assembler-arm.h 48.2 KB
Newer Older
1 2 3
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
4
// Redistribution and use in source and binary forms, with or without
5 6 7 8 9
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
10
//
11 12 13 14 15 16 17 18
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
19 20 21
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 23 24 25 26 27 28 29 30 31 32
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

33 34
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
35
// Copyright 2012 the V8 project authors. All rights reserved.
36 37 38 39

// A light-weight ARM Assembler
// Generates user mode instructions for the ARM architecture up to version 5

40 41
#ifndef V8_ARM_ASSEMBLER_ARM_H_
#define V8_ARM_ASSEMBLER_ARM_H_
lrn@chromium.org's avatar
lrn@chromium.org committed
42
#include <stdio.h>
43
#include "assembler.h"
44
#include "constants-arm.h"
45
#include "serialize.h"
46

47 48
namespace v8 {
namespace internal {
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
70

71 72
// Core register
struct Register {
73 74
  static const int kNumRegisters = 16;
  static const int kNumAllocatableRegisters = 8;
75
  static const int kSizeInBytes = 4;
76 77

  static int ToAllocationIndex(Register reg) {
78
    ASSERT(reg.code() < kNumAllocatableRegisters);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    return reg.code();
  }

  static Register FromAllocationIndex(int index) {
    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
    return from_code(index);
  }

  static const char* AllocationIndexToString(int index) {
    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
    const char* const names[] = {
      "r0",
      "r1",
      "r2",
      "r3",
      "r4",
      "r5",
      "r6",
      "r7",
    };
    return names[index];
  }

  static Register from_code(int code) {
    Register r = { code };
    return r;
  }

  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
108 109
  bool is(Register reg) const { return code_ == reg.code_; }
  int code() const {
110 111 112
    ASSERT(is_valid());
    return code_;
  }
113
  int bit() const {
114 115 116 117
    ASSERT(is_valid());
    return 1 << code_;
  }

118 119 120 121 122
  void set_code(int code) {
    code_ = code;
    ASSERT(is_valid());
  }

123
  // Unfortunately we can't make this private in a struct.
124 125 126
  int code_;
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
// These constants are used in several locations, including static initializers
const int kRegister_no_reg_Code = -1;
const int kRegister_r0_Code = 0;
const int kRegister_r1_Code = 1;
const int kRegister_r2_Code = 2;
const int kRegister_r3_Code = 3;
const int kRegister_r4_Code = 4;
const int kRegister_r5_Code = 5;
const int kRegister_r6_Code = 6;
const int kRegister_r7_Code = 7;
const int kRegister_r8_Code = 8;
const int kRegister_r9_Code = 9;
const int kRegister_r10_Code = 10;
const int kRegister_fp_Code = 11;
const int kRegister_ip_Code = 12;
const int kRegister_sp_Code = 13;
const int kRegister_lr_Code = 14;
const int kRegister_pc_Code = 15;

const Register no_reg = { kRegister_no_reg_Code };

const Register r0  = { kRegister_r0_Code };
const Register r1  = { kRegister_r1_Code };
const Register r2  = { kRegister_r2_Code };
const Register r3  = { kRegister_r3_Code };
const Register r4  = { kRegister_r4_Code };
const Register r5  = { kRegister_r5_Code };
const Register r6  = { kRegister_r6_Code };
const Register r7  = { kRegister_r7_Code };
// Used as context register.
const Register r8  = { kRegister_r8_Code };
// Used as lithium codegen scratch register.
const Register r9  = { kRegister_r9_Code };
// Used as roots register.
const Register r10 = { kRegister_r10_Code };
const Register fp  = { kRegister_fp_Code };
const Register ip  = { kRegister_ip_Code };
const Register sp  = { kRegister_sp_Code };
const Register lr  = { kRegister_lr_Code };
const Register pc  = { kRegister_pc_Code };

168 169 170

// Single word VFP register.
struct SwVfpRegister {
171 172 173
  bool is_valid() const { return 0 <= code_ && code_ < 32; }
  bool is(SwVfpRegister reg) const { return code_ == reg.code_; }
  int code() const {
174 175 176
    ASSERT(is_valid());
    return code_;
  }
177
  int bit() const {
178 179 180
    ASSERT(is_valid());
    return 1 << code_;
  }
181
  void split_code(int* vm, int* m) const {
182 183 184 185
    ASSERT(is_valid());
    *m = code_ & 0x1;
    *vm = code_ >> 1;
  }
186 187 188 189 190 191 192

  int code_;
};


// Double word VFP register.
struct DwVfpRegister {
193
  static const int kNumRegisters = 16;
194 195 196 197 198 199 200
  // A few double registers are reserved: one as a scratch register and one to
  // hold 0.0, that does not fit in the immediate field of vmov instructions.
  //  d14: 0.0
  //  d15: scratch register.
  static const int kNumReservedRegisters = 2;
  static const int kNumAllocatableRegisters = kNumRegisters -
      kNumReservedRegisters;
201

202
  inline static int ToAllocationIndex(DwVfpRegister reg);
203 204 205

  static DwVfpRegister FromAllocationIndex(int index) {
    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
206
    return from_code(index);
207 208 209 210 211
  }

  static const char* AllocationIndexToString(int index) {
    ASSERT(index >= 0 && index < kNumAllocatableRegisters);
    const char* const names[] = {
212
      "d0",
213
      "d1",
214 215 216 217 218 219 220 221 222 223 224
      "d2",
      "d3",
      "d4",
      "d5",
      "d6",
      "d7",
      "d8",
      "d9",
      "d10",
      "d11",
      "d12",
225
      "d13"
226 227 228 229 230 231 232 233 234
    };
    return names[index];
  }

  static DwVfpRegister from_code(int code) {
    DwVfpRegister r = { code };
    return r;
  }

235
  // Supporting d0 to d15, can be later extended to d31.
236 237 238
  bool is_valid() const { return 0 <= code_ && code_ < 16; }
  bool is(DwVfpRegister reg) const { return code_ == reg.code_; }
  SwVfpRegister low() const {
239 240 241 242 243 244
    SwVfpRegister reg;
    reg.code_ = code_ * 2;

    ASSERT(reg.is_valid());
    return reg;
  }
245
  SwVfpRegister high() const {
246 247 248 249 250 251
    SwVfpRegister reg;
    reg.code_ = (code_ * 2) + 1;

    ASSERT(reg.is_valid());
    return reg;
  }
252
  int code() const {
253 254 255
    ASSERT(is_valid());
    return code_;
  }
256
  int bit() const {
257 258 259
    ASSERT(is_valid());
    return 1 << code_;
  }
260
  void split_code(int* vm, int* m) const {
261 262 263 264
    ASSERT(is_valid());
    *m = (code_ & 0x10) >> 4;
    *vm = code_ & 0x0F;
  }
265 266 267 268 269

  int code_;
};


270 271 272
typedef DwVfpRegister DoubleRegister;


273
// Support for the VFP registers s0 to s31 (d0 to d15).
274
// Note that "s(N):s(N+1)" is the same as "d(N/2)".
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
const SwVfpRegister s0  = {  0 };
const SwVfpRegister s1  = {  1 };
const SwVfpRegister s2  = {  2 };
const SwVfpRegister s3  = {  3 };
const SwVfpRegister s4  = {  4 };
const SwVfpRegister s5  = {  5 };
const SwVfpRegister s6  = {  6 };
const SwVfpRegister s7  = {  7 };
const SwVfpRegister s8  = {  8 };
const SwVfpRegister s9  = {  9 };
const SwVfpRegister s10 = { 10 };
const SwVfpRegister s11 = { 11 };
const SwVfpRegister s12 = { 12 };
const SwVfpRegister s13 = { 13 };
const SwVfpRegister s14 = { 14 };
const SwVfpRegister s15 = { 15 };
const SwVfpRegister s16 = { 16 };
const SwVfpRegister s17 = { 17 };
const SwVfpRegister s18 = { 18 };
const SwVfpRegister s19 = { 19 };
const SwVfpRegister s20 = { 20 };
const SwVfpRegister s21 = { 21 };
const SwVfpRegister s22 = { 22 };
const SwVfpRegister s23 = { 23 };
const SwVfpRegister s24 = { 24 };
const SwVfpRegister s25 = { 25 };
const SwVfpRegister s26 = { 26 };
const SwVfpRegister s27 = { 27 };
const SwVfpRegister s28 = { 28 };
const SwVfpRegister s29 = { 29 };
const SwVfpRegister s30 = { 30 };
const SwVfpRegister s31 = { 31 };

308
const DwVfpRegister no_dreg = { -1 };
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
const DwVfpRegister d0  = {  0 };
const DwVfpRegister d1  = {  1 };
const DwVfpRegister d2  = {  2 };
const DwVfpRegister d3  = {  3 };
const DwVfpRegister d4  = {  4 };
const DwVfpRegister d5  = {  5 };
const DwVfpRegister d6  = {  6 };
const DwVfpRegister d7  = {  7 };
const DwVfpRegister d8  = {  8 };
const DwVfpRegister d9  = {  9 };
const DwVfpRegister d10 = { 10 };
const DwVfpRegister d11 = { 11 };
const DwVfpRegister d12 = { 12 };
const DwVfpRegister d13 = { 13 };
const DwVfpRegister d14 = { 14 };
const DwVfpRegister d15 = { 15 };
325

326 327 328 329 330 331 332
// Aliases for double registers.  Defined using #define instead of
// "static const DwVfpRegister&" because Clang complains otherwise when a
// compilation unit that includes this header doesn't use the variables.
#define kFirstCalleeSavedDoubleReg d8
#define kLastCalleeSavedDoubleReg d15
#define kDoubleRegZero d14
#define kScratchDoubleReg d15
333

334 335 336

// Coprocessor register
struct CRegister {
337 338 339
  bool is_valid() const { return 0 <= code_ && code_ < 16; }
  bool is(CRegister creg) const { return code_ == creg.code_; }
  int code() const {
340 341 342
    ASSERT(is_valid());
    return code_;
  }
343
  int bit() const {
344 345 346 347
    ASSERT(is_valid());
    return 1 << code_;
  }

348
  // Unfortunately we can't make this private in a struct.
349 350 351 352
  int code_;
};


353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
const CRegister no_creg = { -1 };

const CRegister cr0  = {  0 };
const CRegister cr1  = {  1 };
const CRegister cr2  = {  2 };
const CRegister cr3  = {  3 };
const CRegister cr4  = {  4 };
const CRegister cr5  = {  5 };
const CRegister cr6  = {  6 };
const CRegister cr7  = {  7 };
const CRegister cr8  = {  8 };
const CRegister cr9  = {  9 };
const CRegister cr10 = { 10 };
const CRegister cr11 = { 11 };
const CRegister cr12 = { 12 };
const CRegister cr13 = { 13 };
const CRegister cr14 = { 14 };
const CRegister cr15 = { 15 };
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400


// Coprocessor number
enum Coprocessor {
  p0  = 0,
  p1  = 1,
  p2  = 2,
  p3  = 3,
  p4  = 4,
  p5  = 5,
  p6  = 6,
  p7  = 7,
  p8  = 8,
  p9  = 9,
  p10 = 10,
  p11 = 11,
  p12 = 12,
  p13 = 13,
  p14 = 14,
  p15 = 15
};


// -----------------------------------------------------------------------------
// Machine instruction Operands

// Class Operand represents a shifter operand in data processing instructions
class Operand BASE_EMBEDDED {
 public:
  // immediate
401 402
  INLINE(explicit Operand(int32_t immediate,
         RelocInfo::Mode rmode = RelocInfo::NONE));
403 404 405
  INLINE(static Operand Zero()) {
    return Operand(static_cast<int32_t>(0));
  }
406 407 408 409 410 411 412 413 414 415 416 417 418
  INLINE(explicit Operand(const ExternalReference& f));
  explicit Operand(Handle<Object> handle);
  INLINE(explicit Operand(Smi* value));

  // rm
  INLINE(explicit Operand(Register rm));

  // rm <shift_op> shift_imm
  explicit Operand(Register rm, ShiftOp shift_op, int shift_imm);

  // rm <shift_op> rs
  explicit Operand(Register rm, ShiftOp shift_op, Register rs);

419 420 421
  // Return true if this is a register operand.
  INLINE(bool is_reg() const);

422
  // Return true if this operand fits in one instruction so that no
423 424 425 426 427
  // 2-instruction solution with a load into the ip register is necessary. If
  // the instruction this operand is used for is a MOV or MVN instruction the
  // actual instruction to use is required for this calculation. For other
  // instructions instr is ignored.
  bool is_single_instruction(Instr instr = 0) const;
428
  bool must_use_constant_pool() const;
429 430 431 432 433 434

  inline int32_t immediate() const {
    ASSERT(!rm_.is_valid());
    return imm32_;
  }

435
  Register rm() const { return rm_; }
436 437
  Register rs() const { return rs_; }
  ShiftOp shift_op() const { return shift_op_; }
438

439 440 441 442 443 444
 private:
  Register rm_;
  Register rs_;
  ShiftOp shift_op_;
  int shift_imm_;  // valid if rm_ != no_reg && rs_ == no_reg
  int32_t imm32_;  // valid if rm_ == no_reg
445
  RelocInfo::Mode rmode_;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

  friend class Assembler;
};


// Class MemOperand represents a memory operand in load and store instructions
class MemOperand BASE_EMBEDDED {
 public:
  // [rn +/- offset]      Offset/NegOffset
  // [rn +/- offset]!     PreIndex/NegPreIndex
  // [rn], +/- offset     PostIndex/NegPostIndex
  // offset is any signed 32-bit value; offset is first loaded to register ip if
  // it does not fit the addressing mode (12-bit unsigned and sign bit)
  explicit MemOperand(Register rn, int32_t offset = 0, AddrMode am = Offset);

  // [rn +/- rm]          Offset/NegOffset
  // [rn +/- rm]!         PreIndex/NegPreIndex
  // [rn], +/- rm         PostIndex/NegPostIndex
  explicit MemOperand(Register rn, Register rm, AddrMode am = Offset);

  // [rn +/- rm <shift_op> shift_imm]      Offset/NegOffset
  // [rn +/- rm <shift_op> shift_imm]!     PreIndex/NegPreIndex
  // [rn], +/- rm <shift_op> shift_imm     PostIndex/NegPostIndex
  explicit MemOperand(Register rn, Register rm,
                      ShiftOp shift_op, int shift_imm, AddrMode am = Offset);

472 473 474 475 476
  void set_offset(int32_t offset) {
      ASSERT(rm_.is(no_reg));
      offset_ = offset;
  }

477
  uint32_t offset() const {
478 479 480 481
      ASSERT(rm_.is(no_reg));
      return offset_;
  }

482 483
  Register rn() const { return rn_; }
  Register rm() const { return rm_; }
484
  AddrMode am() const { return am_; }
485

486 487 488 489
  bool OffsetIsUint12Encodable() const {
    return offset_ >= 0 ? is_uint12(offset_) : is_uint12(-offset_);
  }

490 491 492 493 494 495 496 497 498 499 500
 private:
  Register rn_;  // base
  Register rm_;  // register offset
  int32_t offset_;  // valid if rm_ == no_reg
  ShiftOp shift_op_;
  int shift_imm_;  // valid if rm_ != no_reg && rs_ == no_reg
  AddrMode am_;  // bits P, U, and W

  friend class Assembler;
};

501 502
// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a Scope before use.
503
class CpuFeatures : public AllStatic {
504 505 506
 public:
  // Detect features of the target CPU. Set safe defaults if the serializer
  // is enabled (snapshots must be portable).
507
  static void Probe();
508

509
  // Check whether a feature is supported by the target CPU.
510 511
  static bool IsSupported(CpuFeature f) {
    ASSERT(initialized_);
512
    if (f == VFP3 && !FLAG_enable_vfp3) return false;
513
    return (supported_ & (1u << f)) != 0;
514
  }
515

516
#ifdef DEBUG
517
  // Check whether a feature is currently enabled.
518 519 520 521 522 523 524 525 526 527
  static bool IsEnabled(CpuFeature f) {
    ASSERT(initialized_);
    Isolate* isolate = Isolate::UncheckedCurrent();
    if (isolate == NULL) {
      // When no isolate is available, work as if we're running in
      // release mode.
      return IsSupported(f);
    }
    unsigned enabled = static_cast<unsigned>(isolate->enabled_cpu_features());
    return (enabled & (1u << f)) != 0;
528
  }
529
#endif
530

531 532 533
  // Enable a specified feature within a scope.
  class Scope BASE_EMBEDDED {
#ifdef DEBUG
534

535
   public:
536 537 538
    explicit Scope(CpuFeature f) {
      unsigned mask = 1u << f;
      ASSERT(CpuFeatures::IsSupported(f));
539
      ASSERT(!Serializer::enabled() ||
540 541 542 543 544 545 546
             (CpuFeatures::found_by_runtime_probing_ & mask) == 0);
      isolate_ = Isolate::UncheckedCurrent();
      old_enabled_ = 0;
      if (isolate_ != NULL) {
        old_enabled_ = static_cast<unsigned>(isolate_->enabled_cpu_features());
        isolate_->set_enabled_cpu_features(old_enabled_ | mask);
      }
547 548
    }
    ~Scope() {
549 550 551 552
      ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_);
      if (isolate_ != NULL) {
        isolate_->set_enabled_cpu_features(old_enabled_);
      }
553
    }
554

555
   private:
556
    Isolate* isolate_;
557
    unsigned old_enabled_;
558
#else
559

560
   public:
561
    explicit Scope(CpuFeature f) {}
562 563
#endif
  };
564

565 566 567 568 569 570 571 572
  class TryForceFeatureScope BASE_EMBEDDED {
   public:
    explicit TryForceFeatureScope(CpuFeature f)
        : old_supported_(CpuFeatures::supported_) {
      if (CanForce()) {
        CpuFeatures::supported_ |= (1u << f);
      }
    }
573

574 575 576 577 578
    ~TryForceFeatureScope() {
      if (CanForce()) {
        CpuFeatures::supported_ = old_supported_;
      }
    }
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
   private:
    static bool CanForce() {
      // It's only safe to temporarily force support of CPU features
      // when there's only a single isolate, which is guaranteed when
      // the serializer is enabled.
      return Serializer::enabled();
    }

    const unsigned old_supported_;
  };

 private:
#ifdef DEBUG
  static bool initialized_;
#endif
  static unsigned supported_;
  static unsigned found_by_runtime_probing_;
597 598

  DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
599 600
};

601

602
extern const Instr kMovLrPc;
603
extern const Instr kLdrPCMask;
604
extern const Instr kLdrPCPattern;
605 606
extern const Instr kBlxRegMask;
extern const Instr kBlxRegPattern;
607
extern const Instr kBlxIp;
608

609 610 611 612
extern const Instr kMovMvnMask;
extern const Instr kMovMvnPattern;
extern const Instr kMovMvnFlip;

613 614 615 616 617 618
extern const Instr kMovLeaveCCMask;
extern const Instr kMovLeaveCCPattern;
extern const Instr kMovwMask;
extern const Instr kMovwPattern;
extern const Instr kMovwLeaveCCFlip;

619 620 621 622 623
extern const Instr kCmpCmnMask;
extern const Instr kCmpCmnPattern;
extern const Instr kCmpCmnFlip;
extern const Instr kAddSubFlip;
extern const Instr kAndBicFlip;
624

625 626


627
class Assembler : public AssemblerBase {
628 629 630 631 632 633 634 635 636 637 638 639 640 641
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is NULL, the assembler allocates and grows its own
  // buffer, and buffer_size determines the initial buffer size. The buffer is
  // owned by the assembler and deallocated upon destruction of the assembler.
  //
  // If the provided buffer is not NULL, the assembler uses the provided buffer
  // for code generation and assumes its size to be buffer_size. If the buffer
  // is too small, a fatal error occurs. No deallocation of the buffer is done
  // upon destruction of the assembler.
642
  Assembler(Isolate* isolate, void* buffer, int buffer_size);
643 644
  ~Assembler();

645 646 647
  // Overrides the default provided by FLAG_debug_code.
  void set_emit_debug_code(bool value) { emit_debug_code_ = value; }

648 649
  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
650
  // Assembler functions are invoked in between GetCode() calls.
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  void GetCode(CodeDesc* desc);

  // Label operations & relative jumps (PPUM Appendix D)
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void bind(Label* L);  // binds an unbound label L to the current code position

  // Returns the branch offset to the given label from the current code position
  // Links the label to the current position if it is still unbound
672 673
  // Manages the jump elimination optimization if the second parameter is true.
  int branch_offset(Label* L, bool jump_elimination_allowed);
674

lrn@chromium.org's avatar
lrn@chromium.org committed
675 676 677 678
  // Puts a labels target address at the given position.
  // The high 8 bits are set to zero.
  void label_at_put(Label* L, int at_offset);

679 680 681 682 683 684 685 686
  // Return the address in the constant pool of the code target address used by
  // the branch/call instruction at pc.
  INLINE(static Address target_address_address_at(Address pc));

  // Read/Modify the code target address in the branch/call instruction at pc.
  INLINE(static Address target_address_at(Address pc));
  INLINE(static void set_target_address_at(Address pc, Address target));

687 688
  // This sets the branch destination (which is in the constant pool on ARM).
  // This is for calls and branches within generated code.
689 690
  inline static void deserialization_set_special_target_at(
      Address constant_pool_entry, Address target);
691 692 693 694

  // This sets the branch destination (which is in the constant pool on ARM).
  // This is for calls and branches to runtime code.
  inline static void set_external_target_at(Address constant_pool_entry,
695
                                            Address target);
696

697 698 699
  // Here we are patching the address in the constant pool, not the actual call
  // instruction.  The address in the constant pool is the same size as a
  // pointer.
700
  static const int kSpecialTargetSize = kPointerSize;
701

702 703 704
  // Size of an instruction.
  static const int kInstrSize = sizeof(Instr);

705
  // Distance between the instruction referring to the address of the call
706 707 708 709 710 711 712 713 714 715 716 717
  // target and the return address.
#ifdef USE_BLX
  // Call sequence is:
  //  ldr  ip, [pc, #...] @ call address
  //  blx  ip
  //                      @ return address
  static const int kCallTargetAddressOffset = 2 * kInstrSize;
#else
  // Call sequence is:
  //  mov  lr, pc
  //  ldr  pc, [pc, #...] @ call address
  //                      @ return address
718
  static const int kCallTargetAddressOffset = kInstrSize;
719
#endif
720

721 722
  // Distance between start of patched return sequence and the emitted address
  // to jump to.
723
#ifdef USE_BLX
724
  // Patched return sequence is:
725 726 727 728
  //  ldr  ip, [pc, #0]   @ emited address and start
  //  blx  ip
  static const int kPatchReturnSequenceAddressOffset =  0 * kInstrSize;
#else
729
  // Patched return sequence is:
730 731 732 733
  //  mov  lr, pc         @ start of sequence
  //  ldr  pc, [pc, #-4]  @ emited address
  static const int kPatchReturnSequenceAddressOffset =  kInstrSize;
#endif
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748
  // Distance between start of patched debug break slot and the emitted address
  // to jump to.
#ifdef USE_BLX
  // Patched debug break slot code is:
  //  ldr  ip, [pc, #0]   @ emited address and start
  //  blx  ip
  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
#else
  // Patched debug break slot code is:
  //  mov  lr, pc         @ start of sequence
  //  ldr  pc, [pc, #-4]  @ emited address
  static const int kPatchDebugBreakSlotAddressOffset =  kInstrSize;
#endif

lrn@chromium.org's avatar
lrn@chromium.org committed
749 750 751 752
  // Difference between address of current opcode and value read from pc
  // register.
  static const int kPcLoadDelta = 8;

753 754 755 756
  static const int kJSReturnSequenceInstructions = 4;
  static const int kDebugBreakSlotInstructions = 3;
  static const int kDebugBreakSlotLength =
      kDebugBreakSlotInstructions * kInstrSize;
757 758 759 760 761 762 763 764

  // ---------------------------------------------------------------------------
  // Code generation

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);
765 766
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();
767 768 769 770 771 772 773 774 775

  // Branch instructions
  void b(int branch_offset, Condition cond = al);
  void bl(int branch_offset, Condition cond = al);
  void blx(int branch_offset);  // v5 and above
  void blx(Register target, Condition cond = al);  // v5 and above
  void bx(Register target, Condition cond = al);  // v5 and above, plus v4t

  // Convenience branch instructions using labels
776 777 778 779 780 781 782
  void b(Label* L, Condition cond = al)  {
    b(branch_offset(L, cond == al), cond);
  }
  void b(Condition cond, Label* L)  { b(branch_offset(L, cond == al), cond); }
  void bl(Label* L, Condition cond = al)  { bl(branch_offset(L, false), cond); }
  void bl(Condition cond, Label* L)  { bl(branch_offset(L, false), cond); }
  void blx(Label* L)  { blx(branch_offset(L, false)); }  // v5 and above
783 784

  // Data-processing instructions
785

786 787 788 789 790 791 792 793
  void and_(Register dst, Register src1, const Operand& src2,
            SBit s = LeaveCC, Condition cond = al);

  void eor(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void sub(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
794 795 796 797
  void sub(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al) {
    sub(dst, src1, Operand(src2), s, cond);
  }
798 799 800 801 802 803

  void rsb(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void add(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
804 805 806 807
  void add(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al) {
    add(dst, src1, Operand(src2), s, cond);
  }
808 809 810 811 812 813 814 815 816 817 818

  void adc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void sbc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void rsc(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void tst(Register src1, const Operand& src2, Condition cond = al);
819 820 821
  void tst(Register src1, Register src2, Condition cond = al) {
    tst(src1, Operand(src2), cond);
  }
822 823 824 825

  void teq(Register src1, const Operand& src2, Condition cond = al);

  void cmp(Register src1, const Operand& src2, Condition cond = al);
826 827 828
  void cmp(Register src1, Register src2, Condition cond = al) {
    cmp(src1, Operand(src2), cond);
  }
829
  void cmp_raw_immediate(Register src1, int raw_immediate, Condition cond = al);
830 831 832 833 834

  void cmn(Register src1, const Operand& src2, Condition cond = al);

  void orr(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);
835 836 837 838
  void orr(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al) {
    orr(dst, src1, Operand(src2), s, cond);
  }
839 840 841

  void mov(Register dst, const Operand& src,
           SBit s = LeaveCC, Condition cond = al);
842 843 844
  void mov(Register dst, Register src, SBit s = LeaveCC, Condition cond = al) {
    mov(dst, Operand(src), s, cond);
  }
845

846 847 848 849 850 851 852
  // ARMv7 instructions for loading a 32 bit immediate in two instructions.
  // This may actually emit a different mov instruction, but on an ARMv7 it
  // is guaranteed to only emit one instruction.
  void movw(Register reg, uint32_t immediate, Condition cond = al);
  // The constant for movt should be in the range 0-0xffff.
  void movt(Register reg, uint32_t immediate, Condition cond = al);

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
  void bic(Register dst, Register src1, const Operand& src2,
           SBit s = LeaveCC, Condition cond = al);

  void mvn(Register dst, const Operand& src,
           SBit s = LeaveCC, Condition cond = al);

  // Multiply instructions

  void mla(Register dst, Register src1, Register src2, Register srcA,
           SBit s = LeaveCC, Condition cond = al);

  void mul(Register dst, Register src1, Register src2,
           SBit s = LeaveCC, Condition cond = al);

  void smlal(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void smull(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void umlal(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  void umull(Register dstL, Register dstH, Register src1, Register src2,
             SBit s = LeaveCC, Condition cond = al);

  // Miscellaneous arithmetic instructions

  void clz(Register dst, Register src, Condition cond = al);  // v5 and above

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
  // Saturating instructions. v6 and above.

  // Unsigned saturate.
  //
  // Saturate an optionally shifted signed value to an unsigned range.
  //
  //   usat dst, #satpos, src
  //   usat dst, #satpos, src, lsl #sh
  //   usat dst, #satpos, src, asr #sh
  //
  // Register dst will contain:
  //
  //   0,                 if s < 0
  //   (1 << satpos) - 1, if s > ((1 << satpos) - 1)
  //   s,                 otherwise
  //
  // where s is the contents of src after shifting (if used.)
  void usat(Register dst, int satpos, const Operand& src, Condition cond = al);

902 903 904 905 906 907 908 909 910 911 912 913 914
  // Bitfield manipulation instructions. v7 and above.

  void ubfx(Register dst, Register src, int lsb, int width,
            Condition cond = al);

  void sbfx(Register dst, Register src, int lsb, int width,
            Condition cond = al);

  void bfc(Register dst, int lsb, int width, Condition cond = al);

  void bfi(Register dst, Register src, int lsb, int width,
           Condition cond = al);

915 916 917 918 919 920 921 922 923 924 925 926 927 928
  // Status register access instructions

  void mrs(Register dst, SRegister s, Condition cond = al);
  void msr(SRegisterFieldMask fields, const Operand& src, Condition cond = al);

  // Load/Store instructions
  void ldr(Register dst, const MemOperand& src, Condition cond = al);
  void str(Register src, const MemOperand& dst, Condition cond = al);
  void ldrb(Register dst, const MemOperand& src, Condition cond = al);
  void strb(Register src, const MemOperand& dst, Condition cond = al);
  void ldrh(Register dst, const MemOperand& src, Condition cond = al);
  void strh(Register src, const MemOperand& dst, Condition cond = al);
  void ldrsb(Register dst, const MemOperand& src, Condition cond = al);
  void ldrsh(Register dst, const MemOperand& src, Condition cond = al);
929 930 931 932 933 934
  void ldrd(Register dst1,
            Register dst2,
            const MemOperand& src, Condition cond = al);
  void strd(Register src1,
            Register src2,
            const MemOperand& dst, Condition cond = al);
935 936 937 938 939 940

  // Load/Store multiple instructions
  void ldm(BlockAddrMode am, Register base, RegList dst, Condition cond = al);
  void stm(BlockAddrMode am, Register base, RegList src, Condition cond = al);

  // Exception-generating instructions and debugging support
941 942 943
  void stop(const char* msg,
            Condition cond = al,
            int32_t code = kDefaultStopCode);
944 945

  void bkpt(uint32_t imm16);  // v5 and above
946
  void svc(uint32_t imm24, Condition cond = al);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

  // Coprocessor instructions

  void cdp(Coprocessor coproc, int opcode_1,
           CRegister crd, CRegister crn, CRegister crm,
           int opcode_2, Condition cond = al);

  void cdp2(Coprocessor coproc, int opcode_1,
            CRegister crd, CRegister crn, CRegister crm,
            int opcode_2);  // v5 and above

  void mcr(Coprocessor coproc, int opcode_1,
           Register rd, CRegister crn, CRegister crm,
           int opcode_2 = 0, Condition cond = al);

  void mcr2(Coprocessor coproc, int opcode_1,
            Register rd, CRegister crn, CRegister crm,
            int opcode_2 = 0);  // v5 and above

  void mrc(Coprocessor coproc, int opcode_1,
           Register rd, CRegister crn, CRegister crm,
           int opcode_2 = 0, Condition cond = al);

  void mrc2(Coprocessor coproc, int opcode_1,
            Register rd, CRegister crn, CRegister crm,
            int opcode_2 = 0);  // v5 and above

  void ldc(Coprocessor coproc, CRegister crd, const MemOperand& src,
           LFlag l = Short, Condition cond = al);
  void ldc(Coprocessor coproc, CRegister crd, Register base, int option,
           LFlag l = Short, Condition cond = al);

  void ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src,
            LFlag l = Short);  // v5 and above
  void ldc2(Coprocessor coproc, CRegister crd, Register base, int option,
            LFlag l = Short);  // v5 and above

984 985 986 987 988 989
  // Support for VFP.
  // All these APIs support S0 to S31 and D0 to D15.
  // Currently these APIs do not support extended D registers, i.e, D16 to D31.
  // However, some simple modifications can allow
  // these APIs to support D16 to D31.

990 991
  void vldr(const DwVfpRegister dst,
            const Register base,
992 993 994 995
            int offset,
            const Condition cond = al);
  void vldr(const DwVfpRegister dst,
            const MemOperand& src,
996
            const Condition cond = al);
997 998 999

  void vldr(const SwVfpRegister dst,
            const Register base,
1000 1001 1002 1003
            int offset,
            const Condition cond = al);
  void vldr(const SwVfpRegister dst,
            const MemOperand& src,
1004 1005
            const Condition cond = al);

1006 1007
  void vstr(const DwVfpRegister src,
            const Register base,
1008 1009 1010 1011
            int offset,
            const Condition cond = al);
  void vstr(const DwVfpRegister src,
            const MemOperand& dst,
1012
            const Condition cond = al);
1013

1014 1015
  void vstr(const SwVfpRegister src,
            const Register base,
1016 1017 1018 1019
            int offset,
            const Condition cond = al);
  void vstr(const SwVfpRegister src,
            const MemOperand& dst,
1020 1021
            const Condition cond = al);

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
  void vldm(BlockAddrMode am,
            Register base,
            DwVfpRegister first,
            DwVfpRegister last,
            Condition cond = al);

  void vstm(BlockAddrMode am,
            Register base,
            DwVfpRegister first,
            DwVfpRegister last,
            Condition cond = al);

  void vldm(BlockAddrMode am,
            Register base,
            SwVfpRegister first,
            SwVfpRegister last,
            Condition cond = al);

  void vstm(BlockAddrMode am,
            Register base,
            SwVfpRegister first,
            SwVfpRegister last,
            Condition cond = al);

1046 1047 1048 1049 1050 1051
  void vmov(const DwVfpRegister dst,
            double imm,
            const Condition cond = al);
  void vmov(const SwVfpRegister dst,
            const SwVfpRegister src,
            const Condition cond = al);
1052 1053 1054
  void vmov(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
1055 1056 1057 1058 1059 1060 1061
  void vmov(const DwVfpRegister dst,
            const Register src1,
            const Register src2,
            const Condition cond = al);
  void vmov(const Register dst1,
            const Register dst2,
            const DwVfpRegister src,
1062
            const Condition cond = al);
1063
  void vmov(const SwVfpRegister dst,
1064 1065
            const Register src,
            const Condition cond = al);
1066 1067 1068
  void vmov(const Register dst,
            const SwVfpRegister src,
            const Condition cond = al);
1069 1070
  void vcvt_f64_s32(const DwVfpRegister dst,
                    const SwVfpRegister src,
1071
                    VFPConversionMode mode = kDefaultRoundToZero,
1072 1073 1074
                    const Condition cond = al);
  void vcvt_f32_s32(const SwVfpRegister dst,
                    const SwVfpRegister src,
1075
                    VFPConversionMode mode = kDefaultRoundToZero,
1076 1077 1078
                    const Condition cond = al);
  void vcvt_f64_u32(const DwVfpRegister dst,
                    const SwVfpRegister src,
1079
                    VFPConversionMode mode = kDefaultRoundToZero,
1080 1081 1082
                    const Condition cond = al);
  void vcvt_s32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
1083
                    VFPConversionMode mode = kDefaultRoundToZero,
1084 1085 1086
                    const Condition cond = al);
  void vcvt_u32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
1087
                    VFPConversionMode mode = kDefaultRoundToZero,
1088 1089 1090
                    const Condition cond = al);
  void vcvt_f64_f32(const DwVfpRegister dst,
                    const SwVfpRegister src,
1091
                    VFPConversionMode mode = kDefaultRoundToZero,
1092 1093 1094
                    const Condition cond = al);
  void vcvt_f32_f64(const SwVfpRegister dst,
                    const DwVfpRegister src,
1095
                    VFPConversionMode mode = kDefaultRoundToZero,
1096
                    const Condition cond = al);
1097

1098 1099 1100
  void vneg(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
1101 1102 1103
  void vabs(const DwVfpRegister dst,
            const DwVfpRegister src,
            const Condition cond = al);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
  void vadd(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vsub(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vmul(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vdiv(const DwVfpRegister dst,
            const DwVfpRegister src1,
            const DwVfpRegister src2,
            const Condition cond = al);
  void vcmp(const DwVfpRegister src1,
            const DwVfpRegister src2,
1122
            const Condition cond = al);
1123 1124 1125
  void vcmp(const DwVfpRegister src1,
            const double src2,
            const Condition cond = al);
1126 1127
  void vmrs(const Register dst,
            const Condition cond = al);
1128 1129
  void vmsr(const Register dst,
            const Condition cond = al);
1130 1131 1132
  void vsqrt(const DwVfpRegister dst,
             const DwVfpRegister src,
             const Condition cond = al);
1133

1134
  // Pseudo instructions
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    NON_MARKING_NOP = 0,
    DEBUG_BREAK_NOP,
    // IC markers.
    PROPERTY_ACCESS_INLINED,
    PROPERTY_ACCESS_INLINED_CONTEXT,
    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
    // Helper values.
    LAST_CODE_MARKER,
    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
  };

  void nop(int type = 0);   // 0 is the default non-marking type.
1151

1152 1153
  void push(Register src, Condition cond = al) {
    str(src, MemOperand(sp, 4, NegPreIndex), cond);
1154 1155
  }

1156 1157
  void pop(Register dst, Condition cond = al) {
    ldr(dst, MemOperand(sp, 4, PostIndex), cond);
1158 1159
  }

1160 1161
  void pop() {
    add(sp, sp, Operand(kPointerSize));
1162 1163 1164 1165 1166
  }

  // Jump unconditionally to given label.
  void jmp(Label* L) { b(L, al); }

1167
  // Check the code size generated from label to here.
1168 1169 1170 1171 1172 1173 1174
  int SizeOfCodeGeneratedSince(Label* label) {
    return pc_offset() - label->pos();
  }

  // Check the number of instructions generated from label to here.
  int InstructionsGeneratedSince(Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstrSize;
1175
  }
1176

1177 1178 1179
  // Check whether an immediate fits an addressing mode 1 instruction.
  bool ImmediateFitsAddrMode1Instruction(int32_t imm32);

1180 1181 1182 1183
  // Class for scoping postponing the constant pool generation.
  class BlockConstPoolScope {
   public:
    explicit BlockConstPoolScope(Assembler* assem) : assem_(assem) {
1184
      assem_->StartBlockConstPool();
1185 1186
    }
    ~BlockConstPoolScope() {
1187
      assem_->EndBlockConstPool();
1188 1189 1190 1191
    }

   private:
    Assembler* assem_;
sgjesse@chromium.org's avatar
sgjesse@chromium.org committed
1192 1193

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstPoolScope);
1194
  };
1195

1196 1197
  // Debugging

1198 1199 1200
  // Mark address of the ExitJSFrame code.
  void RecordJSReturn();

1201 1202 1203
  // Mark address of a debug break slot.
  void RecordDebugBreakSlot();

1204 1205
  // Record the AST id of the CallIC being compiled, so that it can be placed
  // in the relocation information.
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
  void SetRecordedAstId(unsigned ast_id) {
    ASSERT(recorded_ast_id_ == kNoASTId);
    recorded_ast_id_ = ast_id;
  }

  unsigned RecordedAstId() {
    ASSERT(recorded_ast_id_ != kNoASTId);
    return recorded_ast_id_;
  }

  void ClearRecordedAstId() { recorded_ast_id_ = kNoASTId; }
1217

1218
  // Record a comment relocation entry that can be used by a disassembler.
1219
  // Use --code-comments to enable.
1220 1221
  void RecordComment(const char* msg);

1222 1223 1224 1225
  // Writes a single byte or word of data in the code stream.  Used
  // for inline tables, e.g., jump-tables. The constant pool should be
  // emitted before any use of db and dd to ensure that constant pools
  // are not emitted as part of the tables generated.
1226 1227 1228
  void db(uint8_t data);
  void dd(uint32_t data);

1229
  int pc_offset() const { return pc_ - buffer_; }
1230 1231

  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1232

1233
  // Read/patch instructions
1234 1235 1236 1237
  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
  void instr_at_put(int pos, Instr instr) {
    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
  }
1238
  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1239
  static void instr_at_put(byte* pc, Instr instr) {
1240 1241
    *reinterpret_cast<Instr*>(pc) = instr;
  }
1242
  static Condition GetCondition(Instr instr);
1243 1244
  static bool IsBranch(Instr instr);
  static int GetBranchOffset(Instr instr);
1245 1246 1247
  static bool IsLdrRegisterImmediate(Instr instr);
  static int GetLdrRegisterImmediateOffset(Instr instr);
  static Instr SetLdrRegisterImmediateOffset(Instr instr, int offset);
1248 1249 1250 1251
  static bool IsStrRegisterImmediate(Instr instr);
  static Instr SetStrRegisterImmediateOffset(Instr instr, int offset);
  static bool IsAddRegisterImmediate(Instr instr);
  static Instr SetAddRegisterImmediateOffset(Instr instr, int offset);
1252
  static Register GetRd(Instr instr);
1253 1254
  static Register GetRn(Instr instr);
  static Register GetRm(Instr instr);
1255 1256 1257 1258 1259 1260
  static bool IsPush(Instr instr);
  static bool IsPop(Instr instr);
  static bool IsStrRegFpOffset(Instr instr);
  static bool IsLdrRegFpOffset(Instr instr);
  static bool IsStrRegFpNegOffset(Instr instr);
  static bool IsLdrRegFpNegOffset(Instr instr);
1261
  static bool IsLdrPcImmediateOffset(Instr instr);
1262 1263 1264 1265 1266
  static bool IsTstImmediate(Instr instr);
  static bool IsCmpRegister(Instr instr);
  static bool IsCmpImmediate(Instr instr);
  static Register GetCmpImmediateRegister(Instr instr);
  static int GetCmpImmediateRawImmediate(Instr instr);
1267
  static bool IsNop(Instr instr, int type = NON_MARKING_NOP);
1268

1269 1270
  // Constants in pools are accessed via pc relative addressing, which can
  // reach +/-4KB thereby defining a maximum distance between the instruction
1271 1272 1273
  // and the accessed constant.
  static const int kMaxDistToPool = 4*KB;
  static const int kMaxNumPendingRelocInfo = kMaxDistToPool/kInstrSize;
1274

1275 1276 1277 1278 1279
  // Postpone the generation of the constant pool for the specified number of
  // instructions.
  void BlockConstPoolFor(int instructions);

  // Check if is time to emit a constant pool.
1280
  void CheckConstPool(bool force_emit, bool require_jump);
1281

1282
 protected:
1283 1284 1285
  // Relocation for a type-recording IC has the AST id added to it.  This
  // member variable is a way to pass the information from the call site to
  // the relocation info.
1286
  unsigned recorded_ast_id_;
1287

1288 1289
  bool emit_debug_code() const { return emit_debug_code_; }

1290 1291
  int buffer_space() const { return reloc_info_writer.pos() - pc_; }

1292 1293 1294 1295 1296 1297
  // Decode branch instruction at pos and return branch target pos
  int target_at(int pos);

  // Patch branch instruction at pos to branch to given branch target pos
  void target_at_put(int pos, int target_pos);

1298 1299 1300
  // Prevent contant pool emission until EndBlockConstPool is called.
  // Call to this function can be nested but must be followed by an equal
  // number of call to EndBlockConstpool.
1301
  void StartBlockConstPool() {
1302 1303 1304 1305 1306
    if (const_pool_blocked_nesting_++ == 0) {
      // Prevent constant pool checks happening by setting the next check to
      // the biggest possible offset.
      next_buffer_check_ = kMaxInt;
    }
1307
  }
1308 1309 1310

  // Resume constant pool emission. Need to be called as many time as
  // StartBlockConstPool to have an effect.
1311
  void EndBlockConstPool() {
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    if (--const_pool_blocked_nesting_ == 0) {
      // Check the constant pool hasn't been blocked for too long.
      ASSERT((num_pending_reloc_info_ == 0) ||
             (pc_offset() < (first_const_pool_use_ + kMaxDistToPool)));
      // Two cases:
      //  * no_const_pool_before_ >= next_buffer_check_ and the emission is
      //    still blocked
      //  * no_const_pool_before_ < next_buffer_check_ and the next emit will
      //    trigger a check.
      next_buffer_check_ = no_const_pool_before_;
    }
  }

  bool is_const_pool_blocked() const {
    return (const_pool_blocked_nesting_ > 0) ||
           (pc_offset() < no_const_pool_before_);
1328 1329
  }

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
 private:
  // Code buffer:
  // The buffer into which code and relocation info are generated.
  byte* buffer_;
  int buffer_size_;
  // True if the assembler owns the buffer, false if buffer is external.
  bool own_buffer_;

  int next_buffer_check_;  // pc offset of next buffer check

  // Code generation
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries.
  static const int kGap = 32;
  byte* pc_;  // the program counter; moves forward

  // Constant pool generation
  // Pools are emitted in the instruction stream, preferably after unconditional
  // jumps or after returns from functions (in dead code locations).
  // If a long code sequence does not contain unconditional jumps, it is
  // necessary to emit the constant pool before the pool gets too far from the
  // location it is accessed from. In this case, we emit a jump over the emitted
  // constant pool.
  // Constants in the pool may be addresses of functions that gets relocated;
  // if so, a relocation info entry is associated to the constant pool entry.

  // Repeated checking whether the constant pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated. That also means that the sizing of the buffers is not
  // an exact science, and that we rely on some slop to not overrun buffers.
1362 1363
  static const int kCheckPoolIntervalInst = 32;
  static const int kCheckPoolInterval = kCheckPoolIntervalInst * kInstrSize;
1364 1365


1366 1367 1368 1369 1370 1371
  // Average distance beetween a constant pool and the first instruction
  // accessing the constant pool. Longer distance should result in less I-cache
  // pollution.
  // In practice the distance will be smaller since constant pool emission is
  // forced after function return and sometimes after unconditional branches.
  static const int kAvgDistToPool = kMaxDistToPool - kCheckPoolInterval;
1372

1373 1374 1375
  // Emission of the constant pool may be blocked in some code sequences.
  int const_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_const_pool_before_;  // Block emission before this pc offset.
1376

1377 1378 1379
  // Keep track of the first instruction requiring a constant pool entry
  // since the previous constant pool was emitted.
  int first_const_pool_use_;
1380 1381 1382 1383 1384

  // Relocation info generation
  // Each relocation is encoded as a variable size value
  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  RelocInfoWriter reloc_info_writer;
1385

1386 1387 1388 1389 1390 1391
  // Relocation info records are also used during code generation as temporary
  // containers for constants and code target addresses until they are emitted
  // to the constant pool. These pending relocation info records are temporarily
  // stored in a separate buffer until a constant pool is emitted.
  // If every instruction in a long sequence is accessing the pool, we need one
  // pending relocation entry per instruction.
1392 1393 1394 1395 1396

  // the buffer of pending relocation info
  RelocInfo pending_reloc_info_[kMaxNumPendingRelocInfo];
  // number of pending reloc info entries in the buffer
  int num_pending_reloc_info_;
1397

1398
  // The bound position, before this we cannot do instruction elimination.
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
  int last_bound_pos_;

  // Code emission
  inline void CheckBuffer();
  void GrowBuffer();
  inline void emit(Instr x);

  // Instruction generation
  void addrmod1(Instr instr, Register rn, Register rd, const Operand& x);
  void addrmod2(Instr instr, Register rd, const MemOperand& x);
  void addrmod3(Instr instr, Register rd, const MemOperand& x);
  void addrmod4(Instr instr, Register rn, RegList rl);
  void addrmod5(Instr instr, CRegister crd, const MemOperand& x);

  // Labels
  void print(Label* L);
  void bind_to(Label* L, int pos);
  void link_to(Label* L, Label* appendix);
  void next(Label* L);

  // Record reloc info for current pc_
1420
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
lrn@chromium.org's avatar
lrn@chromium.org committed
1421 1422

  friend class RegExpMacroAssemblerARM;
1423 1424
  friend class RelocInfo;
  friend class CodePatcher;
1425
  friend class BlockConstPoolScope;
1426 1427

  PositionsRecorder positions_recorder_;
1428
  bool emit_debug_code_;
1429 1430 1431 1432 1433 1434 1435
  friend class PositionsRecorder;
  friend class EnsureSpace;
};


class EnsureSpace BASE_EMBEDDED {
 public:
1436
  explicit EnsureSpace(Assembler* assembler) {
1437 1438
    assembler->CheckBuffer();
  }
1439 1440
};

1441

1442 1443
} }  // namespace v8::internal

1444
#endif  // V8_ARM_ASSEMBLER_ARM_H_