506
      break;
    case LWL:
1507
      Format(instr, "lwl     'rt, 'imm16s('rs)");
1508
      break;
1509
    case LW:
1510
      Format(instr, "lw      'rt, 'imm16s('rs)");
1511 1512
      break;
    case LBU:
1513
      Format(instr, "lbu     'rt, 'imm16s('rs)");
1514
      break;
1515
    case LHU:
1516
      Format(instr, "lhu     'rt, 'imm16s('rs)");
1517 1518
      break;
    case LWR:
1519
      Format(instr, "lwr     'rt, 'imm16s('rs)");
1520
      break;
plind44@gmail.com's avatar
plind44@gmail.com committed
1521 1522 1523
    case PREF:
      Format(instr, "pref    'rt, 'imm16s('rs)");
      break;
1524
    case SB:
1525
      Format(instr, "sb      'rt, 'imm16s('rs)");
1526
      break;
1527
    case SH:
1528
      Format(instr, "sh      'rt, 'imm16s('rs)");
1529 1530
      break;
    case SWL:
1531
      Format(instr, "swl     'rt, 'imm16s('rs)");
1532
      break;
1533
    case SW:
1534
      Format(instr, "sw      'rt, 'imm16s('rs)");
1535
      break;
1536
    case SWR:
1537
      Format(instr, "swr     'rt, 'imm16s('rs)");
1538
      break;
1539
    case LWC1:
1540
      Format(instr, "lwc1    'ft, 'imm16s('rs)");
1541 1542
      break;
    case LDC1:
1543
      Format(instr, "ldc1    'ft, 'imm16s('rs)");
1544 1545
      break;
    case SWC1:
1546
      Format(instr, "swc1    'ft, 'imm16s('rs)");
1547 1548
      break;
    case SDC1:
1549
      Format(instr, "sdc1    'ft, 'imm16s('rs)");
1550
      break;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    case PCREL: {
      int32_t imm21 = instr->Imm21Value();
      // rt field: 5-bits checking
      uint8_t rt = (imm21 >> kImm16Bits);
      switch (rt) {
        case ALUIPC:
          Format(instr, "aluipc  'rs, 'imm16s");
          break;
        case AUIPC:
          Format(instr, "auipc   'rs, 'imm16s");
          break;
        default: {
          // rt field: checking of the most significant 2-bits
          rt = (imm21 >> kImm19Bits);
          switch (rt) {
            case LWPC:
              Format(instr, "lwpc    'rs, 'imm19s");
              break;
            case ADDIUPC:
              Format(instr, "addiupc 'rs, 'imm19s");
              break;
            default:
              UNREACHABLE();
              break;
          }
        }
      }
      break;
    }
1580
    default:
1581
      printf("a 0x%x \n", instr->OpcodeFieldRaw());
1582 1583
      UNREACHABLE();
      break;
1584
  }
1585 1586 1587 1588 1589 1590
}


void Decoder::DecodeTypeJump(Instruction* instr) {
  switch (instr->OpcodeFieldRaw()) {
    case J:
1591
      Format(instr, "j       'imm26x -> 'imm26j");
1592 1593
      break;
    case JAL:
1594
      Format(instr, "jal     'imm26x -> 'imm26j");
1595 1596 1597 1598 1599 1600 1601 1602
      break;
    default:
      UNREACHABLE();
  }
}


// Disassemble the instruction at *instr_ptr into the output buffer.
1603
int Decoder::InstructionDecode(byte* instr_ptr) {
1604 1605
  Instruction* instr = Instruction::At(instr_ptr);
  // Print raw instruction bytes.
1606 1607 1608
  out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
                                   "%08x       ",
                                   instr->InstructionBits());
1609
  switch (instr->InstructionType(Instruction::EXTRA)) {
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    case Instruction::kRegisterType: {
      DecodeTypeRegister(instr);
      break;
    }
    case Instruction::kImmediateType: {
      DecodeTypeImmediate(instr);
      break;
    }
    case Instruction::kJumpType: {
      DecodeTypeJump(instr);
      break;
    }
    default: {
1623
      Format(instr, "UNSUPPORTED");
1624 1625 1626
      UNSUPPORTED_MIPS();
    }
  }
1627
  return Instruction::kInstrSize;
1628 1629 1630
}


1631 1632
}  // namespace internal
}  // namespace v8
1633 1634 1635 1636 1637 1638


//------------------------------------------------------------------------------

namespace disasm {

1639
const char* NameConverter::NameOfAddress(byte* addr) const {
1640
  v8::internal::SNPrintF(tmp_buffer_, "%p", addr);
1641
  return tmp_buffer_.start();
1642 1643 1644
}


1645
const char* NameConverter::NameOfConstant(byte* addr) const {
1646 1647 1648 1649 1650
  return NameOfAddress(addr);
}


const char* NameConverter::NameOfCPURegister(int reg) const {
1651
  return v8::internal::Registers::Name(reg);
1652 1653 1654 1655
}


const char* NameConverter::NameOfXMMRegister(int reg) const {
1656
  return v8::internal::FPURegisters::Name(reg);
1657 1658 1659 1660
}


const char* NameConverter::NameOfByteCPURegister(int reg) const {
1661
  UNREACHABLE();  // MIPS does not have the concept of a byte register.
1662 1663 1664 1665
  return "nobytereg";
}


1666
const char* NameConverter::NameInCode(byte* addr) const {
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
  // The default name converter is called for unknown code. So we will not try
  // to access any memory.
  return "";
}


//------------------------------------------------------------------------------

Disassembler::Disassembler(const NameConverter& converter)
    : converter_(converter) {}


Disassembler::~Disassembler() {}


int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
1683
                                    byte* instruction) {
1684
  v8::internal::Decoder d(converter_, buffer);
1685 1686 1687 1688
  return d.InstructionDecode(instruction);
}


1689
// The MIPS assembler does not currently use constant pools.
1690
int Disassembler::ConstantPoolSizeAt(byte* instruction) {
1691 1692 1693 1694
  return -1;
}


1695
void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
1696 1697
  NameConverter converter;
  Disassembler d(converter);
1698
  for (byte* pc = begin; pc < end;) {
1699 1700
    v8::internal::EmbeddedVector<char, 128> buffer;
    buffer[0] = '\0';
1701
    byte* prev_pc = pc;
1702
    pc += d.InstructionDecode(buffer, pc);
1703 1704
    v8::internal::PrintF(f, "%p    %08x      %s\n",
        prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
1705 1706 1707
  }
}

1708

1709 1710 1711 1712
#undef UNSUPPORTED

}  // namespace disasm

1713
#endif  // V8_TARGET_ARCH_MIPS