code-stubs-ppc.cc 121 KB
Newer Older
1 2 3 4 5 6
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_PPC

7 8
#include "src/code-stubs.h"
#include "src/api-arguments.h"
9 10 11 12 13
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
14
#include "src/ic/stub-cache.h"
15
#include "src/isolate.h"
16
#include "src/ppc/code-stubs-ppc.h"
17 18
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
19 20 21 22 23
#include "src/runtime/runtime.h"

namespace v8 {
namespace internal {

24
#define __ ACCESS_MASM(masm)
25

26 27 28 29 30 31 32
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
  __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
  __ StorePX(r4, MemOperand(sp, r0));
  __ push(r4);
  __ push(r5);
  __ addi(r3, r3, Operand(3));
  __ TailCallRuntime(Runtime::kNewArray);
33 34 35
}

static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
36
                                          Condition cond);
37 38 39 40 41 42 43 44 45 46 47 48 49
static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
                                    Register rhs, Label* lhs_not_nan,
                                    Label* slow, bool strict);
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
                                           Register rhs);


void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
                                               ExternalReference miss) {
  // Update the static counter each time a new code stub is generated.
  isolate()->counters()->code_stubs()->Increment();

  CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
50
  int param_count = descriptor.GetRegisterParameterCount();
51 52
  {
    // Call the runtime system in a fresh internal frame.
53
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
54
    DCHECK(param_count == 0 ||
55
           r3.is(descriptor.GetRegisterParameter(param_count - 1)));
56 57
    // Push arguments
    for (int i = 0; i < param_count; ++i) {
58
      __ push(descriptor.GetRegisterParameter(i));
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    }
    __ CallExternalReference(miss, param_count);
  }

  __ Ret();
}


void DoubleToIStub::Generate(MacroAssembler* masm) {
  Label out_of_range, only_low, negate, done, fastpath_done;
  Register input_reg = source();
  Register result_reg = destination();
  DCHECK(is_truncating());

  int double_offset = offset();

  // Immediate values for this stub fit in instructions, so it's safe to use ip.
  Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
  Register scratch_low =
      GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
  Register scratch_high =
      GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
  DoubleRegister double_scratch = kScratchDoubleReg;

  __ push(scratch);
  // Account for saved regs if input is sp.
  if (input_reg.is(sp)) double_offset += kPointerSize;

  if (!skip_fastpath()) {
    // Load double input.
    __ lfd(double_scratch, MemOperand(input_reg, double_offset));

    // Do fast-path convert from double to int.
    __ ConvertDoubleToInt64(double_scratch,
#if !V8_TARGET_ARCH_PPC64
                            scratch,
#endif
                            result_reg, d0);

// Test for overflow
#if V8_TARGET_ARCH_PPC64
100
    __ TestIfInt32(result_reg, r0);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
#else
    __ TestIfInt32(scratch, result_reg, r0);
#endif
    __ beq(&fastpath_done);
  }

  __ Push(scratch_high, scratch_low);
  // Account for saved regs if input is sp.
  if (input_reg.is(sp)) double_offset += 2 * kPointerSize;

  __ lwz(scratch_high,
         MemOperand(input_reg, double_offset + Register::kExponentOffset));
  __ lwz(scratch_low,
         MemOperand(input_reg, double_offset + Register::kMantissaOffset));

  __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
  // Load scratch with exponent - 1. This is faster than loading
  // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
  STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
  __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
  // If exponent is greater than or equal to 84, the 32 less significant
  // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
  // the result is 0.
  // Compare exponent with 84 (compare exponent - 1 with 83).
  __ cmpi(scratch, Operand(83));
  __ bge(&out_of_range);

  // If we reach this code, 31 <= exponent <= 83.
  // So, we don't have to handle cases where 0 <= exponent <= 20 for
  // which we would need to shift right the high part of the mantissa.
  // Scratch contains exponent - 1.
  // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
  __ subfic(scratch, scratch, Operand(51));
  __ cmpi(scratch, Operand::Zero());
  __ ble(&only_low);
  // 21 <= exponent <= 51, shift scratch_low and scratch_high
  // to generate the result.
  __ srw(scratch_low, scratch_low, scratch);
  // Scratch contains: 52 - exponent.
  // We needs: exponent - 20.
  // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
  __ subfic(scratch, scratch, Operand(32));
  __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
  // Set the implicit 1 before the mantissa part in scratch_high.
  STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
  __ oris(result_reg, result_reg,
          Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16)));
  __ slw(r0, result_reg, scratch);
  __ orx(result_reg, scratch_low, r0);
  __ b(&negate);

  __ bind(&out_of_range);
  __ mov(result_reg, Operand::Zero());
  __ b(&done);

  __ bind(&only_low);
  // 52 <= exponent <= 83, shift only scratch_low.
  // On entry, scratch contains: 52 - exponent.
  __ neg(scratch, scratch);
  __ slw(result_reg, scratch_low, scratch);

  __ bind(&negate);
  // If input was positive, scratch_high ASR 31 equals 0 and
  // scratch_high LSR 31 equals zero.
  // New result = (result eor 0) + 0 = result.
  // If the input was negative, we have to negate the result.
  // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
  // New result = (result eor 0xffffffff) + 1 = 0 - result.
  __ srawi(r0, scratch_high, 31);
#if V8_TARGET_ARCH_PPC64
  __ srdi(r0, r0, Operand(32));
#endif
  __ xor_(result_reg, result_reg, r0);
  __ srwi(r0, scratch_high, Operand(31));
  __ add(result_reg, result_reg, r0);

  __ bind(&done);
  __ Pop(scratch_high, scratch_low);

  __ bind(&fastpath_done);
  __ pop(scratch);

  __ Ret();
}


// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
191
                                          Condition cond) {
192 193 194 195 196 197 198 199 200 201
  Label not_identical;
  Label heap_number, return_equal;
  __ cmp(r3, r4);
  __ bne(&not_identical);

  // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
  // so we do the second best thing - test it ourselves.
  // They are both equal and they are not both Smis so both of them are not
  // Smis.  If it's not a heap number, then return equal.
  if (cond == lt || cond == gt) {
202
    // Call runtime on identical JSObjects.
203
    __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE);
204
    __ bge(slow);
205
    // Call runtime on identical symbols since we need to throw a TypeError.
206
    __ cmpi(r7, Operand(SYMBOL_TYPE));
207
    __ beq(slow);
208 209 210 211 212
  } else {
    __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE);
    __ beq(&heap_number);
    // Comparing JS objects with <=, >= is complicated.
    if (cond != eq) {
213
      __ cmpi(r7, Operand(FIRST_JS_RECEIVER_TYPE));
214
      __ bge(slow);
215
      // Call runtime on identical symbols since we need to throw a TypeError.
216 217
      __ cmpi(r7, Operand(SYMBOL_TYPE));
      __ beq(slow);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      // Normally here we fall through to return_equal, but undefined is
      // special: (undefined == undefined) == true, but
      // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
      if (cond == le || cond == ge) {
        __ cmpi(r7, Operand(ODDBALL_TYPE));
        __ bne(&return_equal);
        __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
        __ cmp(r3, r5);
        __ bne(&return_equal);
        if (cond == le) {
          // undefined <= undefined should fail.
          __ li(r3, Operand(GREATER));
        } else {
          // undefined >= undefined should fail.
          __ li(r3, Operand(LESS));
        }
        __ Ret();
      }
    }
  }

  __ bind(&return_equal);
  if (cond == lt) {
    __ li(r3, Operand(GREATER));  // Things aren't less than themselves.
  } else if (cond == gt) {
    __ li(r3, Operand(LESS));  // Things aren't greater than themselves.
  } else {
    __ li(r3, Operand(EQUAL));  // Things are <=, >=, ==, === themselves.
  }
  __ Ret();

  // For less and greater we don't have to check for NaN since the result of
  // x < x is false regardless.  For the others here is some code to check
  // for NaN.
  if (cond != lt && cond != gt) {
    __ bind(&heap_number);
    // It is a heap number, so return non-equal if it's NaN and equal if it's
    // not NaN.

    // The representation of NaN values has all exponent bits (52..62) set,
    // and not all mantissa bits (0..51) clear.
    // Read top bits of double representation (second word of value).
    __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
    // Test that exponent bits are all set.
    STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
    __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask);
    __ cmpli(r6, Operand(0x7ff));
    __ bne(&return_equal);

    // Shift out flag and all exponent bits, retaining only mantissa.
    __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord));
    // Or with all low-bits of mantissa.
    __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
    __ orx(r3, r6, r5);
    __ cmpi(r3, Operand::Zero());
    // For equal we already have the right value in r3:  Return zero (equal)
    // if all bits in mantissa are zero (it's an Infinity) and non-zero if
    // not (it's a NaN).  For <= and >= we need to load r0 with the failing
    // value if it's a NaN.
    if (cond != eq) {
278 279 280
      if (CpuFeatures::IsSupported(ISELECT)) {
        __ li(r4, Operand((cond == le) ? GREATER : LESS));
        __ isel(eq, r3, r3, r4);
281
      } else {
282
        // All-zero means Infinity means equal.
283
        __ Ret(eq);
284 285 286 287 288
        if (cond == le) {
          __ li(r3, Operand(GREATER));  // NaN <= NaN should fail.
        } else {
          __ li(r3, Operand(LESS));  // NaN >= NaN should fail.
        }
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
      }
    }
    __ Ret();
  }
  // No fall through here.

  __ bind(&not_identical);
}


// See comment at call site.
static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
                                    Register rhs, Label* lhs_not_nan,
                                    Label* slow, bool strict) {
  DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));

  Label rhs_is_smi;
  __ JumpIfSmi(rhs, &rhs_is_smi);

  // Lhs is a Smi.  Check whether the rhs is a heap number.
  __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE);
  if (strict) {
    // If rhs is not a number and lhs is a Smi then strict equality cannot
    // succeed.  Return non-equal
    // If rhs is r3 then there is already a non zero value in it.
    if (!rhs.is(r3)) {
315 316
      Label skip;
      __ beq(&skip);
317
      __ mov(r3, Operand(NOT_EQUAL));
318 319 320 321
      __ Ret();
      __ bind(&skip);
    } else {
      __ Ret(ne);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    }
  } else {
    // Smi compared non-strictly with a non-Smi non-heap-number.  Call
    // the runtime.
    __ bne(slow);
  }

  // Lhs is a smi, rhs is a number.
  // Convert lhs to a double in d7.
  __ SmiToDouble(d7, lhs);
  // Load the double from rhs, tagged HeapNumber r3, to d6.
  __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));

  // We now have both loaded as doubles but we can skip the lhs nan check
  // since it's a smi.
  __ b(lhs_not_nan);

  __ bind(&rhs_is_smi);
  // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
  __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE);
  if (strict) {
    // If lhs is not a number and rhs is a smi then strict equality cannot
    // succeed.  Return non-equal.
    // If lhs is r3 then there is already a non zero value in it.
    if (!lhs.is(r3)) {
347 348
      Label skip;
      __ beq(&skip);
349
      __ mov(r3, Operand(NOT_EQUAL));
350 351 352 353
      __ Ret();
      __ bind(&skip);
    } else {
      __ Ret(ne);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    }
  } else {
    // Smi compared non-strictly with a non-smi non-heap-number.  Call
    // the runtime.
    __ bne(slow);
  }

  // Rhs is a smi, lhs is a heap number.
  // Load the double from lhs, tagged HeapNumber r4, to d7.
  __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
  // Convert rhs to a double in d6.
  __ SmiToDouble(d6, rhs);
  // Fall through to both_loaded_as_doubles.
}


// See comment at call site.
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
                                           Register rhs) {
  DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));

  // If either operand is a JS object or an oddball value, then they are
  // not equal since their pointers are different.
  // There is no test for undetectability in strict equality.
378
  STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
379 380
  Label first_non_object;
  // Get the type of the first operand into r5 and compare it with
381 382
  // FIRST_JS_RECEIVER_TYPE.
  __ CompareObjectType(rhs, r5, r5, FIRST_JS_RECEIVER_TYPE);
383 384 385 386 387 388 389 390 391 392 393 394
  __ blt(&first_non_object);

  // Return non-zero (r3 is not zero)
  Label return_not_equal;
  __ bind(&return_not_equal);
  __ Ret();

  __ bind(&first_non_object);
  // Check for oddballs: true, false, null, undefined.
  __ cmpi(r5, Operand(ODDBALL_TYPE));
  __ beq(&return_not_equal);

395
  __ CompareObjectType(lhs, r6, r6, FIRST_JS_RECEIVER_TYPE);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
  __ bge(&return_not_equal);

  // Check for oddballs: true, false, null, undefined.
  __ cmpi(r6, Operand(ODDBALL_TYPE));
  __ beq(&return_not_equal);

  // Now that we have the types we might as well check for
  // internalized-internalized.
  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
  __ orx(r5, r5, r6);
  __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask));
  __ beq(&return_not_equal, cr0);
}


// See comment at call site.
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
                                       Register rhs,
                                       Label* both_loaded_as_doubles,
                                       Label* not_heap_numbers, Label* slow) {
  DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));

  __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE);
  __ bne(not_heap_numbers);
  __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
  __ cmp(r5, r6);
  __ bne(slow);  // First was a heap number, second wasn't.  Go slow case.

  // Both are heap numbers.  Load them up then jump to the code we have
  // for that.
  __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
  __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));

  __ b(both_loaded_as_doubles);
}

432 433 434
// Fast negative check for internalized-to-internalized equality or receiver
// equality. Also handles the undetectable receiver to null/undefined
// comparison.
435 436 437
static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
                                                     Register lhs, Register rhs,
                                                     Label* possible_strings,
438
                                                     Label* runtime_call) {
439 440 441
  DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));

  // r5 is object type of rhs.
442
  Label object_test, return_equal, return_unequal, undetectable;
443 444 445 446 447 448
  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
  __ andi(r0, r5, Operand(kIsNotStringMask));
  __ bne(&object_test, cr0);
  __ andi(r0, r5, Operand(kIsNotInternalizedMask));
  __ bne(possible_strings, cr0);
  __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE);
449
  __ bge(runtime_call);
450 451 452
  __ andi(r0, r6, Operand(kIsNotInternalizedMask));
  __ bne(possible_strings, cr0);

453 454 455
  // Both are internalized. We already checked they weren't the same pointer so
  // they are not equal. Return non-equal by returning the non-zero object
  // pointer in r3.
456 457 458
  __ Ret();

  __ bind(&object_test);
459
  __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
460
  __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset));
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
  __ lbz(r7, FieldMemOperand(r5, Map::kBitFieldOffset));
  __ lbz(r8, FieldMemOperand(r6, Map::kBitFieldOffset));
  __ andi(r0, r7, Operand(1 << Map::kIsUndetectable));
  __ bne(&undetectable, cr0);
  __ andi(r0, r8, Operand(1 << Map::kIsUndetectable));
  __ bne(&return_unequal, cr0);

  __ CompareInstanceType(r5, r5, FIRST_JS_RECEIVER_TYPE);
  __ blt(runtime_call);
  __ CompareInstanceType(r6, r6, FIRST_JS_RECEIVER_TYPE);
  __ blt(runtime_call);

  __ bind(&return_unequal);
  // Return non-equal by returning the non-zero object pointer in r3.
  __ Ret();

  __ bind(&undetectable);
  __ andi(r0, r8, Operand(1 << Map::kIsUndetectable));
  __ beq(&return_unequal, cr0);
480 481 482 483 484 485 486 487 488 489

  // If both sides are JSReceivers, then the result is false according to
  // the HTML specification, which says that only comparisons with null or
  // undefined are affected by special casing for document.all.
  __ CompareInstanceType(r5, r5, ODDBALL_TYPE);
  __ beq(&return_equal);
  __ CompareInstanceType(r6, r6, ODDBALL_TYPE);
  __ bne(&return_unequal);

  __ bind(&return_equal);
490
  __ li(r3, Operand(EQUAL));
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  __ Ret();
}


static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
                                         Register scratch,
                                         CompareICState::State expected,
                                         Label* fail) {
  Label ok;
  if (expected == CompareICState::SMI) {
    __ JumpIfNotSmi(input, fail);
  } else if (expected == CompareICState::NUMBER) {
    __ JumpIfSmi(input, &ok);
    __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
                DONT_DO_SMI_CHECK);
  }
  // We could be strict about internalized/non-internalized here, but as long as
  // hydrogen doesn't care, the stub doesn't have to care either.
  __ bind(&ok);
}


// On entry r4 and r5 are the values to be compared.
// On exit r3 is 0, positive or negative to indicate the result of
// the comparison.
void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
  Register lhs = r4;
  Register rhs = r3;
  Condition cc = GetCondition();

  Label miss;
  CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss);
  CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss);

  Label slow;  // Call builtin.
  Label not_smis, both_loaded_as_doubles, lhs_not_nan;

  Label not_two_smis, smi_done;
  __ orx(r5, r4, r3);
  __ JumpIfNotSmi(r5, &not_two_smis);
  __ SmiUntag(r4);
  __ SmiUntag(r3);
  __ sub(r3, r4, r3);
  __ Ret();
  __ bind(&not_two_smis);

  // NOTICE! This code is only reached after a smi-fast-case check, so
  // it is certain that at least one operand isn't a smi.

  // Handle the case where the objects are identical.  Either returns the answer
  // or goes to slow.  Only falls through if the objects were not identical.
542
  EmitIdenticalObjectComparison(masm, &slow, cc);
543 544 545 546

  // If either is a Smi (we know that not both are), then they can only
  // be strictly equal if the other is a HeapNumber.
  STATIC_ASSERT(kSmiTag == 0);
547
  DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
  __ and_(r5, lhs, rhs);
  __ JumpIfNotSmi(r5, &not_smis);
  // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
  // 1) Return the answer.
  // 2) Go to slow.
  // 3) Fall through to both_loaded_as_doubles.
  // 4) Jump to lhs_not_nan.
  // In cases 3 and 4 we have found out we were dealing with a number-number
  // comparison.  The double values of the numbers have been loaded
  // into d7 and d6.
  EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());

  __ bind(&both_loaded_as_doubles);
  // The arguments have been converted to doubles and stored in d6 and d7
  __ bind(&lhs_not_nan);
  Label no_nan;
  __ fcmpu(d7, d6);

  Label nan, equal, less_than;
  __ bunordered(&nan);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
  if (CpuFeatures::IsSupported(ISELECT)) {
    DCHECK(EQUAL == 0);
    __ li(r4, Operand(GREATER));
    __ li(r5, Operand(LESS));
    __ isel(eq, r3, r0, r4);
    __ isel(lt, r3, r5, r3);
    __ Ret();
  } else {
    __ beq(&equal);
    __ blt(&less_than);
    __ li(r3, Operand(GREATER));
    __ Ret();
    __ bind(&equal);
    __ li(r3, Operand(EQUAL));
    __ Ret();
    __ bind(&less_than);
    __ li(r3, Operand(LESS));
    __ Ret();
  }
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

  __ bind(&nan);
  // If one of the sides was a NaN then the v flag is set.  Load r3 with
  // whatever it takes to make the comparison fail, since comparisons with NaN
  // always fail.
  if (cc == lt || cc == le) {
    __ li(r3, Operand(GREATER));
  } else {
    __ li(r3, Operand(LESS));
  }
  __ Ret();

  __ bind(&not_smis);
  // At this point we know we are dealing with two different objects,
  // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
  if (strict()) {
    // This returns non-equal for some object types, or falls through if it
    // was not lucky.
    EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
  }

  Label check_for_internalized_strings;
  Label flat_string_check;
  // Check for heap-number-heap-number comparison.  Can jump to slow case,
  // or load both doubles into r3, r4, r5, r6 and jump to the code that handles
  // that case.  If the inputs are not doubles then jumps to
  // check_for_internalized_strings.
  // In this case r5 will contain the type of rhs_.  Never falls through.
  EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
                             &check_for_internalized_strings,
                             &flat_string_check);

  __ bind(&check_for_internalized_strings);
  // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
  // internalized strings.
  if (cc == eq && !strict()) {
    // Returns an answer for two internalized strings or two detectable objects.
    // Otherwise jumps to string case or not both strings case.
    // Assumes that r5 is the type of rhs_ on entry.
    EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
                                             &slow);
  }

  // Check for both being sequential one-byte strings,
  // and inline if that is the case.
  __ bind(&flat_string_check);

  __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow);

  __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5,
                      r6);
  if (cc == eq) {
    StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6);
  } else {
    StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7);
  }
  // Never falls through to here.

  __ bind(&slow);

647
  if (cc == eq) {
648 649
    {
      FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
650 651 652 653 654
      __ Push(cp);
      __ Call(strict() ? isolate()->builtins()->StrictEqual()
                       : isolate()->builtins()->Equal(),
              RelocInfo::CODE_TARGET);
      __ Pop(cp);
655 656 657 658 659 660
    }
    // Turn true into 0 and false into some non-zero value.
    STATIC_ASSERT(EQUAL == 0);
    __ LoadRoot(r4, Heap::kTrueValueRootIndex);
    __ sub(r3, r3, r4);
    __ Ret();
661
  } else {
662
    __ Push(lhs, rhs);
663 664 665
    int ncr;  // NaN compare result
    if (cc == lt || cc == le) {
      ncr = GREATER;
666
    } else {
667 668
      DCHECK(cc == gt || cc == ge);  // remaining cases
      ncr = LESS;
669
    }
670 671
    __ LoadSmiLiteral(r3, Smi::FromInt(ncr));
    __ push(r3);
672

673 674
    // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
    // tagged as a small integer.
675
    __ TailCallRuntime(Runtime::kCompare);
676
  }
677 678 679 680 681 682 683 684 685 686 687 688 689

  __ bind(&miss);
  GenerateMiss(masm);
}


void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
  // We don't allow a GC during a store buffer overflow so there is no need to
  // store the registers in any particular way, but we do have to store and
  // restore them.
  __ mflr(r0);
  __ MultiPush(kJSCallerSaved | r0.bit());
  if (save_doubles()) {
690
    __ MultiPushDoubles(kCallerSavedDoubles);
691 692 693 694 695 696 697 698 699 700 701
  }
  const int argument_count = 1;
  const int fp_argument_count = 0;
  const Register scratch = r4;

  AllowExternalCallThatCantCauseGC scope(masm);
  __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
  __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
  __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
                   argument_count);
  if (save_doubles()) {
702
    __ MultiPopDoubles(kCallerSavedDoubles);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
  }
  __ MultiPop(kJSCallerSaved | r0.bit());
  __ mtlr(r0);
  __ Ret();
}


void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
  __ PushSafepointRegisters();
  __ blr();
}


void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
  __ PopSafepointRegisters();
  __ blr();
}


void MathPowStub::Generate(MacroAssembler* masm) {
  const Register exponent = MathPowTaggedDescriptor::exponent();
  DCHECK(exponent.is(r5));
  const DoubleRegister double_base = d1;
  const DoubleRegister double_exponent = d2;
  const DoubleRegister double_result = d3;
  const DoubleRegister double_scratch = d0;
  const Register scratch = r11;
  const Register scratch2 = r10;

  Label call_runtime, done, int_exponent;
733
  if (exponent_type() == TAGGED) {
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    // Base is already in double_base.
    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);

    __ lfd(double_exponent,
           FieldMemOperand(exponent, HeapNumber::kValueOffset));
  }

  if (exponent_type() != INTEGER) {
    // Detect integer exponents stored as double.
    __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
                             double_scratch);
    __ beq(&int_exponent);

    __ mflr(r0);
    __ push(r0);
    {
      AllowExternalCallThatCantCauseGC scope(masm);
      __ PrepareCallCFunction(0, 2, scratch);
      __ MovToFloatParameters(double_base, double_exponent);
      __ CallCFunction(
          ExternalReference::power_double_double_function(isolate()), 0, 2);
    }
    __ pop(r0);
    __ mtlr(r0);
    __ MovFromFloatResult(double_result);
    __ b(&done);
  }

  // Calculate power with integer exponent.
  __ bind(&int_exponent);

  // Get two copies of exponent in the registers scratch and exponent.
  if (exponent_type() == INTEGER) {
    __ mr(scratch, exponent);
  } else {
    // Exponent has previously been stored into scratch as untagged integer.
    __ mr(exponent, scratch);
  }
  __ fmr(double_scratch, double_base);  // Back up base.
  __ li(scratch2, Operand(1));
  __ ConvertIntToDouble(scratch2, double_result);

  // Get absolute value of exponent.
  __ cmpi(scratch, Operand::Zero());
778 779 780 781 782 783 784 785 786
  if (CpuFeatures::IsSupported(ISELECT)) {
    __ neg(scratch2, scratch);
    __ isel(lt, scratch, scratch2, scratch);
  } else {
    Label positive_exponent;
    __ bge(&positive_exponent);
    __ neg(scratch, scratch);
    __ bind(&positive_exponent);
  }
787 788 789 790 791 792 793

  Label while_true, no_carry, loop_end;
  __ bind(&while_true);
  __ andi(scratch2, scratch, Operand(1));
  __ beq(&no_carry, cr0);
  __ fmul(double_result, double_result, double_scratch);
  __ bind(&no_carry);
794
  __ ShiftRightImm(scratch, scratch, Operand(1), SetRC);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
  __ beq(&loop_end, cr0);
  __ fmul(double_scratch, double_scratch, double_scratch);
  __ b(&while_true);
  __ bind(&loop_end);

  __ cmpi(exponent, Operand::Zero());
  __ bge(&done);

  __ li(scratch2, Operand(1));
  __ ConvertIntToDouble(scratch2, double_scratch);
  __ fdiv(double_result, double_scratch, double_result);
  // Test whether result is zero.  Bail out to check for subnormal result.
  // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
  __ fcmpu(double_result, kDoubleRegZero);
  __ bne(&done);
  // double_exponent may not containe the exponent value if the input was a
  // smi.  We set it with exponent value before bailing out.
  __ ConvertIntToDouble(exponent, double_exponent);

  // Returning or bailing out.
815 816 817 818 819 820 821 822
  __ mflr(r0);
  __ push(r0);
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ PrepareCallCFunction(0, 2, scratch);
    __ MovToFloatParameters(double_base, double_exponent);
    __ CallCFunction(
        ExternalReference::power_double_double_function(isolate()), 0, 2);
823
  }
824 825 826 827 828 829
  __ pop(r0);
  __ mtlr(r0);
  __ MovFromFloatResult(double_result);

  __ bind(&done);
  __ Ret();
830 831 832 833 834 835 836 837 838 839
}


bool CEntryStub::NeedsImmovableCode() { return true; }


void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
  CEntryStub::GenerateAheadOfTime(isolate);
  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
  StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
840
  CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
841
  CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
842
  CreateWeakCellStub::GenerateAheadOfTime(isolate);
843 844 845 846
  BinaryOpICStub::GenerateAheadOfTime(isolate);
  StoreRegistersStateStub::GenerateAheadOfTime(isolate);
  RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
  BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
847
  StoreFastElementStub::GenerateAheadOfTime(isolate);
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
}


void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
  StoreRegistersStateStub stub(isolate);
  stub.GetCode();
}


void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
  RestoreRegistersStateStub stub(isolate);
  stub.GetCode();
}


void CodeStub::GenerateFPStubs(Isolate* isolate) {
  // Generate if not already in cache.
  SaveFPRegsMode mode = kSaveFPRegs;
  CEntryStub(isolate, 1, mode).GetCode();
  StoreBufferOverflowStub(isolate, mode).GetCode();
}


void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
  CEntryStub stub(isolate, 1, kDontSaveFPRegs);
  stub.GetCode();
}


void CEntryStub::Generate(MacroAssembler* masm) {
  // Called from JavaScript; parameters are on stack as if calling JS function.
  // r3: number of arguments including receiver
  // r4: pointer to builtin function
  // fp: frame pointer  (restored after C call)
  // sp: stack pointer  (restored as callee's sp after C call)
  // cp: current context  (C callee-saved)
884 885 886
  //
  // If argv_in_register():
  // r5: pointer to the first argument
887 888 889 890
  ProfileEntryHookStub::MaybeCallEntryHook(masm);

  __ mr(r15, r4);

891 892 893 894 895 896 897 898 899
  if (argv_in_register()) {
    // Move argv into the correct register.
    __ mr(r4, r5);
  } else {
    // Compute the argv pointer.
    __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
    __ add(r4, r4, sp);
    __ subi(r4, r4, Operand(kPointerSize));
  }
900 901 902 903 904 905 906 907

  // Enter the exit frame that transitions from JavaScript to C++.
  FrameScope scope(masm, StackFrame::MANUAL);

  // Need at least one extra slot for return address location.
  int arg_stack_space = 1;

  // Pass buffer for return value on stack if necessary
908 909 910 911 912
  bool needs_return_buffer =
      result_size() > 2 ||
      (result_size() == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
  if (needs_return_buffer) {
    arg_stack_space += result_size();
913 914
  }

915 916 917
  __ EnterExitFrame(save_doubles(), arg_stack_space, is_builtin_exit()
                                           ? StackFrame::BUILTIN_EXIT
                                           : StackFrame::EXIT);
918 919 920 921 922 923 924 925 926 927 928

  // Store a copy of argc in callee-saved registers for later.
  __ mr(r14, r3);

  // r3, r14: number of arguments including receiver  (C callee-saved)
  // r4: pointer to the first argument
  // r15: pointer to builtin function  (C callee-saved)

  // Result returned in registers or stack, depending on result size and ABI.

  Register isolate_reg = r5;
929 930
  if (needs_return_buffer) {
    // The return value is a non-scalar value.
931 932 933 934 935 936 937 938 939 940 941
    // Use frame storage reserved by calling function to pass return
    // buffer as implicit first argument.
    __ mr(r5, r4);
    __ mr(r4, r3);
    __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
    isolate_reg = r6;
  }

  // Call C built-in.
  __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));

942
  Register target = r15;
943 944 945 946 947 948 949 950 951
  if (ABI_USES_FUNCTION_DESCRIPTORS) {
    // AIX/PPC64BE Linux use a function descriptor.
    __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize));
    __ LoadP(ip, MemOperand(r15, 0));  // Instruction address
    target = ip;
  } else if (ABI_CALL_VIA_IP) {
    __ Move(ip, r15);
    target = ip;
  }
952 953 954 955 956

  // To let the GC traverse the return address of the exit frames, we need to
  // know where the return address is. The CEntryStub is unmovable, so
  // we can store the address on the stack to be able to find it again and
  // we never have to restore it, because it will not change.
957 958 959 960 961
  Label after_call;
  __ mov_label_addr(r0, &after_call);
  __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
  __ Call(target);
  __ bind(&after_call);
962 963

  // If return value is on the stack, pop it to registers.
964 965
  if (needs_return_buffer) {
    if (result_size() > 2) __ LoadP(r5, MemOperand(r3, 2 * kPointerSize));
966 967 968 969 970 971 972 973 974 975 976 977 978
    __ LoadP(r4, MemOperand(r3, kPointerSize));
    __ LoadP(r3, MemOperand(r3));
  }

  // Check result for exception sentinel.
  Label exception_returned;
  __ CompareRoot(r3, Heap::kExceptionRootIndex);
  __ beq(&exception_returned);

  // Check that there is no pending exception, otherwise we
  // should have returned the exception sentinel.
  if (FLAG_debug_code) {
    Label okay;
979 980 981
    ExternalReference pending_exception_address(
        Isolate::kPendingExceptionAddress, isolate());

982 983 984
    __ mov(r6, Operand(pending_exception_address));
    __ LoadP(r6, MemOperand(r6));
    __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
985 986 987 988 989 990 991 992 993 994
    // Cannot use check here as it attempts to generate call into runtime.
    __ beq(&okay);
    __ stop("Unexpected pending exception");
    __ bind(&okay);
  }

  // Exit C frame and return.
  // r3:r4: result
  // sp: stack pointer
  // fp: frame pointer
995 996 997 998 999 1000 1001 1002 1003
  Register argc;
  if (argv_in_register()) {
    // We don't want to pop arguments so set argc to no_reg.
    argc = no_reg;
  } else {
    // r14: still holds argc (callee-saved).
    argc = r14;
  }
  __ LeaveExitFrame(save_doubles(), argc, true);
1004 1005 1006 1007 1008
  __ blr();

  // Handling of exception.
  __ bind(&exception_returned);

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
  ExternalReference pending_handler_context_address(
      Isolate::kPendingHandlerContextAddress, isolate());
  ExternalReference pending_handler_code_address(
      Isolate::kPendingHandlerCodeAddress, isolate());
  ExternalReference pending_handler_offset_address(
      Isolate::kPendingHandlerOffsetAddress, isolate());
  ExternalReference pending_handler_fp_address(
      Isolate::kPendingHandlerFPAddress, isolate());
  ExternalReference pending_handler_sp_address(
      Isolate::kPendingHandlerSPAddress, isolate());

  // Ask the runtime for help to determine the handler. This will set r3 to
  // contain the current pending exception, don't clobber it.
1022
  ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1023
                                 isolate());
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ PrepareCallCFunction(3, 0, r3);
    __ li(r3, Operand::Zero());
    __ li(r4, Operand::Zero());
    __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
    __ CallCFunction(find_handler, 3);
  }

  // Retrieve the handler context, SP and FP.
  __ mov(cp, Operand(pending_handler_context_address));
  __ LoadP(cp, MemOperand(cp));
  __ mov(sp, Operand(pending_handler_sp_address));
  __ LoadP(sp, MemOperand(sp));
  __ mov(fp, Operand(pending_handler_fp_address));
  __ LoadP(fp, MemOperand(fp));

1041 1042
  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (cp == 0) for non-JS frames.
1043 1044 1045 1046 1047 1048 1049
  Label skip;
  __ cmpi(cp, Operand::Zero());
  __ beq(&skip);
  __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ bind(&skip);

  // Compute the handler entry address and jump to it.
1050
  ConstantPoolUnavailableScope constant_pool_unavailable(masm);
1051 1052 1053 1054 1055
  __ mov(r4, Operand(pending_handler_code_address));
  __ LoadP(r4, MemOperand(r4));
  __ mov(r5, Operand(pending_handler_offset_address));
  __ LoadP(r5, MemOperand(r5));
  __ addi(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start
1056 1057 1058
  if (FLAG_enable_embedded_constant_pool) {
    __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r4);
  }
1059 1060
  __ add(ip, r4, r5);
  __ Jump(ip);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}


void JSEntryStub::Generate(MacroAssembler* masm) {
  // r3: code entry
  // r4: function
  // r5: receiver
  // r6: argc
  // [sp+0]: argv

  Label invoke, handler_entry, exit;

// Called from C
  __ function_descriptor();

  ProfileEntryHookStub::MaybeCallEntryHook(masm);

  // PPC LINUX ABI:
  // preserve LR in pre-reserved slot in caller's frame
  __ mflr(r0);
  __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));

  // Save callee saved registers on the stack.
  __ MultiPush(kCalleeSaved);

1086 1087 1088 1089
  // Save callee-saved double registers.
  __ MultiPushDoubles(kCalleeSavedDoubles);
  // Set up the reserved register for 0.0.
  __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
1090 1091 1092 1093 1094 1095 1096 1097 1098

  // Push a frame with special values setup to mark it as an entry frame.
  // r3: code entry
  // r4: function
  // r5: receiver
  // r6: argc
  // r7: argv
  __ li(r0, Operand(-1));  // Push a bad frame pointer to fail if it is used.
  __ push(r0);
1099 1100 1101 1102
  if (FLAG_enable_embedded_constant_pool) {
    __ li(kConstantPoolRegister, Operand::Zero());
    __ push(kConstantPoolRegister);
  }
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
  int marker = type();
  __ LoadSmiLiteral(r0, Smi::FromInt(marker));
  __ push(r0);
  __ push(r0);
  // Save copies of the top frame descriptor on the stack.
  __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
  __ LoadP(r0, MemOperand(r8));
  __ push(r0);

  // Set up frame pointer for the frame to be pushed.
  __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));

  // If this is the outermost JS call, set js_entry_sp value.
  Label non_outermost_js;
  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
  __ mov(r8, Operand(ExternalReference(js_entry_sp)));
  __ LoadP(r9, MemOperand(r8));
  __ cmpi(r9, Operand::Zero());
  __ bne(&non_outermost_js);
  __ StoreP(fp, MemOperand(r8));
  __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
  Label cont;
  __ b(&cont);
  __ bind(&non_outermost_js);
  __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
  __ bind(&cont);
  __ push(ip);  // frame-type

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ b(&invoke);

  __ bind(&handler_entry);
  handler_offset_ = handler_entry.pos();
  // Caught exception: Store result (exception) in the pending exception
  // field in the JSEnv and return a failure sentinel.  Coming in here the
1139
  // fp will be invalid because the PushStackHandler below sets it to 0 to
1140 1141 1142 1143 1144 1145 1146 1147
  // signal the existence of the JSEntry frame.
  __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
                                       isolate())));

  __ StoreP(r3, MemOperand(ip));
  __ LoadRoot(r3, Heap::kExceptionRootIndex);
  __ b(&exit);

1148
  // Invoke: Link this frame into the handler chain.
1149
  __ bind(&invoke);
1150 1151
  // Must preserve r3-r7.
  __ PushStackHandler();
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
  // If an exception not caught by another handler occurs, this handler
  // returns control to the code after the b(&invoke) above, which
  // restores all kCalleeSaved registers (including cp and fp) to their
  // saved values before returning a failure to C.

  // Invoke the function by calling through JS entry trampoline builtin.
  // Notice that we cannot store a reference to the trampoline code directly in
  // this stub, because runtime stubs are not traversed when doing GC.

  // Expected registers by Builtins::JSEntryTrampoline
  // r3: code entry
  // r4: function
  // r5: receiver
  // r6: argc
  // r7: argv
  if (type() == StackFrame::ENTRY_CONSTRUCT) {
    ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
                                      isolate());
    __ mov(ip, Operand(construct_entry));
  } else {
    ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
    __ mov(ip, Operand(entry));
  }
  __ LoadP(ip, MemOperand(ip));  // deref address

  // Branch and link to JSEntryTrampoline.
  // the address points to the start of the code object, skip the header
  __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ mtctr(ip);
  __ bctrl();  // make the call

  // Unlink this frame from the handler chain.
1184
  __ PopStackHandler();
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

  __ bind(&exit);  // r3 holds result
  // Check if the current stack frame is marked as the outermost JS frame.
  Label non_outermost_js_2;
  __ pop(r8);
  __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
  __ bne(&non_outermost_js_2);
  __ mov(r9, Operand::Zero());
  __ mov(r8, Operand(ExternalReference(js_entry_sp)));
  __ StoreP(r9, MemOperand(r8));
  __ bind(&non_outermost_js_2);

  // Restore the top frame descriptors from the stack.
  __ pop(r6);
  __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
  __ StoreP(r6, MemOperand(ip));

  // Reset the stack to the callee saved registers.
  __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));

1205 1206
  // Restore callee-saved double registers.
  __ MultiPopDoubles(kCalleeSavedDoubles);
1207

1208
  // Restore callee-saved registers.
1209 1210
  __ MultiPop(kCalleeSaved);

1211
  // Return
1212
  __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
1213 1214
  __ mtlr(r0);
  __ blr();
1215 1216 1217 1218 1219 1220 1221
}

void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
1222
  __ TailCallRuntime(Runtime::kRegExpExec);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
#else  // V8_INTERPRETED_REGEXP

  // Stack frame on entry.
  //  sp[0]: last_match_info (expected JSArray)
  //  sp[4]: previous index
  //  sp[8]: subject string
  //  sp[12]: JSRegExp object

  const int kLastMatchInfoOffset = 0 * kPointerSize;
  const int kPreviousIndexOffset = 1 * kPointerSize;
  const int kSubjectOffset = 2 * kPointerSize;
  const int kJSRegExpOffset = 3 * kPointerSize;

  Label runtime, br_over, encoding_type_UC16;

  // Allocation of registers for this function. These are in callee save
  // registers and will be preserved by the call to the native RegExp code, as
  // this code is called using the normal C calling convention. When calling
  // directly from generated code the native RegExp code will not do a GC and
  // therefore the content of these registers are safe to use after the call.
  Register subject = r14;
  Register regexp_data = r15;
  Register last_match_info_elements = r16;
  Register code = r17;

  // Ensure register assigments are consistent with callee save masks
  DCHECK(subject.bit() & kCalleeSaved);
  DCHECK(regexp_data.bit() & kCalleeSaved);
  DCHECK(last_match_info_elements.bit() & kCalleeSaved);
  DCHECK(code.bit() & kCalleeSaved);

  // Ensure that a RegExp stack is allocated.
  ExternalReference address_of_regexp_stack_memory_address =
      ExternalReference::address_of_regexp_stack_memory_address(isolate());
  ExternalReference address_of_regexp_stack_memory_size =
      ExternalReference::address_of_regexp_stack_memory_size(isolate());
  __ mov(r3, Operand(address_of_regexp_stack_memory_size));
  __ LoadP(r3, MemOperand(r3, 0));
  __ cmpi(r3, Operand::Zero());
  __ beq(&runtime);

  // Check that the first argument is a JSRegExp object.
  __ LoadP(r3, MemOperand(sp, kJSRegExpOffset));
  __ JumpIfSmi(r3, &runtime);
  __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
  __ bne(&runtime);

  // Check that the RegExp has been compiled (data contains a fixed array).
  __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset));
  if (FLAG_debug_code) {
    __ TestIfSmi(regexp_data, r0);
    __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
    __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE);
    __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
  }

  // regexp_data: RegExp data (FixedArray)
  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
  __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
  // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
  __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0);
  __ bne(&runtime);

  // regexp_data: RegExp data (FixedArray)
  // Check that the number of captures fit in the static offsets vector buffer.
  __ LoadP(r5,
           FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
  // Check (number_of_captures + 1) * 2 <= offsets vector size
  // Or          number_of_captures * 2 <= offsets vector size - 2
  // SmiToShortArrayOffset accomplishes the multiplication by 2 and
  // SmiUntag (which is a nop for 32-bit).
  __ SmiToShortArrayOffset(r5, r5);
  STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
  __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
  __ bgt(&runtime);

  // Reset offset for possibly sliced string.
  __ li(r11, Operand::Zero());
  __ LoadP(subject, MemOperand(sp, kSubjectOffset));
  __ JumpIfSmi(subject, &runtime);
  __ mr(r6, subject);  // Make a copy of the original subject string.
  // subject: subject string
  // r6: subject string
  // regexp_data: RegExp data (FixedArray)
  // Handle subject string according to its encoding and representation:
1308 1309 1310 1311 1312
  // (1) Sequential string?  If yes, go to (4).
  // (2) Sequential or cons?  If not, go to (5).
  // (3) Cons string.  If the string is flat, replace subject with first string
  //     and go to (1). Otherwise bail out to runtime.
  // (4) Sequential string.  Load regexp code according to encoding.
1313 1314 1315 1316
  // (E) Carry on.
  /// [...]

  // Deferred code at the end of the stub:
1317 1318 1319 1320
  // (5) Long external string?  If not, go to (7).
  // (6) External string.  Make it, offset-wise, look like a sequential string.
  //     Go to (4).
  // (7) Short external string or not a string?  If yes, bail out to runtime.
1321
  // (8) Sliced or thin string.  Replace subject with parent.  Go to (1).
1322 1323 1324 1325 1326 1327 1328

  Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
      not_seq_nor_cons /* 5 */, not_long_external /* 7 */;

  __ bind(&check_underlying);
  __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
  __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
1329

1330
  // (1) Sequential string?  If yes, go to (4).
1331 1332

  STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
1333
                 kShortExternalStringMask) == 0xa7);
1334 1335 1336
  __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask |
                          kShortExternalStringMask));
  STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1337
  __ beq(&seq_string, cr0);  // Go to (4).
1338

1339
  // (2) Sequential or cons? If not, go to (5).
1340 1341
  STATIC_ASSERT(kConsStringTag < kExternalStringTag);
  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1342
  STATIC_ASSERT(kThinStringTag > kExternalStringTag);
1343 1344 1345 1346
  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
  STATIC_ASSERT(kExternalStringTag < 0xffffu);
  __ cmpi(r4, Operand(kExternalStringTag));
1347
  __ bge(&not_seq_nor_cons);  // Go to (5).
1348 1349 1350 1351 1352 1353 1354

  // (3) Cons string.  Check that it's flat.
  // Replace subject with first string and reload instance type.
  __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset));
  __ CompareRoot(r3, Heap::kempty_stringRootIndex);
  __ bne(&runtime);
  __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
1355
  __ b(&check_underlying);
1356

1357
  // (4) Sequential string.  Load regexp code according to encoding.
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
  __ bind(&seq_string);
  // subject: sequential subject string (or look-alike, external string)
  // r6: original subject string
  // Load previous index and check range before r6 is overwritten.  We have to
  // use r6 instead of subject here because subject might have been only made
  // to look like a sequential string when it actually is an external string.
  __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset));
  __ JumpIfNotSmi(r4, &runtime);
  __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset));
  __ cmpl(r6, r4);
  __ ble(&runtime);
  __ SmiUntag(r4);

1371
  STATIC_ASSERT(8 == kOneByteStringTag);
1372
  STATIC_ASSERT(kTwoByteStringTag == 0);
1373
  STATIC_ASSERT(kStringEncodingMask == 8);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
  __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC);
  __ beq(&encoding_type_UC16, cr0);
  __ LoadP(code,
           FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
  __ b(&br_over);
  __ bind(&encoding_type_UC16);
  __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
  __ bind(&br_over);

  // (E) Carry on.  String handling is done.
  // code: irregexp code
  // Check that the irregexp code has been generated for the actual string
  // encoding. If it has, the field contains a code object otherwise it contains
  // a smi (code flushing support).
  __ JumpIfSmi(code, &runtime);

  // r4: previous index
  // r6: encoding of subject string (1 if one_byte, 0 if two_byte);
  // code: Address of generated regexp code
  // subject: Subject string
  // regexp_data: RegExp data (FixedArray)
  // All checks done. Now push arguments for native regexp code.
  __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5);

  // Isolates: note we add an additional parameter here (isolate pointer).
  const int kRegExpExecuteArguments = 10;
  const int kParameterRegisters = 8;
  __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);

  // Stack pointer now points to cell where return address is to be written.
  // Arguments are before that on the stack or in registers.

  // Argument 10 (in stack parameter area): Pass current isolate address.
  __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
  __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));

  // Argument 9 is a dummy that reserves the space used for
  // the return address added by the ExitFrame in native calls.

  // Argument 8 (r10): Indicate that this is a direct call from JavaScript.
  __ li(r10, Operand(1));

  // Argument 7 (r9): Start (high end) of backtracking stack memory area.
  __ mov(r3, Operand(address_of_regexp_stack_memory_address));
  __ LoadP(r3, MemOperand(r3, 0));
  __ mov(r5, Operand(address_of_regexp_stack_memory_size));
  __ LoadP(r5, MemOperand(r5, 0));
  __ add(r9, r3, r5);

  // Argument 6 (r8): Set the number of capture registers to zero to force
  // global egexps to behave as non-global.  This does not affect non-global
  // regexps.
  __ li(r8, Operand::Zero());

  // Argument 5 (r7): static offsets vector buffer.
  __ mov(
      r7,
      Operand(ExternalReference::address_of_static_offsets_vector(isolate())));

  // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data
  // and calculate the shift of the index (0 for one-byte and 1 for two-byte).
  __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
  __ xori(r6, r6, Operand(1));
  // Load the length from the original subject string from the previous stack
  // frame. Therefore we have to use fp, which points exactly to two pointer
  // sizes below the previous sp. (Because creating a new stack frame pushes
  // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
  __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
  // If slice offset is not 0, load the length from the original sliced string.
  // Argument 4, r6: End of string data
  // Argument 3, r5: Start of string data
  // Prepare start and end index of the input.
  __ ShiftLeft_(r11, r11, r6);
  __ add(r11, r18, r11);
  __ ShiftLeft_(r5, r4, r6);
  __ add(r5, r11, r5);

  __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset));
  __ SmiUntag(r18);
  __ ShiftLeft_(r6, r18, r6);
  __ add(r6, r11, r6);

  // Argument 2 (r4): Previous index.
  // Already there

  // Argument 1 (r3): Subject string.
  __ mr(r3, subject);

  // Locate the code entry and call it.
  __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));

  DirectCEntryStub stub(isolate());
  stub.GenerateCall(masm, code);

  __ LeaveExitFrame(false, no_reg, true);

1470
  // r3: result (int32)
1471 1472 1473 1474 1475
  // subject: subject string (callee saved)
  // regexp_data: RegExp data (callee saved)
  // last_match_info_elements: Last match info elements (callee saved)
  // Check the result.
  Label success;
1476
  __ cmpwi(r3, Operand(1));
1477 1478 1479 1480
  // We expect exactly one result since we force the called regexp to behave
  // as non-global.
  __ beq(&success);
  Label failure;
1481
  __ cmpwi(r3, Operand(NativeRegExpMacroAssembler::FAILURE));
1482
  __ beq(&failure);
1483
  __ cmpwi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
  // If not exception it can only be retry. Handle that in the runtime system.
  __ bne(&runtime);
  // Result must now be exception. If there is no pending exception already a
  // stack overflow (on the backtrack stack) was detected in RegExp code but
  // haven't created the exception yet. Handle that in the runtime system.
  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
  __ mov(r4, Operand(isolate()->factory()->the_hole_value()));
  __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
                                       isolate())));
  __ LoadP(r3, MemOperand(r5, 0));
  __ cmp(r3, r4);
  __ beq(&runtime);

1497
  // For exception, throw the exception again.
1498
  __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

  __ bind(&failure);
  // For failure and exception return null.
  __ mov(r3, Operand(isolate()->factory()->null_value()));
  __ addi(sp, sp, Operand(4 * kPointerSize));
  __ Ret();

  // Process the result from the native regexp code.
  __ bind(&success);
  __ LoadP(r4,
           FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
  // Calculate number of capture registers (number_of_captures + 1) * 2.
  // SmiToShortArrayOffset accomplishes the multiplication by 2 and
  // SmiUntag (which is a nop for 32-bit).
  __ SmiToShortArrayOffset(r4, r4);
  __ addi(r4, r4, Operand(2));

1516 1517 1518
  // Check that the last match info is a FixedArray.
  __ LoadP(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
  __ JumpIfSmi(last_match_info_elements, &runtime);
1519
  // Check that the object has fast elements.
1520 1521 1522 1523 1524 1525 1526 1527
  __ LoadP(r3,
           FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
  __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex);
  __ bne(&runtime);
  // Check that the last match info has space for the capture registers and the
  // additional information.
  __ LoadP(
      r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1528
  __ addi(r5, r4, Operand(RegExpMatchInfo::kLastMatchOverhead));
1529 1530 1531 1532 1533 1534 1535 1536 1537
  __ SmiUntag(r0, r3);
  __ cmp(r5, r0);
  __ bgt(&runtime);

  // r4: number of capture registers
  // subject: subject string
  // Store the capture count.
  __ SmiTag(r5, r4);
  __ StoreP(r5, FieldMemOperand(last_match_info_elements,
1538
                                RegExpMatchInfo::kNumberOfCapturesOffset),
1539 1540 1541
            r0);
  // Store last subject and last input.
  __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1542
                                     RegExpMatchInfo::kLastSubjectOffset),
1543 1544
            r0);
  __ mr(r5, subject);
1545 1546 1547
  __ RecordWriteField(last_match_info_elements,
                      RegExpMatchInfo::kLastSubjectOffset, subject, r10,
                      kLRHasNotBeenSaved, kDontSaveFPRegs);
1548 1549
  __ mr(subject, r5);
  __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1550
                                     RegExpMatchInfo::kLastInputOffset),
1551
            r0);
1552 1553 1554
  __ RecordWriteField(last_match_info_elements,
                      RegExpMatchInfo::kLastInputOffset, subject, r10,
                      kLRHasNotBeenSaved, kDontSaveFPRegs);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

  // Get the static offsets vector filled by the native regexp code.
  ExternalReference address_of_static_offsets_vector =
      ExternalReference::address_of_static_offsets_vector(isolate());
  __ mov(r5, Operand(address_of_static_offsets_vector));

  // r4: number of capture registers
  // r5: offsets vector
  Label next_capture;
  // Capture register counter starts from number of capture registers and
1565 1566 1567 1568
  // counts down until wrapping after zero.
  __ addi(r3, last_match_info_elements,
          Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag -
                  kPointerSize));
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
  __ addi(r5, r5, Operand(-kIntSize));  // bias down for lwzu
  __ mtctr(r4);
  __ bind(&next_capture);
  // Read the value from the static offsets vector buffer.
  __ lwzu(r6, MemOperand(r5, kIntSize));
  // Store the smi value in the last match info.
  __ SmiTag(r6);
  __ StorePU(r6, MemOperand(r3, kPointerSize));
  __ bdnz(&next_capture);

  // Return last match info.
1580
  __ mr(r3, last_match_info_elements);
1581 1582 1583 1584 1585
  __ addi(sp, sp, Operand(4 * kPointerSize));
  __ Ret();

  // Do the runtime call to execute the regexp.
  __ bind(&runtime);
1586
  __ TailCallRuntime(Runtime::kRegExpExec);
1587 1588

  // Deferred code for string handling.
1589
  // (5) Long external string? If not, go to (7).
1590 1591
  __ bind(&not_seq_nor_cons);
  // Compare flags are still set.
1592
  __ bgt(&not_long_external);  // Go to (7).
1593

1594
  // (6) External string.  Make it, offset-wise, look like a sequential string.
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
  __ bind(&external_string);
  __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
  __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    STATIC_ASSERT(kIsIndirectStringMask == 1);
    __ andi(r0, r3, Operand(kIsIndirectStringMask));
    __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
  }
  __ LoadP(subject,
           FieldMemOperand(subject, ExternalString::kResourceDataOffset));
  // Move the pointer so that offset-wise, it looks like a sequential string.
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
  __ subi(subject, subject,
          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1611
  __ b(&seq_string);  // Go to (4).
1612

1613
  // (7) Short external string or not a string?  If yes, bail out to runtime.
1614 1615 1616 1617 1618
  __ bind(&not_long_external);
  STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
  __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask));
  __ bne(&runtime, cr0);

1619 1620 1621 1622
  // (8) Sliced or thin string.  Replace subject with parent.  Go to (4).
  Label thin_string;
  __ cmpi(r4, Operand(kThinStringTag));
  __ beq(&thin_string);
1623 1624 1625 1626 1627
  // Load offset into r11 and replace subject string with parent.
  __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset));
  __ SmiUntag(r11);
  __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
  __ b(&check_underlying);  // Go to (4).
1628 1629 1630 1631

  __ bind(&thin_string);
  __ LoadP(subject, FieldMemOperand(subject, ThinString::kActualOffset));
  __ b(&check_underlying);  // Go to (4).
1632 1633 1634 1635
#endif  // V8_INTERPRETED_REGEXP
}


1636
static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1637 1638
  // r3 : number of arguments to the construct function
  // r4 : the function to call
1639 1640
  // r5 : feedback vector
  // r6 : slot in feedback vector (Smi)
1641
  FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1642

1643
  // Number-of-arguments register must be smi-tagged to call out.
1644
  __ SmiTag(r3);
1645
  __ Push(r6, r5, r4, r3);
1646
  __ Push(cp);
1647 1648 1649

  __ CallStub(stub);

1650
  __ Pop(cp);
1651
  __ Pop(r6, r5, r4, r3);
1652 1653 1654 1655
  __ SmiUntag(r3);
}


1656
static void GenerateRecordCallTarget(MacroAssembler* masm) {
1657 1658 1659 1660 1661
  // Cache the called function in a feedback vector slot.  Cache states
  // are uninitialized, monomorphic (indicated by a JSFunction), and
  // megamorphic.
  // r3 : number of arguments to the construct function
  // r4 : the function to call
1662
  // r5 : feedback vector
1663 1664 1665
  // r6 : slot in feedback vector (Smi)
  Label initialize, done, miss, megamorphic, not_array_function;

1666
  DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
1667
            masm->isolate()->heap()->megamorphic_symbol());
1668
  DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
1669 1670
            masm->isolate()->heap()->uninitialized_symbol());

1671 1672
  const int count_offset = FixedArray::kHeaderSize + kPointerSize;

1673 1674 1675 1676
  // Load the cache state into r8.
  __ SmiToPtrArrayOffset(r8, r6);
  __ add(r8, r5, r8);
  __ LoadP(r8, FieldMemOperand(r8, FixedArray::kHeaderSize));
1677 1678 1679

  // A monomorphic cache hit or an already megamorphic state: invoke the
  // function without changing the state.
1680
  // We don't know if r8 is a WeakCell or a Symbol, but it's harmless to read at
1681
  // this position in a symbol (see static asserts in feedback-vector.h).
1682
  Label check_allocation_site;
1683 1684 1685
  Register feedback_map = r9;
  Register weak_value = r10;
  __ LoadP(weak_value, FieldMemOperand(r8, WeakCell::kValueOffset));
1686
  __ cmp(r4, weak_value);
1687
  __ beq(&done);
1688
  __ CompareRoot(r8, Heap::kmegamorphic_symbolRootIndex);
1689
  __ beq(&done);
1690
  __ LoadP(feedback_map, FieldMemOperand(r8, HeapObject::kMapOffset));
1691
  __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
1692
  __ bne(&check_allocation_site);
1693

1694
  // If the weak cell is cleared, we have a new chance to become monomorphic.
1695 1696
  __ JumpIfSmi(weak_value, &initialize);
  __ b(&megamorphic);
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706
  __ bind(&check_allocation_site);
  // If we came here, we need to see if we are the array function.
  // If we didn't have a matching function, and we didn't find the megamorph
  // sentinel, then we have in the slot either some other function or an
  // AllocationSite.
  __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
  __ bne(&miss);

  // Make sure the function is the Array() function
1707
  __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
1708 1709
  __ cmp(r4, r8);
  __ bne(&megamorphic);
1710
  __ b(&done);
1711 1712 1713 1714 1715

  __ bind(&miss);

  // A monomorphic miss (i.e, here the cache is not uninitialized) goes
  // megamorphic.
1716
  __ CompareRoot(r8, Heap::kuninitialized_symbolRootIndex);
1717 1718 1719 1720
  __ beq(&initialize);
  // MegamorphicSentinel is an immortal immovable object (undefined) so no
  // write-barrier is needed.
  __ bind(&megamorphic);
1721 1722
  __ SmiToPtrArrayOffset(r8, r6);
  __ add(r8, r5, r8);
1723
  __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
1724
  __ StoreP(ip, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
1725 1726 1727 1728 1729
  __ jmp(&done);

  // An uninitialized cache is patched with the function
  __ bind(&initialize);

1730
  // Make sure the function is the Array() function.
1731
  __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
1732 1733
  __ cmp(r4, r8);
  __ bne(&not_array_function);
1734

1735 1736 1737 1738
  // The target function is the Array constructor,
  // Create an AllocationSite if we don't already have it, store it in the
  // slot.
  CreateAllocationSiteStub create_stub(masm->isolate());
1739
  CallStubInRecordCallTarget(masm, &create_stub);
1740
  __ b(&done);
1741 1742

  __ bind(&not_array_function);
1743

1744
  CreateWeakCellStub weak_cell_stub(masm->isolate());
1745
  CallStubInRecordCallTarget(masm, &weak_cell_stub);
1746

1747
  __ bind(&done);
1748

1749
  // Increment the call count for all function calls.
1750 1751 1752 1753 1754 1755
  __ SmiToPtrArrayOffset(r8, r6);
  __ add(r8, r5, r8);

  __ LoadP(r7, FieldMemOperand(r8, count_offset));
  __ AddSmiLiteral(r7, r7, Smi::FromInt(1), r0);
  __ StoreP(r7, FieldMemOperand(r8, count_offset), r0);
1756 1757 1758
}


1759
void CallConstructStub::Generate(MacroAssembler* masm) {
1760 1761 1762
  // r3 : number of arguments
  // r4 : the function to call
  // r5 : feedback vector
1763
  // r6 : slot in feedback vector (Smi, for RecordCallTarget)
1764

1765
  Label non_function;
1766
  // Check that the function is not a smi.
1767
  __ JumpIfSmi(r4, &non_function);
1768
  // Check that the function is a JSFunction.
1769
  __ CompareObjectType(r4, r8, r8, JS_FUNCTION_TYPE);
1770
  __ bne(&non_function);
1771

1772
  GenerateRecordCallTarget(masm);
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
  __ SmiToPtrArrayOffset(r8, r6);
  __ add(r8, r5, r8);
  // Put the AllocationSite from the feedback vector into r5, or undefined.
  __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize));
  __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset));
  __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
  if (CpuFeatures::IsSupported(ISELECT)) {
    __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
    __ isel(eq, r5, r5, r8);
  } else {
    Label feedback_register_initialized;
    __ beq(&feedback_register_initialized);
    __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
    __ bind(&feedback_register_initialized);
1788 1789
  }

1790 1791
  __ AssertUndefinedOrAllocationSite(r5, r8);

1792
  // Pass function as new target.
1793
  __ mr(r6, r4);
1794

1795 1796 1797 1798 1799
  // Tail call to the function-specific construct stub (still in the caller
  // context at this point).
  __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
  __ LoadP(r7, FieldMemOperand(r7, SharedFunctionInfo::kConstructStubOffset));
  __ addi(ip, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
1800 1801
  __ JumpToJSEntry(ip);

1802 1803 1804
  __ bind(&non_function);
  __ mr(r6, r4);
  __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
}


// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
  // If the receiver is a smi trigger the non-string case.
  if (check_mode_ == RECEIVER_IS_UNKNOWN) {
    __ JumpIfSmi(object_, receiver_not_string_);

    // Fetch the instance type of the receiver into result register.
    __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
    __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
    // If the receiver is not a string trigger the non-string case.
    __ andi(r0, result_, Operand(kIsNotStringMask));
    __ bne(receiver_not_string_, cr0);
  }

  // If the index is non-smi trigger the non-smi case.
  __ JumpIfNotSmi(index_, &index_not_smi_);
  __ bind(&got_smi_index_);

  // Check for index out of range.
  __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
  __ cmpl(ip, index_);
  __ ble(index_out_of_range_);

  __ SmiUntag(index_);

  StringCharLoadGenerator::Generate(masm, object_, index_, result_,
                                    &call_runtime_);

  __ SmiTag(result_);
  __ bind(&exit_);
}


void StringCharCodeAtGenerator::GenerateSlow(
1842 1843
    MacroAssembler* masm, EmbedMode embed_mode,
    const RuntimeCallHelper& call_helper) {
1844 1845 1846 1847 1848 1849 1850 1851
  __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);

  // Index is not a smi.
  __ bind(&index_not_smi_);
  // If index is a heap number, try converting it to an integer.
  __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
              DONT_DO_SMI_CHECK);
  call_helper.BeforeCall(masm);
1852
  if (embed_mode == PART_OF_IC_HANDLER) {
1853 1854
    __ Push(LoadWithVectorDescriptor::VectorRegister(),
            LoadWithVectorDescriptor::SlotRegister(), object_, index_);
1855 1856 1857 1858
  } else {
    // index_ is consumed by runtime conversion function.
    __ Push(object_, index_);
  }
1859
  __ CallRuntime(Runtime::kNumberToSmi);
1860 1861 1862
  // Save the conversion result before the pop instructions below
  // have a chance to overwrite it.
  __ Move(index_, r3);
1863
  if (embed_mode == PART_OF_IC_HANDLER) {
1864 1865
    __ Pop(LoadWithVectorDescriptor::VectorRegister(),
           LoadWithVectorDescriptor::SlotRegister(), object_);
1866 1867 1868
  } else {
    __ pop(object_);
  }
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
  // Reload the instance type.
  __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
  __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
  call_helper.AfterCall(masm);
  // If index is still not a smi, it must be out of range.
  __ JumpIfNotSmi(index_, index_out_of_range_);
  // Otherwise, return to the fast path.
  __ b(&got_smi_index_);

  // Call runtime. We get here when the receiver is a string and the
  // index is a number, but the code of getting the actual character
  // is too complex (e.g., when the string needs to be flattened).
  __ bind(&call_runtime_);
  call_helper.BeforeCall(masm);
  __ SmiTag(index_);
  __ Push(object_, index_);
1885
  __ CallRuntime(Runtime::kStringCharCodeAtRT);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
  __ Move(result_, r3);
  call_helper.AfterCall(masm);
  __ b(&exit_);

  __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}

void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
                                                   Register left,
                                                   Register right,
                                                   Register scratch1,
                                                   Register scratch2) {
  Register length = scratch1;

  // Compare lengths.
  Label strings_not_equal, check_zero_length;
  __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
  __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
  __ cmp(length, scratch2);
  __ beq(&check_zero_length);
  __ bind(&strings_not_equal);
  __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL));
  __ Ret();

  // Check if the length is zero.
  Label compare_chars;
  __ bind(&check_zero_length);
  STATIC_ASSERT(kSmiTag == 0);
  __ cmpi(length, Operand::Zero());
  __ bne(&compare_chars);
  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
  __ Ret();

  // Compare characters.
  __ bind(&compare_chars);
  GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
                                  &strings_not_equal);

  // Characters are equal.
  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
  __ Ret();
}


void StringHelper::GenerateCompareFlatOneByteStrings(
    MacroAssembler* masm, Register left, Register right, Register scratch1,
    Register scratch2, Register scratch3) {
1933
  Label result_not_equal, compare_lengths;
1934 1935 1936 1937 1938
  // Find minimum length and length difference.
  __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
  __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
  __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC);
  Register length_delta = scratch3;
1939 1940 1941 1942 1943 1944 1945 1946
  if (CpuFeatures::IsSupported(ISELECT)) {
    __ isel(gt, scratch1, scratch2, scratch1, cr0);
  } else {
    Label skip;
    __ ble(&skip, cr0);
    __ mr(scratch1, scratch2);
    __ bind(&skip);
  }
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
  Register min_length = scratch1;
  STATIC_ASSERT(kSmiTag == 0);
  __ cmpi(min_length, Operand::Zero());
  __ beq(&compare_lengths);

  // Compare loop.
  GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
                                  &result_not_equal);

  // Compare lengths - strings up to min-length are equal.
  __ bind(&compare_lengths);
  DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
  // Use length_delta as result if it's zero.
  __ mr(r3, length_delta);
  __ cmpi(r3, Operand::Zero());
  __ bind(&result_not_equal);
  // Conditionally update the result based either on length_delta or
  // the last comparion performed in the loop above.
1965
  if (CpuFeatures::IsSupported(ISELECT)) {
1966 1967
    __ LoadSmiLiteral(r4, Smi::FromInt(GREATER));
    __ LoadSmiLiteral(r5, Smi::FromInt(LESS));
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
    __ isel(eq, r3, r0, r4);
    __ isel(lt, r3, r5, r3);
    __ Ret();
  } else {
    Label less_equal, equal;
    __ ble(&less_equal);
    __ LoadSmiLiteral(r3, Smi::FromInt(GREATER));
    __ Ret();
    __ bind(&less_equal);
    __ beq(&equal);
    __ LoadSmiLiteral(r3, Smi::FromInt(LESS));
    __ bind(&equal);
    __ Ret();
  }
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
}


void StringHelper::GenerateOneByteCharsCompareLoop(
    MacroAssembler* masm, Register left, Register right, Register length,
    Register scratch1, Label* chars_not_equal) {
  // Change index to run from -length to -1 by adding length to string
  // start. This means that loop ends when index reaches zero, which
  // doesn't need an additional compare.
  __ SmiUntag(length);
  __ addi(scratch1, length,
          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
  __ add(left, left, scratch1);
  __ add(right, right, scratch1);
  __ subfic(length, length, Operand::Zero());
  Register index = length;  // index = -length;

  // Compare loop.
  Label loop;
  __ bind(&loop);
  __ lbzx(scratch1, MemOperand(left, index));
  __ lbzx(r0, MemOperand(right, index));
  __ cmp(scratch1, r0);
  __ bne(chars_not_equal);
  __ addi(index, index, Operand(1));
  __ cmpi(index, Operand::Zero());
  __ bne(&loop);
}


void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r4    : left
  //  -- r3    : right
  //  -- lr    : return address
  // -----------------------------------

  // Load r5 with the allocation site.  We stick an undefined dummy value here
  // and replace it with the real allocation site later when we instantiate this
  // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
2022
  __ Move(r5, isolate()->factory()->undefined_value());
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

  // Make sure that we actually patched the allocation site.
  if (FLAG_debug_code) {
    __ TestIfSmi(r5, r0);
    __ Assert(ne, kExpectedAllocationSite, cr0);
    __ push(r5);
    __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
    __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
    __ cmp(r5, ip);
    __ pop(r5);
    __ Assert(eq, kExpectedAllocationSite);
  }

  // Tail call into the stub that handles binary operations with allocation
  // sites.
  BinaryOpWithAllocationSiteStub stub(isolate(), state());
  __ TailCallStub(&stub);
}


2043 2044 2045 2046 2047 2048
void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
  DCHECK_EQ(CompareICState::BOOLEAN, state());
  Label miss;

  __ CheckMap(r4, r5, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
  __ CheckMap(r3, r6, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2049 2050 2051 2052 2053
  if (!Token::IsEqualityOp(op())) {
    __ LoadP(r4, FieldMemOperand(r4, Oddball::kToNumberOffset));
    __ AssertSmi(r4);
    __ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset));
    __ AssertSmi(r3);
2054
  }
2055 2056
  __ sub(r3, r4, r3);
  __ Ret();
2057 2058 2059 2060 2061 2062

  __ bind(&miss);
  GenerateMiss(masm);
}


2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
void CompareICStub::GenerateSmis(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::SMI);
  Label miss;
  __ orx(r5, r4, r3);
  __ JumpIfNotSmi(r5, &miss);

  if (GetCondition() == eq) {
    // For equality we do not care about the sign of the result.
    // __ sub(r3, r3, r4, SetCC);
    __ sub(r3, r3, r4);
  } else {
    // Untag before subtracting to avoid handling overflow.
    __ SmiUntag(r4);
    __ SmiUntag(r3);
    __ sub(r3, r4, r3);
  }
  __ Ret();

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::NUMBER);

  Label generic_stub;
  Label unordered, maybe_undefined1, maybe_undefined2;
  Label miss;
  Label equal, less_than;

  if (left() == CompareICState::SMI) {
    __ JumpIfNotSmi(r4, &miss);
  }
  if (right() == CompareICState::SMI) {
    __ JumpIfNotSmi(r3, &miss);
  }

  // Inlining the double comparison and falling back to the general compare
  // stub if NaN is involved.
  // Load left and right operand.
  Label done, left, left_smi, right_smi;
  __ JumpIfSmi(r3, &right_smi);
  __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
              DONT_DO_SMI_CHECK);
  __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset));
  __ b(&left);
  __ bind(&right_smi);
  __ SmiToDouble(d1, r3);

  __ bind(&left);
  __ JumpIfSmi(r4, &left_smi);
  __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
              DONT_DO_SMI_CHECK);
  __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset));
  __ b(&done);
  __ bind(&left_smi);
  __ SmiToDouble(d0, r4);

  __ bind(&done);

  // Compare operands
  __ fcmpu(d0, d1);

  // Don't base result on status bits when a NaN is involved.
  __ bunordered(&unordered);

  // Return a result of -1, 0, or 1, based on status bits.
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
  if (CpuFeatures::IsSupported(ISELECT)) {
    DCHECK(EQUAL == 0);
    __ li(r4, Operand(GREATER));
    __ li(r5, Operand(LESS));
    __ isel(eq, r3, r0, r4);
    __ isel(lt, r3, r5, r3);
    __ Ret();
  } else {
    __ beq(&equal);
    __ blt(&less_than);
    //  assume greater than
    __ li(r3, Operand(GREATER));
    __ Ret();
    __ bind(&equal);
    __ li(r3, Operand(EQUAL));
    __ Ret();
    __ bind(&less_than);
    __ li(r3, Operand(LESS));
    __ Ret();
  }
2151 2152 2153

  __ bind(&unordered);
  __ bind(&generic_stub);
2154
  CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
                     CompareICState::GENERIC, CompareICState::GENERIC);
  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);

  __ bind(&maybe_undefined1);
  if (Token::IsOrderedRelationalCompareOp(op())) {
    __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
    __ bne(&miss);
    __ JumpIfSmi(r4, &unordered);
    __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE);
    __ bne(&maybe_undefined2);
    __ b(&unordered);
  }

  __ bind(&maybe_undefined2);
  if (Token::IsOrderedRelationalCompareOp(op())) {
    __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
    __ beq(&unordered);
  }

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::INTERNALIZED_STRING);
  Label miss, not_equal;

  // Registers containing left and right operands respectively.
  Register left = r4;
  Register right = r3;
  Register tmp1 = r5;
  Register tmp2 = r6;

  // Check that both operands are heap objects.
  __ JumpIfEitherSmi(left, right, &miss);

  // Check that both operands are symbols.
  __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
  __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
  __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
  __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
  __ orx(tmp1, tmp1, tmp2);
  __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
  __ bne(&miss, cr0);

  // Internalized strings are compared by identity.
  __ cmp(left, right);
  __ bne(&not_equal);
  // Make sure r3 is non-zero. At this point input operands are
  // guaranteed to be non-zero.
  DCHECK(right.is(r3));
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
  __ bind(&not_equal);
  __ Ret();

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::UNIQUE_NAME);
  DCHECK(GetCondition() == eq);
  Label miss;

  // Registers containing left and right operands respectively.
  Register left = r4;
  Register right = r3;
  Register tmp1 = r5;
  Register tmp2 = r6;

  // Check that both operands are heap objects.
  __ JumpIfEitherSmi(left, right, &miss);

  // Check that both operands are unique names. This leaves the instance
  // types loaded in tmp1 and tmp2.
  __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
  __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
  __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
  __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));

  __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
  __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);

  // Unique names are compared by identity.
  __ cmp(left, right);
  __ bne(&miss);
  // Make sure r3 is non-zero. At this point input operands are
  // guaranteed to be non-zero.
  DCHECK(right.is(r3));
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
  __ Ret();

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateStrings(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::STRING);
  Label miss, not_identical, is_symbol;

  bool equality = Token::IsEqualityOp(op());

  // Registers containing left and right operands respectively.
  Register left = r4;
  Register right = r3;
  Register tmp1 = r5;
  Register tmp2 = r6;
  Register tmp3 = r7;
  Register tmp4 = r8;

  // Check that both operands are heap objects.
  __ JumpIfEitherSmi(left, right, &miss);

  // Check that both operands are strings. This leaves the instance
  // types loaded in tmp1 and tmp2.
  __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
  __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
  __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
  __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kNotStringTag != 0);
  __ orx(tmp3, tmp1, tmp2);
  __ andi(r0, tmp3, Operand(kIsNotStringMask));
  __ bne(&miss, cr0);

  // Fast check for identical strings.
  __ cmp(left, right);
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ bne(&not_identical);
  __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
  __ Ret();
  __ bind(&not_identical);

  // Handle not identical strings.

  // Check that both strings are internalized strings. If they are, we're done
  // because we already know they are not identical. We know they are both
  // strings.
  if (equality) {
    DCHECK(GetCondition() == eq);
    STATIC_ASSERT(kInternalizedTag == 0);
    __ orx(tmp3, tmp1, tmp2);
    __ andi(r0, tmp3, Operand(kIsNotInternalizedMask));
    // Make sure r3 is non-zero. At this point input operands are
    // guaranteed to be non-zero.
    DCHECK(right.is(r3));
2309
    __ Ret(eq, cr0);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
  }

  // Check that both strings are sequential one-byte.
  Label runtime;
  __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
                                                    &runtime);

  // Compare flat one-byte strings. Returns when done.
  if (equality) {
    StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
                                                  tmp2);
  } else {
    StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
                                                    tmp2, tmp3);
  }

  // Handle more complex cases in runtime.
  __ bind(&runtime);
  if (equality) {
2329 2330 2331 2332 2333 2334 2335 2336
    {
      FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
      __ Push(left, right);
      __ CallRuntime(Runtime::kStringEqual);
    }
    __ LoadRoot(r4, Heap::kTrueValueRootIndex);
    __ sub(r3, r3, r4);
    __ Ret();
2337
  } else {
2338
    __ Push(left, right);
2339
    __ TailCallRuntime(Runtime::kStringCompare);
2340 2341 2342 2343 2344 2345 2346
  }

  __ bind(&miss);
  GenerateMiss(masm);
}


2347 2348
void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
  DCHECK_EQ(CompareICState::RECEIVER, state());
2349 2350 2351 2352
  Label miss;
  __ and_(r5, r4, r3);
  __ JumpIfSmi(r5, &miss);

2353 2354 2355 2356 2357
  STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
  __ CompareObjectType(r3, r5, r5, FIRST_JS_RECEIVER_TYPE);
  __ blt(&miss);
  __ CompareObjectType(r4, r5, r5, FIRST_JS_RECEIVER_TYPE);
  __ blt(&miss);
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

  DCHECK(GetCondition() == eq);
  __ sub(r3, r3, r4);
  __ Ret();

  __ bind(&miss);
  GenerateMiss(masm);
}


2368
void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2369
  Label miss;
2370
  Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2371 2372
  __ and_(r5, r4, r3);
  __ JumpIfSmi(r5, &miss);
2373
  __ GetWeakValue(r7, cell);
2374 2375
  __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
  __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset));
2376
  __ cmp(r5, r7);
2377
  __ bne(&miss);
2378
  __ cmp(r6, r7);
2379 2380
  __ bne(&miss);

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
  if (Token::IsEqualityOp(op())) {
    __ sub(r3, r3, r4);
    __ Ret();
  } else {
    if (op() == Token::LT || op() == Token::LTE) {
      __ LoadSmiLiteral(r5, Smi::FromInt(GREATER));
    } else {
      __ LoadSmiLiteral(r5, Smi::FromInt(LESS));
    }
    __ Push(r4, r3, r5);
2391
    __ TailCallRuntime(Runtime::kCompare);
2392
  }
2393 2394 2395 2396 2397 2398 2399 2400 2401

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateMiss(MacroAssembler* masm) {
  {
    // Call the runtime system in a fresh internal frame.
2402
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2403 2404 2405 2406
    __ Push(r4, r3);
    __ Push(r4, r3);
    __ LoadSmiLiteral(r0, Smi::FromInt(op()));
    __ push(r0);
2407
    __ CallRuntime(Runtime::kCompareIC_Miss);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
    // Compute the entry point of the rewritten stub.
    __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
    // Restore registers.
    __ Pop(r4, r3);
  }

  __ JumpToJSEntry(r5);
}


// This stub is paired with DirectCEntryStub::GenerateCall
void DirectCEntryStub::Generate(MacroAssembler* masm) {
  // Place the return address on the stack, making the call
  // GC safe. The RegExp backend also relies on this.
  __ mflr(r0);
  __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
  __ Call(ip);  // Call the C++ function.
  __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
  __ mtlr(r0);
  __ blr();
}


void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
2432 2433 2434 2435 2436 2437 2438 2439 2440
  if (ABI_USES_FUNCTION_DESCRIPTORS) {
    // AIX/PPC64BE Linux use a function descriptor.
    __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
    __ LoadP(ip, MemOperand(target, 0));  // Instruction address
  } else {
    // ip needs to be set for DirectCEentryStub::Generate, and also
    // for ABI_CALL_VIA_IP.
    __ Move(ip, target);
  }
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

  intptr_t code = reinterpret_cast<intptr_t>(GetCode().location());
  __ mov(r0, Operand(code, RelocInfo::CODE_TARGET));
  __ Call(r0);  // Call the stub.
}


void NameDictionaryLookupStub::GenerateNegativeLookup(
    MacroAssembler* masm, Label* miss, Label* done, Register receiver,
    Register properties, Handle<Name> name, Register scratch0) {
  DCHECK(name->IsUniqueName());
  // If names of slots in range from 1 to kProbes - 1 for the hash value are
  // not equal to the name and kProbes-th slot is not used (its name is the
  // undefined value), it guarantees the hash table doesn't contain the
  // property. It's true even if some slots represent deleted properties
  // (their names are the hole value).
  for (int i = 0; i < kInlinedProbes; i++) {
    // scratch0 points to properties hash.
    // Compute the masked index: (hash + i + i * i) & mask.
    Register index = scratch0;
    // Capacity is smi 2^n.
    __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
    __ subi(index, index, Operand(1));
    __ LoadSmiLiteral(
        ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
    __ and_(index, index, ip);

    // Scale the index by multiplying by the entry size.
2469
    STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
    __ ShiftLeftImm(ip, index, Operand(1));
    __ add(index, index, ip);  // index *= 3.

    Register entity_name = scratch0;
    // Having undefined at this place means the name is not contained.
    Register tmp = properties;
    __ SmiToPtrArrayOffset(ip, index);
    __ add(tmp, properties, ip);
    __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));

    DCHECK(!tmp.is(entity_name));
    __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
    __ cmp(entity_name, tmp);
    __ beq(done);

    // Load the hole ready for use below:
    __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);

    // Stop if found the property.
    __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0);
    __ beq(miss);

    Label good;
    __ cmp(entity_name, tmp);
    __ beq(&good);

    // Check if the entry name is not a unique name.
    __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
    __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
    __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
    __ bind(&good);

    // Restore the properties.
    __ LoadP(properties,
             FieldMemOperand(receiver, JSObject::kPropertiesOffset));
  }

  const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
                          r5.bit() | r4.bit() | r3.bit());

  __ mflr(r0);
  __ MultiPush(spill_mask);

  __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
  __ mov(r4, Operand(Handle<Name>(name)));
  NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
  __ CallStub(&stub);
  __ cmpi(r3, Operand::Zero());

  __ MultiPop(spill_mask);  // MultiPop does not touch condition flags
  __ mtlr(r0);

  __ beq(done);
  __ bne(miss);
}

void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
  // This stub overrides SometimesSetsUpAFrame() to return false.  That means
  // we cannot call anything that could cause a GC from this stub.
  // Registers:
  //  result: NameDictionary to probe
  //  r4: key
  //  dictionary: NameDictionary to probe.
  //  index: will hold an index of entry if lookup is successful.
  //         might alias with result_.
  // Returns:
  //  result_ is zero if lookup failed, non zero otherwise.

  Register result = r3;
  Register dictionary = r3;
  Register key = r4;
  Register index = r5;
  Register mask = r6;
  Register hash = r7;
  Register undefined = r8;
  Register entry_key = r9;
  Register scratch = r9;

  Label in_dictionary, maybe_in_dictionary, not_in_dictionary;

  __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
  __ SmiUntag(mask);
  __ subi(mask, mask, Operand(1));

  __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset));

  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);

  for (int i = kInlinedProbes; i < kTotalProbes; i++) {
    // Compute the masked index: (hash + i + i * i) & mask.
    // Capacity is smi 2^n.
    if (i > 0) {
      // Add the probe offset (i + i * i) left shifted to avoid right shifting
      // the hash in a separate instruction. The value hash + i + i * i is right
      // shifted in the following and instruction.
      DCHECK(NameDictionary::GetProbeOffset(i) <
             1 << (32 - Name::kHashFieldOffset));
      __ addi(index, hash,
              Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
    } else {
      __ mr(index, hash);
    }
    __ srwi(r0, index, Operand(Name::kHashShift));
    __ and_(index, mask, r0);

    // Scale the index by multiplying by the entry size.
2576
    STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
    __ ShiftLeftImm(scratch, index, Operand(1));
    __ add(index, index, scratch);  // index *= 3.

    __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2));
    __ add(index, dictionary, scratch);
    __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));

    // Having undefined at this place means the name is not contained.
    __ cmp(entry_key, undefined);
    __ beq(&not_in_dictionary);

    // Stop if found the property.
    __ cmp(entry_key, key);
    __ beq(&in_dictionary);

    if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
      // Check if the entry name is not a unique name.
      __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
      __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
      __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
    }
  }

  __ bind(&maybe_in_dictionary);
  // If we are doing negative lookup then probing failure should be
  // treated as a lookup success. For positive lookup probing failure
  // should be treated as lookup failure.
  if (mode() == POSITIVE_LOOKUP) {
    __ li(result, Operand::Zero());
    __ Ret();
  }

  __ bind(&in_dictionary);
  __ li(result, Operand(1));
  __ Ret();

  __ bind(&not_in_dictionary);
  __ li(result, Operand::Zero());
  __ Ret();
}


void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
    Isolate* isolate) {
  StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
  stub1.GetCode();
  // Hydrogen code stubs need stub2 at snapshot time.
  StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
  stub2.GetCode();
}


// Takes the input in 3 registers: address_ value_ and object_.  A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed.  The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
  Label skip_to_incremental_noncompacting;
  Label skip_to_incremental_compacting;

  // The first two branch instructions are generated with labels so as to
  // get the offset fixed up correctly by the bind(Label*) call.  We patch
  // it back and forth between branch condition True and False
  // when we start and stop incremental heap marking.
  // See RecordWriteStub::Patch for details.

  // Clear the bit, branch on True for NOP action initially
  __ crclr(Assembler::encode_crbit(cr2, CR_LT));
  __ blt(&skip_to_incremental_noncompacting, cr2);
  __ blt(&skip_to_incremental_compacting, cr2);

  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
                           MacroAssembler::kReturnAtEnd);
  }
  __ Ret();

  __ bind(&skip_to_incremental_noncompacting);
  GenerateIncremental(masm, INCREMENTAL);

  __ bind(&skip_to_incremental_compacting);
  GenerateIncremental(masm, INCREMENTAL_COMPACTION);

  // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
  // Will be checked in IncrementalMarking::ActivateGeneratedStub.
  // patching not required on PPC as the initial path is effectively NOP
}


void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
  regs_.Save(masm);

  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
    Label dont_need_remembered_set;

    __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
    __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
                           regs_.scratch0(), &dont_need_remembered_set);

2676 2677
    __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
                        &dont_need_remembered_set);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762

    // First notify the incremental marker if necessary, then update the
    // remembered set.
    CheckNeedsToInformIncrementalMarker(
        masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
    InformIncrementalMarker(masm);
    regs_.Restore(masm);
    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
                           MacroAssembler::kReturnAtEnd);

    __ bind(&dont_need_remembered_set);
  }

  CheckNeedsToInformIncrementalMarker(
      masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
  InformIncrementalMarker(masm);
  regs_.Restore(masm);
  __ Ret();
}


void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
  int argument_count = 3;
  __ PrepareCallCFunction(argument_count, regs_.scratch0());
  Register address =
      r3.is(regs_.address()) ? regs_.scratch0() : regs_.address();
  DCHECK(!address.is(regs_.object()));
  DCHECK(!address.is(r3));
  __ mr(address, regs_.address());
  __ mr(r3, regs_.object());
  __ mr(r4, address);
  __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));

  AllowExternalCallThatCantCauseGC scope(masm);
  __ CallCFunction(
      ExternalReference::incremental_marking_record_write_function(isolate()),
      argument_count);
  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
}


void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
    MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
    Mode mode) {
  Label on_black;
  Label need_incremental;
  Label need_incremental_pop_scratch;

  // Let's look at the color of the object:  If it is not black we don't have
  // to inform the incremental marker.
  __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);

  regs_.Restore(masm);
  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
                           MacroAssembler::kReturnAtEnd);
  } else {
    __ Ret();
  }

  __ bind(&on_black);

  // Get the value from the slot.
  __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));

  if (mode == INCREMENTAL_COMPACTION) {
    Label ensure_not_white;

    __ CheckPageFlag(regs_.scratch0(),  // Contains value.
                     regs_.scratch1(),  // Scratch.
                     MemoryChunk::kEvacuationCandidateMask, eq,
                     &ensure_not_white);

    __ CheckPageFlag(regs_.object(),
                     regs_.scratch1(),  // Scratch.
                     MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
                     &need_incremental);

    __ bind(&ensure_not_white);
  }

  // We need extra registers for this, so we push the object and the address
  // register temporarily.
  __ Push(regs_.object(), regs_.address());
hpayer's avatar
hpayer committed
2763 2764 2765 2766 2767
  __ JumpIfWhite(regs_.scratch0(),  // The value.
                 regs_.scratch1(),  // Scratch.
                 regs_.object(),    // Scratch.
                 regs_.address(),   // Scratch.
                 &need_incremental_pop_scratch);
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
  __ Pop(regs_.object(), regs_.address());

  regs_.Restore(masm);
  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
                           MacroAssembler::kReturnAtEnd);
  } else {
    __ Ret();
  }

  __ bind(&need_incremental_pop_scratch);
  __ Pop(regs_.object(), regs_.address());

  __ bind(&need_incremental);

  // Fall through when we need to inform the incremental marker.
}


void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
  CEntryStub ces(isolate(), 1, kSaveFPRegs);
  __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
  int parameter_count_offset =
2791
      StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
  __ LoadP(r4, MemOperand(fp, parameter_count_offset));
  if (function_mode() == JS_FUNCTION_STUB_MODE) {
    __ addi(r4, r4, Operand(1));
  }
  masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
  __ slwi(r4, r4, Operand(kPointerSizeLog2));
  __ add(sp, sp, r4);
  __ Ret();
}

void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
  if (masm->isolate()->function_entry_hook() != NULL) {
    PredictableCodeSizeScope predictable(masm,
#if V8_TARGET_ARCH_PPC64
                                         14 * Assembler::kInstrSize);
#else
                                         11 * Assembler::kInstrSize);
#endif
    ProfileEntryHookStub stub(masm->isolate());
    __ mflr(r0);
    __ Push(r0, ip);
    __ CallStub(&stub);
    __ Pop(r0, ip);
    __ mtlr(r0);
  }
}


void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
  // The entry hook is a "push lr, ip" instruction, followed by a call.
  const int32_t kReturnAddressDistanceFromFunctionStart =
      Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize;

  // This should contain all kJSCallerSaved registers.
  const RegList kSavedRegs = kJSCallerSaved |  // Caller saved registers.
                             r15.bit();        // Saved stack pointer.

  // We also save lr, so the count here is one higher than the mask indicates.
  const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;

  // Save all caller-save registers as this may be called from anywhere.
  __ mflr(ip);
  __ MultiPush(kSavedRegs | ip.bit());

  // Compute the function's address for the first argument.
  __ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart));

  // The caller's return address is two slots above the saved temporaries.
  // Grab that for the second argument to the hook.
  __ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize));

  // Align the stack if necessary.
  int frame_alignment = masm->ActivationFrameAlignment();
  if (frame_alignment > kPointerSize) {
    __ mr(r15, sp);
    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
    __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
  }

#if !defined(USE_SIMULATOR)
  uintptr_t entry_hook =
      reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
2854 2855 2856 2857 2858 2859
#else
  // Under the simulator we need to indirect the entry hook through a
  // trampoline function at a known address.
  ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
  ExternalReference entry_hook = ExternalReference(
      &dispatcher, ExternalReference::BUILTIN_CALL, isolate());
2860

2861 2862
  // It additionally takes an isolate as a third parameter
  __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
2863 2864
#endif

2865 2866 2867 2868 2869 2870 2871 2872
  __ mov(ip, Operand(entry_hook));

  if (ABI_USES_FUNCTION_DESCRIPTORS) {
    __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
    __ LoadP(ip, MemOperand(ip, 0));
  }
  // ip set above, so nothing more to do for ABI_CALL_VIA_IP.

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
  // PPC LINUX ABI:
  __ li(r0, Operand::Zero());
  __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));

  __ Call(ip);

  __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize));

  // Restore the stack pointer if needed.
  if (frame_alignment > kPointerSize) {
    __ mr(sp, r15);
  }

  // Also pop lr to get Ret(0).
  __ MultiPop(kSavedRegs | ip.bit());
  __ mtlr(ip);
  __ Ret();
}


template <class T>
static void CreateArrayDispatch(MacroAssembler* masm,
                                AllocationSiteOverrideMode mode) {
  if (mode == DISABLE_ALLOCATION_SITES) {
    T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
    __ TailCallStub(&stub);
  } else if (mode == DONT_OVERRIDE) {
    int last_index =
        GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
    for (int i = 0; i <= last_index; ++i) {
      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
      __ Cmpi(r6, Operand(kind), r0);
      T stub(masm->isolate(), kind);
      __ TailCallStub(&stub, eq);
    }

    // If we reached this point there is a problem.
    __ Abort(kUnexpectedElementsKindInArrayConstructor);
  } else {
    UNREACHABLE();
  }
}


static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
                                           AllocationSiteOverrideMode mode) {
  // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
  // r6 - kind (if mode != DISABLE_ALLOCATION_SITES)
  // r3 - number of arguments
  // r4 - constructor?
  // sp[0] - last argument
  Label normal_sequence;
  if (mode == DONT_OVERRIDE) {
2926 2927 2928 2929 2930 2931
    STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
    STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
    STATIC_ASSERT(FAST_ELEMENTS == 2);
    STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
    STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
    STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

    // is the low bit set? If so, we are holey and that is good.
    __ andi(r0, r6, Operand(1));
    __ bne(&normal_sequence, cr0);
  }

  // look at the first argument
  __ LoadP(r8, MemOperand(sp, 0));
  __ cmpi(r8, Operand::Zero());
  __ beq(&normal_sequence);

  if (mode == DISABLE_ALLOCATION_SITES) {
    ElementsKind initial = GetInitialFastElementsKind();
    ElementsKind holey_initial = GetHoleyElementsKind(initial);

    ArraySingleArgumentConstructorStub stub_holey(
        masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
    __ TailCallStub(&stub_holey);

    __ bind(&normal_sequence);
    ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
                                            DISABLE_ALLOCATION_SITES);
    __ TailCallStub(&stub);
  } else if (mode == DONT_OVERRIDE) {
    // We are going to create a holey array, but our kind is non-holey.
    // Fix kind and retry (only if we have an allocation site in the slot).
    __ addi(r6, r6, Operand(1));

    if (FLAG_debug_code) {
      __ LoadP(r8, FieldMemOperand(r5, 0));
      __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
      __ Assert(eq, kExpectedAllocationSite);
    }

    // Save the resulting elements kind in type info. We can't just store r6
    // in the AllocationSite::transition_info field because elements kind is
    // restricted to a portion of the field...upper bits need to be left alone.
    STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
    __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
    __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
    __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset),
              r0);

    __ bind(&normal_sequence);
    int last_index =
        GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
    for (int i = 0; i <= last_index; ++i) {
      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
      __ mov(r0, Operand(kind));
      __ cmp(r6, r0);
      ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
      __ TailCallStub(&stub, eq);
    }

    // If we reached this point there is a problem.
    __ Abort(kUnexpectedElementsKindInArrayConstructor);
  } else {
    UNREACHABLE();
  }
}


template <class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
  int to_index =
      GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
  for (int i = 0; i <= to_index; ++i) {
    ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
    T stub(isolate, kind);
    stub.GetCode();
    if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
      T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
      stub1.GetCode();
    }
  }
}


3010
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
3011 3012
  ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
      isolate);
3013 3014
  ArrayNArgumentsConstructorStub stub(isolate);
  stub.GetCode();
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
  ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
  for (int i = 0; i < 2; i++) {
    // For internal arrays we only need a few things
    InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
    stubh1.GetCode();
    InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
    stubh2.GetCode();
  }
}


void ArrayConstructorStub::GenerateDispatchToArrayStub(
    MacroAssembler* masm, AllocationSiteOverrideMode mode) {
3028 3029 3030 3031
  Label not_zero_case, not_one_case;
  __ cmpi(r3, Operand::Zero());
  __ bne(&not_zero_case);
  CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
3032

3033 3034 3035 3036
  __ bind(&not_zero_case);
  __ cmpi(r3, Operand(1));
  __ bgt(&not_one_case);
  CreateArrayDispatchOneArgument(masm, mode);
3037

3038 3039 3040
  __ bind(&not_one_case);
  ArrayNArgumentsConstructorStub stub(masm->isolate());
  __ TailCallStub(&stub);
3041 3042 3043 3044 3045 3046 3047 3048
}


void ArrayConstructorStub::Generate(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : argc (only if argument_count() == ANY)
  //  -- r4 : constructor
  //  -- r5 : AllocationSite or undefined
3049
  //  -- r6 : new target
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
  //  -- sp[0] : return address
  //  -- sp[4] : last argument
  // -----------------------------------

  if (FLAG_debug_code) {
    // The array construct code is only set for the global and natives
    // builtin Array functions which always have maps.

    // Initial map for the builtin Array function should be a map.
    __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi.
    __ TestIfSmi(r7, r0);
    __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
    __ CompareObjectType(r7, r7, r8, MAP_TYPE);
    __ Assert(eq, kUnexpectedInitialMapForArrayFunction);

    // We should either have undefined in r5 or a valid AllocationSite
    __ AssertUndefinedOrAllocationSite(r5, r7);
  }

3070 3071 3072
  // Enter the context of the Array function.
  __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));

3073 3074 3075 3076
  Label subclassing;
  __ cmp(r6, r4);
  __ bne(&subclassing);

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
  Label no_info;
  // Get the elements kind and case on that.
  __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
  __ beq(&no_info);

  __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
  __ SmiUntag(r6);
  STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
  __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask));
  GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);

  __ bind(&no_info);
  GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
3090 3091

  __ bind(&subclassing);
3092 3093 3094
  __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
  __ StorePX(r4, MemOperand(sp, r0));
  __ addi(r3, r3, Operand(3));
3095 3096
  __ Push(r6, r5);
  __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
}


void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
                                                ElementsKind kind) {
  __ cmpli(r3, Operand(1));

  InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
  __ TailCallStub(&stub0, lt);

3107
  ArrayNArgumentsConstructorStub stubN(isolate());
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
  __ TailCallStub(&stubN, gt);

  if (IsFastPackedElementsKind(kind)) {
    // We might need to create a holey array
    // look at the first argument
    __ LoadP(r6, MemOperand(sp, 0));
    __ cmpi(r6, Operand::Zero());

    InternalArraySingleArgumentConstructorStub stub1_holey(
        isolate(), GetHoleyElementsKind(kind));
    __ TailCallStub(&stub1_holey, ne);
  }

  InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
  __ TailCallStub(&stub1);
}


void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : argc
  //  -- r4 : constructor
  //  -- sp[0] : return address
  //  -- sp[4] : last argument
  // -----------------------------------

  if (FLAG_debug_code) {
    // The array construct code is only set for the global and natives
    // builtin Array functions which always have maps.

    // Initial map for the builtin Array function should be a map.
    __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi.
    __ TestIfSmi(r6, r0);
    __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
    __ CompareObjectType(r6, r6, r7, MAP_TYPE);
    __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
  }

  // Figure out the right elements kind
  __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
  // Load the map's "bit field 2" into |result|.
  __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
  // Retrieve elements_kind from bit field 2.
  __ DecodeField<Map::ElementsKindBits>(r6);

  if (FLAG_debug_code) {
    Label done;
    __ cmpi(r6, Operand(FAST_ELEMENTS));
    __ beq(&done);
    __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS));
    __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
    __ bind(&done);
  }

  Label fast_elements_case;
  __ cmpi(r6, Operand(FAST_ELEMENTS));
  __ beq(&fast_elements_case);
  GenerateCase(masm, FAST_HOLEY_ELEMENTS);

  __ bind(&fast_elements_case);
  GenerateCase(masm, FAST_ELEMENTS);
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
  return ref0.address() - ref1.address();
}


// Calls an API function.  Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.  Restores context.  stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
                                     Register function_address,
                                     ExternalReference thunk_ref,
                                     int stack_space,
                                     MemOperand* stack_space_operand,
                                     MemOperand return_value_operand,
                                     MemOperand* context_restore_operand) {
  Isolate* isolate = masm->isolate();
  ExternalReference next_address =
      ExternalReference::handle_scope_next_address(isolate);
  const int kNextOffset = 0;
  const int kLimitOffset = AddressOffset(
      ExternalReference::handle_scope_limit_address(isolate), next_address);
  const int kLevelOffset = AddressOffset(
      ExternalReference::handle_scope_level_address(isolate), next_address);

  // Additional parameter is the address of the actual callback.
  DCHECK(function_address.is(r4) || function_address.is(r5));
  Register scratch = r6;

  __ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate)));
  __ lbz(scratch, MemOperand(scratch, 0));
  __ cmpi(scratch, Operand::Zero());

  if (CpuFeatures::IsSupported(ISELECT)) {
    __ mov(scratch, Operand(thunk_ref));
    __ isel(eq, scratch, function_address, scratch);
  } else {
    Label profiler_disabled;
    Label end_profiler_check;
    __ beq(&profiler_disabled);
    __ mov(scratch, Operand(thunk_ref));
    __ b(&end_profiler_check);
    __ bind(&profiler_disabled);
    __ mr(scratch, function_address);
    __ bind(&end_profiler_check);
  }

  // Allocate HandleScope in callee-save registers.
  // r17 - next_address
  // r14 - next_address->kNextOffset
  // r15 - next_address->kLimitOffset
  // r16 - next_address->kLevelOffset
  __ mov(r17, Operand(next_address));
  __ LoadP(r14, MemOperand(r17, kNextOffset));
  __ LoadP(r15, MemOperand(r17, kLimitOffset));
  __ lwz(r16, MemOperand(r17, kLevelOffset));
  __ addi(r16, r16, Operand(1));
  __ stw(r16, MemOperand(r17, kLevelOffset));

  if (FLAG_log_timer_events) {
    FrameScope frame(masm, StackFrame::MANUAL);
    __ PushSafepointRegisters();
    __ PrepareCallCFunction(1, r3);
    __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
    __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
                     1);
    __ PopSafepointRegisters();
  }

  // Native call returns to the DirectCEntry stub which redirects to the
  // return address pushed on stack (could have moved after GC).
  // DirectCEntry stub itself is generated early and never moves.
  DirectCEntryStub stub(isolate);
  stub.GenerateCall(masm, scratch);

  if (FLAG_log_timer_events) {
    FrameScope frame(masm, StackFrame::MANUAL);
    __ PushSafepointRegisters();
    __ PrepareCallCFunction(1, r3);
    __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
    __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
                     1);
    __ PopSafepointRegisters();
  }

  Label promote_scheduled_exception;
  Label delete_allocated_handles;
  Label leave_exit_frame;
  Label return_value_loaded;

  // load value from ReturnValue
  __ LoadP(r3, return_value_operand);
  __ bind(&return_value_loaded);
  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  __ StoreP(r14, MemOperand(r17, kNextOffset));
  if (__ emit_debug_code()) {
    __ lwz(r4, MemOperand(r17, kLevelOffset));
    __ cmp(r4, r16);
    __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
  }
  __ subi(r16, r16, Operand(1));
  __ stw(r16, MemOperand(r17, kLevelOffset));
  __ LoadP(r0, MemOperand(r17, kLimitOffset));
  __ cmp(r15, r0);
  __ bne(&delete_allocated_handles);

3279
  // Leave the API exit frame.
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
  __ bind(&leave_exit_frame);
  bool restore_context = context_restore_operand != NULL;
  if (restore_context) {
    __ LoadP(cp, *context_restore_operand);
  }
  // LeaveExitFrame expects unwind space to be in a register.
  if (stack_space_operand != NULL) {
    __ lwz(r14, *stack_space_operand);
  } else {
    __ mov(r14, Operand(stack_space));
  }
  __ LeaveExitFrame(false, r14, !restore_context, stack_space_operand != NULL);
3292 3293 3294 3295 3296 3297 3298 3299

  // Check if the function scheduled an exception.
  __ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
  __ mov(r15, Operand(ExternalReference::scheduled_exception_address(isolate)));
  __ LoadP(r15, MemOperand(r15));
  __ cmp(r14, r15);
  __ bne(&promote_scheduled_exception);

3300 3301
  __ blr();

3302
  // Re-throw by promoting a scheduled exception.
3303
  __ bind(&promote_scheduled_exception);
3304
  __ TailCallRuntime(Runtime::kPromoteScheduledException);
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317

  // HandleScope limit has changed. Delete allocated extensions.
  __ bind(&delete_allocated_handles);
  __ StoreP(r15, MemOperand(r17, kLimitOffset));
  __ mr(r14, r3);
  __ PrepareCallCFunction(1, r15);
  __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
  __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
                   1);
  __ mr(r3, r14);
  __ b(&leave_exit_frame);
}

vogelheim's avatar
vogelheim committed
3318
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
  // ----------- S t a t e -------------
  //  -- r3                  : callee
  //  -- r7                  : call_data
  //  -- r5                  : holder
  //  -- r4                  : api_function_address
  //  -- cp                  : context
  //  --
  //  -- sp[0]               : last argument
  //  -- ...
  //  -- sp[(argc - 1)* 4]   : first argument
  //  -- sp[argc * 4]        : receiver
  // -----------------------------------

  Register callee = r3;
  Register call_data = r7;
  Register holder = r5;
  Register api_function_address = r4;
  Register context = cp;

  typedef FunctionCallbackArguments FCA;

3340 3341
  STATIC_ASSERT(FCA::kContextSaveIndex == 6);
  STATIC_ASSERT(FCA::kCalleeIndex == 5);
3342 3343 3344 3345 3346
  STATIC_ASSERT(FCA::kDataIndex == 4);
  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(FCA::kIsolateIndex == 1);
  STATIC_ASSERT(FCA::kHolderIndex == 0);
3347 3348 3349 3350 3351
  STATIC_ASSERT(FCA::kNewTargetIndex == 7);
  STATIC_ASSERT(FCA::kArgsLength == 8);

  // new target
  __ PushRoot(Heap::kUndefinedValueRootIndex);
3352 3353 3354

  // context save
  __ push(context);
vogelheim's avatar
vogelheim committed
3355
  if (!is_lazy()) {
3356 3357 3358
    // load context from callee
    __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
  }
3359

3360 3361 3362
  // callee
  __ push(callee);

3363 3364 3365 3366
  // call data
  __ push(call_data);

  Register scratch = call_data;
vogelheim's avatar
vogelheim committed
3367
  if (!call_data_undefined()) {
3368 3369 3370 3371 3372 3373 3374
    __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
  }
  // return value
  __ push(scratch);
  // return value default
  __ push(scratch);
  // isolate
3375
  __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
  __ push(scratch);
  // holder
  __ push(holder);

  // Prepare arguments.
  __ mr(scratch, sp);

  // Allocate the v8::Arguments structure in the arguments' space since
  // it's not controlled by GC.
  // PPC LINUX ABI:
  //
3387
  // Create 4 extra slots on stack:
3388
  //    [0] space for DirectCEntryStub's LR save
3389 3390
  //    [1-3] FunctionCallbackInfo
  const int kApiStackSpace = 4;
3391 3392
  const int kFunctionCallbackInfoOffset =
      (kStackFrameExtraParamSlot + 1) * kPointerSize;
3393 3394 3395 3396 3397 3398 3399

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(false, kApiStackSpace);

  DCHECK(!api_function_address.is(r3) && !scratch.is(r3));
  // r3 = FunctionCallbackInfo&
  // Arguments is after the return address.
3400
  __ addi(r3, sp, Operand(kFunctionCallbackInfoOffset));
3401 3402
  // FunctionCallbackInfo::implicit_args_
  __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize));
vogelheim's avatar
vogelheim committed
3403 3404 3405 3406 3407 3408
  // FunctionCallbackInfo::values_
  __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
  __ StoreP(ip, MemOperand(r3, 1 * kPointerSize));
  // FunctionCallbackInfo::length_ = argc
  __ li(ip, Operand(argc()));
  __ stw(ip, MemOperand(r3, 2 * kPointerSize));
3409

3410
  ExternalReference thunk_ref =
3411
      ExternalReference::invoke_function_callback(masm->isolate());
3412 3413 3414 3415 3416 3417

  AllowExternalCallThatCantCauseGC scope(masm);
  MemOperand context_restore_operand(
      fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
  // Stores return the first js argument
  int return_value_offset = 0;
vogelheim's avatar
vogelheim committed
3418
  if (is_store()) {
3419 3420 3421 3422 3423
    return_value_offset = 2 + FCA::kArgsLength;
  } else {
    return_value_offset = 2 + FCA::kReturnValueOffset;
  }
  MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
3424
  int stack_space = 0;
3425 3426 3427
  MemOperand length_operand =
      MemOperand(sp, kFunctionCallbackInfoOffset + 2 * kPointerSize);
  MemOperand* stack_space_operand = &length_operand;
vogelheim's avatar
vogelheim committed
3428 3429
  stack_space = argc() + FCA::kArgsLength + 1;
  stack_space_operand = NULL;
3430 3431 3432 3433 3434 3435
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
                           stack_space_operand, return_value_operand,
                           &context_restore_operand);
}


3436
void CallApiGetterStub::Generate(MacroAssembler* masm) {
3437 3438 3439
  int arg0Slot = 0;
  int accessorInfoSlot = 0;
  int apiStackSpace = 0;
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
  // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
  // name below the exit frame to make GC aware of them.
  STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);

  Register receiver = ApiGetterDescriptor::ReceiverRegister();
  Register holder = ApiGetterDescriptor::HolderRegister();
  Register callback = ApiGetterDescriptor::CallbackRegister();
  Register scratch = r7;
  DCHECK(!AreAliased(receiver, holder, callback, scratch));

  Register api_function_address = r5;

  __ push(receiver);
  // Push data from AccessorInfo.
  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
  __ push(scratch);
  __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
  __ Push(scratch, scratch);
  __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
  __ Push(scratch, holder);
3467
  __ Push(Smi::kZero);  // should_throw_on_error -> false
3468 3469
  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
  __ push(scratch);
3470

3471 3472 3473 3474
  // v8::PropertyCallbackInfo::args_ array and name handle.
  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;

  // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
3475
  __ mr(r3, sp);                               // r3 = Handle<Name>
3476
  __ addi(r4, r3, Operand(1 * kPointerSize));  // r4 = v8::PCI::args_
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489

// If ABI passes Handles (pointer-sized struct) in a register:
//
// Create 2 extra slots on stack:
//    [0] space for DirectCEntryStub's LR save
//    [1] AccessorInfo&
//
// Otherwise:
//
// Create 3 extra slots on stack:
//    [0] space for DirectCEntryStub's LR save
//    [1] copy of Handle (first arg)
//    [2] AccessorInfo&
3490 3491 3492 3493 3494 3495 3496 3497
  if (ABI_PASSES_HANDLES_IN_REGS) {
    accessorInfoSlot = kStackFrameExtraParamSlot + 1;
    apiStackSpace = 2;
  } else {
    arg0Slot = kStackFrameExtraParamSlot + 1;
    accessorInfoSlot = arg0Slot + 1;
    apiStackSpace = 3;
  }
3498 3499

  FrameScope frame_scope(masm, StackFrame::MANUAL);
3500
  __ EnterExitFrame(false, apiStackSpace);
3501

3502 3503 3504 3505 3506
  if (!ABI_PASSES_HANDLES_IN_REGS) {
    // pass 1st arg by reference
    __ StoreP(r3, MemOperand(sp, arg0Slot * kPointerSize));
    __ addi(r3, sp, Operand(arg0Slot * kPointerSize));
  }
3507

3508 3509
  // Create v8::PropertyCallbackInfo object on the stack and initialize
  // it's args_ field.
3510 3511
  __ StoreP(r4, MemOperand(sp, accessorInfoSlot * kPointerSize));
  __ addi(r4, sp, Operand(accessorInfoSlot * kPointerSize));
3512
  // r4 = v8::PropertyCallbackInfo&
3513 3514 3515

  ExternalReference thunk_ref =
      ExternalReference::invoke_accessor_getter_callback(isolate());
3516

3517 3518 3519 3520
  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
  __ LoadP(api_function_address,
        FieldMemOperand(scratch, Foreign::kForeignAddressOffset));

3521 3522 3523
  // +3 is to skip prolog, return address and name handle.
  MemOperand return_value_operand(
      fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
3524
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3525
                           kStackUnwindSpace, NULL, return_value_operand, NULL);
3526 3527 3528
}

#undef __
3529 3530
}  // namespace internal
}  // namespace v8
3531 3532

#endif  // V8_TARGET_ARCH_PPC