constants-arm.h 25.2 KB
Newer Older
1
// Copyright 2010 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28 29
#ifndef V8_ARM_CONSTANTS_ARM_H_
#define V8_ARM_CONSTANTS_ARM_H_
30

31 32 33 34 35 36 37 38
// The simulator emulates the EABI so we define the USE_ARM_EABI macro if we
// are not running on real ARM hardware.  One reason for this is that the
// old ABI uses fp registers in the calling convention and the simulator does
// not simulate fp registers or coroutine instructions.
#if defined(__ARM_EABI__) || !defined(__arm__)
# define USE_ARM_EABI 1
#endif

39 40 41 42 43 44 45
// This means that interwork-compatible jump instructions are generated.  We
// want to generate them on the simulator too so it makes snapshots that can
// be used on real hardware.
#if defined(__THUMB_INTERWORK__) || !defined(__arm__)
# define USE_THUMB_INTERWORK 1
#endif

46 47
#if defined(__ARM_ARCH_7A__) || \
    defined(__ARM_ARCH_7R__) || \
48
    defined(__ARM_ARCH_7__)
49
# define CAN_USE_ARMV7_INSTRUCTIONS 1
50 51
#endif

52 53 54 55 56 57 58
#if defined(__ARM_ARCH_6__) ||   \
    defined(__ARM_ARCH_6J__) ||  \
    defined(__ARM_ARCH_6K__) ||  \
    defined(__ARM_ARCH_6Z__) ||  \
    defined(__ARM_ARCH_6ZK__) || \
    defined(__ARM_ARCH_6T2__) || \
    defined(CAN_USE_ARMV7_INSTRUCTIONS)
59 60 61
# define CAN_USE_ARMV6_INSTRUCTIONS 1
#endif

62 63 64 65 66
#if defined(__ARM_ARCH_5T__)            || \
    defined(__ARM_ARCH_5TE__)           || \
    defined(CAN_USE_ARMV6_INSTRUCTIONS)
# define CAN_USE_ARMV5_INSTRUCTIONS 1
# define CAN_USE_THUMB_INSTRUCTIONS 1
67 68
#endif

69
// Simulator should support ARM5 instructions and unaligned access by default.
70
#if !defined(__arm__)
71 72
# define CAN_USE_ARMV5_INSTRUCTIONS 1
# define CAN_USE_THUMB_INSTRUCTIONS 1
73 74 75 76 77

# ifndef CAN_USE_UNALIGNED_ACCESSES
#  define CAN_USE_UNALIGNED_ACCESSES 1
# endif

78 79
#endif

80 81 82 83
#if CAN_USE_UNALIGNED_ACCESSES
#define V8_TARGET_CAN_READ_UNALIGNED 1
#endif

84 85 86 87 88
// Using blx may yield better code, so use it when required or when available
#if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS)
#define USE_BLX 1
#endif

89 90
namespace v8 {
namespace internal {
91

92 93 94
// Number of registers in normal ARM mode.
static const int kNumRegisters = 16;

95
// VFP support.
96 97 98 99
static const int kNumVFPSingleRegisters = 32;
static const int kNumVFPDoubleRegisters = 16;
static const int kNumVFPRegisters =
    kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
100

101 102 103 104
// PC is register 15.
static const int kPCRegister = 15;
static const int kNoRegister = -1;

105 106 107
// -----------------------------------------------------------------------------
// Conditions.

108 109 110
// Defines constants and accessor classes to assemble, disassemble and
// simulate ARM instructions.
//
111 112 113
// Section references in the code refer to the "ARM Architecture Reference
// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
//
114 115 116
// Constants for specific fields are defined in their respective named enums.
// General constants are in an anonymous enum in class Instr.

117
// Values for the condition field as defined in section A3.2
118
enum Condition {
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  kNoCondition = -1,

  eq =  0 << 28,                 // Z set            Equal.
  ne =  1 << 28,                 // Z clear          Not equal.
  cs =  2 << 28,                 // C set            Unsigned higher or same.
  cc =  3 << 28,                 // C clear          Unsigned lower.
  mi =  4 << 28,                 // N set            Negative.
  pl =  5 << 28,                 // N clear          Positive or zero.
  vs =  6 << 28,                 // V set            Overflow.
  vc =  7 << 28,                 // V clear          No overflow.
  hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
  ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
  ge = 10 << 28,                 // N == V           Greater or equal.
  lt = 11 << 28,                 // N != V           Less than.
  gt = 12 << 28,                 // Z clear, N == V  Greater than.
  le = 13 << 28,                 // Z set or N != V  Less then or equal
  al = 14 << 28,                 //                  Always.

  kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
  kNumberOfConditions = 16,

  // Aliases.
  hs = cs,                       // C set            Unsigned higher or same.
  lo = cc                        // C clear          Unsigned lower.
143 144 145
};


146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
inline Condition NegateCondition(Condition cond) {
  ASSERT(cond != al);
  return static_cast<Condition>(cond ^ ne);
}


// Corresponds to transposing the operands of a comparison.
inline Condition ReverseCondition(Condition cond) {
  switch (cond) {
    case lo:
      return hi;
    case hi:
      return lo;
    case hs:
      return ls;
    case ls:
      return hs;
    case lt:
      return gt;
    case gt:
      return lt;
    case ge:
      return le;
    case le:
      return ge;
    default:
      return cond;
  };
}


// -----------------------------------------------------------------------------
// Instructions encoding.

// Instr is merely used by the Assembler to distinguish 32bit integers
// representing instructions from usual 32 bit values.
// Instruction objects are pointers to 32bit values, and provide methods to
// access the various ISA fields.
typedef int32_t Instr;


187 188
// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
// as defined in section A3.4
189
enum Opcode {
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  AND =  0 << 21,  // Logical AND.
  EOR =  1 << 21,  // Logical Exclusive OR.
  SUB =  2 << 21,  // Subtract.
  RSB =  3 << 21,  // Reverse Subtract.
  ADD =  4 << 21,  // Add.
  ADC =  5 << 21,  // Add with Carry.
  SBC =  6 << 21,  // Subtract with Carry.
  RSC =  7 << 21,  // Reverse Subtract with Carry.
  TST =  8 << 21,  // Test.
  TEQ =  9 << 21,  // Test Equivalence.
  CMP = 10 << 21,  // Compare.
  CMN = 11 << 21,  // Compare Negated.
  ORR = 12 << 21,  // Logical (inclusive) OR.
  MOV = 13 << 21,  // Move.
  BIC = 14 << 21,  // Bit Clear.
  MVN = 15 << 21   // Move Not.
206 207 208
};


209 210 211
// The bits for bit 7-4 for some type 0 miscellaneous instructions.
enum MiscInstructionsBits74 {
  // With bits 22-21 01.
212 213 214 215
  BX   =  1 << 4,
  BXJ  =  2 << 4,
  BLX  =  3 << 4,
  BKPT =  7 << 4,
216

217
  // With bits 22-21 11.
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  CLZ  =  1 << 4
};


// Instruction encoding bits and masks.
enum {
  H   = 1 << 5,   // Halfword (or byte).
  S6  = 1 << 6,   // Signed (or unsigned).
  L   = 1 << 20,  // Load (or store).
  S   = 1 << 20,  // Set condition code (or leave unchanged).
  W   = 1 << 21,  // Writeback base register (or leave unchanged).
  A   = 1 << 21,  // Accumulate in multiply instruction (or not).
  B   = 1 << 22,  // Unsigned byte (or word).
  N   = 1 << 22,  // Long (or short).
  U   = 1 << 23,  // Positive (or negative) offset/index.
  P   = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
  I   = 1 << 25,  // Immediate shifter operand (or not).

  B4  = 1 << 4,
  B5  = 1 << 5,
  B6  = 1 << 6,
  B7  = 1 << 7,
  B8  = 1 << 8,
  B9  = 1 << 9,
  B12 = 1 << 12,
  B16 = 1 << 16,
  B18 = 1 << 18,
  B19 = 1 << 19,
  B20 = 1 << 20,
  B21 = 1 << 21,
  B22 = 1 << 22,
  B23 = 1 << 23,
  B24 = 1 << 24,
  B25 = 1 << 25,
  B26 = 1 << 26,
  B27 = 1 << 27,
  B28 = 1 << 28,

  // Instruction bit masks.
  kCondMask   = 15 << 28,
  kALUMask    = 0x6f << 21,
  kRdMask     = 15 << 12,  // In str instruction.
  kCoprocessorMask = 15 << 8,
  kOpCodeMask = 15 << 21,  // In data-processing instructions.
  kImm24Mask  = (1 << 24) - 1,
  kOff12Mask  = (1 << 12) - 1
};


// -----------------------------------------------------------------------------
// Addressing modes and instruction variants.

// Condition code updating mode.
enum SBit {
  SetCC   = 1 << 20,  // Set condition code.
  LeaveCC = 0 << 20   // Leave condition code unchanged.
};


// Status register selection.
enum SRegister {
  CPSR = 0 << 22,
  SPSR = 1 << 22
281 282 283
};


284
// Shifter types for Data-processing operands as defined in section A5.1.2.
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
enum ShiftOp {
  LSL = 0 << 5,   // Logical shift left.
  LSR = 1 << 5,   // Logical shift right.
  ASR = 2 << 5,   // Arithmetic shift right.
  ROR = 3 << 5,   // Rotate right.

  // RRX is encoded as ROR with shift_imm == 0.
  // Use a special code to make the distinction. The RRX ShiftOp is only used
  // as an argument, and will never actually be encoded. The Assembler will
  // detect it and emit the correct ROR shift operand with shift_imm == 0.
  RRX = -1,
  kNumberOfShifts = 4
};


// Status register fields.
enum SRegisterField {
  CPSR_c = CPSR | 1 << 16,
  CPSR_x = CPSR | 1 << 17,
  CPSR_s = CPSR | 1 << 18,
  CPSR_f = CPSR | 1 << 19,
  SPSR_c = SPSR | 1 << 16,
  SPSR_x = SPSR | 1 << 17,
  SPSR_s = SPSR | 1 << 18,
  SPSR_f = SPSR | 1 << 19
310 311
};

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
// Status register field mask (or'ed SRegisterField enum values).
typedef uint32_t SRegisterFieldMask;


// Memory operand addressing mode.
enum AddrMode {
  // Bit encoding P U W.
  Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
  PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
  PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
  NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
  NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
  NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
};


// Load/store multiple addressing mode.
enum BlockAddrMode {
  // Bit encoding P U W .
  da           = (0|0|0) << 21,  // Decrement after.
  ia           = (0|4|0) << 21,  // Increment after.
  db           = (8|0|0) << 21,  // Decrement before.
  ib           = (8|4|0) << 21,  // Increment before.
  da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
  ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
  db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
  ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.

  // Alias modes for comparison when writeback does not matter.
  da_x         = (0|0|0) << 21,  // Decrement after.
  ia_x         = (0|4|0) << 21,  // Increment after.
  db_x         = (8|0|0) << 21,  // Decrement before.
  ib_x         = (8|4|0) << 21   // Increment before.
};


// Coprocessor load/store operand size.
enum LFlag {
  Long  = 1 << 22,  // Long load/store coprocessor.
  Short = 0 << 22   // Short load/store coprocessor.
};


// -----------------------------------------------------------------------------
// Supervisor Call (svc) specific support.
357

358 359
// Special Software Interrupt codes when used in the presence of the ARM
// simulator.
360 361
// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
362 363
enum SoftwareInterruptCodes {
  // transition to C code
364
  kCallRtRedirected= 0x10,
365
  // break point
366
  kBreakpoint= 0x20,
367
  // stop
368
  kStopCode = 1 << 23
369
};
370 371 372
static const uint32_t kStopCodeMask = kStopCode - 1;
static const uint32_t kMaxStopCode = kStopCode - 1;
static const int32_t  kDefaultStopCode = -1;
373 374


375 376 377 378 379 380
// Type of VFP register. Determines register encoding.
enum VFPRegPrecision {
  kSinglePrecision = 0,
  kDoublePrecision = 1
};

381 382

// VFP FPSCR constants.
383 384 385 386 387
enum VFPConversionMode {
  kFPSCRRounding = 0,
  kDefaultRoundToZero = 1
};

388 389 390 391 392 393 394 395 396 397
static const uint32_t kVFPExceptionMask = 0xf;
static const uint32_t kVFPFlushToZeroMask = 1 << 24;
static const uint32_t kVFPInvalidExceptionBit = 1;

static const uint32_t kVFPNConditionFlagBit = 1 << 31;
static const uint32_t kVFPZConditionFlagBit = 1 << 30;
static const uint32_t kVFPCConditionFlagBit = 1 << 29;
static const uint32_t kVFPVConditionFlagBit = 1 << 28;


398
// VFP rounding modes. See ARM DDI 0406B Page A2-29.
399 400 401 402 403 404 405 406 407 408 409
enum VFPRoundingMode {
  RN = 0 << 22,   // Round to Nearest.
  RP = 1 << 22,   // Round towards Plus Infinity.
  RM = 2 << 22,   // Round towards Minus Infinity.
  RZ = 3 << 22,   // Round towards zero.

  // Aliases.
  kRoundToNearest = RN,
  kRoundToPlusInf = RP,
  kRoundToMinusInf = RM,
  kRoundToZero = RZ
410
};
411

412
static const uint32_t kVFPRoundingModeMask = 3 << 22;
413

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
// -----------------------------------------------------------------------------
// Hints.

// Branch hints are not used on the ARM.  They are defined so that they can
// appear in shared function signatures, but will be ignored in ARM
// implementations.
enum Hint { no_hint };

// Hints are not used on the arm.  Negating is trivial.
inline Hint NegateHint(Hint ignored) { return no_hint; }


// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-arm.cc, as they use named registers
// and other constants.


// add(sp, sp, 4) instruction (aka Pop())
extern const Instr kPopInstruction;
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
// register r is not encoded.
extern const Instr kPushRegPattern;

// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
// register r is not encoded.
extern const Instr kPopRegPattern;

// mov lr, pc
extern const Instr kMovLrPc;
// ldr rd, [pc, #offset]
extern const Instr kLdrPCMask;
extern const Instr kLdrPCPattern;
// blxcc rm
extern const Instr kBlxRegMask;

extern const Instr kBlxRegPattern;

extern const Instr kMovMvnMask;
extern const Instr kMovMvnPattern;
extern const Instr kMovMvnFlip;
extern const Instr kMovLeaveCCMask;
extern const Instr kMovLeaveCCPattern;
extern const Instr kMovwMask;
extern const Instr kMovwPattern;
extern const Instr kMovwLeaveCCFlip;
extern const Instr kCmpCmnMask;
extern const Instr kCmpCmnPattern;
extern const Instr kCmpCmnFlip;
extern const Instr kAddSubFlip;
extern const Instr kAndBicFlip;

// A mask for the Rd register for push, pop, ldr, str instructions.
extern const Instr kLdrRegFpOffsetPattern;

extern const Instr kStrRegFpOffsetPattern;

extern const Instr kLdrRegFpNegOffsetPattern;

extern const Instr kStrRegFpNegOffsetPattern;

extern const Instr kLdrStrInstrTypeMask;
extern const Instr kLdrStrInstrArgumentMask;
extern const Instr kLdrStrOffsetMask;


// -----------------------------------------------------------------------------
// Instruction abstraction.

// The class Instruction enables access to individual fields defined in the ARM
485
// architecture instruction set encoding as described in figure A3-1.
486
// Note that the Assembler uses typedef int32_t Instr.
487 488 489 490 491
//
// Example: Test whether the instruction at ptr does set the condition code
// bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
492 493
//   Instruction* instr = Instruction::At(ptr);
//   int type = instr->TypeValue();
494 495 496
//   return ((type == 0) || (type == 1)) && instr->HasS();
// }
//
497
class Instruction {
498 499 500
 public:
  enum {
    kInstrSize = 4,
501
    kInstrSizeLog2 = 2,
502 503 504
    kPCReadOffset = 8
  };

505 506 507 508 509 510 511 512 513 514
  // Helper macro to define static accessors.
  // We use the cast to char* trick to bypass the strict anti-aliasing rules.
  #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
    static inline return_type Name(Instr instr) {                              \
      char* temp = reinterpret_cast<char*>(&instr);                            \
      return reinterpret_cast<Instruction*>(temp)->Name();                     \
    }

  #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)

515
  // Get the raw instruction bits.
516 517
  inline Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
518 519
  }

520
  // Set the raw instruction bits to value.
521 522
  inline void SetInstructionBits(Instr value) {
    *reinterpret_cast<Instr*>(this) = value;
523 524
  }

525
  // Read one particular bit out of the instruction bits.
526 527 528 529
  inline int Bit(int nr) const {
    return (InstructionBits() >> nr) & 1;
  }

530
  // Read a bit field's value out of the instruction bits.
531 532 533 534
  inline int Bits(int hi, int lo) const {
    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
  }

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
  // Read a bit field out of the instruction bits.
  inline int BitField(int hi, int lo) const {
    return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
  }

  // Static support.

  // Read one particular bit out of the instruction bits.
  static inline int Bit(Instr instr, int nr) {
    return (instr >> nr) & 1;
  }

  // Read the value of a bit field out of the instruction bits.
  static inline int Bits(Instr instr, int hi, int lo) {
    return (instr >> lo) & ((2 << (hi - lo)) - 1);
  }


  // Read a bit field out of the instruction bits.
  static inline int BitField(Instr instr, int hi, int lo) {
    return instr & (((2 << (hi - lo)) - 1) << lo);
  }

558 559

  // Accessors for the different named fields used in the ARM encoding.
560
  // The naming of these accessor corresponds to figure A3-1.
561 562 563 564 565 566 567 568 569 570 571
  //
  // Two kind of accessors are declared:
  // - <Name>Field() will return the raw field, ie the field's bits at their
  //   original place in the instruction encoding.
  //   eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002
  //   ConditionField(instr) will return 0xC0000000.
  // - <Name>Value() will return the field value, shifted back to bit 0.
  //   eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002
  //   ConditionField(instr) will return 0xC.


572
  // Generally applicable fields
573
  inline Condition ConditionValue() const {
574 575
    return static_cast<Condition>(Bits(31, 28));
  }
576 577 578 579 580
  inline Condition ConditionField() const {
    return static_cast<Condition>(BitField(31, 28));
  }
  DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
  DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
581

582
  inline int TypeValue() const { return Bits(27, 25); }
583

584 585 586 587 588
  inline int RnValue() const { return Bits(19, 16); }
  inline int RdValue() const { return Bits(15, 12); }
  DECLARE_STATIC_ACCESSOR(RdValue);

  inline int CoprocessorValue() const { return Bits(11, 8); }
589 590
  // Support for VFP.
  // Vn(19-16) | Vd(15-12) |  Vm(3-0)
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
  inline int VnValue() const { return Bits(19, 16); }
  inline int VmValue() const { return Bits(3, 0); }
  inline int VdValue() const { return Bits(15, 12); }
  inline int NValue() const { return Bit(7); }
  inline int MValue() const { return Bit(5); }
  inline int DValue() const { return Bit(22); }
  inline int RtValue() const { return Bits(15, 12); }
  inline int PValue() const { return Bit(24); }
  inline int UValue() const { return Bit(23); }
  inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
  inline int Opc2Value() const { return Bits(19, 16); }
  inline int Opc3Value() const { return Bits(7, 6); }
  inline int SzValue() const { return Bit(8); }
  inline int VLValue() const { return Bit(20); }
  inline int VCValue() const { return Bit(8); }
  inline int VAValue() const { return Bits(23, 21); }
  inline int VBValue() const { return Bits(6, 5); }
  inline int VFPNRegValue(VFPRegPrecision pre) {
    return VFPGlueRegValue(pre, 16, 7);
610
  }
611 612
  inline int VFPMRegValue(VFPRegPrecision pre) {
    return VFPGlueRegValue(pre, 0, 5);
613
  }
614 615
  inline int VFPDRegValue(VFPRegPrecision pre) {
    return VFPGlueRegValue(pre, 12, 22);
616
  }
617

618
  // Fields used in Data processing instructions
619
  inline int OpcodeValue() const {
620 621
    return static_cast<Opcode>(Bits(24, 21));
  }
622 623 624 625
  inline Opcode OpcodeField() const {
    return static_cast<Opcode>(BitField(24, 21));
  }
  inline int SValue() const { return Bit(20); }
626
    // with register
627 628 629 630 631 632 633 634
  inline int RmValue() const { return Bits(3, 0); }
  inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
  inline ShiftOp ShiftField() const {
    return static_cast<ShiftOp>(BitField(6, 5));
  }
  inline int RegShiftValue() const { return Bit(4); }
  inline int RsValue() const { return Bits(11, 8); }
  inline int ShiftAmountValue() const { return Bits(11, 7); }
635
    // with immediate
636 637 638 639 640
  inline int RotateValue() const { return Bits(11, 8); }
  inline int Immed8Value() const { return Bits(7, 0); }
  inline int Immed4Value() const { return Bits(19, 16); }
  inline int ImmedMovwMovtValue() const {
      return Immed4Value() << 12 | Offset12Value(); }
641 642

  // Fields used in Load/Store instructions
643 644 645 646 647
  inline int PUValue() const { return Bits(24, 23); }
  inline int PUField() const { return BitField(24, 23); }
  inline int  BValue() const { return Bit(22); }
  inline int  WValue() const { return Bit(21); }
  inline int  LValue() const { return Bit(20); }
648 649
    // with register uses same fields as Data processing instructions above
    // with immediate
650
  inline int Offset12Value() const { return Bits(11, 0); }
651
    // multiple
652
  inline int RlistValue() const { return Bits(15, 0); }
653
    // extra loads and stores
654 655 656 657
  inline int SignValue() const { return Bit(6); }
  inline int HValue() const { return Bit(5); }
  inline int ImmedHValue() const { return Bits(11, 8); }
  inline int ImmedLValue() const { return Bits(3, 0); }
658 659

  // Fields used in Branch instructions
660 661
  inline int LinkValue() const { return Bit(24); }
  inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
662 663

  // Fields used in Software interrupt instructions
664
  inline SoftwareInterruptCodes SvcValue() const {
665 666 667 668 669 670 671
    return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
  }

  // Test for special encodings of type 0 instructions (extra loads and stores,
  // as well as multiplications).
  inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }

672 673 674 675 676 677
  // Test for miscellaneous instructions encodings of type 0 instructions.
  inline bool IsMiscType0() const { return (Bit(24) == 1)
                                           && (Bit(23) == 0)
                                           && (Bit(20) == 0)
                                           && ((Bit(7) == 0)); }

678 679
  // Test for a stop instruction.
  inline bool IsStop() const {
680
    return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
681 682
  }

683
  // Special accessors that test for existence of a value.
684 685 686 687 688 689 690 691
  inline bool HasS()    const { return SValue() == 1; }
  inline bool HasB()    const { return BValue() == 1; }
  inline bool HasW()    const { return WValue() == 1; }
  inline bool HasL()    const { return LValue() == 1; }
  inline bool HasU()    const { return UValue() == 1; }
  inline bool HasSign() const { return SignValue() == 1; }
  inline bool HasH()    const { return HValue() == 1; }
  inline bool HasLink() const { return LinkValue() == 1; }
692

693 694 695
  // Decoding the double immediate in the vmov instruction.
  double DoubleImmedVmov() const;

696 697
  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
698 699 700 701 702 703
  // to allocate or create instances of class Instruction.
  // Use the At(pc) function to create references to Instruction.
  static Instruction* At(byte* pc) {
    return reinterpret_cast<Instruction*>(pc);
  }

704 705

 private:
706 707 708 709
  // Join split register codes, depending on single or double precision.
  // four_bit is the position of the least-significant bit of the four
  // bit specifier. one_bit is the position of the additional single bit
  // specifier.
710
  inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
711 712 713 714 715 716
    if (pre == kSinglePrecision) {
      return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
    }
    return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
  }

717 718
  // We need to prevent the creation of instances of class Instruction.
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
719 720 721
};


722 723 724 725 726 727 728 729 730 731 732
// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int reg;
733
    const char* name;
734 735 736 737 738 739 740
  };

 private:
  static const char* names_[kNumRegisters];
  static const RegisterAlias aliases_[];
};

741 742 743 744
// Helper functions for converting between VFP register numbers and names.
class VFPRegisters {
 public:
  // Return the name of the register.
745 746 747 748 749 750
  static const char* Name(int reg, bool is_double);

  // Lookup the register number for the name provided.
  // Set flag pointed by is_double to true if register
  // is double-precision.
  static int Number(const char* name, bool* is_double);
751 752 753 754

 private:
  static const char* names_[kNumVFPRegisters];
};
755 756


757
} }  // namespace v8::internal
758

759
#endif  // V8_ARM_CONSTANTS_ARM_H_