gdb-jit.cc 63.5 KB
Newer Older
1
// Copyright 2010 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include "src/gdb-jit.h"
6

7 8
#include <memory>

9
#include "src/base/bits.h"
10
#include "src/base/platform/platform.h"
11 12
#include "src/bootstrapper.h"
#include "src/frames-inl.h"
13
#include "src/frames.h"
14 15
#include "src/global-handles.h"
#include "src/messages.h"
16
#include "src/objects.h"
17
#include "src/ostreams.h"
18
#include "src/snapshot/natives.h"
19
#include "src/splay-tree-inl.h"
20 21 22

namespace v8 {
namespace internal {
23 24 25
namespace GDBJITInterface {

#ifdef ENABLE_GDB_JIT_INTERFACE
26

27
#ifdef __APPLE__
28 29 30 31 32 33 34
#define __MACH_O
class MachO;
class MachOSection;
typedef MachO DebugObject;
typedef MachOSection DebugSection;
#else
#define __ELF
35
class ELF;
36 37 38 39
class ELFSection;
typedef ELF DebugObject;
typedef ELFSection DebugSection;
#endif
40 41 42

class Writer BASE_EMBEDDED {
 public:
43 44
  explicit Writer(DebugObject* debug_object)
      : debug_object_(debug_object),
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        position_(0),
        capacity_(1024),
        buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
  }

  ~Writer() {
    free(buffer_);
  }

  uintptr_t position() const {
    return position_;
  }

  template<typename T>
  class Slot {
   public:
    Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }

    T* operator-> () {
      return w_->RawSlotAt<T>(offset_);
    }

    void set(const T& value) {
      *w_->RawSlotAt<T>(offset_) = value;
    }

    Slot<T> at(int i) {
      return Slot<T>(w_, offset_ + sizeof(T) * i);
    }

   private:
    Writer* w_;
    uintptr_t offset_;
  };

  template<typename T>
  void Write(const T& val) {
    Ensure(position_ + sizeof(T));
    *RawSlotAt<T>(position_) = val;
    position_ += sizeof(T);
  }

  template<typename T>
  Slot<T> SlotAt(uintptr_t offset) {
    Ensure(offset + sizeof(T));
    return Slot<T>(this, offset);
  }

  template<typename T>
  Slot<T> CreateSlotHere() {
    return CreateSlotsHere<T>(1);
  }

  template<typename T>
  Slot<T> CreateSlotsHere(uint32_t count) {
    uintptr_t slot_position = position_;
    position_ += sizeof(T) * count;
    Ensure(position_);
    return SlotAt<T>(slot_position);
  }

  void Ensure(uintptr_t pos) {
    if (capacity_ < pos) {
      while (capacity_ < pos) capacity_ *= 2;
      buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
    }
  }

113
  DebugObject* debug_object() { return debug_object_; }
114 115 116 117 118 119 120 121

  byte* buffer() { return buffer_; }

  void Align(uintptr_t align) {
    uintptr_t delta = position_ % align;
    if (delta == 0) return;
    uintptr_t padding = align - delta;
    Ensure(position_ += padding);
122
    DCHECK((position_ % align) == 0);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  }

  void WriteULEB128(uintptr_t value) {
    do {
      uint8_t byte = value & 0x7F;
      value >>= 7;
      if (value != 0) byte |= 0x80;
      Write<uint8_t>(byte);
    } while (value != 0);
  }

  void WriteSLEB128(intptr_t value) {
    bool more = true;
    while (more) {
      int8_t byte = value & 0x7F;
      bool byte_sign = byte & 0x40;
      value >>= 7;

      if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
        more = false;
      } else {
        byte |= 0x80;
      }

      Write<int8_t>(byte);
    }
  }

  void WriteString(const char* str) {
    do {
      Write<char>(*str);
    } while (*str++);
  }

 private:
  template<typename T> friend class Slot;

  template<typename T>
  T* RawSlotAt(uintptr_t offset) {
162
    DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
163 164 165
    return reinterpret_cast<T*>(&buffer_[offset]);
  }

166
  DebugObject* debug_object_;
167 168 169 170 171
  uintptr_t position_;
  uintptr_t capacity_;
  byte* buffer_;
};

172
class ELFStringTable;
173

174 175
template<typename THeader>
class DebugSectionBase : public ZoneObject {
176
 public:
177 178 179 180
  virtual ~DebugSectionBase() { }

  virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
    uintptr_t start = writer->position();
181
    if (WriteBodyInternal(writer)) {
182
      uintptr_t end = writer->position();
183
      header->offset = static_cast<uint32_t>(start);
184 185 186 187 188 189 190
#if defined(__MACH_O)
      header->addr = 0;
#endif
      header->size = end - start;
    }
  }

191
  virtual bool WriteBodyInternal(Writer* writer) {
192 193 194 195 196 197 198 199 200 201
    return false;
  }

  typedef THeader Header;
};


struct MachOSectionHeader {
  char sectname[16];
  char segname[16];
danno@chromium.org's avatar
danno@chromium.org committed
202
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  uint32_t addr;
  uint32_t size;
#else
  uint64_t addr;
  uint64_t size;
#endif
  uint32_t offset;
  uint32_t align;
  uint32_t reloff;
  uint32_t nreloc;
  uint32_t flags;
  uint32_t reserved1;
  uint32_t reserved2;
};


class MachOSection : public DebugSectionBase<MachOSectionHeader> {
 public:
  enum Type {
    S_REGULAR = 0x0u,
    S_ATTR_COALESCED = 0xbu,
    S_ATTR_SOME_INSTRUCTIONS = 0x400u,
    S_ATTR_DEBUG = 0x02000000u,
    S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
227 228
  };

229
  MachOSection(const char* name, const char* segment, uint32_t align,
230
               uint32_t flags)
231
      : name_(name), segment_(segment), align_(align), flags_(flags) {
232
    if (align_ != 0) {
233
      DCHECK(base::bits::IsPowerOfTwo32(align));
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      align_ = WhichPowerOf2(align_);
    }
  }

  virtual ~MachOSection() { }

  virtual void PopulateHeader(Writer::Slot<Header> header) {
    header->addr = 0;
    header->size = 0;
    header->offset = 0;
    header->align = align_;
    header->reloff = 0;
    header->nreloc = 0;
    header->flags = flags_;
    header->reserved1 = 0;
    header->reserved2 = 0;
250 251
    memset(header->sectname, 0, sizeof(header->sectname));
    memset(header->segname, 0, sizeof(header->segname));
252 253
    DCHECK(strlen(name_) < sizeof(header->sectname));
    DCHECK(strlen(segment_) < sizeof(header->segname));
254 255
    strncpy(header->sectname, name_, sizeof(header->sectname));
    strncpy(header->segname, segment_, sizeof(header->segname));
256 257 258 259 260
  }

 private:
  const char* name_;
  const char* segment_;
261
  uint32_t align_;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  uint32_t flags_;
};


struct ELFSectionHeader {
  uint32_t name;
  uint32_t type;
  uintptr_t flags;
  uintptr_t address;
  uintptr_t offset;
  uintptr_t size;
  uint32_t link;
  uint32_t info;
  uintptr_t alignment;
  uintptr_t entry_size;
};
278

279 280 281 282

#if defined(__ELF)
class ELFSection : public DebugSectionBase<ELFSectionHeader> {
 public:
283 284 285 286 287 288 289 290 291 292 293 294 295 296
  enum Type {
    TYPE_NULL = 0,
    TYPE_PROGBITS = 1,
    TYPE_SYMTAB = 2,
    TYPE_STRTAB = 3,
    TYPE_RELA = 4,
    TYPE_HASH = 5,
    TYPE_DYNAMIC = 6,
    TYPE_NOTE = 7,
    TYPE_NOBITS = 8,
    TYPE_REL = 9,
    TYPE_SHLIB = 10,
    TYPE_DYNSYM = 11,
    TYPE_LOPROC = 0x70000000,
297
    TYPE_X86_64_UNWIND = 0x70000001,
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    TYPE_HIPROC = 0x7fffffff,
    TYPE_LOUSER = 0x80000000,
    TYPE_HIUSER = 0xffffffff
  };

  enum Flags {
    FLAG_WRITE = 1,
    FLAG_ALLOC = 2,
    FLAG_EXEC = 4
  };

  enum SpecialIndexes {
    INDEX_ABSOLUTE = 0xfff1
  };

  ELFSection(const char* name, Type type, uintptr_t align)
      : name_(name), type_(type), align_(align) { }

  virtual ~ELFSection() { }

318
  void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
319 320 321

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    uintptr_t start = w->position();
322
    if (WriteBodyInternal(w)) {
323 324 325 326 327 328
      uintptr_t end = w->position();
      header->offset = start;
      header->size = end - start;
    }
  }

329
  virtual bool WriteBodyInternal(Writer* w) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    return false;
  }

  uint16_t index() const { return index_; }
  void set_index(uint16_t index) { index_ = index; }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    header->flags = 0;
    header->address = 0;
    header->offset = 0;
    header->size = 0;
    header->link = 0;
    header->info = 0;
    header->entry_size = 0;
  }

 private:
  const char* name_;
  Type type_;
  uintptr_t align_;
  uint16_t index_;
};
353
#endif  // defined(__ELF)
354 355


356 357 358
#if defined(__MACH_O)
class MachOTextSection : public MachOSection {
 public:
359 360
  MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
      : MachOSection("__text", "__TEXT", align,
361 362 363 364
                     MachOSection::S_REGULAR |
                         MachOSection::S_ATTR_SOME_INSTRUCTIONS |
                         MachOSection::S_ATTR_PURE_INSTRUCTIONS),
        addr_(addr),
365
        size_(size) {}
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    MachOSection::PopulateHeader(header);
    header->addr = addr_;
    header->size = size_;
  }

 private:
  uintptr_t addr_;
  uintptr_t size_;
};
#endif  // defined(__MACH_O)


#if defined(__ELF)
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
class FullHeaderELFSection : public ELFSection {
 public:
  FullHeaderELFSection(const char* name,
                       Type type,
                       uintptr_t align,
                       uintptr_t addr,
                       uintptr_t offset,
                       uintptr_t size,
                       uintptr_t flags)
      : ELFSection(name, type, align),
        addr_(addr),
        offset_(offset),
        size_(size),
        flags_(flags) { }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    ELFSection::PopulateHeader(header);
    header->address = addr_;
    header->offset = offset_;
    header->size = size_;
    header->flags = flags_;
  }

 private:
  uintptr_t addr_;
  uintptr_t offset_;
  uintptr_t size_;
  uintptr_t flags_;
};


414
class ELFStringTable : public ELFSection {
415
 public:
416
  explicit ELFStringTable(const char* name)
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
      : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
  }

  uintptr_t Add(const char* str) {
    if (*str == '\0') return 0;

    uintptr_t offset = size_;
    WriteString(str);
    return offset;
  }

  void AttachWriter(Writer* w) {
    writer_ = w;
    offset_ = writer_->position();

    // First entry in the string table should be an empty string.
    WriteString("");
  }

  void DetachWriter() {
    writer_ = NULL;
  }

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
441
    DCHECK(writer_ == NULL);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    header->offset = offset_;
    header->size = size_;
  }

 private:
  void WriteString(const char* str) {
    uintptr_t written = 0;
    do {
      writer_->Write(*str);
      written++;
    } while (*str++);
    size_ += written;
  }

  Writer* writer_;

  uintptr_t offset_;
  uintptr_t size_;
};


void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
464
                                ELFStringTable* strtab) {
465
  header->name = static_cast<uint32_t>(strtab->Add(name_));
466 467 468 469
  header->type = type_;
  header->alignment = align_;
  PopulateHeader(header);
}
470 471 472 473 474 475
#endif  // defined(__ELF)


#if defined(__MACH_O)
class MachO BASE_EMBEDDED {
 public:
476
  explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
477 478

  uint32_t AddSection(MachOSection* section) {
479
    sections_.Add(section, zone_);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    return sections_.length() - 1;
  }

  void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
    Writer::Slot<MachOHeader> header = WriteHeader(w);
    uintptr_t load_command_start = w->position();
    Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
                                                                code_start,
                                                                code_size);
    WriteSections(w, cmd, header, load_command_start);
  }

 private:
  struct MachOHeader {
    uint32_t magic;
    uint32_t cputype;
    uint32_t cpusubtype;
    uint32_t filetype;
    uint32_t ncmds;
    uint32_t sizeofcmds;
    uint32_t flags;
501
#if V8_TARGET_ARCH_X64
502 503 504 505 506 507 508 509
    uint32_t reserved;
#endif
  };

  struct MachOSegmentCommand {
    uint32_t cmd;
    uint32_t cmdsize;
    char segname[16];
danno@chromium.org's avatar
danno@chromium.org committed
510
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    uint32_t vmaddr;
    uint32_t vmsize;
    uint32_t fileoff;
    uint32_t filesize;
#else
    uint64_t vmaddr;
    uint64_t vmsize;
    uint64_t fileoff;
    uint64_t filesize;
#endif
    uint32_t maxprot;
    uint32_t initprot;
    uint32_t nsects;
    uint32_t flags;
  };

  enum MachOLoadCommandCmd {
    LC_SEGMENT_32 = 0x00000001u,
    LC_SEGMENT_64 = 0x00000019u
  };


  Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
534
    DCHECK(w->position() == 0);
535
    Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
danno@chromium.org's avatar
danno@chromium.org committed
536
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
537 538 539
    header->magic = 0xFEEDFACEu;
    header->cputype = 7;  // i386
    header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
540
#elif V8_TARGET_ARCH_X64
541 542 543 544 545 546 547 548 549 550 551 552 553
    header->magic = 0xFEEDFACFu;
    header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
    header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    header->reserved = 0;
#else
#error Unsupported target architecture.
#endif
    header->filetype = 0x1;  // MH_OBJECT
    header->ncmds = 1;
    header->sizeofcmds = 0;
    header->flags = 0;
    return header;
  }
554 555


556 557 558 559 560
  Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
                                                        uintptr_t code_start,
                                                        uintptr_t code_size) {
    Writer::Slot<MachOSegmentCommand> cmd =
        w->CreateSlotHere<MachOSegmentCommand>();
danno@chromium.org's avatar
danno@chromium.org committed
561
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    cmd->cmd = LC_SEGMENT_32;
#else
    cmd->cmd = LC_SEGMENT_64;
#endif
    cmd->vmaddr = code_start;
    cmd->vmsize = code_size;
    cmd->fileoff = 0;
    cmd->filesize = 0;
    cmd->maxprot = 7;
    cmd->initprot = 7;
    cmd->flags = 0;
    cmd->nsects = sections_.length();
    memset(cmd->segname, 0, 16);
    cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
        cmd->nsects;
    return cmd;
  }


  void WriteSections(Writer* w,
                     Writer::Slot<MachOSegmentCommand> cmd,
                     Writer::Slot<MachOHeader> header,
                     uintptr_t load_command_start) {
    Writer::Slot<MachOSection::Header> headers =
        w->CreateSlotsHere<MachOSection::Header>(sections_.length());
    cmd->fileoff = w->position();
588 589
    header->sizeofcmds =
        static_cast<uint32_t>(w->position() - load_command_start);
590 591 592 593 594 595 596
    for (int section = 0; section < sections_.length(); ++section) {
      sections_[section]->PopulateHeader(headers.at(section));
      sections_[section]->WriteBody(headers.at(section), w);
    }
    cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
  }

597
  Zone* zone_;
598 599 600 601 602 603
  ZoneList<MachOSection*> sections_;
};
#endif  // defined(__MACH_O)


#if defined(__ELF)
604 605
class ELF BASE_EMBEDDED {
 public:
606
  explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
607
    sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
608
    sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
609 610 611 612 613 614 615 616 617 618 619 620
  }

  void Write(Writer* w) {
    WriteHeader(w);
    WriteSectionTable(w);
    WriteSections(w);
  }

  ELFSection* SectionAt(uint32_t index) {
    return sections_[index];
  }

621 622
  uint32_t AddSection(ELFSection* section) {
    sections_.Add(section, zone_);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    section->set_index(sections_.length() - 1);
    return sections_.length() - 1;
  }

 private:
  struct ELFHeader {
    uint8_t ident[16];
    uint16_t type;
    uint16_t machine;
    uint32_t version;
    uintptr_t entry;
    uintptr_t pht_offset;
    uintptr_t sht_offset;
    uint32_t flags;
    uint16_t header_size;
    uint16_t pht_entry_size;
    uint16_t pht_entry_num;
    uint16_t sht_entry_size;
    uint16_t sht_entry_num;
    uint16_t sht_strtab_index;
  };


  void WriteHeader(Writer* w) {
647
    DCHECK(w->position() == 0);
648
    Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
649 650
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
     (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
651 652
    const uint8_t ident[16] =
        { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
653 654
#elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
    (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
655
    const uint8_t ident[16] =
656
        { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
657 658 659
#elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
    const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 0,
                               0,    0,   0,   0,   0, 0, 0, 0};
660 661 662 663 664 665
#elif V8_TARGET_ARCH_S390X
    const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 3,
                               0,    0,   0,   0,   0, 0, 0, 0};
#elif V8_TARGET_ARCH_S390
    const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 1, 2, 1, 3,
                               0,    0,   0,   0,   0, 0, 0, 0};
666 667 668
#else
#error Unsupported target architecture.
#endif
669
    memcpy(header->ident, ident, 16);
670
    header->type = 1;
danno@chromium.org's avatar
danno@chromium.org committed
671
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
672
    header->machine = 3;
673
#elif V8_TARGET_ARCH_X64
674 675 676 677
    // Processor identification value for x64 is 62 as defined in
    //    System V ABI, AMD64 Supplement
    //    http://www.x86-64.org/documentation/abi.pdf
    header->machine = 62;
678
#elif V8_TARGET_ARCH_ARM
679 680 681
    // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
    // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
    header->machine = 40;
682 683 684 685 686 687 688 689
#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
    // Set to EM_PPC64, defined as 21, in Power ABI,
    // Join the next 4 lines, omitting the spaces and double-slashes.
    // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
    // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
    // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
    // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
    header->machine = 21;
690 691 692 693 694
#elif V8_TARGET_ARCH_S390
    // Processor identification value is 22 (EM_S390) as defined in the ABI:
    // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691
    // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599
    header->machine = 22;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
#else
#error Unsupported target architecture.
#endif
    header->version = 1;
    header->entry = 0;
    header->pht_offset = 0;
    header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
    header->flags = 0;
    header->header_size = sizeof(ELFHeader);
    header->pht_entry_size = 0;
    header->pht_entry_num = 0;
    header->sht_entry_size = sizeof(ELFSection::Header);
    header->sht_entry_num = sections_.length();
    header->sht_strtab_index = 1;
  }

  void WriteSectionTable(Writer* w) {
    // Section headers table immediately follows file header.
713
    DCHECK(w->position() == sizeof(ELFHeader));
714 715 716 717 718

    Writer::Slot<ELFSection::Header> headers =
        w->CreateSlotsHere<ELFSection::Header>(sections_.length());

    // String table for section table is the first section.
719
    ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    strtab->AttachWriter(w);
    for (int i = 0, length = sections_.length();
         i < length;
         i++) {
      sections_[i]->PopulateHeader(headers.at(i), strtab);
    }
    strtab->DetachWriter();
  }

  int SectionHeaderPosition(uint32_t section_index) {
    return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
  }

  void WriteSections(Writer* w) {
    Writer::Slot<ELFSection::Header> headers =
        w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));

    for (int i = 0, length = sections_.length();
         i < length;
         i++) {
      sections_[i]->WriteBody(headers.at(i), w);
    }
  }

744
  Zone* zone_;
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
  ZoneList<ELFSection*> sections_;
};


class ELFSymbol BASE_EMBEDDED {
 public:
  enum Type {
    TYPE_NOTYPE = 0,
    TYPE_OBJECT = 1,
    TYPE_FUNC = 2,
    TYPE_SECTION = 3,
    TYPE_FILE = 4,
    TYPE_LOPROC = 13,
    TYPE_HIPROC = 15
  };

  enum Binding {
    BIND_LOCAL = 0,
    BIND_GLOBAL = 1,
    BIND_WEAK = 2,
    BIND_LOPROC = 13,
    BIND_HIPROC = 15
  };

  ELFSymbol(const char* name,
            uintptr_t value,
            uintptr_t size,
            Binding binding,
            Type type,
            uint16_t section)
      : name(name),
        value(value),
        size(size),
        info((binding << 4) | type),
        other(0),
        section(section) {
  }

  Binding binding() const {
    return static_cast<Binding>(info >> 4);
  }
786
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
787 788
     (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) ||                   \
     (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT))
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
  struct SerializedLayout {
    SerializedLayout(uint32_t name,
                     uintptr_t value,
                     uintptr_t size,
                     Binding binding,
                     Type type,
                     uint16_t section)
        : name(name),
          value(value),
          size(size),
          info((binding << 4) | type),
          other(0),
          section(section) {
    }

    uint32_t name;
    uintptr_t value;
    uintptr_t size;
    uint8_t info;
    uint8_t other;
    uint16_t section;
  };
811
#elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
812
    (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) || V8_TARGET_ARCH_S390X
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
  struct SerializedLayout {
    SerializedLayout(uint32_t name,
                     uintptr_t value,
                     uintptr_t size,
                     Binding binding,
                     Type type,
                     uint16_t section)
        : name(name),
          info((binding << 4) | type),
          other(0),
          section(section),
          value(value),
          size(size) {
    }

    uint32_t name;
    uint8_t info;
    uint8_t other;
    uint16_t section;
    uintptr_t value;
    uintptr_t size;
  };
#endif

837
  void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
838
    // Convert symbol names from strings to indexes in the string table.
839
    s->name = static_cast<uint32_t>(t->Add(name));
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    s->value = value;
    s->size = size;
    s->info = info;
    s->other = other;
    s->section = section;
  }

 private:
  const char* name;
  uintptr_t value;
  uintptr_t size;
  uint8_t info;
  uint8_t other;
  uint16_t section;
};


class ELFSymbolTable : public ELFSection {
 public:
859
  ELFSymbolTable(const char* name, Zone* zone)
860
      : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
861 862
        locals_(1, zone),
        globals_(1, zone) {
863 864 865 866 867 868 869 870 871 872 873 874 875
  }

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    w->Align(header->alignment);
    int total_symbols = locals_.length() + globals_.length() + 1;
    header->offset = w->position();

    Writer::Slot<ELFSymbol::SerializedLayout> symbols =
        w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);

    header->size = w->position() - header->offset;

    // String table for this symbol table should follow it in the section table.
876 877
    ELFStringTable* strtab =
        static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
878 879 880 881 882 883 884 885 886 887 888 889
    strtab->AttachWriter(w);
    symbols.at(0).set(ELFSymbol::SerializedLayout(0,
                                                  0,
                                                  0,
                                                  ELFSymbol::BIND_LOCAL,
                                                  ELFSymbol::TYPE_NOTYPE,
                                                  0));
    WriteSymbolsList(&locals_, symbols.at(1), strtab);
    WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
    strtab->DetachWriter();
  }

890
  void Add(const ELFSymbol& symbol, Zone* zone) {
891
    if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
892
      locals_.Add(symbol, zone);
893
    } else {
894
      globals_.Add(symbol, zone);
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    }
  }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    ELFSection::PopulateHeader(header);
    // We are assuming that string table will follow symbol table.
    header->link = index() + 1;
    header->info = locals_.length() + 1;
    header->entry_size = sizeof(ELFSymbol::SerializedLayout);
  }

 private:
  void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
                        Writer::Slot<ELFSymbol::SerializedLayout> dst,
910
                        ELFStringTable* strtab) {
911 912 913 914 915 916 917 918 919 920
    for (int i = 0, len = src->length();
         i < len;
         i++) {
      src->at(i).Write(dst.at(i), strtab);
    }
  }

  ZoneList<ELFSymbol> locals_;
  ZoneList<ELFSymbol> globals_;
};
921
#endif  // defined(__ELF)
922 923


924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
class LineInfo : public Malloced {
 public:
  LineInfo() : pc_info_(10) {}

  void SetPosition(intptr_t pc, int pos, bool is_statement) {
    AddPCInfo(PCInfo(pc, pos, is_statement));
  }

  struct PCInfo {
    PCInfo(intptr_t pc, int pos, bool is_statement)
        : pc_(pc), pos_(pos), is_statement_(is_statement) {}

    intptr_t pc_;
    int pos_;
    bool is_statement_;
  };

  List<PCInfo>* pc_info() { return &pc_info_; }

 private:
  void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }

  List<PCInfo> pc_info_;
};


950 951
class CodeDescription BASE_EMBEDDED {
 public:
952
#if V8_TARGET_ARCH_X64
953 954 955 956 957 958 959 960
  enum StackState {
    POST_RBP_PUSH,
    POST_RBP_SET,
    POST_RBP_POP,
    STACK_STATE_MAX
  };
#endif

961 962 963
  CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
                  LineInfo* lineinfo)
      : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
964

965
  const char* name() const {
966 967 968
    return name_;
  }

969
  LineInfo* lineinfo() const { return lineinfo_; }
970

971 972 973
  bool is_function() const {
    Code::Kind kind = code_->kind();
    return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION;
974 975
  }

976
  bool has_scope_info() const { return shared_info_ != NULL; }
977

978 979 980
  ScopeInfo* scope_info() const {
    DCHECK(has_scope_info());
    return shared_info_->scope_info();
981 982
  }

983 984
  uintptr_t CodeStart() const {
    return reinterpret_cast<uintptr_t>(code_->instruction_start());
985 986
  }

987 988
  uintptr_t CodeEnd() const {
    return reinterpret_cast<uintptr_t>(code_->instruction_end());
989 990
  }

991 992 993 994
  uintptr_t CodeSize() const {
    return CodeEnd() - CodeStart();
  }

995 996 997 998 999 1000
  bool has_script() {
    return shared_info_ != NULL && shared_info_->script()->IsScript();
  }

  Script* script() { return Script::cast(shared_info_->script()); }

1001
  bool IsLineInfoAvailable() {
1002 1003 1004
    return has_script() && script()->source()->IsString() &&
           script()->HasValidSource() && script()->name()->IsString() &&
           lineinfo_ != NULL;
1005 1006
  }

1007
#if V8_TARGET_ARCH_X64
1008
  uintptr_t GetStackStateStartAddress(StackState state) const {
1009
    DCHECK(state < STACK_STATE_MAX);
1010 1011
    return stack_state_start_addresses_[state];
  }
1012

1013
  void SetStackStateStartAddress(StackState state, uintptr_t addr) {
1014
    DCHECK(state < STACK_STATE_MAX);
1015 1016 1017 1018
    stack_state_start_addresses_[state] = addr;
  }
#endif

1019
  std::unique_ptr<char[]> GetFilename() {
1020
    return String::cast(script()->name())->ToCString();
1021 1022
  }

1023
  int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; }
1024

1025

1026 1027 1028
 private:
  const char* name_;
  Code* code_;
1029
  SharedFunctionInfo* shared_info_;
1030
  LineInfo* lineinfo_;
1031
#if V8_TARGET_ARCH_X64
1032 1033
  uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
#endif
1034 1035
};

1036
#if defined(__ELF)
1037
static void CreateSymbolsTable(CodeDescription* desc,
1038
                               Zone* zone,
1039 1040
                               ELF* elf,
                               int text_section_index) {
1041
  ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
1042
  ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
1043 1044

  // Symbol table should be followed by the linked string table.
1045 1046
  elf->AddSection(symtab);
  elf->AddSection(strtab);
1047 1048 1049 1050 1051 1052

  symtab->Add(ELFSymbol("V8 Code",
                        0,
                        0,
                        ELFSymbol::BIND_LOCAL,
                        ELFSymbol::TYPE_FILE,
1053 1054
                        ELFSection::INDEX_ABSOLUTE),
              zone);
1055

1056
  symtab->Add(ELFSymbol(desc->name(),
1057
                        0,
1058
                        desc->CodeSize(),
1059 1060
                        ELFSymbol::BIND_GLOBAL,
                        ELFSymbol::TYPE_FUNC,
1061 1062
                        text_section_index),
              zone);
1063
}
1064
#endif  // defined(__ELF)
1065 1066


1067
class DebugInfoSection : public DebugSection {
1068 1069
 public:
  explicit DebugInfoSection(CodeDescription* desc)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
#if defined(__ELF)
      : ELFSection(".debug_info", TYPE_PROGBITS, 1),
#else
      : MachOSection("__debug_info",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
        desc_(desc) { }

  // DWARF2 standard
  enum DWARF2LocationOp {
    DW_OP_reg0 = 0x50,
    DW_OP_reg1 = 0x51,
    DW_OP_reg2 = 0x52,
    DW_OP_reg3 = 0x53,
    DW_OP_reg4 = 0x54,
    DW_OP_reg5 = 0x55,
    DW_OP_reg6 = 0x56,
    DW_OP_reg7 = 0x57,
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    DW_OP_reg8 = 0x58,
    DW_OP_reg9 = 0x59,
    DW_OP_reg10 = 0x5a,
    DW_OP_reg11 = 0x5b,
    DW_OP_reg12 = 0x5c,
    DW_OP_reg13 = 0x5d,
    DW_OP_reg14 = 0x5e,
    DW_OP_reg15 = 0x5f,
    DW_OP_reg16 = 0x60,
    DW_OP_reg17 = 0x61,
    DW_OP_reg18 = 0x62,
    DW_OP_reg19 = 0x63,
    DW_OP_reg20 = 0x64,
    DW_OP_reg21 = 0x65,
    DW_OP_reg22 = 0x66,
    DW_OP_reg23 = 0x67,
    DW_OP_reg24 = 0x68,
    DW_OP_reg25 = 0x69,
    DW_OP_reg26 = 0x6a,
    DW_OP_reg27 = 0x6b,
    DW_OP_reg28 = 0x6c,
    DW_OP_reg29 = 0x6d,
    DW_OP_reg30 = 0x6e,
    DW_OP_reg31 = 0x6f,
1114 1115 1116 1117 1118 1119 1120
    DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
  };

  enum DWARF2Encoding {
    DW_ATE_ADDRESS = 0x1,
    DW_ATE_SIGNED = 0x5
  };
1121

1122
  bool WriteBodyInternal(Writer* w) {
1123
    uintptr_t cu_start = w->position();
1124 1125 1126 1127 1128 1129 1130
    Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
    uintptr_t start = w->position();
    w->Write<uint16_t>(2);  // DWARF version.
    w->Write<uint32_t>(0);  // Abbreviation table offset.
    w->Write<uint8_t>(sizeof(intptr_t));

    w->WriteULEB128(1);  // Abbreviation code.
1131
    w->WriteString(desc_->GetFilename().get());
1132 1133
    w->Write<intptr_t>(desc_->CodeStart());
    w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1134
    w->Write<uint32_t>(0);
1135 1136 1137 1138 1139 1140

    uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
    w->WriteULEB128(3);
    w->Write<uint8_t>(kPointerSize);
    w->WriteString("v8value");

1141 1142
    if (desc_->has_scope_info()) {
      ScopeInfo* scope = desc_->scope_info();
1143 1144 1145 1146 1147 1148
      w->WriteULEB128(2);
      w->WriteString(desc_->name());
      w->Write<intptr_t>(desc_->CodeStart());
      w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
      Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
      uintptr_t fb_block_start = w->position();
danno@chromium.org's avatar
danno@chromium.org committed
1149
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
1150
      w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
1151
#elif V8_TARGET_ARCH_X64
1152
      w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
1153
#elif V8_TARGET_ARCH_ARM
1154
      UNIMPLEMENTED();
1155
#elif V8_TARGET_ARCH_MIPS
1156
      UNIMPLEMENTED();
1157 1158
#elif V8_TARGET_ARCH_MIPS64
      UNIMPLEMENTED();
1159 1160
#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
      w->Write<uint8_t>(DW_OP_reg31);  // The frame pointer is here on PPC64.
1161 1162
#elif V8_TARGET_ARCH_S390
      w->Write<uint8_t>(DW_OP_reg11);  // The frame pointer's here on S390.
1163 1164 1165 1166 1167
#else
#error Unsupported target architecture.
#endif
      fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));

1168 1169
      int params = scope->ParameterCount();
      int slots = scope->StackLocalCount();
1170
      int context_slots = scope->ContextLocalCount();
1171 1172
      // The real slot ID is internal_slots + context_slot_id.
      int internal_slots = Context::MIN_CONTEXT_SLOTS;
1173
      int locals = scope->StackLocalCount();
1174 1175 1176 1177 1178
      int current_abbreviation = 4;

      for (int param = 0; param < params; ++param) {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString(
1179
            scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get());
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(
          JavaScriptFrameConstants::kLastParameterOffset +
              kPointerSize * (params - param - 1));
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }

      EmbeddedVector<char, 256> buffer;
      StringBuilder builder(buffer.start(), buffer.length());

      for (int slot = 0; slot < slots; ++slot) {
        w->WriteULEB128(current_abbreviation++);
        builder.Reset();
        builder.AddFormatted("slot%d", slot);
        w->WriteString(builder.Finalize());
      }

      // See contexts.h for more information.
1201 1202 1203 1204
      DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
      DCHECK(Context::CLOSURE_INDEX == 0);
      DCHECK(Context::PREVIOUS_INDEX == 1);
      DCHECK(Context::EXTENSION_INDEX == 2);
1205
      DCHECK(Context::NATIVE_CONTEXT_INDEX == 3);
1206 1207 1208 1209 1210 1211 1212
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".closure");
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".previous");
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".extension");
      w->WriteULEB128(current_abbreviation++);
1213
      w->WriteString(".native_context");
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

      for (int context_slot = 0;
           context_slot < context_slots;
           ++context_slot) {
        w->WriteULEB128(current_abbreviation++);
        builder.Reset();
        builder.AddFormatted("context_slot%d", context_slot + internal_slots);
        w->WriteString(builder.Finalize());
      }

      for (int local = 0; local < locals; ++local) {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString(
1227
            scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get());
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(
          JavaScriptFrameConstants::kLocal0Offset -
              kPointerSize * local);
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }

      {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString("__function");
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }

      {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString("__context");
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(StandardFrameConstants::kContextOffset);
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }
1259 1260

      w->WriteULEB128(0);  // Terminate the sub program.
1261 1262
    }

1263
    w->WriteULEB128(0);  // Terminate the compile unit.
1264 1265 1266 1267 1268 1269 1270 1271 1272
    size.set(static_cast<uint32_t>(w->position() - start));
    return true;
  }

 private:
  CodeDescription* desc_;
};


1273
class DebugAbbrevSection : public DebugSection {
1274
 public:
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
  explicit DebugAbbrevSection(CodeDescription* desc)
#ifdef __ELF
      : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
#else
      : MachOSection("__debug_abbrev",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
        desc_(desc) { }
1285 1286 1287

  // DWARF2 standard, figure 14.
  enum DWARF2Tags {
1288 1289 1290 1291 1292 1293 1294
    DW_TAG_FORMAL_PARAMETER = 0x05,
    DW_TAG_POINTER_TYPE = 0xf,
    DW_TAG_COMPILE_UNIT = 0x11,
    DW_TAG_STRUCTURE_TYPE = 0x13,
    DW_TAG_BASE_TYPE = 0x24,
    DW_TAG_SUBPROGRAM = 0x2e,
    DW_TAG_VARIABLE = 0x34
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
  };

  // DWARF2 standard, figure 16.
  enum DWARF2ChildrenDetermination {
    DW_CHILDREN_NO = 0,
    DW_CHILDREN_YES = 1
  };

  // DWARF standard, figure 17.
  enum DWARF2Attribute {
1305
    DW_AT_LOCATION = 0x2,
1306
    DW_AT_NAME = 0x3,
1307
    DW_AT_BYTE_SIZE = 0xb,
1308 1309
    DW_AT_STMT_LIST = 0x10,
    DW_AT_LOW_PC = 0x11,
1310 1311 1312 1313
    DW_AT_HIGH_PC = 0x12,
    DW_AT_ENCODING = 0x3e,
    DW_AT_FRAME_BASE = 0x40,
    DW_AT_TYPE = 0x49
1314 1315 1316 1317 1318
  };

  // DWARF2 standard, figure 19.
  enum DWARF2AttributeForm {
    DW_FORM_ADDR = 0x1,
1319
    DW_FORM_BLOCK4 = 0x4,
1320
    DW_FORM_STRING = 0x8,
1321 1322 1323 1324 1325
    DW_FORM_DATA4 = 0x6,
    DW_FORM_BLOCK = 0x9,
    DW_FORM_DATA1 = 0xb,
    DW_FORM_FLAG = 0xc,
    DW_FORM_REF4 = 0x13
1326 1327
  };

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  void WriteVariableAbbreviation(Writer* w,
                                 int abbreviation_code,
                                 bool has_value,
                                 bool is_parameter) {
    w->WriteULEB128(abbreviation_code);
    w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
    w->Write<uint8_t>(DW_CHILDREN_NO);
    w->WriteULEB128(DW_AT_NAME);
    w->WriteULEB128(DW_FORM_STRING);
    if (has_value) {
      w->WriteULEB128(DW_AT_TYPE);
      w->WriteULEB128(DW_FORM_REF4);
      w->WriteULEB128(DW_AT_LOCATION);
      w->WriteULEB128(DW_FORM_BLOCK4);
    }
    w->WriteULEB128(0);
    w->WriteULEB128(0);
  }

1347
  bool WriteBodyInternal(Writer* w) {
1348
    int current_abbreviation = 1;
1349
    bool extra_info = desc_->has_scope_info();
1350
    DCHECK(desc_->IsLineInfoAvailable());
1351
    w->WriteULEB128(current_abbreviation++);
1352
    w->WriteULEB128(DW_TAG_COMPILE_UNIT);
1353
    w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    w->WriteULEB128(DW_AT_NAME);
    w->WriteULEB128(DW_FORM_STRING);
    w->WriteULEB128(DW_AT_LOW_PC);
    w->WriteULEB128(DW_FORM_ADDR);
    w->WriteULEB128(DW_AT_HIGH_PC);
    w->WriteULEB128(DW_FORM_ADDR);
    w->WriteULEB128(DW_AT_STMT_LIST);
    w->WriteULEB128(DW_FORM_DATA4);
    w->WriteULEB128(0);
    w->WriteULEB128(0);
1364 1365

    if (extra_info) {
1366 1367 1368
      ScopeInfo* scope = desc_->scope_info();
      int params = scope->ParameterCount();
      int slots = scope->StackLocalCount();
1369
      int context_slots = scope->ContextLocalCount();
1370 1371
      // The real slot ID is internal_slots + context_slot_id.
      int internal_slots = Context::MIN_CONTEXT_SLOTS;
1372
      int locals = scope->StackLocalCount();
1373 1374
      // Total children is params + slots + context_slots + internal_slots +
      // locals + 2 (__function and __context).
1375 1376 1377 1378 1379

      // The extra duplication below seems to be necessary to keep
      // gdb from getting upset on OSX.
      w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
      w->WriteULEB128(DW_TAG_SUBPROGRAM);
1380
      w->Write<uint8_t>(DW_CHILDREN_YES);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
      w->WriteULEB128(DW_AT_NAME);
      w->WriteULEB128(DW_FORM_STRING);
      w->WriteULEB128(DW_AT_LOW_PC);
      w->WriteULEB128(DW_FORM_ADDR);
      w->WriteULEB128(DW_AT_HIGH_PC);
      w->WriteULEB128(DW_FORM_ADDR);
      w->WriteULEB128(DW_AT_FRAME_BASE);
      w->WriteULEB128(DW_FORM_BLOCK4);
      w->WriteULEB128(0);
      w->WriteULEB128(0);

      w->WriteULEB128(current_abbreviation++);
      w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
      w->Write<uint8_t>(DW_CHILDREN_NO);
      w->WriteULEB128(DW_AT_BYTE_SIZE);
      w->WriteULEB128(DW_FORM_DATA1);
      w->WriteULEB128(DW_AT_NAME);
      w->WriteULEB128(DW_FORM_STRING);
      w->WriteULEB128(0);
      w->WriteULEB128(0);

      for (int param = 0; param < params; ++param) {
        WriteVariableAbbreviation(w, current_abbreviation++, true, true);
      }

      for (int slot = 0; slot < slots; ++slot) {
        WriteVariableAbbreviation(w, current_abbreviation++, false, false);
      }

      for (int internal_slot = 0;
           internal_slot < internal_slots;
           ++internal_slot) {
        WriteVariableAbbreviation(w, current_abbreviation++, false, false);
      }

      for (int context_slot = 0;
           context_slot < context_slots;
           ++context_slot) {
        WriteVariableAbbreviation(w, current_abbreviation++, false, false);
      }

      for (int local = 0; local < locals; ++local) {
        WriteVariableAbbreviation(w, current_abbreviation++, true, false);
      }

      // The function.
      WriteVariableAbbreviation(w, current_abbreviation++, true, false);

      // The context.
      WriteVariableAbbreviation(w, current_abbreviation++, true, false);

1432
      w->WriteULEB128(0);  // Terminate the sibling list.
1433 1434 1435
    }

    w->WriteULEB128(0);  // Terminate the table.
1436 1437
    return true;
  }
1438 1439 1440

 private:
  CodeDescription* desc_;
1441 1442 1443
};


1444
class DebugLineSection : public DebugSection {
1445 1446
 public:
  explicit DebugLineSection(CodeDescription* desc)
1447
#ifdef __ELF
1448
      : ELFSection(".debug_line", TYPE_PROGBITS, 1),
1449 1450 1451 1452 1453 1454
#else
      : MachOSection("__debug_line",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
        desc_(desc) { }

  // DWARF2 standard, figure 34.
  enum DWARF2Opcodes {
    DW_LNS_COPY = 1,
    DW_LNS_ADVANCE_PC = 2,
    DW_LNS_ADVANCE_LINE = 3,
    DW_LNS_SET_FILE = 4,
    DW_LNS_SET_COLUMN = 5,
    DW_LNS_NEGATE_STMT = 6
  };

  // DWARF2 standard, figure 35.
  enum DWARF2ExtendedOpcode {
    DW_LNE_END_SEQUENCE = 1,
    DW_LNE_SET_ADDRESS = 2,
    DW_LNE_DEFINE_FILE = 3
  };

1474
  bool WriteBodyInternal(Writer* w) {
1475 1476 1477 1478
    // Write prologue.
    Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
    uintptr_t start = w->position();

1479 1480 1481 1482 1483 1484
    // Used for special opcodes
    const int8_t line_base = 1;
    const uint8_t line_range = 7;
    const int8_t max_line_incr = (line_base + line_range - 1);
    const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;

1485 1486 1487 1488 1489
    w->Write<uint16_t>(2);  // Field version.
    Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
    uintptr_t prologue_start = w->position();
    w->Write<uint8_t>(1);  // Field minimum_instruction_length.
    w->Write<uint8_t>(1);  // Field default_is_stmt.
1490 1491 1492
    w->Write<int8_t>(line_base);  // Field line_base.
    w->Write<uint8_t>(line_range);  // Field line_range.
    w->Write<uint8_t>(opcode_base);  // Field opcode_base.
1493 1494 1495 1496 1497 1498 1499
    w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
    w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
    w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
    w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
    w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
    w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
    w->Write<uint8_t>(0);  // Empty include_directories sequence.
1500
    w->WriteString(desc_->GetFilename().get());  // File name.
1501 1502 1503 1504 1505 1506 1507
    w->WriteULEB128(0);  // Current directory.
    w->WriteULEB128(0);  // Unknown modification time.
    w->WriteULEB128(0);  // Unknown file size.
    w->Write<uint8_t>(0);
    prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));

    WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
1508
    w->Write<intptr_t>(desc_->CodeStart());
1509
    w->Write<uint8_t>(DW_LNS_COPY);
1510 1511 1512 1513 1514

    intptr_t pc = 0;
    intptr_t line = 1;
    bool is_statement = true;

1515
    List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
1516
    pc_info->Sort(&ComparePCInfo);
1517 1518 1519

    int pc_info_length = pc_info->length();
    for (int i = 0; i < pc_info_length; i++) {
1520
      LineInfo::PCInfo* info = &pc_info->at(i);
1521
      DCHECK(info->pc_ >= pc);
1522 1523 1524 1525 1526 1527

      // Reduce bloating in the debug line table by removing duplicate line
      // entries (per DWARF2 standard).
      intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
      if (new_line == line) {
        continue;
1528
      }
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

      // Mark statement boundaries.  For a better debugging experience, mark
      // the last pc address in the function as a statement (e.g. "}"), so that
      // a user can see the result of the last line executed in the function,
      // should control reach the end.
      if ((i+1) == pc_info_length) {
        if (!is_statement) {
          w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
        }
      } else if (is_statement != info->is_statement_) {
1539 1540 1541
        w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
        is_statement = !is_statement;
      }
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

      // Generate special opcodes, if possible.  This results in more compact
      // debug line tables.  See the DWARF 2.0 standard to learn more about
      // special opcodes.
      uintptr_t pc_diff = info->pc_ - pc;
      intptr_t line_diff = new_line - line;

      // Compute special opcode (see DWARF 2.0 standard)
      intptr_t special_opcode = (line_diff - line_base) +
                                (line_range * pc_diff) + opcode_base;

      // If special_opcode is less than or equal to 255, it can be used as a
      // special opcode.  If line_diff is larger than the max line increment
      // allowed for a special opcode, or if line_diff is less than the minimum
      // line that can be added to the line register (i.e. line_base), then
      // special_opcode can't be used.
      if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
          (line_diff <= max_line_incr) && (line_diff >= line_base)) {
        w->Write<uint8_t>(special_opcode);
      } else {
        w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
        w->WriteSLEB128(pc_diff);
        w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
        w->WriteSLEB128(line_diff);
1566 1567
        w->Write<uint8_t>(DW_LNS_COPY);
      }
1568 1569 1570 1571

      // Increment the pc and line operands.
      pc += pc_diff;
      line += line_diff;
1572
    }
1573 1574 1575 1576
    // Advance the pc to the end of the routine, since the end sequence opcode
    // requires this.
    w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
    w->WriteSLEB128(desc_->CodeSize() - pc);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
    total_length.set(static_cast<uint32_t>(w->position() - start));
    return true;
  }

 private:
  void WriteExtendedOpcode(Writer* w,
                           DWARF2ExtendedOpcode op,
                           size_t operands_size) {
    w->Write<uint8_t>(0);
    w->WriteULEB128(operands_size + 1);
    w->Write<uint8_t>(op);
  }

1591 1592
  static int ComparePCInfo(const LineInfo::PCInfo* a,
                           const LineInfo::PCInfo* b) {
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    if (a->pc_ == b->pc_) {
      if (a->is_statement_ != b->is_statement_) {
        return b->is_statement_ ? +1 : -1;
      }
      return 0;
    } else if (a->pc_ > b->pc_) {
      return +1;
    } else {
      return -1;
    }
  }

  CodeDescription* desc_;
};


1609
#if V8_TARGET_ARCH_X64
1610

1611
class UnwindInfoSection : public DebugSection {
1612
 public:
1613
  explicit UnwindInfoSection(CodeDescription* desc);
1614
  virtual bool WriteBodyInternal(Writer* w);
1615

1616 1617
  int WriteCIE(Writer* w);
  void WriteFDE(Writer* w, int);
1618

1619 1620 1621 1622
  void WriteFDEStateOnEntry(Writer* w);
  void WriteFDEStateAfterRBPPush(Writer* w);
  void WriteFDEStateAfterRBPSet(Writer* w);
  void WriteFDEStateAfterRBPPop(Writer* w);
1623

1624
  void WriteLength(Writer* w,
1625 1626 1627 1628
                   Writer::Slot<uint32_t>* length_slot,
                   int initial_position);

 private:
1629
  CodeDescription* desc_;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

  // DWARF3 Specification, Table 7.23
  enum CFIInstructions {
    DW_CFA_ADVANCE_LOC = 0x40,
    DW_CFA_OFFSET = 0x80,
    DW_CFA_RESTORE = 0xC0,
    DW_CFA_NOP = 0x00,
    DW_CFA_SET_LOC = 0x01,
    DW_CFA_ADVANCE_LOC1 = 0x02,
    DW_CFA_ADVANCE_LOC2 = 0x03,
    DW_CFA_ADVANCE_LOC4 = 0x04,
    DW_CFA_OFFSET_EXTENDED = 0x05,
    DW_CFA_RESTORE_EXTENDED = 0x06,
    DW_CFA_UNDEFINED = 0x07,
    DW_CFA_SAME_VALUE = 0x08,
    DW_CFA_REGISTER = 0x09,
    DW_CFA_REMEMBER_STATE = 0x0A,
    DW_CFA_RESTORE_STATE = 0x0B,
    DW_CFA_DEF_CFA = 0x0C,
    DW_CFA_DEF_CFA_REGISTER = 0x0D,
    DW_CFA_DEF_CFA_OFFSET = 0x0E,

    DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
    DW_CFA_EXPRESSION = 0x10,
    DW_CFA_OFFSET_EXTENDED_SF = 0x11,
    DW_CFA_DEF_CFA_SF = 0x12,
    DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
    DW_CFA_VAL_OFFSET = 0x14,
    DW_CFA_VAL_OFFSET_SF = 0x15,
    DW_CFA_VAL_EXPRESSION = 0x16
  };

  // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
  enum RegisterMapping {
    // Only the relevant ones have been added to reduce clutter.
    AMD64_RBP = 6,
    AMD64_RSP = 7,
    AMD64_RA = 16
  };

  enum CFIConstants {
    CIE_ID = 0,
    CIE_VERSION = 1,
    CODE_ALIGN_FACTOR = 1,
    DATA_ALIGN_FACTOR = 1,
    RETURN_ADDRESS_REGISTER = AMD64_RA
  };
};


1680
void UnwindInfoSection::WriteLength(Writer* w,
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
                                    Writer::Slot<uint32_t>* length_slot,
                                    int initial_position) {
  uint32_t align = (w->position() - initial_position) % kPointerSize;

  if (align != 0) {
    for (uint32_t i = 0; i < (kPointerSize - align); i++) {
      w->Write<uint8_t>(DW_CFA_NOP);
    }
  }

1691
  DCHECK((w->position() - initial_position) % kPointerSize == 0);
1692
  length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
1693 1694 1695
}


1696
UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
1697 1698 1699 1700 1701 1702 1703
#ifdef __ELF
    : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
#else
    : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
                   MachOSection::S_REGULAR),
#endif
      desc_(desc) { }
1704

1705
int UnwindInfoSection::WriteCIE(Writer* w) {
1706
  Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1707
  uint32_t cie_position = static_cast<uint32_t>(w->position());
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

  // Write out the CIE header. Currently no 'common instructions' are
  // emitted onto the CIE; every FDE has its own set of instructions.

  w->Write<uint32_t>(CIE_ID);
  w->Write<uint8_t>(CIE_VERSION);
  w->Write<uint8_t>(0);  // Null augmentation string.
  w->WriteSLEB128(CODE_ALIGN_FACTOR);
  w->WriteSLEB128(DATA_ALIGN_FACTOR);
  w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);

  WriteLength(w, &cie_length_slot, cie_position);

  return cie_position;
}


1725
void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
1726 1727
  // The only FDE for this function. The CFA is the current RBP.
  Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1728
  int fde_position = static_cast<uint32_t>(w->position());
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
  w->Write<int32_t>(fde_position - cie_position + 4);

  w->Write<uintptr_t>(desc_->CodeStart());
  w->Write<uintptr_t>(desc_->CodeSize());

  WriteFDEStateOnEntry(w);
  WriteFDEStateAfterRBPPush(w);
  WriteFDEStateAfterRBPSet(w);
  WriteFDEStateAfterRBPPop(w);

  WriteLength(w, &fde_length_slot, fde_position);
}


1743
void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
  // The first state, just after the control has been transferred to the the
  // function.

  // RBP for this function will be the value of RSP after pushing the RBP
  // for the previous function. The previous RBP has not been pushed yet.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
  w->WriteULEB128(AMD64_RSP);
  w->WriteSLEB128(-kPointerSize);

  // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
  // and hence omitted from the next states.
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RA);
  w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);

  // The RBP of the previous function is still in RBP.
  w->Write<uint8_t>(DW_CFA_SAME_VALUE);
  w->WriteULEB128(AMD64_RBP);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
}


1770
void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
  // The second state, just after RBP has been pushed.

  // RBP / CFA for this function is now the current RSP, so just set the
  // offset from the previous rule (from -8) to 0.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
  w->WriteULEB128(0);

  // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
  // in this and the next state, and hence omitted in the next state.
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RBP);
  w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
}


1791
void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
  // The third state, after the RBP has been set.

  // The CFA can now directly be set to RBP.
  w->Write<uint8_t>(DW_CFA_DEF_CFA);
  w->WriteULEB128(AMD64_RBP);
  w->WriteULEB128(0);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
}


1806
void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
  // The fourth (final) state. The RBP has been popped (just before issuing a
  // return).

  // The CFA can is now calculated in the same way as in the first state.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
  w->WriteULEB128(AMD64_RSP);
  w->WriteSLEB128(-kPointerSize);

  // The RBP
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RBP);
  w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(desc_->CodeEnd());
}


1826
bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
1827 1828 1829 1830 1831 1832 1833 1834
  uint32_t cie_position = WriteCIE(w);
  WriteFDE(w, cie_position);
  return true;
}


#endif  // V8_TARGET_ARCH_X64

1835 1836 1837
static void CreateDWARFSections(CodeDescription* desc,
                                Zone* zone,
                                DebugObject* obj) {
1838
  if (desc->IsLineInfoAvailable()) {
1839 1840 1841
    obj->AddSection(new(zone) DebugInfoSection(desc));
    obj->AddSection(new(zone) DebugAbbrevSection(desc));
    obj->AddSection(new(zone) DebugLineSection(desc));
1842
  }
1843
#if V8_TARGET_ARCH_X64
1844
  obj->AddSection(new(zone) UnwindInfoSection(desc));
1845
#endif
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
}


// -------------------------------------------------------------------
// Binary GDB JIT Interface as described in
//   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
extern "C" {
  typedef enum {
    JIT_NOACTION = 0,
    JIT_REGISTER_FN,
    JIT_UNREGISTER_FN
  } JITAction;

  struct JITCodeEntry {
    JITCodeEntry* next_;
    JITCodeEntry* prev_;
    Address symfile_addr_;
    uint64_t symfile_size_;
  };

  struct JITDescriptor {
    uint32_t version_;
    uint32_t action_flag_;
1869 1870
    JITCodeEntry* relevant_entry_;
    JITCodeEntry* first_entry_;
1871 1872 1873 1874 1875 1876
  };

  // GDB will place breakpoint into this function.
  // To prevent GCC from inlining or removing it we place noinline attribute
  // and inline assembler statement inside.
  void __attribute__((noinline)) __jit_debug_register_code() {
1877
    __asm__("");
1878 1879 1880 1881 1882 1883
  }

  // GDB will inspect contents of this descriptor.
  // Static initialization is necessary to prevent GDB from seeing
  // uninitialized descriptor.
  JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1884 1885

#ifdef OBJECT_PRINT
1886
  void __gdb_print_v8_object(Object* object) {
1887 1888
    OFStream os(stdout);
    object->Print(os);
1889
    os << std::flush;
1890 1891
  }
#endif
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
}


static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
                                     uintptr_t symfile_size) {
  JITCodeEntry* entry = static_cast<JITCodeEntry*>(
      malloc(sizeof(JITCodeEntry) + symfile_size));

  entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
  entry->symfile_size_ = symfile_size;
1902
  MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

  entry->prev_ = entry->next_ = NULL;

  return entry;
}


static void DestroyCodeEntry(JITCodeEntry* entry) {
  free(entry);
}


1915
static void RegisterCodeEntry(JITCodeEntry* entry) {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
  entry->next_ = __jit_debug_descriptor.first_entry_;
  if (entry->next_ != NULL) entry->next_->prev_ = entry;
  __jit_debug_descriptor.first_entry_ =
      __jit_debug_descriptor.relevant_entry_ = entry;

  __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
  __jit_debug_register_code();
}


static void UnregisterCodeEntry(JITCodeEntry* entry) {
  if (entry->prev_ != NULL) {
    entry->prev_->next_ = entry->next_;
  } else {
    __jit_debug_descriptor.first_entry_ = entry->next_;
  }

  if (entry->next_ != NULL) {
    entry->next_->prev_ = entry->prev_;
  }

  __jit_debug_descriptor.relevant_entry_ = entry;
  __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
  __jit_debug_register_code();
}


1943
static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
1944
#ifdef __MACH_O
1945
  Zone zone(isolate->allocator(), ZONE_NAME);
1946
  MachO mach_o(&zone);
1947 1948
  Writer w(&mach_o);

1949 1950 1951
  mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
                                                desc->CodeStart(),
                                                desc->CodeSize()));
1952

1953
  CreateDWARFSections(desc, &zone, &mach_o);
1954

1955 1956
  mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
#else
1957
  Zone zone(isolate->allocator(), ZONE_NAME);
1958
  ELF elf(&zone);
1959 1960 1961
  Writer w(&elf);

  int text_section_index = elf.AddSection(
1962
      new(&zone) FullHeaderELFSection(
1963 1964 1965 1966 1967 1968
          ".text",
          ELFSection::TYPE_NOBITS,
          kCodeAlignment,
          desc->CodeStart(),
          0,
          desc->CodeSize(),
1969
          ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1970

1971
  CreateSymbolsTable(desc, &zone, &elf, text_section_index);
1972

1973
  CreateDWARFSections(desc, &zone, &elf);
1974 1975

  elf.Write(&w);
1976
#endif
1977 1978 1979 1980 1981

  return CreateCodeEntry(w.buffer(), w.position());
}


1982 1983 1984 1985
struct AddressRange {
  Address start;
  Address end;
};
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
struct SplayTreeConfig {
  typedef AddressRange Key;
  typedef JITCodeEntry* Value;
  static const AddressRange kNoKey;
  static Value NoValue() { return NULL; }
  static int Compare(const AddressRange& a, const AddressRange& b) {
    // ptrdiff_t probably doesn't fit in an int.
    if (a.start < b.start) return -1;
    if (a.start == b.start) return 0;
    return 1;
1997
  }
1998
};
1999

2000 2001
const AddressRange SplayTreeConfig::kNoKey = {0, 0};
typedef SplayTree<SplayTreeConfig> CodeMap;
2002

2003 2004 2005 2006
static CodeMap* GetCodeMap() {
  static CodeMap* code_map = NULL;
  if (code_map == NULL) code_map = new CodeMap();
  return code_map;
2007 2008 2009
}


2010 2011 2012 2013
static uint32_t HashCodeAddress(Address addr) {
  static const uintptr_t kGoldenRatio = 2654435761u;
  uintptr_t offset = OffsetFrom(addr);
  return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio);
2014 2015
}

lpy's avatar
lpy committed
2016 2017 2018
static base::HashMap* GetLineMap() {
  static base::HashMap* line_map = NULL;
  if (line_map == NULL) {
2019
    line_map = new base::HashMap();
lpy's avatar
lpy committed
2020
  }
2021
  return line_map;
2022 2023 2024
}


2025
static void PutLineInfo(Address addr, LineInfo* info) {
lpy's avatar
lpy committed
2026 2027 2028
  base::HashMap* line_map = GetLineMap();
  base::HashMap::Entry* e =
      line_map->LookupOrInsert(addr, HashCodeAddress(addr));
2029 2030
  if (e->value != NULL) delete static_cast<LineInfo*>(e->value);
  e->value = info;
2031 2032 2033
}


2034 2035 2036
static LineInfo* GetLineInfo(Address addr) {
  void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr));
  return static_cast<LineInfo*>(value);
2037 2038
}

2039

2040
static void AddUnwindInfo(CodeDescription* desc) {
2041
#if V8_TARGET_ARCH_X64
2042
  if (desc->is_function()) {
2043
    // To avoid propagating unwinding information through
2044 2045
    // compilation pipeline we use an approximation.
    // For most use cases this should not affect usability.
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    static const int kFramePointerPushOffset = 1;
    static const int kFramePointerSetOffset = 4;
    static const int kFramePointerPopOffset = -3;

    uintptr_t frame_pointer_push_address =
        desc->CodeStart() + kFramePointerPushOffset;

    uintptr_t frame_pointer_set_address =
        desc->CodeStart() + kFramePointerSetOffset;

    uintptr_t frame_pointer_pop_address =
        desc->CodeEnd() + kFramePointerPopOffset;

    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
                                    frame_pointer_push_address);
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
                                    frame_pointer_set_address);
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
                                    frame_pointer_pop_address);
2065
  } else {
2066 2067 2068 2069 2070 2071
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
                                    desc->CodeStart());
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
                                    desc->CodeStart());
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
                                    desc->CodeEnd());
2072
  }
2073
#endif  // V8_TARGET_ARCH_X64
2074 2075 2076
}


2077
static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
2078 2079


2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
// Remove entries from the splay tree that intersect the given address range,
// and deregister them from GDB.
static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
  DCHECK(range.start < range.end);
  CodeMap::Locator cur;
  if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
    // Skip entries that are entirely less than the range of interest.
    while (cur.key().end <= range.start) {
      // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
      // than _or equal to_ the given key, so we have to advance our key to get
      // the next one.
      AddressRange new_key;
      new_key.start = cur.key().end;
      new_key.end = 0;
      if (!map->FindLeastGreaterThan(new_key, &cur)) return;
    }
    // Evict intersecting ranges.
    while (cur.key().start < range.end) {
      AddressRange old_range = cur.key();
      JITCodeEntry* old_entry = cur.value();

      UnregisterCodeEntry(old_entry);
      DestroyCodeEntry(old_entry);

      CHECK(map->Remove(old_range));
      if (!map->FindLeastGreaterThan(old_range, &cur)) return;
    }
  }
}


// Insert the entry into the splay tree and register it with GDB.
static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
                            JITCodeEntry* entry, bool dump_if_enabled,
                            const char* name_hint) {
#if defined(DEBUG) && !V8_OS_WIN
  static int file_num = 0;
  if (FLAG_gdbjit_dump && dump_if_enabled) {
    static const int kMaxFileNameSize = 64;
    char file_name[64];

    SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
             (name_hint != NULL) ? name_hint : "", file_num++);
2123 2124
    WriteBytes(file_name, entry->symfile_addr_,
               static_cast<int>(entry->symfile_size_));
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
  }
#endif

  CodeMap::Locator cur;
  CHECK(map->Insert(range, &cur));
  cur.set_value(entry);

  RegisterCodeEntry(entry);
}


static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
                    LineInfo* lineinfo) {
2138
  DisallowHeapAllocation no_gc;
2139

2140 2141 2142 2143 2144
  CodeMap* code_map = GetCodeMap();
  AddressRange range;
  range.start = code->address();
  range.end = code->address() + code->CodeSize();
  RemoveJITCodeEntries(code_map, range);
2145

2146
  CodeDescription code_desc(name, code, shared, lineinfo);
2147

2148
  if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
2149 2150 2151 2152
    delete lineinfo;
    return;
  }

2153
  AddUnwindInfo(&code_desc);
2154 2155
  Isolate* isolate = code->GetIsolate();
  JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
2156 2157 2158

  delete lineinfo;

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
  const char* name_hint = NULL;
  bool should_dump = false;
  if (FLAG_gdbjit_dump) {
    if (strlen(FLAG_gdbjit_dump_filter) == 0) {
      name_hint = name;
      should_dump = true;
    } else if (name != NULL) {
      name_hint = strstr(name, FLAG_gdbjit_dump_filter);
      should_dump = (name_hint != NULL);
    }
  }
2170
  AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
2171 2172 2173
}


2174
void EventHandler(const v8::JitCodeEvent* event) {
2175
  if (!FLAG_gdbjit) return;
2176
  base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
2177
  switch (event->type) {
2178
    case v8::JitCodeEvent::CODE_ADDED: {
2179 2180 2181
      Address addr = reinterpret_cast<Address>(event->code_start);
      Code* code = Code::GetCodeFromTargetAddress(addr);
      LineInfo* lineinfo = GetLineInfo(addr);
2182 2183 2184
      EmbeddedVector<char, 256> buffer;
      StringBuilder builder(buffer.start(), buffer.length());
      builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
2185 2186 2187 2188
      // It's called UnboundScript in the API but it's a SharedFunctionInfo.
      SharedFunctionInfo* shared =
          event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script);
      AddCode(builder.Finalize(), code, shared, lineinfo);
2189 2190
      break;
    }
2191
    case v8::JitCodeEvent::CODE_MOVED:
2192 2193
      // Enabling the GDB JIT interface should disable code compaction.
      UNREACHABLE();
2194
      break;
2195 2196 2197
    case v8::JitCodeEvent::CODE_REMOVED:
      // Do nothing.  Instead, adding code causes eviction of any entry whose
      // address range intersects the address range of the added code.
2198
      break;
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
      LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
      line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
                             static_cast<int>(event->line_info.pos),
                             event->line_info.position_type ==
                                 v8::JitCodeEvent::STATEMENT_POSITION);
      break;
    }
    case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
      v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
      mutable_event->user_data = new LineInfo();
      break;
    }
    case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
      LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2214
      PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
2215 2216 2217 2218
      break;
    }
  }
}
2219
#endif
2220 2221 2222
}  // namespace GDBJITInterface
}  // namespace internal
}  // namespace v8