Commit 8c767e02 authored by erik.corry@gmail.com's avatar erik.corry@gmail.com

ARM: Add support for the VFP mov literal instruction and mov

between single VFP registers.  Math.pow implementation has
been updated with the new instructions.  This is a commit
of http://codereview.chromium.org/2813046/show for Rodolph
Perfetta.


git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5037 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 068e0bc0
......@@ -1801,11 +1801,119 @@ void Assembler::vstr(const DwVfpRegister src,
}
static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
uint64_t i;
memcpy(&i, &d, 8);
*lo = i & 0xffffffff;
*hi = i >> 32;
}
// Only works for little endian floating point formats.
// We don't support VFP on the mixed endian floating point platform.
static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
// VMOV can accept an immediate of the form:
//
// +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
//
// The immediate is encoded using an 8-bit quantity, comprised of two
// 4-bit fields. For an 8-bit immediate of the form:
//
// [abcdefgh]
//
// where a is the MSB and h is the LSB, an immediate 64-bit double can be
// created of the form:
//
// [aBbbbbbb,bbcdefgh,00000000,00000000,
// 00000000,00000000,00000000,00000000]
//
// where B = ~b.
//
uint32_t lo, hi;
DoubleAsTwoUInt32(d, &lo, &hi);
// The most obvious constraint is the long block of zeroes.
if ((lo != 0) || ((hi & 0xffff) != 0)) {
return false;
}
// Bits 62:55 must be all clear or all set.
if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
return false;
}
// Bit 63 must be NOT bit 62.
if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
return false;
}
// Create the encoded immediate in the form:
// [00000000,0000abcd,00000000,0000efgh]
*encoding = (hi >> 16) & 0xf; // Low nybble.
*encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble.
*encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble.
return true;
}
void Assembler::vmov(const DwVfpRegister dst,
double imm,
const Condition cond) {
// Dd = immediate
// Instruction details available in ARM DDI 0406B, A8-640.
ASSERT(CpuFeatures::IsEnabled(VFP3));
uint32_t enc;
if (FitsVMOVDoubleImmediate(imm, &enc)) {
// The double can be encoded in the instruction.
emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc);
} else {
// Synthesise the double from ARM immediates. This could be implemented
// using vldr from a constant pool.
uint32_t lo, hi;
DoubleAsTwoUInt32(imm, &lo, &hi);
if (lo == hi) {
// If the lo and hi parts of the double are equal, the literal is easier
// to create. This is the case with 0.0.
mov(ip, Operand(lo));
vmov(dst, ip, ip);
} else {
// Move the low part of the double into the lower of the corresponsing S
// registers of D register dst.
mov(ip, Operand(lo));
vmov(dst.low(), ip, cond);
// Move the high part of the double into the higher of the corresponsing S
// registers of D register dst.
mov(ip, Operand(hi));
vmov(dst.high(), ip, cond);
}
}
}
void Assembler::vmov(const SwVfpRegister dst,
const SwVfpRegister src,
const Condition cond) {
// Sd = Sm
// Instruction details available in ARM DDI 0406B, A8-642.
ASSERT(CpuFeatures::IsEnabled(VFP3));
emit(cond | 0xE*B24 | 0xB*B20 |
dst.code()*B12 | 0x5*B9 | B6 | src.code());
}
void Assembler::vmov(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
// Dd = Dm
// Instruction details available in ARM DDI 0406B, A8-642.
ASSERT(CpuFeatures::IsEnabled(VFP3));
emit(cond | 0xE*B24 | 0xB*B20 |
dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code());
}
......
......@@ -130,6 +130,20 @@ struct DwVfpRegister {
// Supporting d0 to d15, can be later extended to d31.
bool is_valid() const { return 0 <= code_ && code_ < 16; }
bool is(DwVfpRegister reg) const { return code_ == reg.code_; }
SwVfpRegister low() const {
SwVfpRegister reg;
reg.code_ = code_ * 2;
ASSERT(reg.is_valid());
return reg;
}
SwVfpRegister high() const {
SwVfpRegister reg;
reg.code_ = (code_ * 2) + 1;
ASSERT(reg.is_valid());
return reg;
}
int code() const {
ASSERT(is_valid());
return code_;
......@@ -931,6 +945,12 @@ class Assembler : public Malloced {
int offset, // Offset must be a multiple of 4.
const Condition cond = al);
void vmov(const DwVfpRegister dst,
double imm,
const Condition cond = al);
void vmov(const SwVfpRegister dst,
const SwVfpRegister src,
const Condition cond = al);
void vmov(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond = al);
......
......@@ -4343,9 +4343,7 @@ void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
__ bind(&powi);
// Load 1.0 into d0.
__ mov(scratch2, Operand(0x3ff00000));
__ mov(scratch1, Operand(0));
__ vmov(d0, scratch1, scratch2);
__ vmov(d0, 1.0);
// Get the absolute untagged value of the exponent and use that for the
// calculation.
......@@ -4405,9 +4403,7 @@ void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
AVOID_NANS_AND_INFINITIES);
// Load 1.0 into d2.
__ mov(scratch2, Operand(0x3ff00000));
__ mov(scratch1, Operand(0));
__ vmov(d2, scratch1, scratch2);
__ vmov(d2, 1.0);
// Calculate the reciprocal of the square root. 1/sqrt(x) = sqrt(1/x).
__ vdiv(d0, d2, d0);
......
......@@ -37,6 +37,26 @@ namespace arm {
namespace v8i = v8::internal;
double Instr::DoubleImmedVmov() const {
// Reconstruct a double from the immediate encoded in the vmov instruction.
//
// instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh]
// double: [aBbbbbbb,bbcdefgh,00000000,00000000,
// 00000000,00000000,00000000,00000000]
//
// where B = ~b. Only the high 16 bits are affected.
uint64_t high16;
high16 = (Bits(17, 16) << 4) | Bits(3, 0); // xxxxxxxx,xxcdefgh.
high16 |= (0xff * Bit(18)) << 6; // xxbbbbbb,bbxxxxxx.
high16 |= (Bit(18) ^ 1) << 14; // xBxxxxxx,xxxxxxxx.
high16 |= Bit(19) << 15; // axxxxxxx,xxxxxxxx.
uint64_t imm = high16 << 48;
double d;
memcpy(&d, &imm, 8);
return d;
}
// These register names are defined in a way to match the native disassembler
// formatting. See for example the command "objdump -d <binary file>".
......
......@@ -333,6 +333,9 @@ class Instr {
inline bool HasH() const { return HField() == 1; }
inline bool HasLink() const { return LinkField() == 1; }
// Decoding the double immediate in the vmov instruction.
double DoubleImmedVmov() const;
// Instructions are read of out a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instr.
......
......@@ -412,6 +412,12 @@ int Decoder::FormatOption(Instr* instr, const char* format) {
PrintCondition(instr);
return 4;
}
case 'd': { // 'd: vmov double immediate.
double d = instr->DoubleImmedVmov();
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
"#%g", d);
return 1;
}
case 'f': { // 'f: bitfield instructions - v7 and above.
uint32_t lsbit = instr->Bits(11, 7);
uint32_t width = instr->Bits(20, 16) + 1;
......@@ -1052,7 +1058,7 @@ void Decoder::DecodeTypeVFP(Instr* instr) {
if (instr->SzField() == 0x1) {
Format(instr, "vmov.f64'cond 'Dd, 'Dm");
} else {
Unknown(instr); // Not used by V8.
Format(instr, "vmov.f32'cond 'Sd, 'Sm");
}
} else if ((instr->Opc2Field() == 0x7) && (instr->Opc3Field() == 0x3)) {
DecodeVCVTBetweenDoubleAndSingle(instr);
......@@ -1066,6 +1072,12 @@ void Decoder::DecodeTypeVFP(Instr* instr) {
DecodeVCMP(instr);
} else if (((instr->Opc2Field() == 0x1)) && (instr->Opc3Field() == 0x3)) {
Format(instr, "vsqrt.f64'cond 'Dd, 'Dm");
} else if (instr->Opc3Field() == 0x0) {
if (instr->SzField() == 0x1) {
Format(instr, "vmov.f64'cond 'Dd, 'd");
} else {
Unknown(instr); // Not used by V8.
}
} else {
Unknown(instr); // Not used by V8.
}
......
......@@ -2281,7 +2281,7 @@ void Simulator::DecodeTypeVFP(Instr* instr) {
if (instr->SzField() == 0x1) {
set_d_register_from_double(vd, get_double_from_d_register(vm));
} else {
UNREACHABLE(); // Not used by V8.
set_s_register_from_float(vd, get_float_from_s_register(vm));
}
} else if ((instr->Opc2Field() == 0x7) && (instr->Opc3Field() == 0x3)) {
DecodeVCVTBetweenDoubleAndSingle(instr);
......@@ -2298,6 +2298,13 @@ void Simulator::DecodeTypeVFP(Instr* instr) {
double dm_value = get_double_from_d_register(vm);
double dd_value = sqrt(dm_value);
set_d_register_from_double(vd, dd_value);
} else if (instr->Opc3Field() == 0x0) {
// vmov immediate.
if (instr->SzField() == 0x1) {
set_d_register_from_double(vd, instr->DoubleImmedVmov());
} else {
UNREACHABLE(); // Not used by v8.
}
} else {
UNREACHABLE(); // Not used by V8.
}
......
......@@ -437,6 +437,11 @@ TEST(Vfp) {
"eeb10bc0 vsqrt.f64 d0, d0");
COMPARE(vsqrt(d2, d3, ne),
"1eb12bc3 vsqrt.f64ne d2, d3");
COMPARE(vmov(d0, 1.0),
"eeb70b00 vmov.f64 d0, #1");
COMPARE(vmov(d2, -13.0),
"eeba2b0a vmov.f64 d2, #-13");
}
VERIFY_RUN();
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment