assembler-mips.cc 65.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
33
// Copyright 2012 the V8 project authors. All rights reserved.
34 35 36


#include "v8.h"
37 38 39

#if defined(V8_TARGET_ARCH_MIPS)

40 41 42 43 44 45
#include "mips/assembler-mips-inl.h"
#include "serialize.h"

namespace v8 {
namespace internal {

46 47 48 49
#ifdef DEBUG
bool CpuFeatures::initialized_ = false;
#endif
unsigned CpuFeatures::supported_ = 0;
50
unsigned CpuFeatures::found_by_runtime_probing_only_ = 0;
51

52

53 54 55 56 57 58
ExternalReference ExternalReference::cpu_features() {
  ASSERT(CpuFeatures::initialized_);
  return ExternalReference(&CpuFeatures::supported_);
}


59 60 61 62 63 64 65
// Get the CPU features enabled by the build. For cross compilation the
// preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
// can be defined to enable FPU instructions when building the
// snapshot.
static uint64_t CpuFeaturesImpliedByCompiler() {
  uint64_t answer = 0;
#ifdef CAN_USE_FPU_INSTRUCTIONS
66
  answer |= static_cast<uint64_t>(1) << FPU;
67 68 69 70 71 72 73
#endif  // def CAN_USE_FPU_INSTRUCTIONS

#ifdef __mips__
  // If the compiler is allowed to use FPU then we can use FPU too in our code
  // generation even when generating snapshots.  This won't work for cross
  // compilation.
#if(defined(__mips_hard_float) && __mips_hard_float != 0)
74
  answer |= static_cast<uint64_t>(1) << FPU;
75 76 77 78 79 80 81
#endif  // defined(__mips_hard_float) && __mips_hard_float != 0
#endif  // def __mips__

  return answer;
}


82
const char* DoubleRegister::AllocationIndexToString(int index) {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
  const char* const names[] = {
    "f0",
    "f2",
    "f4",
    "f6",
    "f8",
    "f10",
    "f12",
    "f14",
    "f16",
    "f18",
    "f20",
    "f22",
    "f24",
    "f26"
  };
  return names[index];
101 102 103
}


104
void CpuFeatures::Probe() {
105 106 107
  unsigned standard_features = (OS::CpuFeaturesImpliedByPlatform() |
                                CpuFeaturesImpliedByCompiler());
  ASSERT(supported_ == 0 || supported_ == standard_features);
108 109 110
#ifdef DEBUG
  initialized_ = true;
#endif
111 112 113 114

  // Get the features implied by the OS and the compiler settings. This is the
  // minimal set of features which is also allowed for generated code in the
  // snapshot.
115
  supported_ |= standard_features;
116 117 118 119 120 121

  if (Serializer::enabled()) {
    // No probing for features if we might serialize (generate snapshot).
    return;
  }

122 123 124
  // If the compiler is allowed to use fpu then we can use fpu too in our
  // code generation.
#if !defined(__mips__)
125 126
  // For the simulator build, use FPU.
  supported_ |= static_cast<uint64_t>(1) << FPU;
127
#else
128
  // Probe for additional features not already known to be available.
129 130 131
  if (OS::MipsCpuHasFeature(FPU)) {
    // This implementation also sets the FPU flags if
    // runtime detection of FPU returns true.
132 133
    supported_ |= static_cast<uint64_t>(1) << FPU;
    found_by_runtime_probing_only_ |= static_cast<uint64_t>(1) << FPU;
134 135 136
  }
#endif
}
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171


int ToNumber(Register reg) {
  ASSERT(reg.is_valid());
  const int kNumbers[] = {
    0,    // zero_reg
    1,    // at
    2,    // v0
    3,    // v1
    4,    // a0
    5,    // a1
    6,    // a2
    7,    // a3
    8,    // t0
    9,    // t1
    10,   // t2
    11,   // t3
    12,   // t4
    13,   // t5
    14,   // t6
    15,   // t7
    16,   // s0
    17,   // s1
    18,   // s2
    19,   // s3
    20,   // s4
    21,   // s5
    22,   // s6
    23,   // s7
    24,   // t8
    25,   // t9
    26,   // k0
    27,   // k1
    28,   // gp
    29,   // sp
172
    30,   // fp
173 174 175 176 177
    31,   // ra
  };
  return kNumbers[reg.code()];
}

178

179 180 181 182 183 184 185 186 187 188 189 190 191
Register ToRegister(int num) {
  ASSERT(num >= 0 && num < kNumRegisters);
  const Register kRegisters[] = {
    zero_reg,
    at,
    v0, v1,
    a0, a1, a2, a3,
    t0, t1, t2, t3, t4, t5, t6, t7,
    s0, s1, s2, s3, s4, s5, s6, s7,
    t8, t9,
    k0, k1,
    gp,
    sp,
192
    fp,
193 194 195 196 197 198 199 200 201
    ra
  };
  return kRegisters[num];
}


// -----------------------------------------------------------------------------
// Implementation of RelocInfo.

202 203
const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask |
                                  1 << RelocInfo::INTERNAL_REFERENCE;
204

205 206 207 208 209 210 211 212 213

bool RelocInfo::IsCodedSpecially() {
  // The deserializer needs to know whether a pointer is specially coded.  Being
  // specially coded on MIPS means that it is a lui/ori instruction, and that is
  // always the case inside code objects.
  return true;
}


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
// Patch the code at the current address with the supplied instructions.
void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
  Instr* pc = reinterpret_cast<Instr*>(pc_);
  Instr* instr = reinterpret_cast<Instr*>(instructions);
  for (int i = 0; i < instruction_count; i++) {
    *(pc + i) = *(instr + i);
  }

  // Indicate that code has changed.
  CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
}


// Patch the code at the current PC with a call to the target address.
// Additional guard instructions can be added if required.
void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
  // Patch the code at the current address with a call to the target.
  UNIMPLEMENTED_MIPS();
}


// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand.
// See assembler-mips-inl.h for inlined constructors.

Operand::Operand(Handle<Object> handle) {
240 241 242 243
#ifdef DEBUG
  Isolate* isolate = Isolate::Current();
#endif
  ALLOW_HANDLE_DEREF(isolate, "using and embedding raw address");
244 245 246
  rm_ = no_reg;
  // Verify all Objects referred by code are NOT in new space.
  Object* obj = *handle;
247
  ASSERT(!isolate->heap()->InNewSpace(obj));
248 249 250 251 252 253
  if (obj->IsHeapObject()) {
    imm32_ = reinterpret_cast<intptr_t>(handle.location());
    rmode_ = RelocInfo::EMBEDDED_OBJECT;
  } else {
    // No relocation needed.
    imm32_ = reinterpret_cast<intptr_t>(obj);
254
    rmode_ = RelocInfo::NONE32;
255 256 257
  }
}

258 259

MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
260 261 262 263 264
  offset_ = offset;
}


// -----------------------------------------------------------------------------
265 266 267 268 269
// Specific instructions, constants, and masks.

static const int kNegOffset = 0x00008000;
// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
270 271
const Instr kPopInstruction = ADDIU | (kRegister_sp_Code << kRsShift)
      | (kRegister_sp_Code << kRtShift) | (kPointerSize & kImm16Mask);
272
// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
273 274
const Instr kPushInstruction = ADDIU | (kRegister_sp_Code << kRsShift)
      | (kRegister_sp_Code << kRtShift) | (-kPointerSize & kImm16Mask);
275
// sw(r, MemOperand(sp, 0))
276
const Instr kPushRegPattern = SW | (kRegister_sp_Code << kRsShift)
277 278
      |  (0 & kImm16Mask);
//  lw(r, MemOperand(sp, 0))
279
const Instr kPopRegPattern = LW | (kRegister_sp_Code << kRsShift)
280 281
      |  (0 & kImm16Mask);

282
const Instr kLwRegFpOffsetPattern = LW | (kRegister_fp_Code << kRsShift)
283 284
      |  (0 & kImm16Mask);

285
const Instr kSwRegFpOffsetPattern = SW | (kRegister_fp_Code << kRsShift)
286 287
      |  (0 & kImm16Mask);

288
const Instr kLwRegFpNegOffsetPattern = LW | (kRegister_fp_Code << kRsShift)
289 290
      |  (kNegOffset & kImm16Mask);

291
const Instr kSwRegFpNegOffsetPattern = SW | (kRegister_fp_Code << kRsShift)
292 293 294 295 296 297 298 299
      |  (kNegOffset & kImm16Mask);
// A mask for the Rt register for push, pop, lw, sw instructions.
const Instr kRtMask = kRtFieldMask;
const Instr kLwSwInstrTypeMask = 0xffe00000;
const Instr kLwSwInstrArgumentMask  = ~kLwSwInstrTypeMask;
const Instr kLwSwOffsetMask = kImm16Mask;


300 301
Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    : AssemblerBase(isolate, buffer, buffer_size),
302
      recorded_ast_id_(TypeFeedbackId::None()),
303
      positions_recorder_(this) {
304
  reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
305 306 307 308

  last_trampoline_pool_end_ = 0;
  no_trampoline_pool_before_ = 0;
  trampoline_pool_blocked_nesting_ = 0;
309 310 311
  // We leave space (16 * kTrampolineSlotsSize)
  // for BlockTrampolinePoolScope buffer.
  next_buffer_check_ = kMaxBranchOffset - kTrampolineSlotsSize * 16;
312
  internal_trampoline_exception_ = false;
313
  last_bound_pos_ = 0;
314

315 316 317 318
  trampoline_emitted_ = false;
  unbound_labels_count_ = 0;
  block_buffer_growth_ = false;

319
  ClearRecordedAstId();
320 321 322 323
}


void Assembler::GetCode(CodeDesc* desc) {
324
  ASSERT(pc_ <= reloc_info_writer.pos());  // No overlap.
325
  // Set up code descriptor.
326 327 328 329 330 331 332
  desc->buffer = buffer_;
  desc->buffer_size = buffer_size_;
  desc->instr_size = pc_offset();
  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
}


333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
void Assembler::Align(int m) {
  ASSERT(m >= 4 && IsPowerOf2(m));
  while ((pc_offset() & (m - 1)) != 0) {
    nop();
  }
}


void Assembler::CodeTargetAlign() {
  // No advantage to aligning branch/call targets to more than
  // single instruction, that I am aware of.
  Align(4);
}


348
Register Assembler::GetRtReg(Instr instr) {
349
  Register rt;
350
  rt.code_ = (instr & kRtFieldMask) >> kRtShift;
351 352 353 354
  return rt;
}


355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
Register Assembler::GetRsReg(Instr instr) {
  Register rs;
  rs.code_ = (instr & kRsFieldMask) >> kRsShift;
  return rs;
}


Register Assembler::GetRdReg(Instr instr) {
  Register rd;
  rd.code_ = (instr & kRdFieldMask) >> kRdShift;
  return rd;
}


uint32_t Assembler::GetRt(Instr instr) {
  return (instr & kRtFieldMask) >> kRtShift;
}


uint32_t Assembler::GetRtField(Instr instr) {
  return instr & kRtFieldMask;
}


uint32_t Assembler::GetRs(Instr instr) {
  return (instr & kRsFieldMask) >> kRsShift;
}


uint32_t Assembler::GetRsField(Instr instr) {
  return instr & kRsFieldMask;
}


uint32_t Assembler::GetRd(Instr instr) {
  return  (instr & kRdFieldMask) >> kRdShift;
}


uint32_t Assembler::GetRdField(Instr instr) {
  return  instr & kRdFieldMask;
}


uint32_t Assembler::GetSa(Instr instr) {
  return (instr & kSaFieldMask) >> kSaShift;
}


uint32_t Assembler::GetSaField(Instr instr) {
  return instr & kSaFieldMask;
}


uint32_t Assembler::GetOpcodeField(Instr instr) {
  return instr & kOpcodeMask;
}


414 415 416 417 418 419 420 421 422 423
uint32_t Assembler::GetFunction(Instr instr) {
  return (instr & kFunctionFieldMask) >> kFunctionShift;
}


uint32_t Assembler::GetFunctionField(Instr instr) {
  return instr & kFunctionFieldMask;
}


424 425 426 427 428 429 430 431 432 433
uint32_t Assembler::GetImmediate16(Instr instr) {
  return instr & kImm16Mask;
}


uint32_t Assembler::GetLabelConst(Instr instr) {
  return instr & ~kImm16Mask;
}


434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
bool Assembler::IsPop(Instr instr) {
  return (instr & ~kRtMask) == kPopRegPattern;
}


bool Assembler::IsPush(Instr instr) {
  return (instr & ~kRtMask) == kPushRegPattern;
}


bool Assembler::IsSwRegFpOffset(Instr instr) {
  return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
}


bool Assembler::IsLwRegFpOffset(Instr instr) {
  return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
}


bool Assembler::IsSwRegFpNegOffset(Instr instr) {
  return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
          kSwRegFpNegOffsetPattern);
}


bool Assembler::IsLwRegFpNegOffset(Instr instr) {
  return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
          kLwRegFpNegOffsetPattern);
}


466 467 468 469 470 471 472 473 474 475
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.

476 477 478 479
// The link chain is terminated by a value in the instruction of -1,
// which is an otherwise illegal value (branch -1 is inf loop).
// The instruction 16-bit offset field addresses 32-bit words, but in
// code is conv to an 18-bit value addressing bytes, hence the -4 value.
480 481

const int kEndOfChain = -4;
482 483
// Determines the end of the Jump chain (a subset of the label link chain).
const int kEndOfJumpChain = 0;
484

485 486

bool Assembler::IsBranch(Instr instr) {
487 488 489
  uint32_t opcode   = GetOpcodeField(instr);
  uint32_t rt_field = GetRtField(instr);
  uint32_t rs_field = GetRsField(instr);
490 491 492 493 494 495 496 497
  // Checks if the instruction is a branch.
  return opcode == BEQ ||
      opcode == BNE ||
      opcode == BLEZ ||
      opcode == BGTZ ||
      opcode == BEQL ||
      opcode == BNEL ||
      opcode == BLEZL ||
498
      opcode == BGTZL ||
499 500
      (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
                            rt_field == BLTZAL || rt_field == BGEZAL)) ||
501
      (opcode == COP1 && rs_field == BC1);  // Coprocessor branch.
502 503
}

504 505 506 507
bool Assembler::IsEmittedConstant(Instr instr) {
  uint32_t label_constant = GetLabelConst(instr);
  return label_constant == 0;  // Emitted label const in reg-exp engine.
}
508

509 510 511 512 513 514 515 516 517 518
bool Assembler::IsBeq(Instr instr) {
  return GetOpcodeField(instr) == BEQ;
}


bool Assembler::IsBne(Instr instr) {
  return GetOpcodeField(instr) == BNE;
}


519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
bool Assembler::IsJump(Instr instr) {
  uint32_t opcode   = GetOpcodeField(instr);
  uint32_t rt_field = GetRtField(instr);
  uint32_t rd_field = GetRdField(instr);
  uint32_t function_field = GetFunctionField(instr);
  // Checks if the instruction is a jump.
  return opcode == J || opcode == JAL ||
      (opcode == SPECIAL && rt_field == 0 &&
      ((function_field == JALR) || (rd_field == 0 && (function_field == JR))));
}


bool Assembler::IsJ(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  // Checks if the instruction is a jump.
  return opcode == J;
}


538 539 540 541 542 543 544 545 546 547 548 549 550
bool Assembler::IsJal(Instr instr) {
  return GetOpcodeField(instr) == JAL;
}

bool Assembler::IsJr(Instr instr) {
  return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
}

bool Assembler::IsJalr(Instr instr) {
  return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR;
}


551 552 553 554 555 556 557 558 559 560 561 562 563 564
bool Assembler::IsLui(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  // Checks if the instruction is a load upper immediate.
  return opcode == LUI;
}


bool Assembler::IsOri(Instr instr) {
  uint32_t opcode = GetOpcodeField(instr);
  // Checks if the instruction is a load upper immediate.
  return opcode == ORI;
}


565 566 567
bool Assembler::IsNop(Instr instr, unsigned int type) {
  // See Assembler::nop(type).
  ASSERT(type < 32);
568
  uint32_t opcode = GetOpcodeField(instr);
569
  uint32_t function = GetFunctionField(instr);
570
  uint32_t rt = GetRt(instr);
571
  uint32_t rd = GetRd(instr);
572
  uint32_t sa = GetSa(instr);
573

574 575 576 577
  // Traditional mips nop == sll(zero_reg, zero_reg, 0)
  // When marking non-zero type, use sll(zero_reg, at, type)
  // to avoid use of mips ssnop and ehb special encodings
  // of the sll instruction.
578

579 580 581 582
  Register nop_rt_reg = (type == 0) ? zero_reg : at;
  bool ret = (opcode == SPECIAL && function == SLL &&
              rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
              rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) &&
583 584 585 586 587 588 589 590
              sa == type);

  return ret;
}


int32_t Assembler::GetBranchOffset(Instr instr) {
  ASSERT(IsBranch(instr));
591
  return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
}


bool Assembler::IsLw(Instr instr) {
  return ((instr & kOpcodeMask) == LW);
}


int16_t Assembler::GetLwOffset(Instr instr) {
  ASSERT(IsLw(instr));
  return ((instr & kImm16Mask));
}


Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
  ASSERT(IsLw(instr));

  // We actually create a new lw instruction based on the original one.
  Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask)
      | (offset & kImm16Mask);

  return temp_instr;
}


bool Assembler::IsSw(Instr instr) {
  return ((instr & kOpcodeMask) == SW);
}


Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
  ASSERT(IsSw(instr));
  return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
}


bool Assembler::IsAddImmediate(Instr instr) {
  return ((instr & kOpcodeMask) == ADDIU);
}


Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
  ASSERT(IsAddImmediate(instr));
  return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
636 637 638
}


639 640 641 642 643
bool Assembler::IsAndImmediate(Instr instr) {
  return GetOpcodeField(instr) == ANDI;
}


644 645 646 647
int Assembler::target_at(int32_t pos) {
  Instr instr = instr_at(pos);
  if ((instr & ~kImm16Mask) == 0) {
    // Emitted label constant, not part of a branch.
648 649 650 651 652 653
    if (instr == 0) {
       return kEndOfChain;
     } else {
       int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
       return (imm18 + pos);
     }
654
  }
655 656
  // Check we have a branch or jump instruction.
  ASSERT(IsBranch(instr) || IsJ(instr) || IsLui(instr));
657 658
  // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
  // the compiler uses arithmectic shifts for signed integers.
659 660
  if (IsBranch(instr)) {
    int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    if (imm18 == kEndOfChain) {
      // EndOfChain sentinel is returned directly, not relative to pc or pos.
      return kEndOfChain;
    } else {
      return pos + kBranchPCOffset + imm18;
    }
  } else if (IsLui(instr)) {
    Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize);
    Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize);
    ASSERT(IsOri(instr_ori));
    int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
    imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));

    if (imm == kEndOfJumpChain) {
      // EndOfChain sentinel is returned directly, not relative to pc or pos.
      return kEndOfChain;
    } else {
      uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
      int32_t delta = instr_address - imm;
      ASSERT(pos > delta);
      return pos - delta;
    }
684
  } else {
685 686 687 688 689 690 691 692 693 694 695
    int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
    if (imm28 == kEndOfJumpChain) {
      // EndOfChain sentinel is returned directly, not relative to pc or pos.
      return kEndOfChain;
    } else {
      uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
      instr_address &= kImm28Mask;
      int32_t delta = instr_address - imm28;
      ASSERT(pos > delta);
      return pos - delta;
    }
696
  }
697 698 699 700 701 702 703 704 705 706 707 708 709
}


void Assembler::target_at_put(int32_t pos, int32_t target_pos) {
  Instr instr = instr_at(pos);
  if ((instr & ~kImm16Mask) == 0) {
    ASSERT(target_pos == kEndOfChain || target_pos >= 0);
    // Emitted label constant, not part of a branch.
    // Make label relative to Code* of generated Code object.
    instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
    return;
  }

710 711 712 713 714 715 716 717 718 719 720 721 722 723
  ASSERT(IsBranch(instr) || IsJ(instr) || IsLui(instr));
  if (IsBranch(instr)) {
    int32_t imm18 = target_pos - (pos + kBranchPCOffset);
    ASSERT((imm18 & 3) == 0);

    instr &= ~kImm16Mask;
    int32_t imm16 = imm18 >> 2;
    ASSERT(is_int16(imm16));

    instr_at_put(pos, instr | (imm16 & kImm16Mask));
  } else if (IsLui(instr)) {
    Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize);
    Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize);
    ASSERT(IsOri(instr_ori));
724
    uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
725 726 727 728 729 730 731 732 733 734
    ASSERT((imm & 3) == 0);

    instr_lui &= ~kImm16Mask;
    instr_ori &= ~kImm16Mask;

    instr_at_put(pos + 0 * Assembler::kInstrSize,
                 instr_lui | ((imm & kHiMask) >> kLuiShift));
    instr_at_put(pos + 1 * Assembler::kInstrSize,
                 instr_ori | (imm & kImm16Mask));
  } else {
735
    uint32_t imm28 = reinterpret_cast<uint32_t>(buffer_) + target_pos;
736 737
    imm28 &= kImm28Mask;
    ASSERT((imm28 & 3) == 0);
738

739 740 741
    instr &= ~kImm26Mask;
    uint32_t imm26 = imm28 >> 2;
    ASSERT(is_uint26(imm26));
742

743 744
    instr_at_put(pos, instr | (imm26 & kImm26Mask));
  }
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}


void Assembler::print(Label* L) {
  if (L->is_unused()) {
    PrintF("unused label\n");
  } else if (L->is_bound()) {
    PrintF("bound label to %d\n", L->pos());
  } else if (L->is_linked()) {
    Label l = *L;
    PrintF("unbound label");
    while (l.is_linked()) {
      PrintF("@ %d ", l.pos());
      Instr instr = instr_at(l.pos());
      if ((instr & ~kImm16Mask) == 0) {
        PrintF("value\n");
      } else {
        PrintF("%d\n", instr);
      }
      next(&l);
    }
  } else {
    PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
  }
}


void Assembler::bind_to(Label* L, int pos) {
773
  ASSERT(0 <= pos && pos <= pc_offset());  // Must have valid binding position.
774 775 776 777 778 779
  int32_t trampoline_pos = kInvalidSlotPos;
  if (L->is_linked() && !trampoline_emitted_) {
    unbound_labels_count_--;
    next_buffer_check_ += kTrampolineSlotsSize;
  }

780 781
  while (L->is_linked()) {
    int32_t fixup_pos = L->pos();
782 783
    int32_t dist = pos - fixup_pos;
    next(L);  // Call next before overwriting link with target at fixup_pos.
784 785 786 787 788 789
    Instr instr = instr_at(fixup_pos);
    if (IsBranch(instr)) {
      if (dist > kMaxBranchOffset) {
        if (trampoline_pos == kInvalidSlotPos) {
          trampoline_pos = get_trampoline_entry(fixup_pos);
          CHECK(trampoline_pos != kInvalidSlotPos);
790
        }
791 792 793 794
        ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset);
        target_at_put(fixup_pos, trampoline_pos);
        fixup_pos = trampoline_pos;
        dist = pos - fixup_pos;
795 796 797
      }
      target_at_put(fixup_pos, pos);
    } else {
798
      ASSERT(IsJ(instr) || IsLui(instr) || IsEmittedConstant(instr));
799 800
      target_at_put(fixup_pos, pos);
    }
801 802 803 804 805 806 807 808 809 810 811
  }
  L->bind_to(pos);

  // Keep track of the last bound label so we don't eliminate any instructions
  // before a bound label.
  if (pos > last_bound_pos_)
    last_bound_pos_ = pos;
}


void Assembler::bind(Label* L) {
812
  ASSERT(!L->is_bound());  // Label can only be bound once.
813 814 815 816 817 818 819
  bind_to(L, pc_offset());
}


void Assembler::next(Label* L) {
  ASSERT(L->is_linked());
  int link = target_at(L->pos());
820
  if (link == kEndOfChain) {
821
    L->Unuse();
822 823
  } else {
    ASSERT(link >= 0);
824
    L->link_to(link);
825 826 827
  }
}

828 829 830 831 832 833
bool Assembler::is_near(Label* L) {
  if (L->is_bound()) {
    return ((pc_offset() - L->pos()) < kMaxBranchOffset - 4 * kInstrSize);
  }
  return false;
}
834 835 836 837 838

// We have to use a temporary register for things that can be relocated even
// if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
// space.  There is no guarantee that the relocated location can be similarly
// encoded.
839
bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
840
  return !RelocInfo::IsNone(rmode);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
}

void Assembler::GenInstrRegister(Opcode opcode,
                                 Register rs,
                                 Register rt,
                                 Register rd,
                                 uint16_t sa,
                                 SecondaryField func) {
  ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
  Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
      | (rd.code() << kRdShift) | (sa << kSaShift) | func;
  emit(instr);
}


856 857 858 859 860 861 862 863 864 865 866 867 868
void Assembler::GenInstrRegister(Opcode opcode,
                                 Register rs,
                                 Register rt,
                                 uint16_t msb,
                                 uint16_t lsb,
                                 SecondaryField func) {
  ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
  Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
      | (msb << kRdShift) | (lsb << kSaShift) | func;
  emit(instr);
}


869 870 871 872 873 874 875
void Assembler::GenInstrRegister(Opcode opcode,
                                 SecondaryField fmt,
                                 FPURegister ft,
                                 FPURegister fs,
                                 FPURegister fd,
                                 SecondaryField func) {
  ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid());
876 877
  Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift)
      | (fd.code() << kFdShift) | func;
878 879 880 881
  emit(instr);
}


882 883 884 885 886 887 888 889 890 891 892 893 894
void Assembler::GenInstrRegister(Opcode opcode,
                                 FPURegister fr,
                                 FPURegister ft,
                                 FPURegister fs,
                                 FPURegister fd,
                                 SecondaryField func) {
  ASSERT(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
  Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift)
      | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
  emit(instr);
}


895 896 897 898 899 900 901 902
void Assembler::GenInstrRegister(Opcode opcode,
                                 SecondaryField fmt,
                                 Register rt,
                                 FPURegister fs,
                                 FPURegister fd,
                                 SecondaryField func) {
  ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid());
  Instr instr = opcode | fmt | (rt.code() << kRtShift)
903 904 905 906 907 908 909 910 911 912 913 914 915
      | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
  emit(instr);
}


void Assembler::GenInstrRegister(Opcode opcode,
                                 SecondaryField fmt,
                                 Register rt,
                                 FPUControlRegister fs,
                                 SecondaryField func) {
  ASSERT(fs.is_valid() && rt.is_valid());
  Instr instr =
      opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
  emit(instr);
}


// Instructions with immediate value.
// Registers are in the order of the instruction encoding, from left to right.
void Assembler::GenInstrImmediate(Opcode opcode,
                                  Register rs,
                                  Register rt,
                                  int32_t j) {
  ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
  Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
      | (j & kImm16Mask);
  emit(instr);
}


void Assembler::GenInstrImmediate(Opcode opcode,
                                  Register rs,
                                  SecondaryField SF,
                                  int32_t j) {
  ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j)));
  Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
  emit(instr);
}


void Assembler::GenInstrImmediate(Opcode opcode,
                                  Register rs,
                                  FPURegister ft,
                                  int32_t j) {
  ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
  Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift)
      | (j & kImm16Mask);
  emit(instr);
}


void Assembler::GenInstrJump(Opcode opcode,
955
                             uint32_t address) {
956
  BlockTrampolinePoolScope block_trampoline_pool(this);
957 958 959
  ASSERT(is_uint26(address));
  Instr instr = opcode | address;
  emit(instr);
960 961 962 963
  BlockTrampolinePoolFor(1);  // For associated delay slot.
}


964 965 966
// Returns the next free trampoline entry.
int32_t Assembler::get_trampoline_entry(int32_t pos) {
  int32_t trampoline_entry = kInvalidSlotPos;
967

968 969 970
  if (!internal_trampoline_exception_) {
    if (trampoline_.start() > pos) {
     trampoline_entry = trampoline_.take_slot();
971
    }
972 973 974

    if (kInvalidSlotPos == trampoline_entry) {
      internal_trampoline_exception_ = true;
975 976
    }
  }
977
  return trampoline_entry;
978 979 980
}


981 982
uint32_t Assembler::jump_address(Label* L) {
  int32_t target_pos;
983

984 985 986 987 988 989 990 991 992
  if (L->is_bound()) {
    target_pos = L->pos();
  } else {
    if (L->is_linked()) {
      target_pos = L->pos();  // L's link.
      L->link_to(pc_offset());
    } else {
      L->link_to(pc_offset());
      return kEndOfJumpChain;
993
    }
994
  }
995

996
  uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
997 998 999
  ASSERT((imm & 3) == 0);

  return imm;
1000 1001 1002 1003 1004
}


int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
  int32_t target_pos;
1005

1006 1007 1008 1009
  if (L->is_bound()) {
    target_pos = L->pos();
  } else {
    if (L->is_linked()) {
1010
      target_pos = L->pos();
1011
      L->link_to(pc_offset());
1012
    } else {
1013
      L->link_to(pc_offset());
1014 1015 1016 1017
      if (!trampoline_emitted_) {
        unbound_labels_count_++;
        next_buffer_check_ -= kTrampolineSlotsSize;
      }
1018
      return kEndOfChain;
1019 1020 1021 1022
    }
  }

  int32_t offset = target_pos - (pc_offset() + kBranchPCOffset);
1023 1024 1025
  ASSERT((offset & 3) == 0);
  ASSERT(is_int16(offset >> 2));

1026 1027 1028 1029 1030 1031 1032 1033
  return offset;
}


void Assembler::label_at_put(Label* L, int at_offset) {
  int target_pos;
  if (L->is_bound()) {
    target_pos = L->pos();
1034
    instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1035 1036
  } else {
    if (L->is_linked()) {
1037 1038 1039 1040 1041 1042
      target_pos = L->pos();  // L's link.
      int32_t imm18 = target_pos - at_offset;
      ASSERT((imm18 & 3) == 0);
      int32_t imm16 = imm18 >> 2;
      ASSERT(is_int16(imm16));
      instr_at_put(at_offset, (imm16 & kImm16Mask));
1043 1044
    } else {
      target_pos = kEndOfChain;
1045
      instr_at_put(at_offset, 0);
1046 1047 1048 1049
      if (!trampoline_emitted_) {
        unbound_labels_count_++;
        next_buffer_check_ -= kTrampolineSlotsSize;
      }
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    }
    L->link_to(at_offset);
  }
}


//------- Branch and jump instructions --------

void Assembler::b(int16_t offset) {
  beq(zero_reg, zero_reg, offset);
}


void Assembler::bal(int16_t offset) {
1064
  positions_recorder()->WriteRecordedPositions();
1065 1066 1067 1068 1069
  bgezal(zero_reg, offset);
}


void Assembler::beq(Register rs, Register rt, int16_t offset) {
1070
  BlockTrampolinePoolScope block_trampoline_pool(this);
1071
  GenInstrImmediate(BEQ, rs, rt, offset);
1072
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1073 1074 1075 1076
}


void Assembler::bgez(Register rs, int16_t offset) {
1077
  BlockTrampolinePoolScope block_trampoline_pool(this);
1078
  GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1079
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1080 1081 1082 1083
}


void Assembler::bgezal(Register rs, int16_t offset) {
1084 1085
  BlockTrampolinePoolScope block_trampoline_pool(this);
  positions_recorder()->WriteRecordedPositions();
1086
  GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1087
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1088 1089 1090 1091
}


void Assembler::bgtz(Register rs, int16_t offset) {
1092
  BlockTrampolinePoolScope block_trampoline_pool(this);
1093
  GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1094
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1095 1096 1097 1098
}


void Assembler::blez(Register rs, int16_t offset) {
1099
  BlockTrampolinePoolScope block_trampoline_pool(this);
1100
  GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1101
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1102 1103 1104 1105
}


void Assembler::bltz(Register rs, int16_t offset) {
1106
  BlockTrampolinePoolScope block_trampoline_pool(this);
1107
  GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1108
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1109 1110 1111 1112
}


void Assembler::bltzal(Register rs, int16_t offset) {
1113 1114
  BlockTrampolinePoolScope block_trampoline_pool(this);
  positions_recorder()->WriteRecordedPositions();
1115
  GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1116
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1117 1118 1119 1120
}


void Assembler::bne(Register rs, Register rt, int16_t offset) {
1121
  BlockTrampolinePoolScope block_trampoline_pool(this);
1122
  GenInstrImmediate(BNE, rs, rt, offset);
1123
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1124 1125 1126 1127
}


void Assembler::j(int32_t target) {
1128 1129 1130
#if DEBUG
  // Get pc of delay slot.
  uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1131 1132
  bool in_range = (ipc ^ static_cast<uint32_t>(target) >>
                  (kImm26Bits + kImmFieldShift)) == 0;
1133 1134
  ASSERT(in_range && ((target & 3) == 0));
#endif
1135 1136 1137 1138 1139
  GenInstrJump(J, target >> 2);
}


void Assembler::jr(Register rs) {
1140 1141 1142 1143
  BlockTrampolinePoolScope block_trampoline_pool(this);
  if (rs.is(ra)) {
    positions_recorder()->WriteRecordedPositions();
  }
1144
  GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1145
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1146 1147 1148 1149
}


void Assembler::jal(int32_t target) {
1150 1151 1152
#ifdef DEBUG
  // Get pc of delay slot.
  uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1153 1154
  bool in_range = (ipc ^ static_cast<uint32_t>(target) >>
                  (kImm26Bits + kImmFieldShift)) == 0;
1155 1156
  ASSERT(in_range && ((target & 3) == 0));
#endif
1157
  positions_recorder()->WriteRecordedPositions();
1158 1159 1160 1161 1162
  GenInstrJump(JAL, target >> 2);
}


void Assembler::jalr(Register rs, Register rd) {
1163 1164
  BlockTrampolinePoolScope block_trampoline_pool(this);
  positions_recorder()->WriteRecordedPositions();
1165
  GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1166
  BlockTrampolinePoolFor(1);  // For associated delay slot.
1167 1168 1169
}


1170 1171 1172
void Assembler::j_or_jr(int32_t target, Register rs) {
  // Get pc of delay slot.
  uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1173 1174
  bool in_range = (ipc ^ static_cast<uint32_t>(target) >>
                  (kImm26Bits + kImmFieldShift)) == 0;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  if (in_range) {
      j(target);
  } else {
      jr(t9);
  }
}


void Assembler::jal_or_jalr(int32_t target, Register rs) {
  // Get pc of delay slot.
  uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1186 1187
  bool in_range = (ipc ^ static_cast<uint32_t>(target) >>
                  (kImm26Bits+kImmFieldShift)) == 0;
1188 1189 1190 1191 1192 1193 1194 1195
  if (in_range) {
      jal(target);
  } else {
      jalr(t9);
  }
}


1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
//-------Data-processing-instructions---------

// Arithmetic.

void Assembler::addu(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
}


void Assembler::addiu(Register rd, Register rs, int32_t j) {
  GenInstrImmediate(ADDIU, rs, rd, j);
}


void Assembler::subu(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
}


void Assembler::mul(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
}


void Assembler::mult(Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
}


void Assembler::multu(Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
}


void Assembler::div(Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
}


void Assembler::divu(Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
}


// Logical.

void Assembler::and_(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
}


void Assembler::andi(Register rt, Register rs, int32_t j) {
1248
  ASSERT(is_uint16(j));
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  GenInstrImmediate(ANDI, rs, rt, j);
}


void Assembler::or_(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
}


void Assembler::ori(Register rt, Register rs, int32_t j) {
1259
  ASSERT(is_uint16(j));
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
  GenInstrImmediate(ORI, rs, rt, j);
}


void Assembler::xor_(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
}


void Assembler::xori(Register rt, Register rs, int32_t j) {
1270
  ASSERT(is_uint16(j));
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
  GenInstrImmediate(XORI, rs, rt, j);
}


void Assembler::nor(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
}


// Shifts.
1281 1282 1283 1284 1285 1286 1287 1288 1289
void Assembler::sll(Register rd,
                    Register rt,
                    uint16_t sa,
                    bool coming_from_nop) {
  // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
  // generated using the sll instruction. They must be generated using
  // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo
  // instructions.
  ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg)));
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
  GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL);
}


void Assembler::sllv(Register rd, Register rt, Register rs) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
}


void Assembler::srl(Register rd, Register rt, uint16_t sa) {
  GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL);
}


void Assembler::srlv(Register rd, Register rt, Register rs) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
}


void Assembler::sra(Register rd, Register rt, uint16_t sa) {
  GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA);
}


void Assembler::srav(Register rd, Register rt, Register rs) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
}


1319 1320 1321
void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
  // Should be called via MacroAssembler::Ror.
  ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1322
  ASSERT(kArchVariant == kMips32r2);
1323 1324 1325 1326 1327 1328 1329 1330 1331
  Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
      | (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
  emit(instr);
}


void Assembler::rotrv(Register rd, Register rt, Register rs) {
  // Should be called via MacroAssembler::Ror.
  ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() );
1332
  ASSERT(kArchVariant == kMips32r2);
1333 1334 1335 1336 1337 1338
  Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
     | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
  emit(instr);
}


1339 1340
//------------Memory-instructions-------------

1341 1342 1343 1344 1345 1346 1347 1348 1349
// Helper for base-reg + offset, when offset is larger than int16.
void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) {
  ASSERT(!src.rm().is(at));
  lui(at, src.offset_ >> kLuiShift);
  ori(at, at, src.offset_ & kImm16Mask);  // Load 32-bit offset.
  addu(at, at, src.rm());  // Add base register.
}


1350
void Assembler::lb(Register rd, const MemOperand& rs) {
1351 1352 1353 1354 1355 1356
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LB, at, rd, 0);  // Equiv to lb(rd, MemOperand(at, 0));
  }
1357 1358 1359 1360
}


void Assembler::lbu(Register rd, const MemOperand& rs) {
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LBU, at, rd, 0);  // Equiv to lbu(rd, MemOperand(at, 0));
  }
}


void Assembler::lh(Register rd, const MemOperand& rs) {
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LH, at, rd, 0);  // Equiv to lh(rd, MemOperand(at, 0));
  }
}


void Assembler::lhu(Register rd, const MemOperand& rs) {
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LHU, at, rd, 0);  // Equiv to lhu(rd, MemOperand(at, 0));
  }
1387 1388 1389 1390
}


void Assembler::lw(Register rd, const MemOperand& rs) {
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to load.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(LW, at, rd, 0);  // Equiv to lw(rd, MemOperand(at, 0));
  }
}


void Assembler::lwl(Register rd, const MemOperand& rs) {
  GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
}


void Assembler::lwr(Register rd, const MemOperand& rs) {
  GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
1407 1408 1409 1410
}


void Assembler::sb(Register rd, const MemOperand& rs) {
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to store.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(SB, at, rd, 0);  // Equiv to sb(rd, MemOperand(at, 0));
  }
}


void Assembler::sh(Register rd, const MemOperand& rs) {
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to store.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(SH, at, rd, 0);  // Equiv to sh(rd, MemOperand(at, 0));
  }
1427 1428 1429 1430
}


void Assembler::sw(Register rd, const MemOperand& rs) {
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
  if (is_int16(rs.offset_)) {
    GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
  } else {  // Offset > 16 bits, use multiple instructions to store.
    LoadRegPlusOffsetToAt(rs);
    GenInstrImmediate(SW, at, rd, 0);  // Equiv to sw(rd, MemOperand(at, 0));
  }
}


void Assembler::swl(Register rd, const MemOperand& rs) {
  GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
}


void Assembler::swr(Register rd, const MemOperand& rs) {
  GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
1447 1448 1449 1450
}


void Assembler::lui(Register rd, int32_t j) {
1451
  ASSERT(is_uint16(j));
1452 1453 1454 1455 1456 1457 1458
  GenInstrImmediate(LUI, zero_reg, rd, j);
}


//-------------Misc-instructions--------------

// Break / Trap instructions.
1459
void Assembler::break_(uint32_t code, bool break_as_stop) {
1460
  ASSERT((code & ~0xfffff) == 0);
1461 1462 1463 1464 1465 1466 1467 1468 1469
  // We need to invalidate breaks that could be stops as well because the
  // simulator expects a char pointer after the stop instruction.
  // See constants-mips.h for explanation.
  ASSERT((break_as_stop &&
          code <= kMaxStopCode &&
          code > kMaxWatchpointCode) ||
         (!break_as_stop &&
          (code > kMaxStopCode ||
           code <= kMaxWatchpointCode)));
1470 1471 1472 1473 1474
  Instr break_instr = SPECIAL | BREAK | (code << 6);
  emit(break_instr);
}


1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
void Assembler::stop(const char* msg, uint32_t code) {
  ASSERT(code > kMaxWatchpointCode);
  ASSERT(code <= kMaxStopCode);
#if defined(V8_HOST_ARCH_MIPS)
  break_(0x54321);
#else  // V8_HOST_ARCH_MIPS
  BlockTrampolinePoolFor(2);
  // The Simulator will handle the stop instruction and get the message address.
  // On MIPS stop() is just a special kind of break_().
  break_(code, true);
  emit(reinterpret_cast<Instr>(msg));
#endif
}


1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
void Assembler::tge(Register rs, Register rt, uint16_t code) {
  ASSERT(is_uint10(code));
  Instr instr = SPECIAL | TGE | rs.code() << kRsShift
      | rt.code() << kRtShift | code << 6;
  emit(instr);
}


void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
  ASSERT(is_uint10(code));
  Instr instr = SPECIAL | TGEU | rs.code() << kRsShift
      | rt.code() << kRtShift | code << 6;
  emit(instr);
}


void Assembler::tlt(Register rs, Register rt, uint16_t code) {
  ASSERT(is_uint10(code));
  Instr instr =
      SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
  emit(instr);
}


void Assembler::tltu(Register rs, Register rt, uint16_t code) {
  ASSERT(is_uint10(code));
1516 1517 1518
  Instr instr =
      SPECIAL | TLTU | rs.code() << kRsShift
      | rt.code() << kRtShift | code << 6;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
  emit(instr);
}


void Assembler::teq(Register rs, Register rt, uint16_t code) {
  ASSERT(is_uint10(code));
  Instr instr =
      SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
  emit(instr);
}


void Assembler::tne(Register rs, Register rt, uint16_t code) {
  ASSERT(is_uint10(code));
  Instr instr =
      SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
  emit(instr);
}


// Move from HI/LO register.

void Assembler::mfhi(Register rd) {
  GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
}


void Assembler::mflo(Register rd) {
  GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
}


// Set on less than instructions.
void Assembler::slt(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
}


void Assembler::sltu(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
}


void Assembler::slti(Register rt, Register rs, int32_t j) {
  GenInstrImmediate(SLTI, rs, rt, j);
}


void Assembler::sltiu(Register rt, Register rs, int32_t j) {
  GenInstrImmediate(SLTIU, rs, rt, j);
}


1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
// Conditional move.
void Assembler::movz(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
}


void Assembler::movn(Register rd, Register rs, Register rt) {
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
}


void Assembler::movt(Register rd, Register rs, uint16_t cc) {
  Register rt;
1585
  rt.code_ = (cc & 0x0007) << 2 | 1;
1586 1587 1588 1589 1590 1591
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}


void Assembler::movf(Register rd, Register rs, uint16_t cc) {
  Register rt;
1592
  rt.code_ = (cc & 0x0007) << 2 | 0;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
  GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}


// Bit twiddling.
void Assembler::clz(Register rd, Register rs) {
  // Clz instr requires same GPR number in 'rd' and 'rt' fields.
  GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
}


void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
  // Should be called via MacroAssembler::Ins.
  // Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
1607
  ASSERT(kArchVariant == kMips32r2);
1608 1609 1610 1611 1612 1613 1614
  GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
}


void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
  // Should be called via MacroAssembler::Ext.
  // Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
1615
  ASSERT(kArchVariant == kMips32r2);
1616 1617 1618 1619
  GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
}


1620 1621 1622 1623 1624 1625 1626 1627 1628
//--------Coprocessor-instructions----------------

// Load, store, move.
void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
  GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
}


void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
1629 1630 1631 1632 1633 1634
  // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
  // load to two 32-bit loads.
  GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
  FPURegister nextfpreg;
  nextfpreg.setcode(fd.code() + 1);
  GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4);
1635 1636 1637 1638 1639 1640 1641 1642 1643
}


void Assembler::swc1(FPURegister fd, const MemOperand& src) {
  GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
}


void Assembler::sdc1(FPURegister fd, const MemOperand& src) {
1644 1645 1646 1647 1648 1649
  // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
  // store to two 32-bit stores.
  GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
  FPURegister nextfpreg;
  nextfpreg.setcode(fd.code() + 1);
  GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4);
1650 1651 1652
}


1653
void Assembler::mtc1(Register rt, FPURegister fs) {
1654 1655 1656 1657
  GenInstrRegister(COP1, MTC1, rt, fs, f0);
}


1658 1659
void Assembler::mfc1(Register rt, FPURegister fs) {
  GenInstrRegister(COP1, MFC1, rt, fs, f0);
1660 1661 1662
}


1663 1664 1665 1666 1667 1668 1669 1670 1671
void Assembler::ctc1(Register rt, FPUControlRegister fs) {
  GenInstrRegister(COP1, CTC1, rt, fs);
}


void Assembler::cfc1(Register rt, FPUControlRegister fs) {
  GenInstrRegister(COP1, CFC1, rt, fs);
}

1672 1673
void Assembler::DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
  uint64_t i;
1674
  OS::MemCopy(&i, &d, 8);
1675 1676 1677 1678

  *lo = i & 0xffffffff;
  *hi = i >> 32;
}
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

// Arithmetic.

void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
}


void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
}


void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
}


1697 1698 1699 1700 1701 1702
void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
    FPURegister ft) {
  GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D);
}


1703 1704 1705 1706 1707 1708 1709
void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
  GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
}


void Assembler::abs_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
1710 1711 1712
}


1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
void Assembler::mov_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
}


void Assembler::neg_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
}


void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
}


// Conversions.

void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
}


void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
}


1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
}


void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
}


void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
}


void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
}


void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
}


void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
}


void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
}


void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
}


1780
void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
1781
  ASSERT(kArchVariant == kMips32r2);
1782 1783 1784 1785 1786
  GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
}


void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
1787
  ASSERT(kArchVariant == kMips32r2);
1788 1789 1790 1791
  GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
}


1792
void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
1793
  ASSERT(kArchVariant == kMips32r2);
1794 1795 1796 1797 1798
  GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
}


void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
1799
  ASSERT(kArchVariant == kMips32r2);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
  GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
}


void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
}


void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
}


void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
}


void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
}


void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
}


void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
}


1834 1835 1836 1837 1838 1839
void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
}


void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
1840
  ASSERT(kArchVariant == kMips32r2);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
  GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
}


void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
}


void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
}


void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
1856
  ASSERT(kArchVariant == kMips32r2);
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
  GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
}


void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
  GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
}


// Conditions.
void Assembler::c(FPUCondition cond, SecondaryField fmt,
1868
    FPURegister fs, FPURegister ft, uint16_t cc) {
1869 1870 1871 1872 1873 1874 1875 1876
  ASSERT(is_uint3(cc));
  ASSERT((fmt & ~(31 << kRsShift)) == 0);
  Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift
      | cc << 8 | 3 << 4 | cond;
  emit(instr);
}


1877 1878 1879 1880 1881 1882 1883 1884 1885
void Assembler::fcmp(FPURegister src1, const double src2,
      FPUCondition cond) {
  ASSERT(src2 == 0.0);
  mtc1(zero_reg, f14);
  cvt_d_w(f14, f14);
  c(cond, D, src1, f14, 0);
}


1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
void Assembler::bc1f(int16_t offset, uint16_t cc) {
  ASSERT(is_uint3(cc));
  Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
  emit(instr);
}


void Assembler::bc1t(int16_t offset, uint16_t cc) {
  ASSERT(is_uint3(cc));
  Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
  emit(instr);
}


// Debugging.
void Assembler::RecordJSReturn() {
1902
  positions_recorder()->WriteRecordedPositions();
1903 1904 1905 1906 1907
  CheckBuffer();
  RecordRelocInfo(RelocInfo::JS_RETURN);
}


1908 1909 1910 1911
void Assembler::RecordDebugBreakSlot() {
  positions_recorder()->WriteRecordedPositions();
  CheckBuffer();
  RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
1912 1913 1914
}


1915 1916
void Assembler::RecordComment(const char* msg) {
  if (FLAG_code_comments) {
1917
    CheckBuffer();
1918
    RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
1919 1920 1921 1922
  }
}


1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
int Assembler::RelocateInternalReference(byte* pc, intptr_t pc_delta) {
  Instr instr = instr_at(pc);
  ASSERT(IsJ(instr) || IsLui(instr));
  if (IsLui(instr)) {
    Instr instr_lui = instr_at(pc + 0 * Assembler::kInstrSize);
    Instr instr_ori = instr_at(pc + 1 * Assembler::kInstrSize);
    ASSERT(IsOri(instr_ori));
    int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
    imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));
    if (imm == kEndOfJumpChain) {
      return 0;  // Number of instructions patched.
    }
    imm += pc_delta;
    ASSERT((imm & 3) == 0);

    instr_lui &= ~kImm16Mask;
    instr_ori &= ~kImm16Mask;

    instr_at_put(pc + 0 * Assembler::kInstrSize,
                 instr_lui | ((imm >> kLuiShift) & kImm16Mask));
    instr_at_put(pc + 1 * Assembler::kInstrSize,
                 instr_ori | (imm & kImm16Mask));
    return 2;  // Number of instructions patched.
  } else {
    uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
1948
    if (static_cast<int32_t>(imm28) == kEndOfJumpChain) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
      return 0;  // Number of instructions patched.
    }
    imm28 += pc_delta;
    imm28 &= kImm28Mask;
    ASSERT((imm28 & 3) == 0);

    instr &= ~kImm26Mask;
    uint32_t imm26 = imm28 >> 2;
    ASSERT(is_uint26(imm26));

    instr_at_put(pc, instr | (imm26 & kImm26Mask));
    return 1;  // Number of instructions patched.
  }
}


1965 1966 1967 1968
void Assembler::GrowBuffer() {
  if (!own_buffer_) FATAL("external code buffer is too small");

  // Compute new buffer size.
1969
  CodeDesc desc;  // The new buffer.
1970 1971 1972 1973 1974 1975 1976
  if (buffer_size_ < 4*KB) {
    desc.buffer_size = 4*KB;
  } else if (buffer_size_ < 1*MB) {
    desc.buffer_size = 2*buffer_size_;
  } else {
    desc.buffer_size = buffer_size_ + 1*MB;
  }
1977
  CHECK_GT(desc.buffer_size, 0);  // No overflow.
1978

1979
  // Set up new buffer.
1980 1981 1982 1983 1984 1985 1986 1987
  desc.buffer = NewArray<byte>(desc.buffer_size);

  desc.instr_size = pc_offset();
  desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();

  // Copy the data.
  int pc_delta = desc.buffer - buffer_;
  int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
1988 1989 1990
  OS::MemMove(desc.buffer, buffer_, desc.instr_size);
  OS::MemMove(reloc_info_writer.pos() + rc_delta,
              reloc_info_writer.pos(), desc.reloc_size);
1991 1992 1993 1994 1995 1996 1997 1998 1999

  // Switch buffers.
  DeleteArray(buffer_);
  buffer_ = desc.buffer;
  buffer_size_ = desc.buffer_size;
  pc_ += pc_delta;
  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
                               reloc_info_writer.last_pc() + pc_delta);

2000 2001 2002 2003 2004 2005 2006 2007
  // Relocate runtime entries.
  for (RelocIterator it(desc); !it.done(); it.next()) {
    RelocInfo::Mode rmode = it.rinfo()->rmode();
    if (rmode == RelocInfo::INTERNAL_REFERENCE) {
      byte* p = reinterpret_cast<byte*>(it.rinfo()->pc());
      RelocateInternalReference(p, pc_delta);
    }
  }
2008 2009 2010 2011 2012

  ASSERT(!overflow());
}


2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
void Assembler::db(uint8_t data) {
  CheckBuffer();
  *reinterpret_cast<uint8_t*>(pc_) = data;
  pc_ += sizeof(uint8_t);
}


void Assembler::dd(uint32_t data) {
  CheckBuffer();
  *reinterpret_cast<uint32_t*>(pc_) = data;
  pc_ += sizeof(uint32_t);
}


2027
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2028 2029
  // We do not try to reuse pool constants.
  RelocInfo rinfo(pc_, rmode, data, NULL);
2030
  if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
2031
    // Adjust code for new modes.
2032 2033
    ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
           || RelocInfo::IsJSReturn(rmode)
2034 2035 2036 2037
           || RelocInfo::IsComment(rmode)
           || RelocInfo::IsPosition(rmode));
    // These modes do not need an entry in the constant pool.
  }
2038
  if (!RelocInfo::IsNone(rinfo.rmode())) {
2039
    // Don't record external references unless the heap will be serialized.
2040 2041 2042 2043 2044 2045 2046 2047 2048
    if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG
      if (!Serializer::enabled()) {
        Serializer::TooLateToEnableNow();
      }
#endif
      if (!Serializer::enabled() && !emit_debug_code()) {
        return;
      }
2049
    }
2050
    ASSERT(buffer_space() >= kMaxRelocSize);  // Too late to grow buffer here.
2051
    if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2052 2053 2054 2055
      RelocInfo reloc_info_with_ast_id(pc_,
                                       rmode,
                                       RecordedAstId().ToInt(),
                                       NULL);
2056
      ClearRecordedAstId();
2057 2058 2059 2060
      reloc_info_writer.Write(&reloc_info_with_ast_id);
    } else {
      reloc_info_writer.Write(&rinfo);
    }
2061 2062 2063 2064
  }
}


2065 2066 2067 2068 2069
void Assembler::BlockTrampolinePoolFor(int instructions) {
  BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
}


2070
void Assembler::CheckTrampolinePool() {
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
  // Some small sequences of instructions must not be broken up by the
  // insertion of a trampoline pool; such sequences are protected by setting
  // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
  // which are both checked here. Also, recursive calls to CheckTrampolinePool
  // are blocked by trampoline_pool_blocked_nesting_.
  if ((trampoline_pool_blocked_nesting_ > 0) ||
      (pc_offset() < no_trampoline_pool_before_)) {
    // Emission is currently blocked; make sure we try again as soon as
    // possible.
    if (trampoline_pool_blocked_nesting_ > 0) {
      next_buffer_check_ = pc_offset() + kInstrSize;
    } else {
      next_buffer_check_ = no_trampoline_pool_before_;
    }
    return;
  }

2088 2089 2090 2091 2092 2093
  ASSERT(!trampoline_emitted_);
  ASSERT(unbound_labels_count_ >= 0);
  if (unbound_labels_count_ > 0) {
    // First we emit jump (2 instructions), then we emit trampoline pool.
    { BlockTrampolinePoolScope block_trampoline_pool(this);
      Label after_pool;
2094 2095
      b(&after_pool);
      nop();
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

      int pool_start = pc_offset();
      for (int i = 0; i < unbound_labels_count_; i++) {
        uint32_t imm32;
        imm32 = jump_address(&after_pool);
        { BlockGrowBufferScope block_buf_growth(this);
          // Buffer growth (and relocation) must be blocked for internal
          // references until associated instructions are emitted and available
          // to be patched.
          RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
          lui(at, (imm32 & kHiMask) >> kLuiShift);
          ori(at, at, (imm32 & kImm16Mask));
        }
        jr(at);
        nop();
      }
      bind(&after_pool);
      trampoline_ = Trampoline(pool_start, unbound_labels_count_);

      trampoline_emitted_ = true;
      // As we are only going to emit trampoline once, we need to prevent any
      // further emission.
      next_buffer_check_ = kMaxInt;
2119
    }
2120 2121 2122 2123 2124
  } else {
    // Number of branches to unbound label at this point is zero, so we can
    // move next buffer check to maximum.
    next_buffer_check_ = pc_offset() +
        kMaxBranchOffset - kTrampolineSlotsSize * 16;
2125 2126 2127 2128 2129
  }
  return;
}


2130 2131 2132
Address Assembler::target_address_at(Address pc) {
  Instr instr1 = instr_at(pc);
  Instr instr2 = instr_at(pc + kInstrSize);
2133 2134 2135
  // Interpret 2 instructions generated by li: lui/ori
  if ((GetOpcodeField(instr1) == LUI) && (GetOpcodeField(instr2) == ORI)) {
    // Assemble the 32 bit value.
2136
    return reinterpret_cast<Address>(
2137
        (GetImmediate16(instr1) << 16) | GetImmediate16(instr2));
2138 2139
  }

2140
  // We should never get here, force a bad address if we do.
2141 2142 2143 2144 2145
  UNREACHABLE();
  return (Address)0x0;
}


2146 2147 2148 2149
// MIPS and ia32 use opposite encoding for qNaN and sNaN, such that ia32
// qNaN is a MIPS sNaN, and ia32 sNaN is MIPS qNaN. If running from a heap
// snapshot generated on ia32, the resulting MIPS sNaN must be quieted.
// OS::nan_value() returns a qNaN.
2150
void Assembler::QuietNaN(HeapObject* object) {
2151
  HeapNumber::cast(object)->set_value(OS::nan_value());
2152 2153 2154
}


2155 2156 2157 2158 2159 2160 2161
// On Mips, a target address is stored in a lui/ori instruction pair, each
// of which load 16 bits of the 32-bit address to a register.
// Patching the address must replace both instr, and flush the i-cache.
//
// There is an optimization below, which emits a nop when the address
// fits in just 16 bits. This is unlikely to help, and should be benchmarked,
// and possibly removed.
2162 2163
void Assembler::set_target_address_at(Address pc, Address target) {
  Instr instr2 = instr_at(pc + kInstrSize);
2164 2165 2166 2167
  uint32_t rt_code = GetRtField(instr2);
  uint32_t* p = reinterpret_cast<uint32_t*>(pc);
  uint32_t itarget = reinterpret_cast<uint32_t>(target);

2168
#ifdef DEBUG
2169
  // Check we have the result from a li macro-instruction, using instr pair.
2170
  Instr instr1 = instr_at(pc);
2171
  CHECK((GetOpcodeField(instr1) == LUI && GetOpcodeField(instr2) == ORI));
2172 2173
#endif

2174 2175 2176
  // Must use 2 instructions to insure patchable code => just use lui and ori.
  // lui rt, upper-16.
  // ori rt rt, lower-16.
2177 2178
  *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift);
  *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask);
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
  // The following code is an optimization for the common case of Call()
  // or Jump() which is load to register, and jump through register:
  //     li(t9, address); jalr(t9)    (or jr(t9)).
  // If the destination address is in the same 256 MB page as the call, it
  // is faster to do a direct jal, or j, rather than jump thru register, since
  // that lets the cpu pipeline prefetch the target address. However each
  // time the address above is patched, we have to patch the direct jal/j
  // instruction, as well as possibly revert to jalr/jr if we now cross a
  // 256 MB page. Note that with the jal/j instructions, we do not need to
  // load the register, but that code is left, since it makes it easy to
  // revert this process. A further optimization could try replacing the
  // li sequence with nops.
  // This optimization can only be applied if the rt-code from instr2 is the
  // register used for the jalr/jr. Finally, we have to skip 'jr ra', which is
  // mips return. Occasionally this lands after an li().

  Instr instr3 = instr_at(pc + 2 * kInstrSize);
  uint32_t ipc = reinterpret_cast<uint32_t>(pc + 3 * kInstrSize);
2198 2199 2200 2201
  bool in_range = (ipc ^ static_cast<uint32_t>(itarget) >>
                  (kImm26Bits + kImmFieldShift)) == 0;
  uint32_t target_field =
      static_cast<uint32_t>(itarget & kJumpAddrMask) >>kImmFieldShift;
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
  bool patched_jump = false;

#ifndef ALLOW_JAL_IN_BOUNDARY_REGION
  // This is a workaround to the 24k core E156 bug (affect some 34k cores also).
  // Since the excluded space is only 64KB out of 256MB (0.02 %), we will just
  // apply this workaround for all cores so we don't have to identify the core.
  if (in_range) {
    // The 24k core E156 bug has some very specific requirements, we only check
    // the most simple one: if the address of the delay slot instruction is in
    // the first or last 32 KB of the 256 MB segment.
    uint32_t segment_mask = ((256 * MB) - 1) ^ ((32 * KB) - 1);
    uint32_t ipc_segment_addr = ipc & segment_mask;
    if (ipc_segment_addr == 0 || ipc_segment_addr == segment_mask)
      in_range = false;
  }
#endif

  if (IsJalr(instr3)) {
    // Try to convert JALR to JAL.
    if (in_range && GetRt(instr2) == GetRs(instr3)) {
      *(p+2) = JAL | target_field;
      patched_jump = true;
    }
  } else if (IsJr(instr3)) {
    // Try to convert JR to J, skip returns (jr ra).
    bool is_ret = static_cast<int>(GetRs(instr3)) == ra.code();
    if (in_range && !is_ret && GetRt(instr2) == GetRs(instr3)) {
      *(p+2) = J | target_field;
      patched_jump = true;
    }
  } else if (IsJal(instr3)) {
    if (in_range) {
      // We are patching an already converted JAL.
      *(p+2) = JAL | target_field;
    } else {
      // Patch JAL, but out of range, revert to JALR.
      // JALR rs reg is the rt reg specified in the ORI instruction.
      uint32_t rs_field = GetRt(instr2) << kRsShift;
      uint32_t rd_field = ra.code() << kRdShift;  // Return-address (ra) reg.
      *(p+2) = SPECIAL | rs_field | rd_field | JALR;
    }
    patched_jump = true;
  } else if (IsJ(instr3)) {
    if (in_range) {
      // We are patching an already converted J (jump).
      *(p+2) = J | target_field;
    } else {
      // Trying patch J, but out of range, just go back to JR.
      // JR 'rs' reg is the 'rt' reg specified in the ORI instruction (instr2).
      uint32_t rs_field = GetRt(instr2) << kRsShift;
      *(p+2) = SPECIAL | rs_field | JR;
    }
    patched_jump = true;
  }

  CPU::FlushICache(pc, (patched_jump ? 3 : 2) * sizeof(int32_t));
2258 2259
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
void Assembler::JumpLabelToJumpRegister(Address pc) {
  // Address pc points to lui/ori instructions.
  // Jump to label may follow at pc + 2 * kInstrSize.
  uint32_t* p = reinterpret_cast<uint32_t*>(pc);
#ifdef DEBUG
  Instr instr1 = instr_at(pc);
#endif
  Instr instr2 = instr_at(pc + 1 * kInstrSize);
  Instr instr3 = instr_at(pc + 2 * kInstrSize);
  bool patched = false;

  if (IsJal(instr3)) {
    ASSERT(GetOpcodeField(instr1) == LUI);
    ASSERT(GetOpcodeField(instr2) == ORI);

    uint32_t rs_field = GetRt(instr2) << kRsShift;
    uint32_t rd_field = ra.code() << kRdShift;  // Return-address (ra) reg.
    *(p+2) = SPECIAL | rs_field | rd_field | JALR;
    patched = true;
  } else if (IsJ(instr3)) {
    ASSERT(GetOpcodeField(instr1) == LUI);
    ASSERT(GetOpcodeField(instr2) == ORI);

    uint32_t rs_field = GetRt(instr2) << kRsShift;
    *(p+2) = SPECIAL | rs_field | JR;
    patched = true;
  }

  if (patched) {
      CPU::FlushICache(pc+2, sizeof(Address));
  }
}
2292 2293 2294

} }  // namespace v8::internal

2295
#endif  // V8_TARGET_ARCH_MIPS