test-sync-primitives-arm.cc 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright 2016 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28
#include "src/init/v8.h"
29
#include "test/cctest/assembler-helper-arm.h"
30 31
#include "test/cctest/cctest.h"

32 33
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
34
#include "src/diagnostics/disassembler.h"
35
#include "src/execution/simulator.h"
36
#include "src/heap/factory.h"
37

38 39 40
namespace v8 {
namespace internal {

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
// These tests rely on the behaviour specific to the simulator so we cannot
// expect the same results on real hardware. The reason for this is that our
// simulation of synchronisation primitives is more conservative than the
// reality.
// For example:
//   ldrex r1, [r2] ; Load acquire at address r2; r2 is now marked as exclusive.
//   ldr r0, [r4]   ; This is a normal load, and at a different address.
//                  ; However, any memory accesses can potentially clear the
//                  ; exclusivity (See ARM DDI 0406C.c A3.4.5). This is unlikely
//                  ; on real hardware but to be conservative, the simulator
//                  ; always does it.
//   strex r3, r1, [r2] ; As a result, this will always fail in the simulator
//                      ; but will likely succeed on hardware.
#if defined(USE_SIMULATOR)

56 57 58 59 60 61
#ifndef V8_TARGET_LITTLE_ENDIAN
#error Expected ARM to be little-endian
#endif

#define __ assm.

62 63
namespace {

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
struct MemoryAccess {
  enum class Kind {
    None,
    Load,
    LoadExcl,
    Store,
    StoreExcl,
  };

  enum class Size {
    Byte,
    HalfWord,
    Word,
  };

  MemoryAccess() : kind(Kind::None) {}
  MemoryAccess(Kind kind, Size size, size_t offset, int value = 0)
      : kind(kind), size(size), offset(offset), value(value) {}

83 84 85 86
  Kind kind = Kind::None;
  Size size = Size::Byte;
  size_t offset = 0;
  int value = 0;
87 88 89 90 91 92 93 94 95 96 97 98 99
};

struct TestData {
  explicit TestData(int w) : w(w) {}

  union {
    int32_t w;
    int16_t h;
    int8_t b;
  };
  int dummy;
};

100 101 102
void AssembleMemoryAccess(Assembler* assembler, MemoryAccess access,
                          Register dest_reg, Register value_reg,
                          Register addr_reg) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  Assembler& assm = *assembler;
  __ add(addr_reg, r0, Operand(access.offset));

  switch (access.kind) {
    case MemoryAccess::Kind::None:
      break;

    case MemoryAccess::Kind::Load:
      switch (access.size) {
        case MemoryAccess::Size::Byte:
          __ ldrb(value_reg, MemOperand(addr_reg));
          break;

        case MemoryAccess::Size::HalfWord:
          __ ldrh(value_reg, MemOperand(addr_reg));
          break;

        case MemoryAccess::Size::Word:
          __ ldr(value_reg, MemOperand(addr_reg));
          break;
      }
      break;

    case MemoryAccess::Kind::LoadExcl:
      switch (access.size) {
        case MemoryAccess::Size::Byte:
          __ ldrexb(value_reg, addr_reg);
          break;

        case MemoryAccess::Size::HalfWord:
          __ ldrexh(value_reg, addr_reg);
          break;

        case MemoryAccess::Size::Word:
          __ ldrex(value_reg, addr_reg);
          break;
      }
      break;

    case MemoryAccess::Kind::Store:
      switch (access.size) {
        case MemoryAccess::Size::Byte:
          __ mov(value_reg, Operand(access.value));
          __ strb(value_reg, MemOperand(addr_reg));
          break;

        case MemoryAccess::Size::HalfWord:
          __ mov(value_reg, Operand(access.value));
          __ strh(value_reg, MemOperand(addr_reg));
          break;

        case MemoryAccess::Size::Word:
          __ mov(value_reg, Operand(access.value));
          __ str(value_reg, MemOperand(addr_reg));
          break;
      }
      break;

    case MemoryAccess::Kind::StoreExcl:
      switch (access.size) {
        case MemoryAccess::Size::Byte:
          __ mov(value_reg, Operand(access.value));
          __ strexb(dest_reg, value_reg, addr_reg);
          break;

        case MemoryAccess::Size::HalfWord:
          __ mov(value_reg, Operand(access.value));
          __ strexh(dest_reg, value_reg, addr_reg);
          break;

        case MemoryAccess::Size::Word:
          __ mov(value_reg, Operand(access.value));
          __ strex(dest_reg, value_reg, addr_reg);
          break;
      }
      break;
  }
}

182 183 184 185 186 187 188 189 190 191 192
void AssembleLoadExcl(Assembler* assembler, MemoryAccess access,
                      Register value_reg, Register addr_reg) {
  DCHECK(access.kind == MemoryAccess::Kind::LoadExcl);
  AssembleMemoryAccess(assembler, access, no_reg, value_reg, addr_reg);
}

void AssembleStoreExcl(Assembler* assembler, MemoryAccess access,
                       Register dest_reg, Register value_reg,
                       Register addr_reg) {
  DCHECK(access.kind == MemoryAccess::Kind::StoreExcl);
  AssembleMemoryAccess(assembler, access, dest_reg, value_reg, addr_reg);
193 194
}

195 196 197 198 199 200
void TestInvalidateExclusiveAccess(TestData initial_data, MemoryAccess access1,
                                   MemoryAccess access2, MemoryAccess access3,
                                   int expected_res, TestData expected_data) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

201 202 203 204 205 206
  auto f = AssembleCode<int(TestData*, int, int, int)>(
      isolate, [&](Assembler& assm) {
        AssembleLoadExcl(&assm, access1, r1, r1);
        AssembleMemoryAccess(&assm, access2, r3, r2, r1);
        AssembleStoreExcl(&assm, access3, r0, r3, r1);
      });
207

208 209
  TestData t = initial_data;

210
  int res = f.Call(&t, 0, 0, 0);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  CHECK_EQ(expected_res, res);
  switch (access3.size) {
    case MemoryAccess::Size::Byte:
      CHECK_EQ(expected_data.b, t.b);
      break;

    case MemoryAccess::Size::HalfWord:
      CHECK_EQ(expected_data.h, t.h);
      break;

    case MemoryAccess::Size::Word:
      CHECK_EQ(expected_data.w, t.w);
      break;
  }
}
226 227 228

}  // namespace

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
TEST(simulator_invalidate_exclusive_access) {
  using Kind = MemoryAccess::Kind;
  using Size = MemoryAccess::Size;

  MemoryAccess ldrex_w(Kind::LoadExcl, Size::Word, offsetof(TestData, w));
  MemoryAccess strex_w(Kind::StoreExcl, Size::Word, offsetof(TestData, w), 7);

  // Address mismatch.
  TestInvalidateExclusiveAccess(
      TestData(1), ldrex_w,
      MemoryAccess(Kind::LoadExcl, Size::Word, offsetof(TestData, dummy)),
      strex_w, 1, TestData(1));

  // Size mismatch.
  TestInvalidateExclusiveAccess(
      TestData(1), ldrex_w, MemoryAccess(),
      MemoryAccess(Kind::StoreExcl, Size::HalfWord, offsetof(TestData, w), 7),
      1, TestData(1));

  // Load between ldrex/strex.
  TestInvalidateExclusiveAccess(
      TestData(1), ldrex_w,
      MemoryAccess(Kind::Load, Size::Word, offsetof(TestData, dummy)), strex_w,
      1, TestData(1));

  // Store between ldrex/strex.
  TestInvalidateExclusiveAccess(
      TestData(1), ldrex_w,
      MemoryAccess(Kind::Store, Size::Word, offsetof(TestData, dummy)), strex_w,
      1, TestData(1));

  // Match
  TestInvalidateExclusiveAccess(TestData(1), ldrex_w, MemoryAccess(), strex_w,
                                0, TestData(7));
}

265
namespace {
266

267 268
int ExecuteMemoryAccess(Isolate* isolate, TestData* test_data,
                        MemoryAccess access) {
269
  HandleScope scope(isolate);
270 271 272 273
  auto f =
      AssembleCode<int(TestData*, int, int)>(isolate, [&](Assembler& assm) {
        AssembleMemoryAccess(&assm, access, r0, r2, r1);
      });
274

275
  return f.Call(test_data, 0, 0);
276 277
}

278 279
}  // namespace

280 281 282 283
class MemoryAccessThread : public v8::base::Thread {
 public:
  MemoryAccessThread()
      : Thread(Options("MemoryAccessThread")),
284
        test_data_(nullptr),
285 286
        is_finished_(false),
        has_request_(false),
287 288
        did_request_(false),
        isolate_(nullptr) {}
289 290 291 292

  virtual void Run() {
    v8::Isolate::CreateParams create_params;
    create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
293 294 295 296
    isolate_ = v8::Isolate::New(create_params);
    Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate_);
    {
      v8::Isolate::Scope scope(isolate_);
297
      v8::base::MutexGuard lock_guard(&mutex_);
298 299 300 301 302 303 304 305
      while (!is_finished_) {
        while (!(has_request_ || is_finished_)) {
          has_request_cv_.Wait(&mutex_);
        }

        if (is_finished_) {
          break;
        }
306

307 308 309 310
        ExecuteMemoryAccess(i_isolate, test_data_, access_);
        has_request_ = false;
        did_request_ = true;
        did_request_cv_.NotifyOne();
311 312
      }
    }
313
    isolate_->Dispose();
314 315 316 317
  }

  void NextAndWait(TestData* test_data, MemoryAccess access) {
    DCHECK(!has_request_);
318
    v8::base::MutexGuard lock_guard(&mutex_);
319 320 321 322 323 324 325 326 327 328 329
    test_data_ = test_data;
    access_ = access;
    has_request_ = true;
    has_request_cv_.NotifyOne();
    while (!did_request_) {
      did_request_cv_.Wait(&mutex_);
    }
    did_request_ = false;
  }

  void Finish() {
330
    v8::base::MutexGuard lock_guard(&mutex_);
331 332 333 334 335 336 337 338 339 340 341 342 343
    is_finished_ = true;
    has_request_cv_.NotifyOne();
  }

 private:
  TestData* test_data_;
  MemoryAccess access_;
  bool is_finished_;
  bool has_request_;
  bool did_request_;
  v8::base::Mutex mutex_;
  v8::base::ConditionVariable has_request_cv_;
  v8::base::ConditionVariable did_request_cv_;
344
  v8::Isolate* isolate_;
345 346 347 348 349 350 351 352 353 354 355 356
};

TEST(simulator_invalidate_exclusive_access_threaded) {
  using Kind = MemoryAccess::Kind;
  using Size = MemoryAccess::Size;

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

  TestData test_data(1);

  MemoryAccessThread thread;
357
  CHECK(thread.Start());
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

  MemoryAccess ldrex_w(Kind::LoadExcl, Size::Word, offsetof(TestData, w));
  MemoryAccess strex_w(Kind::StoreExcl, Size::Word, offsetof(TestData, w), 7);

  // Exclusive store completed by another thread first.
  test_data = TestData(1);
  thread.NextAndWait(&test_data, MemoryAccess(Kind::LoadExcl, Size::Word,
                                              offsetof(TestData, w)));
  ExecuteMemoryAccess(isolate, &test_data, ldrex_w);
  thread.NextAndWait(&test_data, MemoryAccess(Kind::StoreExcl, Size::Word,
                                              offsetof(TestData, w), 5));
  CHECK_EQ(1, ExecuteMemoryAccess(isolate, &test_data, strex_w));
  CHECK_EQ(5, test_data.w);

  // Exclusive store completed by another thread; different address, but masked
  // to same
  test_data = TestData(1);
  ExecuteMemoryAccess(isolate, &test_data, ldrex_w);
  thread.NextAndWait(&test_data, MemoryAccess(Kind::LoadExcl, Size::Word,
                                              offsetof(TestData, dummy)));
  thread.NextAndWait(&test_data, MemoryAccess(Kind::StoreExcl, Size::Word,
                                              offsetof(TestData, dummy), 5));
  CHECK_EQ(1, ExecuteMemoryAccess(isolate, &test_data, strex_w));
  CHECK_EQ(1, test_data.w);

  // Test failure when store between ldrex/strex.
  test_data = TestData(1);
  ExecuteMemoryAccess(isolate, &test_data, ldrex_w);
  thread.NextAndWait(&test_data, MemoryAccess(Kind::Store, Size::Word,
                                              offsetof(TestData, dummy)));
  CHECK_EQ(1, ExecuteMemoryAccess(isolate, &test_data, strex_w));
  CHECK_EQ(1, test_data.w);

  thread.Finish();
  thread.Join();
}

395
#undef __
396

397 398
#endif  // defined(USE_SIMULATOR)

399 400
}  // namespace internal
}  // namespace v8