constants-arm.h 23.7 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#ifndef V8_ARM_CONSTANTS_ARM_H_
#define V8_ARM_CONSTANTS_ARM_H_
7

8 9 10 11 12 13
#include <stdint.h>

#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/globals.h"

14 15 16
// ARM EABI is required.
#if defined(__arm__) && !defined(__ARM_EABI__)
#error ARM EABI support is required.
17 18
#endif

19 20
namespace v8 {
namespace internal {
21

22
// Constant pool marker.
23 24 25 26 27
// Use UDF, the permanently undefined instruction.
const int kConstantPoolMarkerMask = 0xfff000f0;
const int kConstantPoolMarker = 0xe7f000f0;
const int kConstantPoolLengthMaxMask = 0xffff;
inline int EncodeConstantPoolLength(int length) {
28
  DCHECK((length & kConstantPoolLengthMaxMask) == length);
29 30 31
  return ((length & 0xfff0) << 4) | (length & 0xf);
}
inline int DecodeConstantPoolLength(int instr) {
32
  DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
33 34
  return ((instr >> 4) & 0xfff0) | (instr & 0xf);
}
35

36 37 38
// Used in code age prologue - ldr(pc, MemOperand(pc, -4))
const int kCodeAgeJumpInstruction = 0xe51ff004;

39
// Number of registers in normal ARM mode.
40
const int kNumRegisters = 16;
41

42
// VFP support.
43
const int kNumVFPSingleRegisters = 32;
44
const int kNumVFPDoubleRegisters = 32;
45
const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
46

47
// PC is register 15.
48 49
const int kPCRegister = 15;
const int kNoRegister = -1;
50

51 52 53 54 55
// Used in embedded constant pool builder - max reach in bits for
// various load instructions (unsigned)
const int kLdrMaxReachBits = 12;
const int kVldrMaxReachBits = 10;

56 57 58
// -----------------------------------------------------------------------------
// Conditions.

59 60 61
// Defines constants and accessor classes to assemble, disassemble and
// simulate ARM instructions.
//
62 63 64
// Section references in the code refer to the "ARM Architecture Reference
// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
//
65 66 67
// Constants for specific fields are defined in their respective named enums.
// General constants are in an anonymous enum in class Instr.

68
// Values for the condition field as defined in section A3.2
69
enum Condition {
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  kNoCondition = -1,

  eq =  0 << 28,                 // Z set            Equal.
  ne =  1 << 28,                 // Z clear          Not equal.
  cs =  2 << 28,                 // C set            Unsigned higher or same.
  cc =  3 << 28,                 // C clear          Unsigned lower.
  mi =  4 << 28,                 // N set            Negative.
  pl =  5 << 28,                 // N clear          Positive or zero.
  vs =  6 << 28,                 // V set            Overflow.
  vc =  7 << 28,                 // V clear          No overflow.
  hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
  ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
  ge = 10 << 28,                 // N == V           Greater or equal.
  lt = 11 << 28,                 // N != V           Less than.
  gt = 12 << 28,                 // Z clear, N == V  Greater than.
  le = 13 << 28,                 // Z set or N != V  Less then or equal
  al = 14 << 28,                 //                  Always.

  kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
  kNumberOfConditions = 16,

  // Aliases.
  hs = cs,                       // C set            Unsigned higher or same.
  lo = cc                        // C clear          Unsigned lower.
94 95 96
};


97
inline Condition NegateCondition(Condition cond) {
98
  DCHECK(cond != al);
99 100 101 102
  return static_cast<Condition>(cond ^ ne);
}


103
// Commute a condition such that {a cond b == b cond' a}.
104
inline Condition CommuteCondition(Condition cond) {
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  switch (cond) {
    case lo:
      return hi;
    case hi:
      return lo;
    case hs:
      return ls;
    case ls:
      return hs;
    case lt:
      return gt;
    case gt:
      return lt;
    case ge:
      return le;
    case le:
      return ge;
    default:
      return cond;
124
  }
125 126 127 128 129 130 131 132 133 134 135 136 137
}


// -----------------------------------------------------------------------------
// Instructions encoding.

// Instr is merely used by the Assembler to distinguish 32bit integers
// representing instructions from usual 32 bit values.
// Instruction objects are pointers to 32bit values, and provide methods to
// access the various ISA fields.
typedef int32_t Instr;


138 139
// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
// as defined in section A3.4
140
enum Opcode {
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  AND =  0 << 21,  // Logical AND.
  EOR =  1 << 21,  // Logical Exclusive OR.
  SUB =  2 << 21,  // Subtract.
  RSB =  3 << 21,  // Reverse Subtract.
  ADD =  4 << 21,  // Add.
  ADC =  5 << 21,  // Add with Carry.
  SBC =  6 << 21,  // Subtract with Carry.
  RSC =  7 << 21,  // Reverse Subtract with Carry.
  TST =  8 << 21,  // Test.
  TEQ =  9 << 21,  // Test Equivalence.
  CMP = 10 << 21,  // Compare.
  CMN = 11 << 21,  // Compare Negated.
  ORR = 12 << 21,  // Logical (inclusive) OR.
  MOV = 13 << 21,  // Move.
  BIC = 14 << 21,  // Bit Clear.
  MVN = 15 << 21   // Move Not.
157 158 159
};


160 161 162
// The bits for bit 7-4 for some type 0 miscellaneous instructions.
enum MiscInstructionsBits74 {
  // With bits 22-21 01.
163 164 165 166
  BX   =  1 << 4,
  BXJ  =  2 << 4,
  BLX  =  3 << 4,
  BKPT =  7 << 4,
167

168
  // With bits 22-21 11.
169 170 171 172 173 174
  CLZ  =  1 << 4
};


// Instruction encoding bits and masks.
enum {
175 176 177 178 179 180 181 182 183 184 185
  H = 1 << 5,   // Halfword (or byte).
  S6 = 1 << 6,  // Signed (or unsigned).
  L = 1 << 20,  // Load (or store).
  S = 1 << 20,  // Set condition code (or leave unchanged).
  W = 1 << 21,  // Writeback base register (or leave unchanged).
  A = 1 << 21,  // Accumulate in multiply instruction (or not).
  B = 1 << 22,  // Unsigned byte (or word).
  N = 1 << 22,  // Long (or short).
  U = 1 << 23,  // Positive (or negative) offset/index.
  P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
  I = 1 << 25,  // Immediate shifter operand (or not).
186
  B0 = 1 << 0,
187 188 189 190 191 192
  B4 = 1 << 4,
  B5 = 1 << 5,
  B6 = 1 << 6,
  B7 = 1 << 7,
  B8 = 1 << 8,
  B9 = 1 << 9,
193
  B10 = 1 << 10,
194 195
  B12 = 1 << 12,
  B16 = 1 << 16,
196
  B17 = 1 << 17,
197 198 199 200 201 202 203 204 205 206 207 208 209
  B18 = 1 << 18,
  B19 = 1 << 19,
  B20 = 1 << 20,
  B21 = 1 << 21,
  B22 = 1 << 22,
  B23 = 1 << 23,
  B24 = 1 << 24,
  B25 = 1 << 25,
  B26 = 1 << 26,
  B27 = 1 << 27,
  B28 = 1 << 28,

  // Instruction bit masks.
210 211 212
  kCondMask = 15 << 28,
  kALUMask = 0x6f << 21,
  kRdMask = 15 << 12,  // In str instruction.
213 214
  kCoprocessorMask = 15 << 8,
  kOpCodeMask = 15 << 21,  // In data-processing instructions.
215 216 217 218 219
  kImm24Mask = (1 << 24) - 1,
  kImm16Mask = (1 << 16) - 1,
  kImm8Mask = (1 << 8) - 1,
  kOff12Mask = (1 << 12) - 1,
  kOff8Mask = (1 << 8) - 1
220 221
};

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
enum BarrierOption {
  OSHLD = 0x1,
  OSHST = 0x2,
  OSH = 0x3,
  NSHLD = 0x5,
  NSHST = 0x6,
  NSH = 0x7,
  ISHLD = 0x9,
  ISHST = 0xa,
  ISH = 0xb,
  LD = 0xd,
  ST = 0xe,
  SY = 0xf,
};


238 239 240 241 242 243 244 245 246 247 248 249 250 251
// -----------------------------------------------------------------------------
// Addressing modes and instruction variants.

// Condition code updating mode.
enum SBit {
  SetCC   = 1 << 20,  // Set condition code.
  LeaveCC = 0 << 20   // Leave condition code unchanged.
};


// Status register selection.
enum SRegister {
  CPSR = 0 << 22,
  SPSR = 1 << 22
252 253 254
};


255
// Shifter types for Data-processing operands as defined in section A5.1.2.
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
enum ShiftOp {
  LSL = 0 << 5,   // Logical shift left.
  LSR = 1 << 5,   // Logical shift right.
  ASR = 2 << 5,   // Arithmetic shift right.
  ROR = 3 << 5,   // Rotate right.

  // RRX is encoded as ROR with shift_imm == 0.
  // Use a special code to make the distinction. The RRX ShiftOp is only used
  // as an argument, and will never actually be encoded. The Assembler will
  // detect it and emit the correct ROR shift operand with shift_imm == 0.
  RRX = -1,
  kNumberOfShifts = 4
};


// Status register fields.
enum SRegisterField {
  CPSR_c = CPSR | 1 << 16,
  CPSR_x = CPSR | 1 << 17,
  CPSR_s = CPSR | 1 << 18,
  CPSR_f = CPSR | 1 << 19,
  SPSR_c = SPSR | 1 << 16,
  SPSR_x = SPSR | 1 << 17,
  SPSR_s = SPSR | 1 << 18,
  SPSR_f = SPSR | 1 << 19
281 282
};

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
// Status register field mask (or'ed SRegisterField enum values).
typedef uint32_t SRegisterFieldMask;


// Memory operand addressing mode.
enum AddrMode {
  // Bit encoding P U W.
  Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
  PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
  PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
  NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
  NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
  NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
};


// Load/store multiple addressing mode.
enum BlockAddrMode {
  // Bit encoding P U W .
  da           = (0|0|0) << 21,  // Decrement after.
  ia           = (0|4|0) << 21,  // Increment after.
  db           = (8|0|0) << 21,  // Decrement before.
  ib           = (8|4|0) << 21,  // Increment before.
  da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
  ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
  db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
  ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.

  // Alias modes for comparison when writeback does not matter.
  da_x         = (0|0|0) << 21,  // Decrement after.
  ia_x         = (0|4|0) << 21,  // Increment after.
  db_x         = (8|0|0) << 21,  // Decrement before.
315 316 317
  ib_x         = (8|4|0) << 21,  // Increment before.

  kBlockAddrModeMask = (8|4|1) << 21
318 319 320 321 322 323 324 325 326
};


// Coprocessor load/store operand size.
enum LFlag {
  Long  = 1 << 22,  // Long load/store coprocessor.
  Short = 0 << 22   // Short load/store coprocessor.
};

327 328
// Neon sizes.
enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
329

330 331
// NEON data type
enum NeonDataType {
332 333 334 335 336 337 338
  NeonS8 = 0,
  NeonS16 = 1,
  NeonS32 = 2,
  // Gap to make it easier to extract U and size.
  NeonU8 = 4,
  NeonU16 = 5,
  NeonU32 = 6
339 340
};

341 342 343
inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }

344
// Convert sizes to data types (U bit is clear).
345 346
inline NeonDataType NeonSizeToDataType(NeonSize size) {
  DCHECK_NE(Neon64, size);
347 348 349
  return static_cast<NeonDataType>(size);
}

350 351 352 353
inline NeonSize NeonDataTypeToSize(NeonDataType dt) {
  return static_cast<NeonSize>(NeonSz(dt));
}

354 355 356 357 358 359 360
enum NeonListType {
  nlt_1 = 0x7,
  nlt_2 = 0xA,
  nlt_3 = 0x6,
  nlt_4 = 0x2
};

361 362
// -----------------------------------------------------------------------------
// Supervisor Call (svc) specific support.
363

364 365
// Special Software Interrupt codes when used in the presence of the ARM
// simulator.
366 367
// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
368 369
enum SoftwareInterruptCodes {
  // transition to C code
Benedikt Meurer's avatar
Benedikt Meurer committed
370
  kCallRtRedirected = 0x10,
371
  // break point
Benedikt Meurer's avatar
Benedikt Meurer committed
372
  kBreakpoint = 0x20,
373
  // stop
374
  kStopCode = 1 << 23
375
};
376 377 378
const uint32_t kStopCodeMask = kStopCode - 1;
const uint32_t kMaxStopCode = kStopCode - 1;
const int32_t  kDefaultStopCode = -1;
379 380


381 382 383
// Type of VFP register. Determines register encoding.
enum VFPRegPrecision {
  kSinglePrecision = 0,
384 385
  kDoublePrecision = 1,
  kSimd128Precision = 2
386 387
};

388
// VFP FPSCR constants.
389 390 391 392 393
enum VFPConversionMode {
  kFPSCRRounding = 0,
  kDefaultRoundToZero = 1
};

394 395
// This mask does not include the "inexact" or "input denormal" cumulative
// exceptions flags, because we usually don't want to check for it.
396 397 398 399 400 401
const uint32_t kVFPExceptionMask = 0xf;
const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
const uint32_t kVFPOverflowExceptionBit = 1 << 2;
const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
const uint32_t kVFPInexactExceptionBit = 1 << 4;
const uint32_t kVFPFlushToZeroMask = 1 << 24;
402
const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
403

404 405 406 407
const uint32_t kVFPNConditionFlagBit = 1 << 31;
const uint32_t kVFPZConditionFlagBit = 1 << 30;
const uint32_t kVFPCConditionFlagBit = 1 << 29;
const uint32_t kVFPVConditionFlagBit = 1 << 28;
408 409


410
// VFP rounding modes. See ARM DDI 0406B Page A2-29.
411 412 413 414 415 416 417 418 419 420 421
enum VFPRoundingMode {
  RN = 0 << 22,   // Round to Nearest.
  RP = 1 << 22,   // Round towards Plus Infinity.
  RM = 2 << 22,   // Round towards Minus Infinity.
  RZ = 3 << 22,   // Round towards zero.

  // Aliases.
  kRoundToNearest = RN,
  kRoundToPlusInf = RP,
  kRoundToMinusInf = RM,
  kRoundToZero = RZ
422
};
423

424
const uint32_t kVFPRoundingModeMask = 3 << 22;
425

426 427 428 429 430
enum CheckForInexactConversion {
  kCheckForInexactConversion,
  kDontCheckForInexactConversion
};

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
// -----------------------------------------------------------------------------
// Hints.

// Branch hints are not used on the ARM.  They are defined so that they can
// appear in shared function signatures, but will be ignored in ARM
// implementations.
enum Hint { no_hint };

// Hints are not used on the arm.  Negating is trivial.
inline Hint NegateHint(Hint ignored) { return no_hint; }


// -----------------------------------------------------------------------------
// Instruction abstraction.

// The class Instruction enables access to individual fields defined in the ARM
447
// architecture instruction set encoding as described in figure A3-1.
448
// Note that the Assembler uses typedef int32_t Instr.
449 450 451 452 453
//
// Example: Test whether the instruction at ptr does set the condition code
// bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
454 455
//   Instruction* instr = Instruction::At(ptr);
//   int type = instr->TypeValue();
456 457 458
//   return ((type == 0) || (type == 1)) && instr->HasS();
// }
//
459
class Instruction {
460 461 462
 public:
  enum {
    kInstrSize = 4,
463
    kInstrSizeLog2 = 2,
464 465 466
    kPCReadOffset = 8
  };

467 468 469 470 471 472 473 474 475 476
  // Helper macro to define static accessors.
  // We use the cast to char* trick to bypass the strict anti-aliasing rules.
  #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
    static inline return_type Name(Instr instr) {                              \
      char* temp = reinterpret_cast<char*>(&instr);                            \
      return reinterpret_cast<Instruction*>(temp)->Name();                     \
    }

  #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)

477
  // Get the raw instruction bits.
478 479
  inline Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
480 481
  }

482
  // Set the raw instruction bits to value.
483 484
  inline void SetInstructionBits(Instr value) {
    *reinterpret_cast<Instr*>(this) = value;
485 486
  }

487 488
  // Extract a single bit from the instruction bits and return it as bit 0 in
  // the result.
489 490 491 492
  inline int Bit(int nr) const {
    return (InstructionBits() >> nr) & 1;
  }

493 494
  // Extract a bit field <hi:lo> from the instruction bits and return it in the
  // least-significant bits of the result.
495 496 497 498
  inline int Bits(int hi, int lo) const {
    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
  }

499
  // Read a bit field <hi:lo>, leaving its position unchanged in the result.
500 501 502 503 504 505
  inline int BitField(int hi, int lo) const {
    return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
  }

  // Static support.

506 507
  // Extract a single bit from the instruction bits and return it as bit 0 in
  // the result.
508 509 510 511
  static inline int Bit(Instr instr, int nr) {
    return (instr >> nr) & 1;
  }

512 513
  // Extract a bit field <hi:lo> from the instruction bits and return it in the
  // least-significant bits of the result.
514 515 516 517
  static inline int Bits(Instr instr, int hi, int lo) {
    return (instr >> lo) & ((2 << (hi - lo)) - 1);
  }

518
  // Read a bit field <hi:lo>, leaving its position unchanged in the result.
519 520 521 522
  static inline int BitField(Instr instr, int hi, int lo) {
    return instr & (((2 << (hi - lo)) - 1) << lo);
  }

523
  // Accessors for the different named fields used in the ARM encoding.
524
  // The naming of these accessor corresponds to figure A3-1.
525 526
  //
  // Two kind of accessors are declared:
527
  // - <Name>Field() will return the raw field, i.e. the field's bits at their
528
  //   original place in the instruction encoding.
529 530
  //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
  //   0xC0810002 ConditionField(instr) will return 0xC0000000.
531
  // - <Name>Value() will return the field value, shifted back to bit 0.
532 533
  //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
  //   0xC0810002 ConditionField(instr) will return 0xC.
534 535


536
  // Generally applicable fields
537
  inline int ConditionValue() const { return Bits(31, 28); }
538 539 540
  inline Condition ConditionField() const {
    return static_cast<Condition>(BitField(31, 28));
  }
541
  DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue);
542
  DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
543

544
  inline int TypeValue() const { return Bits(27, 25); }
545
  inline int SpecialValue() const { return Bits(27, 23); }
546

547
  inline int RnValue() const { return Bits(19, 16); }
548
  DECLARE_STATIC_ACCESSOR(RnValue);
549 550 551 552
  inline int RdValue() const { return Bits(15, 12); }
  DECLARE_STATIC_ACCESSOR(RdValue);

  inline int CoprocessorValue() const { return Bits(11, 8); }
553 554
  // Support for VFP.
  // Vn(19-16) | Vd(15-12) |  Vm(3-0)
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
  inline int VnValue() const { return Bits(19, 16); }
  inline int VmValue() const { return Bits(3, 0); }
  inline int VdValue() const { return Bits(15, 12); }
  inline int NValue() const { return Bit(7); }
  inline int MValue() const { return Bit(5); }
  inline int DValue() const { return Bit(22); }
  inline int RtValue() const { return Bits(15, 12); }
  inline int PValue() const { return Bit(24); }
  inline int UValue() const { return Bit(23); }
  inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
  inline int Opc2Value() const { return Bits(19, 16); }
  inline int Opc3Value() const { return Bits(7, 6); }
  inline int SzValue() const { return Bit(8); }
  inline int VLValue() const { return Bit(20); }
  inline int VCValue() const { return Bit(8); }
  inline int VAValue() const { return Bits(23, 21); }
  inline int VBValue() const { return Bits(6, 5); }
  inline int VFPNRegValue(VFPRegPrecision pre) {
    return VFPGlueRegValue(pre, 16, 7);
574
  }
575 576
  inline int VFPMRegValue(VFPRegPrecision pre) {
    return VFPGlueRegValue(pre, 0, 5);
577
  }
578 579
  inline int VFPDRegValue(VFPRegPrecision pre) {
    return VFPGlueRegValue(pre, 12, 22);
580
  }
581

582
  // Fields used in Data processing instructions
583
  inline int OpcodeValue() const {
584 585
    return static_cast<Opcode>(Bits(24, 21));
  }
586 587 588 589
  inline Opcode OpcodeField() const {
    return static_cast<Opcode>(BitField(24, 21));
  }
  inline int SValue() const { return Bit(20); }
590
    // with register
591
  inline int RmValue() const { return Bits(3, 0); }
592
  DECLARE_STATIC_ACCESSOR(RmValue);
593 594 595 596 597 598 599
  inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
  inline ShiftOp ShiftField() const {
    return static_cast<ShiftOp>(BitField(6, 5));
  }
  inline int RegShiftValue() const { return Bit(4); }
  inline int RsValue() const { return Bits(11, 8); }
  inline int ShiftAmountValue() const { return Bits(11, 7); }
600
    // with immediate
601
  inline int RotateValue() const { return Bits(11, 8); }
602
  DECLARE_STATIC_ACCESSOR(RotateValue);
603
  inline int Immed8Value() const { return Bits(7, 0); }
604
  DECLARE_STATIC_ACCESSOR(Immed8Value);
605 606 607
  inline int Immed4Value() const { return Bits(19, 16); }
  inline int ImmedMovwMovtValue() const {
      return Immed4Value() << 12 | Offset12Value(); }
608
  DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
609 610

  // Fields used in Load/Store instructions
611 612 613 614 615
  inline int PUValue() const { return Bits(24, 23); }
  inline int PUField() const { return BitField(24, 23); }
  inline int  BValue() const { return Bit(22); }
  inline int  WValue() const { return Bit(21); }
  inline int  LValue() const { return Bit(20); }
616 617
    // with register uses same fields as Data processing instructions above
    // with immediate
618
  inline int Offset12Value() const { return Bits(11, 0); }
619
    // multiple
620
  inline int RlistValue() const { return Bits(15, 0); }
621
    // extra loads and stores
622 623 624 625
  inline int SignValue() const { return Bit(6); }
  inline int HValue() const { return Bit(5); }
  inline int ImmedHValue() const { return Bits(11, 8); }
  inline int ImmedLValue() const { return Bits(3, 0); }
626 627

  // Fields used in Branch instructions
628 629
  inline int LinkValue() const { return Bit(24); }
  inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
630 631

  // Fields used in Software interrupt instructions
632
  inline SoftwareInterruptCodes SvcValue() const {
633 634 635 636 637 638 639
    return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
  }

  // Test for special encodings of type 0 instructions (extra loads and stores,
  // as well as multiplications).
  inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }

640 641 642 643 644 645
  // Test for miscellaneous instructions encodings of type 0 instructions.
  inline bool IsMiscType0() const { return (Bit(24) == 1)
                                           && (Bit(23) == 0)
                                           && (Bit(20) == 0)
                                           && ((Bit(7) == 0)); }

646 647 648
  // Test for a nop instruction, which falls under type 1.
  inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }

649 650
  // Test for a stop instruction.
  inline bool IsStop() const {
651
    return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
652 653
  }

654
  // Special accessors that test for existence of a value.
655 656 657 658 659 660 661 662
  inline bool HasS()    const { return SValue() == 1; }
  inline bool HasB()    const { return BValue() == 1; }
  inline bool HasW()    const { return WValue() == 1; }
  inline bool HasL()    const { return LValue() == 1; }
  inline bool HasU()    const { return UValue() == 1; }
  inline bool HasSign() const { return SignValue() == 1; }
  inline bool HasH()    const { return HValue() == 1; }
  inline bool HasLink() const { return LinkValue() == 1; }
663

664
  // Decode the double immediate from a vmov instruction.
665 666
  double DoubleImmedVmov() const;

667 668
  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
669 670 671 672 673 674
  // to allocate or create instances of class Instruction.
  // Use the At(pc) function to create references to Instruction.
  static Instruction* At(byte* pc) {
    return reinterpret_cast<Instruction*>(pc);
  }

675 676

 private:
677
  // Join split register codes, depending on register precision.
678 679 680
  // four_bit is the position of the least-significant bit of the four
  // bit specifier. one_bit is the position of the additional single bit
  // specifier.
681
  inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
682 683
    if (pre == kSinglePrecision) {
      return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
684 685 686 687 688 689 690 691
    } else {
      int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
      if (pre == kDoublePrecision) {
        return reg_num;
      }
      DCHECK_EQ(kSimd128Precision, pre);
      DCHECK_EQ(reg_num & 1, 0);
      return reg_num / 2;
692 693 694
    }
  }

695 696
  // We need to prevent the creation of instances of class Instruction.
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
697 698 699
};


700 701 702 703 704 705 706 707 708 709 710
// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int reg;
711
    const char* name;
712 713 714 715 716 717 718
  };

 private:
  static const char* names_[kNumRegisters];
  static const RegisterAlias aliases_[];
};

719 720 721 722
// Helper functions for converting between VFP register numbers and names.
class VFPRegisters {
 public:
  // Return the name of the register.
723 724 725 726 727 728
  static const char* Name(int reg, bool is_double);

  // Lookup the register number for the name provided.
  // Set flag pointed by is_double to true if register
  // is double-precision.
  static int Number(const char* name, bool* is_double);
729 730 731 732

 private:
  static const char* names_[kNumVFPRegisters];
};
733 734


735 736
}  // namespace internal
}  // namespace v8
737

738
#endif  // V8_ARM_CONSTANTS_ARM_H_