gdb-jit.cc 61.3 KB
Newer Older
1
// Copyright 2010 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include "src/v8.h"
6

7
#include "src/base/bits.h"
8
#include "src/base/platform/platform.h"
9 10 11
#include "src/bootstrapper.h"
#include "src/compiler.h"
#include "src/frames-inl.h"
12 13
#include "src/frames.h"
#include "src/gdb-jit.h"
14 15
#include "src/global-handles.h"
#include "src/messages.h"
16
#include "src/objects.h"
17
#include "src/ostreams.h"
18
#include "src/snapshot/natives.h"
19 20 21

namespace v8 {
namespace internal {
22 23 24
namespace GDBJITInterface {

#ifdef ENABLE_GDB_JIT_INTERFACE
25

26
#ifdef __APPLE__
27 28 29 30 31 32 33
#define __MACH_O
class MachO;
class MachOSection;
typedef MachO DebugObject;
typedef MachOSection DebugSection;
#else
#define __ELF
34
class ELF;
35 36 37 38
class ELFSection;
typedef ELF DebugObject;
typedef ELFSection DebugSection;
#endif
39 40 41

class Writer BASE_EMBEDDED {
 public:
42 43
  explicit Writer(DebugObject* debug_object)
      : debug_object_(debug_object),
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        position_(0),
        capacity_(1024),
        buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
  }

  ~Writer() {
    free(buffer_);
  }

  uintptr_t position() const {
    return position_;
  }

  template<typename T>
  class Slot {
   public:
    Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }

    T* operator-> () {
      return w_->RawSlotAt<T>(offset_);
    }

    void set(const T& value) {
      *w_->RawSlotAt<T>(offset_) = value;
    }

    Slot<T> at(int i) {
      return Slot<T>(w_, offset_ + sizeof(T) * i);
    }

   private:
    Writer* w_;
    uintptr_t offset_;
  };

  template<typename T>
  void Write(const T& val) {
    Ensure(position_ + sizeof(T));
    *RawSlotAt<T>(position_) = val;
    position_ += sizeof(T);
  }

  template<typename T>
  Slot<T> SlotAt(uintptr_t offset) {
    Ensure(offset + sizeof(T));
    return Slot<T>(this, offset);
  }

  template<typename T>
  Slot<T> CreateSlotHere() {
    return CreateSlotsHere<T>(1);
  }

  template<typename T>
  Slot<T> CreateSlotsHere(uint32_t count) {
    uintptr_t slot_position = position_;
    position_ += sizeof(T) * count;
    Ensure(position_);
    return SlotAt<T>(slot_position);
  }

  void Ensure(uintptr_t pos) {
    if (capacity_ < pos) {
      while (capacity_ < pos) capacity_ *= 2;
      buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
    }
  }

112
  DebugObject* debug_object() { return debug_object_; }
113 114 115 116 117 118 119 120

  byte* buffer() { return buffer_; }

  void Align(uintptr_t align) {
    uintptr_t delta = position_ % align;
    if (delta == 0) return;
    uintptr_t padding = align - delta;
    Ensure(position_ += padding);
121
    DCHECK((position_ % align) == 0);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  }

  void WriteULEB128(uintptr_t value) {
    do {
      uint8_t byte = value & 0x7F;
      value >>= 7;
      if (value != 0) byte |= 0x80;
      Write<uint8_t>(byte);
    } while (value != 0);
  }

  void WriteSLEB128(intptr_t value) {
    bool more = true;
    while (more) {
      int8_t byte = value & 0x7F;
      bool byte_sign = byte & 0x40;
      value >>= 7;

      if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
        more = false;
      } else {
        byte |= 0x80;
      }

      Write<int8_t>(byte);
    }
  }

  void WriteString(const char* str) {
    do {
      Write<char>(*str);
    } while (*str++);
  }

 private:
  template<typename T> friend class Slot;

  template<typename T>
  T* RawSlotAt(uintptr_t offset) {
161
    DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
162 163 164
    return reinterpret_cast<T*>(&buffer_[offset]);
  }

165
  DebugObject* debug_object_;
166 167 168 169 170
  uintptr_t position_;
  uintptr_t capacity_;
  byte* buffer_;
};

171
class ELFStringTable;
172

173 174
template<typename THeader>
class DebugSectionBase : public ZoneObject {
175
 public:
176 177 178 179
  virtual ~DebugSectionBase() { }

  virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
    uintptr_t start = writer->position();
180
    if (WriteBodyInternal(writer)) {
181
      uintptr_t end = writer->position();
182
      header->offset = static_cast<uint32_t>(start);
183 184 185 186 187 188 189
#if defined(__MACH_O)
      header->addr = 0;
#endif
      header->size = end - start;
    }
  }

190
  virtual bool WriteBodyInternal(Writer* writer) {
191 192 193 194 195 196 197 198 199 200
    return false;
  }

  typedef THeader Header;
};


struct MachOSectionHeader {
  char sectname[16];
  char segname[16];
danno@chromium.org's avatar
danno@chromium.org committed
201
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  uint32_t addr;
  uint32_t size;
#else
  uint64_t addr;
  uint64_t size;
#endif
  uint32_t offset;
  uint32_t align;
  uint32_t reloff;
  uint32_t nreloc;
  uint32_t flags;
  uint32_t reserved1;
  uint32_t reserved2;
};


class MachOSection : public DebugSectionBase<MachOSectionHeader> {
 public:
  enum Type {
    S_REGULAR = 0x0u,
    S_ATTR_COALESCED = 0xbu,
    S_ATTR_SOME_INSTRUCTIONS = 0x400u,
    S_ATTR_DEBUG = 0x02000000u,
    S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
226 227
  };

228
  MachOSection(const char* name, const char* segment, uint32_t align,
229
               uint32_t flags)
230
      : name_(name), segment_(segment), align_(align), flags_(flags) {
231
    if (align_ != 0) {
232
      DCHECK(base::bits::IsPowerOfTwo32(align));
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
      align_ = WhichPowerOf2(align_);
    }
  }

  virtual ~MachOSection() { }

  virtual void PopulateHeader(Writer::Slot<Header> header) {
    header->addr = 0;
    header->size = 0;
    header->offset = 0;
    header->align = align_;
    header->reloff = 0;
    header->nreloc = 0;
    header->flags = flags_;
    header->reserved1 = 0;
    header->reserved2 = 0;
249 250
    memset(header->sectname, 0, sizeof(header->sectname));
    memset(header->segname, 0, sizeof(header->segname));
251 252
    DCHECK(strlen(name_) < sizeof(header->sectname));
    DCHECK(strlen(segment_) < sizeof(header->segname));
253 254
    strncpy(header->sectname, name_, sizeof(header->sectname));
    strncpy(header->segname, segment_, sizeof(header->segname));
255 256 257 258 259
  }

 private:
  const char* name_;
  const char* segment_;
260
  uint32_t align_;
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  uint32_t flags_;
};


struct ELFSectionHeader {
  uint32_t name;
  uint32_t type;
  uintptr_t flags;
  uintptr_t address;
  uintptr_t offset;
  uintptr_t size;
  uint32_t link;
  uint32_t info;
  uintptr_t alignment;
  uintptr_t entry_size;
};
277

278 279 280 281

#if defined(__ELF)
class ELFSection : public DebugSectionBase<ELFSectionHeader> {
 public:
282 283 284 285 286 287 288 289 290 291 292 293 294 295
  enum Type {
    TYPE_NULL = 0,
    TYPE_PROGBITS = 1,
    TYPE_SYMTAB = 2,
    TYPE_STRTAB = 3,
    TYPE_RELA = 4,
    TYPE_HASH = 5,
    TYPE_DYNAMIC = 6,
    TYPE_NOTE = 7,
    TYPE_NOBITS = 8,
    TYPE_REL = 9,
    TYPE_SHLIB = 10,
    TYPE_DYNSYM = 11,
    TYPE_LOPROC = 0x70000000,
296
    TYPE_X86_64_UNWIND = 0x70000001,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    TYPE_HIPROC = 0x7fffffff,
    TYPE_LOUSER = 0x80000000,
    TYPE_HIUSER = 0xffffffff
  };

  enum Flags {
    FLAG_WRITE = 1,
    FLAG_ALLOC = 2,
    FLAG_EXEC = 4
  };

  enum SpecialIndexes {
    INDEX_ABSOLUTE = 0xfff1
  };

  ELFSection(const char* name, Type type, uintptr_t align)
      : name_(name), type_(type), align_(align) { }

  virtual ~ELFSection() { }

317
  void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
318 319 320

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    uintptr_t start = w->position();
321
    if (WriteBodyInternal(w)) {
322 323 324 325 326 327
      uintptr_t end = w->position();
      header->offset = start;
      header->size = end - start;
    }
  }

328
  virtual bool WriteBodyInternal(Writer* w) {
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    return false;
  }

  uint16_t index() const { return index_; }
  void set_index(uint16_t index) { index_ = index; }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    header->flags = 0;
    header->address = 0;
    header->offset = 0;
    header->size = 0;
    header->link = 0;
    header->info = 0;
    header->entry_size = 0;
  }

 private:
  const char* name_;
  Type type_;
  uintptr_t align_;
  uint16_t index_;
};
352
#endif  // defined(__ELF)
353 354


355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
#if defined(__MACH_O)
class MachOTextSection : public MachOSection {
 public:
  MachOTextSection(uintptr_t align,
                   uintptr_t addr,
                   uintptr_t size)
      : MachOSection("__text",
                     "__TEXT",
                     align,
                     MachOSection::S_REGULAR |
                         MachOSection::S_ATTR_SOME_INSTRUCTIONS |
                         MachOSection::S_ATTR_PURE_INSTRUCTIONS),
        addr_(addr),
        size_(size) { }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    MachOSection::PopulateHeader(header);
    header->addr = addr_;
    header->size = size_;
  }

 private:
  uintptr_t addr_;
  uintptr_t size_;
};
#endif  // defined(__MACH_O)


#if defined(__ELF)
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
class FullHeaderELFSection : public ELFSection {
 public:
  FullHeaderELFSection(const char* name,
                       Type type,
                       uintptr_t align,
                       uintptr_t addr,
                       uintptr_t offset,
                       uintptr_t size,
                       uintptr_t flags)
      : ELFSection(name, type, align),
        addr_(addr),
        offset_(offset),
        size_(size),
        flags_(flags) { }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    ELFSection::PopulateHeader(header);
    header->address = addr_;
    header->offset = offset_;
    header->size = size_;
    header->flags = flags_;
  }

 private:
  uintptr_t addr_;
  uintptr_t offset_;
  uintptr_t size_;
  uintptr_t flags_;
};


417
class ELFStringTable : public ELFSection {
418
 public:
419
  explicit ELFStringTable(const char* name)
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
      : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
  }

  uintptr_t Add(const char* str) {
    if (*str == '\0') return 0;

    uintptr_t offset = size_;
    WriteString(str);
    return offset;
  }

  void AttachWriter(Writer* w) {
    writer_ = w;
    offset_ = writer_->position();

    // First entry in the string table should be an empty string.
    WriteString("");
  }

  void DetachWriter() {
    writer_ = NULL;
  }

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
444
    DCHECK(writer_ == NULL);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    header->offset = offset_;
    header->size = size_;
  }

 private:
  void WriteString(const char* str) {
    uintptr_t written = 0;
    do {
      writer_->Write(*str);
      written++;
    } while (*str++);
    size_ += written;
  }

  Writer* writer_;

  uintptr_t offset_;
  uintptr_t size_;
};


void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
467
                                ELFStringTable* strtab) {
468
  header->name = static_cast<uint32_t>(strtab->Add(name_));
469 470 471 472
  header->type = type_;
  header->alignment = align_;
  PopulateHeader(header);
}
473 474 475 476 477 478
#endif  // defined(__ELF)


#if defined(__MACH_O)
class MachO BASE_EMBEDDED {
 public:
479
  explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
480 481

  uint32_t AddSection(MachOSection* section) {
482
    sections_.Add(section, zone_);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    return sections_.length() - 1;
  }

  void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
    Writer::Slot<MachOHeader> header = WriteHeader(w);
    uintptr_t load_command_start = w->position();
    Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
                                                                code_start,
                                                                code_size);
    WriteSections(w, cmd, header, load_command_start);
  }

 private:
  struct MachOHeader {
    uint32_t magic;
    uint32_t cputype;
    uint32_t cpusubtype;
    uint32_t filetype;
    uint32_t ncmds;
    uint32_t sizeofcmds;
    uint32_t flags;
504
#if V8_TARGET_ARCH_X64
505 506 507 508 509 510 511 512
    uint32_t reserved;
#endif
  };

  struct MachOSegmentCommand {
    uint32_t cmd;
    uint32_t cmdsize;
    char segname[16];
danno@chromium.org's avatar
danno@chromium.org committed
513
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    uint32_t vmaddr;
    uint32_t vmsize;
    uint32_t fileoff;
    uint32_t filesize;
#else
    uint64_t vmaddr;
    uint64_t vmsize;
    uint64_t fileoff;
    uint64_t filesize;
#endif
    uint32_t maxprot;
    uint32_t initprot;
    uint32_t nsects;
    uint32_t flags;
  };

  enum MachOLoadCommandCmd {
    LC_SEGMENT_32 = 0x00000001u,
    LC_SEGMENT_64 = 0x00000019u
  };


  Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
537
    DCHECK(w->position() == 0);
538
    Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
danno@chromium.org's avatar
danno@chromium.org committed
539
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
540 541 542
    header->magic = 0xFEEDFACEu;
    header->cputype = 7;  // i386
    header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
543
#elif V8_TARGET_ARCH_X64
544 545 546 547 548 549 550 551 552 553 554 555 556
    header->magic = 0xFEEDFACFu;
    header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
    header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    header->reserved = 0;
#else
#error Unsupported target architecture.
#endif
    header->filetype = 0x1;  // MH_OBJECT
    header->ncmds = 1;
    header->sizeofcmds = 0;
    header->flags = 0;
    return header;
  }
557 558


559 560 561 562 563
  Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
                                                        uintptr_t code_start,
                                                        uintptr_t code_size) {
    Writer::Slot<MachOSegmentCommand> cmd =
        w->CreateSlotHere<MachOSegmentCommand>();
danno@chromium.org's avatar
danno@chromium.org committed
564
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    cmd->cmd = LC_SEGMENT_32;
#else
    cmd->cmd = LC_SEGMENT_64;
#endif
    cmd->vmaddr = code_start;
    cmd->vmsize = code_size;
    cmd->fileoff = 0;
    cmd->filesize = 0;
    cmd->maxprot = 7;
    cmd->initprot = 7;
    cmd->flags = 0;
    cmd->nsects = sections_.length();
    memset(cmd->segname, 0, 16);
    cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
        cmd->nsects;
    return cmd;
  }


  void WriteSections(Writer* w,
                     Writer::Slot<MachOSegmentCommand> cmd,
                     Writer::Slot<MachOHeader> header,
                     uintptr_t load_command_start) {
    Writer::Slot<MachOSection::Header> headers =
        w->CreateSlotsHere<MachOSection::Header>(sections_.length());
    cmd->fileoff = w->position();
    header->sizeofcmds = w->position() - load_command_start;
    for (int section = 0; section < sections_.length(); ++section) {
      sections_[section]->PopulateHeader(headers.at(section));
      sections_[section]->WriteBody(headers.at(section), w);
    }
    cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
  }

599
  Zone* zone_;
600 601 602 603 604 605
  ZoneList<MachOSection*> sections_;
};
#endif  // defined(__MACH_O)


#if defined(__ELF)
606 607
class ELF BASE_EMBEDDED {
 public:
608
  explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
609
    sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
610
    sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
611 612 613 614 615 616 617 618 619 620 621 622
  }

  void Write(Writer* w) {
    WriteHeader(w);
    WriteSectionTable(w);
    WriteSections(w);
  }

  ELFSection* SectionAt(uint32_t index) {
    return sections_[index];
  }

623 624
  uint32_t AddSection(ELFSection* section) {
    sections_.Add(section, zone_);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    section->set_index(sections_.length() - 1);
    return sections_.length() - 1;
  }

 private:
  struct ELFHeader {
    uint8_t ident[16];
    uint16_t type;
    uint16_t machine;
    uint32_t version;
    uintptr_t entry;
    uintptr_t pht_offset;
    uintptr_t sht_offset;
    uint32_t flags;
    uint16_t header_size;
    uint16_t pht_entry_size;
    uint16_t pht_entry_num;
    uint16_t sht_entry_size;
    uint16_t sht_entry_num;
    uint16_t sht_strtab_index;
  };


  void WriteHeader(Writer* w) {
649
    DCHECK(w->position() == 0);
650
    Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
651 652
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
     (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
653 654
    const uint8_t ident[16] =
        { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
655
#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT
656
    const uint8_t ident[16] =
657
        { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
658 659 660
#else
#error Unsupported target architecture.
#endif
661
    memcpy(header->ident, ident, 16);
662
    header->type = 1;
danno@chromium.org's avatar
danno@chromium.org committed
663
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
664
    header->machine = 3;
665
#elif V8_TARGET_ARCH_X64
666 667 668 669
    // Processor identification value for x64 is 62 as defined in
    //    System V ABI, AMD64 Supplement
    //    http://www.x86-64.org/documentation/abi.pdf
    header->machine = 62;
670
#elif V8_TARGET_ARCH_ARM
671 672 673
    // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
    // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
    header->machine = 40;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
#else
#error Unsupported target architecture.
#endif
    header->version = 1;
    header->entry = 0;
    header->pht_offset = 0;
    header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
    header->flags = 0;
    header->header_size = sizeof(ELFHeader);
    header->pht_entry_size = 0;
    header->pht_entry_num = 0;
    header->sht_entry_size = sizeof(ELFSection::Header);
    header->sht_entry_num = sections_.length();
    header->sht_strtab_index = 1;
  }

  void WriteSectionTable(Writer* w) {
    // Section headers table immediately follows file header.
692
    DCHECK(w->position() == sizeof(ELFHeader));
693 694 695 696 697

    Writer::Slot<ELFSection::Header> headers =
        w->CreateSlotsHere<ELFSection::Header>(sections_.length());

    // String table for section table is the first section.
698
    ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    strtab->AttachWriter(w);
    for (int i = 0, length = sections_.length();
         i < length;
         i++) {
      sections_[i]->PopulateHeader(headers.at(i), strtab);
    }
    strtab->DetachWriter();
  }

  int SectionHeaderPosition(uint32_t section_index) {
    return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
  }

  void WriteSections(Writer* w) {
    Writer::Slot<ELFSection::Header> headers =
        w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));

    for (int i = 0, length = sections_.length();
         i < length;
         i++) {
      sections_[i]->WriteBody(headers.at(i), w);
    }
  }

723
  Zone* zone_;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
  ZoneList<ELFSection*> sections_;
};


class ELFSymbol BASE_EMBEDDED {
 public:
  enum Type {
    TYPE_NOTYPE = 0,
    TYPE_OBJECT = 1,
    TYPE_FUNC = 2,
    TYPE_SECTION = 3,
    TYPE_FILE = 4,
    TYPE_LOPROC = 13,
    TYPE_HIPROC = 15
  };

  enum Binding {
    BIND_LOCAL = 0,
    BIND_GLOBAL = 1,
    BIND_WEAK = 2,
    BIND_LOPROC = 13,
    BIND_HIPROC = 15
  };

  ELFSymbol(const char* name,
            uintptr_t value,
            uintptr_t size,
            Binding binding,
            Type type,
            uint16_t section)
      : name(name),
        value(value),
        size(size),
        info((binding << 4) | type),
        other(0),
        section(section) {
  }

  Binding binding() const {
    return static_cast<Binding>(info >> 4);
  }
765 766
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
     (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  struct SerializedLayout {
    SerializedLayout(uint32_t name,
                     uintptr_t value,
                     uintptr_t size,
                     Binding binding,
                     Type type,
                     uint16_t section)
        : name(name),
          value(value),
          size(size),
          info((binding << 4) | type),
          other(0),
          section(section) {
    }

    uint32_t name;
    uintptr_t value;
    uintptr_t size;
    uint8_t info;
    uint8_t other;
    uint16_t section;
  };
789
#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
  struct SerializedLayout {
    SerializedLayout(uint32_t name,
                     uintptr_t value,
                     uintptr_t size,
                     Binding binding,
                     Type type,
                     uint16_t section)
        : name(name),
          info((binding << 4) | type),
          other(0),
          section(section),
          value(value),
          size(size) {
    }

    uint32_t name;
    uint8_t info;
    uint8_t other;
    uint16_t section;
    uintptr_t value;
    uintptr_t size;
  };
#endif

814
  void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
815
    // Convert symbol names from strings to indexes in the string table.
816
    s->name = static_cast<uint32_t>(t->Add(name));
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    s->value = value;
    s->size = size;
    s->info = info;
    s->other = other;
    s->section = section;
  }

 private:
  const char* name;
  uintptr_t value;
  uintptr_t size;
  uint8_t info;
  uint8_t other;
  uint16_t section;
};


class ELFSymbolTable : public ELFSection {
 public:
836
  ELFSymbolTable(const char* name, Zone* zone)
837
      : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
838 839
        locals_(1, zone),
        globals_(1, zone) {
840 841 842 843 844 845 846 847 848 849 850 851 852
  }

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    w->Align(header->alignment);
    int total_symbols = locals_.length() + globals_.length() + 1;
    header->offset = w->position();

    Writer::Slot<ELFSymbol::SerializedLayout> symbols =
        w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);

    header->size = w->position() - header->offset;

    // String table for this symbol table should follow it in the section table.
853 854
    ELFStringTable* strtab =
        static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
855 856 857 858 859 860 861 862 863 864 865 866
    strtab->AttachWriter(w);
    symbols.at(0).set(ELFSymbol::SerializedLayout(0,
                                                  0,
                                                  0,
                                                  ELFSymbol::BIND_LOCAL,
                                                  ELFSymbol::TYPE_NOTYPE,
                                                  0));
    WriteSymbolsList(&locals_, symbols.at(1), strtab);
    WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
    strtab->DetachWriter();
  }

867
  void Add(const ELFSymbol& symbol, Zone* zone) {
868
    if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
869
      locals_.Add(symbol, zone);
870
    } else {
871
      globals_.Add(symbol, zone);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
    }
  }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    ELFSection::PopulateHeader(header);
    // We are assuming that string table will follow symbol table.
    header->link = index() + 1;
    header->info = locals_.length() + 1;
    header->entry_size = sizeof(ELFSymbol::SerializedLayout);
  }

 private:
  void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
                        Writer::Slot<ELFSymbol::SerializedLayout> dst,
887
                        ELFStringTable* strtab) {
888 889 890 891 892 893 894 895 896 897
    for (int i = 0, len = src->length();
         i < len;
         i++) {
      src->at(i).Write(dst.at(i), strtab);
    }
  }

  ZoneList<ELFSymbol> locals_;
  ZoneList<ELFSymbol> globals_;
};
898
#endif  // defined(__ELF)
899 900


901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
class LineInfo : public Malloced {
 public:
  LineInfo() : pc_info_(10) {}

  void SetPosition(intptr_t pc, int pos, bool is_statement) {
    AddPCInfo(PCInfo(pc, pos, is_statement));
  }

  struct PCInfo {
    PCInfo(intptr_t pc, int pos, bool is_statement)
        : pc_(pc), pos_(pos), is_statement_(is_statement) {}

    intptr_t pc_;
    int pos_;
    bool is_statement_;
  };

  List<PCInfo>* pc_info() { return &pc_info_; }

 private:
  void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }

  List<PCInfo> pc_info_;
};


927 928
class CodeDescription BASE_EMBEDDED {
 public:
929
#if V8_TARGET_ARCH_X64
930 931 932 933 934 935 936 937
  enum StackState {
    POST_RBP_PUSH,
    POST_RBP_SET,
    POST_RBP_POP,
    STACK_STATE_MAX
  };
#endif

938 939 940
  CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
                  LineInfo* lineinfo)
      : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
941

942
  const char* name() const {
943 944 945
    return name_;
  }

946
  LineInfo* lineinfo() const { return lineinfo_; }
947

948 949 950
  bool is_function() const {
    Code::Kind kind = code_->kind();
    return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION;
951 952
  }

953
  bool has_scope_info() const { return shared_info_ != NULL; }
954

955 956 957
  ScopeInfo* scope_info() const {
    DCHECK(has_scope_info());
    return shared_info_->scope_info();
958 959
  }

960 961
  uintptr_t CodeStart() const {
    return reinterpret_cast<uintptr_t>(code_->instruction_start());
962 963
  }

964 965
  uintptr_t CodeEnd() const {
    return reinterpret_cast<uintptr_t>(code_->instruction_end());
966 967
  }

968 969 970 971
  uintptr_t CodeSize() const {
    return CodeEnd() - CodeStart();
  }

972 973 974 975 976 977
  bool has_script() {
    return shared_info_ != NULL && shared_info_->script()->IsScript();
  }

  Script* script() { return Script::cast(shared_info_->script()); }

978
  bool IsLineInfoAvailable() {
979 980 981
    return has_script() && script()->source()->IsString() &&
           script()->HasValidSource() && script()->name()->IsString() &&
           lineinfo_ != NULL;
982 983
  }

984
#if V8_TARGET_ARCH_X64
985
  uintptr_t GetStackStateStartAddress(StackState state) const {
986
    DCHECK(state < STACK_STATE_MAX);
987 988
    return stack_state_start_addresses_[state];
  }
989

990
  void SetStackStateStartAddress(StackState state, uintptr_t addr) {
991
    DCHECK(state < STACK_STATE_MAX);
992 993 994 995
    stack_state_start_addresses_[state] = addr;
  }
#endif

996
  SmartArrayPointer<char> GetFilename() {
997
    return String::cast(script()->name())->ToCString();
998 999
  }

1000
  int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; }
1001

1002

1003 1004 1005
 private:
  const char* name_;
  Code* code_;
1006
  SharedFunctionInfo* shared_info_;
1007
  LineInfo* lineinfo_;
1008
#if V8_TARGET_ARCH_X64
1009 1010
  uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
#endif
1011 1012
};

1013
#if defined(__ELF)
1014
static void CreateSymbolsTable(CodeDescription* desc,
1015
                               Zone* zone,
1016 1017
                               ELF* elf,
                               int text_section_index) {
1018
  ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
1019
  ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
1020 1021

  // Symbol table should be followed by the linked string table.
1022 1023
  elf->AddSection(symtab);
  elf->AddSection(strtab);
1024 1025 1026 1027 1028 1029

  symtab->Add(ELFSymbol("V8 Code",
                        0,
                        0,
                        ELFSymbol::BIND_LOCAL,
                        ELFSymbol::TYPE_FILE,
1030 1031
                        ELFSection::INDEX_ABSOLUTE),
              zone);
1032

1033
  symtab->Add(ELFSymbol(desc->name(),
1034
                        0,
1035
                        desc->CodeSize(),
1036 1037
                        ELFSymbol::BIND_GLOBAL,
                        ELFSymbol::TYPE_FUNC,
1038 1039
                        text_section_index),
              zone);
1040
}
1041
#endif  // defined(__ELF)
1042 1043


1044
class DebugInfoSection : public DebugSection {
1045 1046
 public:
  explicit DebugInfoSection(CodeDescription* desc)
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
#if defined(__ELF)
      : ELFSection(".debug_info", TYPE_PROGBITS, 1),
#else
      : MachOSection("__debug_info",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
        desc_(desc) { }

  // DWARF2 standard
  enum DWARF2LocationOp {
    DW_OP_reg0 = 0x50,
    DW_OP_reg1 = 0x51,
    DW_OP_reg2 = 0x52,
    DW_OP_reg3 = 0x53,
    DW_OP_reg4 = 0x54,
    DW_OP_reg5 = 0x55,
    DW_OP_reg6 = 0x56,
    DW_OP_reg7 = 0x57,
    DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
  };

  enum DWARF2Encoding {
    DW_ATE_ADDRESS = 0x1,
    DW_ATE_SIGNED = 0x5
  };
1074

1075
  bool WriteBodyInternal(Writer* w) {
1076
    uintptr_t cu_start = w->position();
1077 1078 1079 1080 1081 1082 1083
    Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
    uintptr_t start = w->position();
    w->Write<uint16_t>(2);  // DWARF version.
    w->Write<uint32_t>(0);  // Abbreviation table offset.
    w->Write<uint8_t>(sizeof(intptr_t));

    w->WriteULEB128(1);  // Abbreviation code.
1084
    w->WriteString(desc_->GetFilename().get());
1085 1086
    w->Write<intptr_t>(desc_->CodeStart());
    w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1087
    w->Write<uint32_t>(0);
1088 1089 1090 1091 1092 1093

    uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
    w->WriteULEB128(3);
    w->Write<uint8_t>(kPointerSize);
    w->WriteString("v8value");

1094 1095
    if (desc_->has_scope_info()) {
      ScopeInfo* scope = desc_->scope_info();
1096 1097 1098 1099 1100 1101
      w->WriteULEB128(2);
      w->WriteString(desc_->name());
      w->Write<intptr_t>(desc_->CodeStart());
      w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
      Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
      uintptr_t fb_block_start = w->position();
danno@chromium.org's avatar
danno@chromium.org committed
1102
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
1103
      w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
1104
#elif V8_TARGET_ARCH_X64
1105
      w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
1106
#elif V8_TARGET_ARCH_ARM
1107
      UNIMPLEMENTED();
1108
#elif V8_TARGET_ARCH_MIPS
1109
      UNIMPLEMENTED();
1110 1111
#elif V8_TARGET_ARCH_MIPS64
      UNIMPLEMENTED();
1112 1113 1114 1115 1116
#else
#error Unsupported target architecture.
#endif
      fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));

1117 1118
      int params = scope->ParameterCount();
      int slots = scope->StackLocalCount();
1119
      int context_slots = scope->ContextLocalCount();
1120 1121
      // The real slot ID is internal_slots + context_slot_id.
      int internal_slots = Context::MIN_CONTEXT_SLOTS;
1122
      int locals = scope->StackLocalCount();
1123 1124 1125 1126 1127
      int current_abbreviation = 4;

      for (int param = 0; param < params; ++param) {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString(
1128
            scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get());
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(
          JavaScriptFrameConstants::kLastParameterOffset +
              kPointerSize * (params - param - 1));
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }

      EmbeddedVector<char, 256> buffer;
      StringBuilder builder(buffer.start(), buffer.length());

      for (int slot = 0; slot < slots; ++slot) {
        w->WriteULEB128(current_abbreviation++);
        builder.Reset();
        builder.AddFormatted("slot%d", slot);
        w->WriteString(builder.Finalize());
      }

      // See contexts.h for more information.
1150 1151 1152 1153 1154
      DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
      DCHECK(Context::CLOSURE_INDEX == 0);
      DCHECK(Context::PREVIOUS_INDEX == 1);
      DCHECK(Context::EXTENSION_INDEX == 2);
      DCHECK(Context::GLOBAL_OBJECT_INDEX == 3);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".closure");
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".previous");
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".extension");
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".global");

      for (int context_slot = 0;
           context_slot < context_slots;
           ++context_slot) {
        w->WriteULEB128(current_abbreviation++);
        builder.Reset();
        builder.AddFormatted("context_slot%d", context_slot + internal_slots);
        w->WriteString(builder.Finalize());
      }

      for (int local = 0; local < locals; ++local) {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString(
1176
            scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get());
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(
          JavaScriptFrameConstants::kLocal0Offset -
              kPointerSize * local);
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }

      {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString("__function");
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }

      {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString("__context");
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(StandardFrameConstants::kContextOffset);
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }
1208 1209

      w->WriteULEB128(0);  // Terminate the sub program.
1210 1211
    }

1212
    w->WriteULEB128(0);  // Terminate the compile unit.
1213 1214 1215 1216 1217 1218 1219 1220 1221
    size.set(static_cast<uint32_t>(w->position() - start));
    return true;
  }

 private:
  CodeDescription* desc_;
};


1222
class DebugAbbrevSection : public DebugSection {
1223
 public:
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
  explicit DebugAbbrevSection(CodeDescription* desc)
#ifdef __ELF
      : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
#else
      : MachOSection("__debug_abbrev",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
        desc_(desc) { }
1234 1235 1236

  // DWARF2 standard, figure 14.
  enum DWARF2Tags {
1237 1238 1239 1240 1241 1242 1243
    DW_TAG_FORMAL_PARAMETER = 0x05,
    DW_TAG_POINTER_TYPE = 0xf,
    DW_TAG_COMPILE_UNIT = 0x11,
    DW_TAG_STRUCTURE_TYPE = 0x13,
    DW_TAG_BASE_TYPE = 0x24,
    DW_TAG_SUBPROGRAM = 0x2e,
    DW_TAG_VARIABLE = 0x34
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
  };

  // DWARF2 standard, figure 16.
  enum DWARF2ChildrenDetermination {
    DW_CHILDREN_NO = 0,
    DW_CHILDREN_YES = 1
  };

  // DWARF standard, figure 17.
  enum DWARF2Attribute {
1254
    DW_AT_LOCATION = 0x2,
1255
    DW_AT_NAME = 0x3,
1256
    DW_AT_BYTE_SIZE = 0xb,
1257 1258
    DW_AT_STMT_LIST = 0x10,
    DW_AT_LOW_PC = 0x11,
1259 1260 1261 1262
    DW_AT_HIGH_PC = 0x12,
    DW_AT_ENCODING = 0x3e,
    DW_AT_FRAME_BASE = 0x40,
    DW_AT_TYPE = 0x49
1263 1264 1265 1266 1267
  };

  // DWARF2 standard, figure 19.
  enum DWARF2AttributeForm {
    DW_FORM_ADDR = 0x1,
1268
    DW_FORM_BLOCK4 = 0x4,
1269
    DW_FORM_STRING = 0x8,
1270 1271 1272 1273 1274
    DW_FORM_DATA4 = 0x6,
    DW_FORM_BLOCK = 0x9,
    DW_FORM_DATA1 = 0xb,
    DW_FORM_FLAG = 0xc,
    DW_FORM_REF4 = 0x13
1275 1276
  };

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
  void WriteVariableAbbreviation(Writer* w,
                                 int abbreviation_code,
                                 bool has_value,
                                 bool is_parameter) {
    w->WriteULEB128(abbreviation_code);
    w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
    w->Write<uint8_t>(DW_CHILDREN_NO);
    w->WriteULEB128(DW_AT_NAME);
    w->WriteULEB128(DW_FORM_STRING);
    if (has_value) {
      w->WriteULEB128(DW_AT_TYPE);
      w->WriteULEB128(DW_FORM_REF4);
      w->WriteULEB128(DW_AT_LOCATION);
      w->WriteULEB128(DW_FORM_BLOCK4);
    }
    w->WriteULEB128(0);
    w->WriteULEB128(0);
  }

1296
  bool WriteBodyInternal(Writer* w) {
1297
    int current_abbreviation = 1;
1298
    bool extra_info = desc_->has_scope_info();
1299
    DCHECK(desc_->IsLineInfoAvailable());
1300
    w->WriteULEB128(current_abbreviation++);
1301
    w->WriteULEB128(DW_TAG_COMPILE_UNIT);
1302
    w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    w->WriteULEB128(DW_AT_NAME);
    w->WriteULEB128(DW_FORM_STRING);
    w->WriteULEB128(DW_AT_LOW_PC);
    w->WriteULEB128(DW_FORM_ADDR);
    w->WriteULEB128(DW_AT_HIGH_PC);
    w->WriteULEB128(DW_FORM_ADDR);
    w->WriteULEB128(DW_AT_STMT_LIST);
    w->WriteULEB128(DW_FORM_DATA4);
    w->WriteULEB128(0);
    w->WriteULEB128(0);
1313 1314

    if (extra_info) {
1315 1316 1317
      ScopeInfo* scope = desc_->scope_info();
      int params = scope->ParameterCount();
      int slots = scope->StackLocalCount();
1318
      int context_slots = scope->ContextLocalCount();
1319 1320
      // The real slot ID is internal_slots + context_slot_id.
      int internal_slots = Context::MIN_CONTEXT_SLOTS;
1321
      int locals = scope->StackLocalCount();
1322 1323
      // Total children is params + slots + context_slots + internal_slots +
      // locals + 2 (__function and __context).
1324 1325 1326 1327 1328

      // The extra duplication below seems to be necessary to keep
      // gdb from getting upset on OSX.
      w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
      w->WriteULEB128(DW_TAG_SUBPROGRAM);
1329
      w->Write<uint8_t>(DW_CHILDREN_YES);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
      w->WriteULEB128(DW_AT_NAME);
      w->WriteULEB128(DW_FORM_STRING);
      w->WriteULEB128(DW_AT_LOW_PC);
      w->WriteULEB128(DW_FORM_ADDR);
      w->WriteULEB128(DW_AT_HIGH_PC);
      w->WriteULEB128(DW_FORM_ADDR);
      w->WriteULEB128(DW_AT_FRAME_BASE);
      w->WriteULEB128(DW_FORM_BLOCK4);
      w->WriteULEB128(0);
      w->WriteULEB128(0);

      w->WriteULEB128(current_abbreviation++);
      w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
      w->Write<uint8_t>(DW_CHILDREN_NO);
      w->WriteULEB128(DW_AT_BYTE_SIZE);
      w->WriteULEB128(DW_FORM_DATA1);
      w->WriteULEB128(DW_AT_NAME);
      w->WriteULEB128(DW_FORM_STRING);
      w->WriteULEB128(0);
      w->WriteULEB128(0);

      for (int param = 0; param < params; ++param) {
        WriteVariableAbbreviation(w, current_abbreviation++, true, true);
      }

      for (int slot = 0; slot < slots; ++slot) {
        WriteVariableAbbreviation(w, current_abbreviation++, false, false);
      }

      for (int internal_slot = 0;
           internal_slot < internal_slots;
           ++internal_slot) {
        WriteVariableAbbreviation(w, current_abbreviation++, false, false);
      }

      for (int context_slot = 0;
           context_slot < context_slots;
           ++context_slot) {
        WriteVariableAbbreviation(w, current_abbreviation++, false, false);
      }

      for (int local = 0; local < locals; ++local) {
        WriteVariableAbbreviation(w, current_abbreviation++, true, false);
      }

      // The function.
      WriteVariableAbbreviation(w, current_abbreviation++, true, false);

      // The context.
      WriteVariableAbbreviation(w, current_abbreviation++, true, false);

1381
      w->WriteULEB128(0);  // Terminate the sibling list.
1382 1383 1384
    }

    w->WriteULEB128(0);  // Terminate the table.
1385 1386
    return true;
  }
1387 1388 1389

 private:
  CodeDescription* desc_;
1390 1391 1392
};


1393
class DebugLineSection : public DebugSection {
1394 1395
 public:
  explicit DebugLineSection(CodeDescription* desc)
1396
#ifdef __ELF
1397
      : ELFSection(".debug_line", TYPE_PROGBITS, 1),
1398 1399 1400 1401 1402 1403
#else
      : MachOSection("__debug_line",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        desc_(desc) { }

  // DWARF2 standard, figure 34.
  enum DWARF2Opcodes {
    DW_LNS_COPY = 1,
    DW_LNS_ADVANCE_PC = 2,
    DW_LNS_ADVANCE_LINE = 3,
    DW_LNS_SET_FILE = 4,
    DW_LNS_SET_COLUMN = 5,
    DW_LNS_NEGATE_STMT = 6
  };

  // DWARF2 standard, figure 35.
  enum DWARF2ExtendedOpcode {
    DW_LNE_END_SEQUENCE = 1,
    DW_LNE_SET_ADDRESS = 2,
    DW_LNE_DEFINE_FILE = 3
  };

1423
  bool WriteBodyInternal(Writer* w) {
1424 1425 1426 1427
    // Write prologue.
    Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
    uintptr_t start = w->position();

1428 1429 1430 1431 1432 1433
    // Used for special opcodes
    const int8_t line_base = 1;
    const uint8_t line_range = 7;
    const int8_t max_line_incr = (line_base + line_range - 1);
    const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;

1434 1435 1436 1437 1438
    w->Write<uint16_t>(2);  // Field version.
    Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
    uintptr_t prologue_start = w->position();
    w->Write<uint8_t>(1);  // Field minimum_instruction_length.
    w->Write<uint8_t>(1);  // Field default_is_stmt.
1439 1440 1441
    w->Write<int8_t>(line_base);  // Field line_base.
    w->Write<uint8_t>(line_range);  // Field line_range.
    w->Write<uint8_t>(opcode_base);  // Field opcode_base.
1442 1443 1444 1445 1446 1447 1448
    w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
    w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
    w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
    w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
    w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
    w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
    w->Write<uint8_t>(0);  // Empty include_directories sequence.
1449
    w->WriteString(desc_->GetFilename().get());  // File name.
1450 1451 1452 1453 1454 1455 1456
    w->WriteULEB128(0);  // Current directory.
    w->WriteULEB128(0);  // Unknown modification time.
    w->WriteULEB128(0);  // Unknown file size.
    w->Write<uint8_t>(0);
    prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));

    WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
1457
    w->Write<intptr_t>(desc_->CodeStart());
1458
    w->Write<uint8_t>(DW_LNS_COPY);
1459 1460 1461 1462 1463

    intptr_t pc = 0;
    intptr_t line = 1;
    bool is_statement = true;

1464
    List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
1465
    pc_info->Sort(&ComparePCInfo);
1466 1467 1468

    int pc_info_length = pc_info->length();
    for (int i = 0; i < pc_info_length; i++) {
1469
      LineInfo::PCInfo* info = &pc_info->at(i);
1470
      DCHECK(info->pc_ >= pc);
1471 1472 1473 1474 1475 1476

      // Reduce bloating in the debug line table by removing duplicate line
      // entries (per DWARF2 standard).
      intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
      if (new_line == line) {
        continue;
1477
      }
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

      // Mark statement boundaries.  For a better debugging experience, mark
      // the last pc address in the function as a statement (e.g. "}"), so that
      // a user can see the result of the last line executed in the function,
      // should control reach the end.
      if ((i+1) == pc_info_length) {
        if (!is_statement) {
          w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
        }
      } else if (is_statement != info->is_statement_) {
1488 1489 1490
        w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
        is_statement = !is_statement;
      }
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

      // Generate special opcodes, if possible.  This results in more compact
      // debug line tables.  See the DWARF 2.0 standard to learn more about
      // special opcodes.
      uintptr_t pc_diff = info->pc_ - pc;
      intptr_t line_diff = new_line - line;

      // Compute special opcode (see DWARF 2.0 standard)
      intptr_t special_opcode = (line_diff - line_base) +
                                (line_range * pc_diff) + opcode_base;

      // If special_opcode is less than or equal to 255, it can be used as a
      // special opcode.  If line_diff is larger than the max line increment
      // allowed for a special opcode, or if line_diff is less than the minimum
      // line that can be added to the line register (i.e. line_base), then
      // special_opcode can't be used.
      if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
          (line_diff <= max_line_incr) && (line_diff >= line_base)) {
        w->Write<uint8_t>(special_opcode);
      } else {
        w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
        w->WriteSLEB128(pc_diff);
        w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
        w->WriteSLEB128(line_diff);
1515 1516
        w->Write<uint8_t>(DW_LNS_COPY);
      }
1517 1518 1519 1520

      // Increment the pc and line operands.
      pc += pc_diff;
      line += line_diff;
1521
    }
1522 1523 1524 1525
    // Advance the pc to the end of the routine, since the end sequence opcode
    // requires this.
    w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
    w->WriteSLEB128(desc_->CodeSize() - pc);
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
    total_length.set(static_cast<uint32_t>(w->position() - start));
    return true;
  }

 private:
  void WriteExtendedOpcode(Writer* w,
                           DWARF2ExtendedOpcode op,
                           size_t operands_size) {
    w->Write<uint8_t>(0);
    w->WriteULEB128(operands_size + 1);
    w->Write<uint8_t>(op);
  }

1540 1541
  static int ComparePCInfo(const LineInfo::PCInfo* a,
                           const LineInfo::PCInfo* b) {
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    if (a->pc_ == b->pc_) {
      if (a->is_statement_ != b->is_statement_) {
        return b->is_statement_ ? +1 : -1;
      }
      return 0;
    } else if (a->pc_ > b->pc_) {
      return +1;
    } else {
      return -1;
    }
  }

  CodeDescription* desc_;
};


1558
#if V8_TARGET_ARCH_X64
1559

1560
class UnwindInfoSection : public DebugSection {
1561
 public:
1562
  explicit UnwindInfoSection(CodeDescription* desc);
1563
  virtual bool WriteBodyInternal(Writer* w);
1564

1565 1566
  int WriteCIE(Writer* w);
  void WriteFDE(Writer* w, int);
1567

1568 1569 1570 1571
  void WriteFDEStateOnEntry(Writer* w);
  void WriteFDEStateAfterRBPPush(Writer* w);
  void WriteFDEStateAfterRBPSet(Writer* w);
  void WriteFDEStateAfterRBPPop(Writer* w);
1572

1573
  void WriteLength(Writer* w,
1574 1575 1576 1577
                   Writer::Slot<uint32_t>* length_slot,
                   int initial_position);

 private:
1578
  CodeDescription* desc_;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

  // DWARF3 Specification, Table 7.23
  enum CFIInstructions {
    DW_CFA_ADVANCE_LOC = 0x40,
    DW_CFA_OFFSET = 0x80,
    DW_CFA_RESTORE = 0xC0,
    DW_CFA_NOP = 0x00,
    DW_CFA_SET_LOC = 0x01,
    DW_CFA_ADVANCE_LOC1 = 0x02,
    DW_CFA_ADVANCE_LOC2 = 0x03,
    DW_CFA_ADVANCE_LOC4 = 0x04,
    DW_CFA_OFFSET_EXTENDED = 0x05,
    DW_CFA_RESTORE_EXTENDED = 0x06,
    DW_CFA_UNDEFINED = 0x07,
    DW_CFA_SAME_VALUE = 0x08,
    DW_CFA_REGISTER = 0x09,
    DW_CFA_REMEMBER_STATE = 0x0A,
    DW_CFA_RESTORE_STATE = 0x0B,
    DW_CFA_DEF_CFA = 0x0C,
    DW_CFA_DEF_CFA_REGISTER = 0x0D,
    DW_CFA_DEF_CFA_OFFSET = 0x0E,

    DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
    DW_CFA_EXPRESSION = 0x10,
    DW_CFA_OFFSET_EXTENDED_SF = 0x11,
    DW_CFA_DEF_CFA_SF = 0x12,
    DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
    DW_CFA_VAL_OFFSET = 0x14,
    DW_CFA_VAL_OFFSET_SF = 0x15,
    DW_CFA_VAL_EXPRESSION = 0x16
  };

  // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
  enum RegisterMapping {
    // Only the relevant ones have been added to reduce clutter.
    AMD64_RBP = 6,
    AMD64_RSP = 7,
    AMD64_RA = 16
  };

  enum CFIConstants {
    CIE_ID = 0,
    CIE_VERSION = 1,
    CODE_ALIGN_FACTOR = 1,
    DATA_ALIGN_FACTOR = 1,
    RETURN_ADDRESS_REGISTER = AMD64_RA
  };
};


1629
void UnwindInfoSection::WriteLength(Writer* w,
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
                                    Writer::Slot<uint32_t>* length_slot,
                                    int initial_position) {
  uint32_t align = (w->position() - initial_position) % kPointerSize;

  if (align != 0) {
    for (uint32_t i = 0; i < (kPointerSize - align); i++) {
      w->Write<uint8_t>(DW_CFA_NOP);
    }
  }

1640
  DCHECK((w->position() - initial_position) % kPointerSize == 0);
1641
  length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
1642 1643 1644
}


1645
UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
1646 1647 1648 1649 1650 1651 1652
#ifdef __ELF
    : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
#else
    : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
                   MachOSection::S_REGULAR),
#endif
      desc_(desc) { }
1653

1654
int UnwindInfoSection::WriteCIE(Writer* w) {
1655
  Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1656
  uint32_t cie_position = static_cast<uint32_t>(w->position());
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

  // Write out the CIE header. Currently no 'common instructions' are
  // emitted onto the CIE; every FDE has its own set of instructions.

  w->Write<uint32_t>(CIE_ID);
  w->Write<uint8_t>(CIE_VERSION);
  w->Write<uint8_t>(0);  // Null augmentation string.
  w->WriteSLEB128(CODE_ALIGN_FACTOR);
  w->WriteSLEB128(DATA_ALIGN_FACTOR);
  w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);

  WriteLength(w, &cie_length_slot, cie_position);

  return cie_position;
}


1674
void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
1675 1676
  // The only FDE for this function. The CFA is the current RBP.
  Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1677
  int fde_position = static_cast<uint32_t>(w->position());
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
  w->Write<int32_t>(fde_position - cie_position + 4);

  w->Write<uintptr_t>(desc_->CodeStart());
  w->Write<uintptr_t>(desc_->CodeSize());

  WriteFDEStateOnEntry(w);
  WriteFDEStateAfterRBPPush(w);
  WriteFDEStateAfterRBPSet(w);
  WriteFDEStateAfterRBPPop(w);

  WriteLength(w, &fde_length_slot, fde_position);
}


1692
void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
  // The first state, just after the control has been transferred to the the
  // function.

  // RBP for this function will be the value of RSP after pushing the RBP
  // for the previous function. The previous RBP has not been pushed yet.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
  w->WriteULEB128(AMD64_RSP);
  w->WriteSLEB128(-kPointerSize);

  // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
  // and hence omitted from the next states.
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RA);
  w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);

  // The RBP of the previous function is still in RBP.
  w->Write<uint8_t>(DW_CFA_SAME_VALUE);
  w->WriteULEB128(AMD64_RBP);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
}


1719
void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
  // The second state, just after RBP has been pushed.

  // RBP / CFA for this function is now the current RSP, so just set the
  // offset from the previous rule (from -8) to 0.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
  w->WriteULEB128(0);

  // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
  // in this and the next state, and hence omitted in the next state.
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RBP);
  w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
}


1740
void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
  // The third state, after the RBP has been set.

  // The CFA can now directly be set to RBP.
  w->Write<uint8_t>(DW_CFA_DEF_CFA);
  w->WriteULEB128(AMD64_RBP);
  w->WriteULEB128(0);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
}


1755
void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
  // The fourth (final) state. The RBP has been popped (just before issuing a
  // return).

  // The CFA can is now calculated in the same way as in the first state.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
  w->WriteULEB128(AMD64_RSP);
  w->WriteSLEB128(-kPointerSize);

  // The RBP
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RBP);
  w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(desc_->CodeEnd());
}


1775
bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
1776 1777 1778 1779 1780 1781 1782 1783
  uint32_t cie_position = WriteCIE(w);
  WriteFDE(w, cie_position);
  return true;
}


#endif  // V8_TARGET_ARCH_X64

1784 1785 1786
static void CreateDWARFSections(CodeDescription* desc,
                                Zone* zone,
                                DebugObject* obj) {
1787
  if (desc->IsLineInfoAvailable()) {
1788 1789 1790
    obj->AddSection(new(zone) DebugInfoSection(desc));
    obj->AddSection(new(zone) DebugAbbrevSection(desc));
    obj->AddSection(new(zone) DebugLineSection(desc));
1791
  }
1792
#if V8_TARGET_ARCH_X64
1793
  obj->AddSection(new(zone) UnwindInfoSection(desc));
1794
#endif
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
}


// -------------------------------------------------------------------
// Binary GDB JIT Interface as described in
//   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
extern "C" {
  typedef enum {
    JIT_NOACTION = 0,
    JIT_REGISTER_FN,
    JIT_UNREGISTER_FN
  } JITAction;

  struct JITCodeEntry {
    JITCodeEntry* next_;
    JITCodeEntry* prev_;
    Address symfile_addr_;
    uint64_t symfile_size_;
  };

  struct JITDescriptor {
    uint32_t version_;
    uint32_t action_flag_;
1818 1819
    JITCodeEntry* relevant_entry_;
    JITCodeEntry* first_entry_;
1820 1821 1822 1823 1824 1825
  };

  // GDB will place breakpoint into this function.
  // To prevent GCC from inlining or removing it we place noinline attribute
  // and inline assembler statement inside.
  void __attribute__((noinline)) __jit_debug_register_code() {
1826
    __asm__("");
1827 1828 1829 1830 1831 1832
  }

  // GDB will inspect contents of this descriptor.
  // Static initialization is necessary to prevent GDB from seeing
  // uninitialized descriptor.
  JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1833 1834

#ifdef OBJECT_PRINT
1835
  void __gdb_print_v8_object(Object* object) {
1836 1837
    OFStream os(stdout);
    object->Print(os);
1838
    os << std::flush;
1839 1840
  }
#endif
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
}


static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
                                     uintptr_t symfile_size) {
  JITCodeEntry* entry = static_cast<JITCodeEntry*>(
      malloc(sizeof(JITCodeEntry) + symfile_size));

  entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
  entry->symfile_size_ = symfile_size;
1851
  MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

  entry->prev_ = entry->next_ = NULL;

  return entry;
}


static void DestroyCodeEntry(JITCodeEntry* entry) {
  free(entry);
}


1864
static void RegisterCodeEntry(JITCodeEntry* entry) {
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
  entry->next_ = __jit_debug_descriptor.first_entry_;
  if (entry->next_ != NULL) entry->next_->prev_ = entry;
  __jit_debug_descriptor.first_entry_ =
      __jit_debug_descriptor.relevant_entry_ = entry;

  __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
  __jit_debug_register_code();
}


static void UnregisterCodeEntry(JITCodeEntry* entry) {
  if (entry->prev_ != NULL) {
    entry->prev_->next_ = entry->next_;
  } else {
    __jit_debug_descriptor.first_entry_ = entry->next_;
  }

  if (entry->next_ != NULL) {
    entry->next_->prev_ = entry->prev_;
  }

  __jit_debug_descriptor.relevant_entry_ = entry;
  __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
  __jit_debug_register_code();
}


1892
static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
1893
#ifdef __MACH_O
1894
  Zone zone;
1895
  MachO mach_o(&zone);
1896 1897
  Writer w(&mach_o);

1898 1899 1900
  mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
                                                desc->CodeStart(),
                                                desc->CodeSize()));
1901

1902
  CreateDWARFSections(desc, &zone, &mach_o);
1903

1904 1905
  mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
#else
1906
  Zone zone;
1907
  ELF elf(&zone);
1908 1909 1910
  Writer w(&elf);

  int text_section_index = elf.AddSection(
1911
      new(&zone) FullHeaderELFSection(
1912 1913 1914 1915 1916 1917
          ".text",
          ELFSection::TYPE_NOBITS,
          kCodeAlignment,
          desc->CodeStart(),
          0,
          desc->CodeSize(),
1918
          ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1919

1920
  CreateSymbolsTable(desc, &zone, &elf, text_section_index);
1921

1922
  CreateDWARFSections(desc, &zone, &elf);
1923 1924

  elf.Write(&w);
1925
#endif
1926 1927 1928 1929 1930

  return CreateCodeEntry(w.buffer(), w.position());
}


1931 1932 1933 1934
struct AddressRange {
  Address start;
  Address end;
};
1935

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
struct SplayTreeConfig {
  typedef AddressRange Key;
  typedef JITCodeEntry* Value;
  static const AddressRange kNoKey;
  static Value NoValue() { return NULL; }
  static int Compare(const AddressRange& a, const AddressRange& b) {
    // ptrdiff_t probably doesn't fit in an int.
    if (a.start < b.start) return -1;
    if (a.start == b.start) return 0;
    return 1;
1946
  }
1947
};
1948

1949 1950
const AddressRange SplayTreeConfig::kNoKey = {0, 0};
typedef SplayTree<SplayTreeConfig> CodeMap;
1951

1952 1953 1954 1955
static CodeMap* GetCodeMap() {
  static CodeMap* code_map = NULL;
  if (code_map == NULL) code_map = new CodeMap();
  return code_map;
1956 1957 1958
}


1959 1960 1961 1962
static uint32_t HashCodeAddress(Address addr) {
  static const uintptr_t kGoldenRatio = 2654435761u;
  uintptr_t offset = OffsetFrom(addr);
  return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio);
1963 1964 1965
}


1966 1967 1968 1969
static HashMap* GetLineMap() {
  static HashMap* line_map = NULL;
  if (line_map == NULL) line_map = new HashMap(&HashMap::PointersMatch);
  return line_map;
1970 1971 1972
}


1973 1974
static void PutLineInfo(Address addr, LineInfo* info) {
  HashMap* line_map = GetLineMap();
1975
  HashMap::Entry* e = line_map->LookupOrInsert(addr, HashCodeAddress(addr));
1976 1977
  if (e->value != NULL) delete static_cast<LineInfo*>(e->value);
  e->value = info;
1978 1979 1980
}


1981 1982 1983
static LineInfo* GetLineInfo(Address addr) {
  void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr));
  return static_cast<LineInfo*>(value);
1984 1985
}

1986

1987
static void AddUnwindInfo(CodeDescription* desc) {
1988
#if V8_TARGET_ARCH_X64
1989
  if (desc->is_function()) {
1990
    // To avoid propagating unwinding information through
1991 1992
    // compilation pipeline we use an approximation.
    // For most use cases this should not affect usability.
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    static const int kFramePointerPushOffset = 1;
    static const int kFramePointerSetOffset = 4;
    static const int kFramePointerPopOffset = -3;

    uintptr_t frame_pointer_push_address =
        desc->CodeStart() + kFramePointerPushOffset;

    uintptr_t frame_pointer_set_address =
        desc->CodeStart() + kFramePointerSetOffset;

    uintptr_t frame_pointer_pop_address =
        desc->CodeEnd() + kFramePointerPopOffset;

    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
                                    frame_pointer_push_address);
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
                                    frame_pointer_set_address);
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
                                    frame_pointer_pop_address);
2012
  } else {
2013 2014 2015 2016 2017 2018
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
                                    desc->CodeStart());
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
                                    desc->CodeStart());
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
                                    desc->CodeEnd());
2019
  }
2020
#endif  // V8_TARGET_ARCH_X64
2021 2022 2023
}


2024
static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
2025 2026


2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
// Remove entries from the splay tree that intersect the given address range,
// and deregister them from GDB.
static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
  DCHECK(range.start < range.end);
  CodeMap::Locator cur;
  if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
    // Skip entries that are entirely less than the range of interest.
    while (cur.key().end <= range.start) {
      // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
      // than _or equal to_ the given key, so we have to advance our key to get
      // the next one.
      AddressRange new_key;
      new_key.start = cur.key().end;
      new_key.end = 0;
      if (!map->FindLeastGreaterThan(new_key, &cur)) return;
    }
    // Evict intersecting ranges.
    while (cur.key().start < range.end) {
      AddressRange old_range = cur.key();
      JITCodeEntry* old_entry = cur.value();

      UnregisterCodeEntry(old_entry);
      DestroyCodeEntry(old_entry);

      CHECK(map->Remove(old_range));
      if (!map->FindLeastGreaterThan(old_range, &cur)) return;
    }
  }
}


// Insert the entry into the splay tree and register it with GDB.
static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
                            JITCodeEntry* entry, bool dump_if_enabled,
                            const char* name_hint) {
#if defined(DEBUG) && !V8_OS_WIN
  static int file_num = 0;
  if (FLAG_gdbjit_dump && dump_if_enabled) {
    static const int kMaxFileNameSize = 64;
    char file_name[64];

    SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
             (name_hint != NULL) ? name_hint : "", file_num++);
2070 2071
    WriteBytes(file_name, entry->symfile_addr_,
               static_cast<int>(entry->symfile_size_));
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
  }
#endif

  CodeMap::Locator cur;
  CHECK(map->Insert(range, &cur));
  cur.set_value(entry);

  RegisterCodeEntry(entry);
}


static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
                    LineInfo* lineinfo) {
2085
  DisallowHeapAllocation no_gc;
2086

2087 2088 2089 2090 2091
  CodeMap* code_map = GetCodeMap();
  AddressRange range;
  range.start = code->address();
  range.end = code->address() + code->CodeSize();
  RemoveJITCodeEntries(code_map, range);
2092

2093
  CodeDescription code_desc(name, code, shared, lineinfo);
2094

2095
  if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
2096 2097 2098 2099
    delete lineinfo;
    return;
  }

2100
  AddUnwindInfo(&code_desc);
2101 2102
  Isolate* isolate = code->GetIsolate();
  JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
2103 2104 2105

  delete lineinfo;

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
  const char* name_hint = NULL;
  bool should_dump = false;
  if (FLAG_gdbjit_dump) {
    if (strlen(FLAG_gdbjit_dump_filter) == 0) {
      name_hint = name;
      should_dump = true;
    } else if (name != NULL) {
      name_hint = strstr(name, FLAG_gdbjit_dump_filter);
      should_dump = (name_hint != NULL);
    }
  }
2117
  AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
2118 2119 2120
}


2121
void EventHandler(const v8::JitCodeEvent* event) {
2122
  if (!FLAG_gdbjit) return;
2123
  base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
2124
  switch (event->type) {
2125
    case v8::JitCodeEvent::CODE_ADDED: {
2126 2127 2128
      Address addr = reinterpret_cast<Address>(event->code_start);
      Code* code = Code::GetCodeFromTargetAddress(addr);
      LineInfo* lineinfo = GetLineInfo(addr);
2129 2130 2131
      EmbeddedVector<char, 256> buffer;
      StringBuilder builder(buffer.start(), buffer.length());
      builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
2132 2133 2134 2135
      // It's called UnboundScript in the API but it's a SharedFunctionInfo.
      SharedFunctionInfo* shared =
          event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script);
      AddCode(builder.Finalize(), code, shared, lineinfo);
2136 2137
      break;
    }
2138
    case v8::JitCodeEvent::CODE_MOVED:
2139 2140
      // Enabling the GDB JIT interface should disable code compaction.
      UNREACHABLE();
2141
      break;
2142 2143 2144
    case v8::JitCodeEvent::CODE_REMOVED:
      // Do nothing.  Instead, adding code causes eviction of any entry whose
      // address range intersects the address range of the added code.
2145
      break;
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
    case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
      LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
      line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
                             static_cast<int>(event->line_info.pos),
                             event->line_info.position_type ==
                                 v8::JitCodeEvent::STATEMENT_POSITION);
      break;
    }
    case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
      v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
      mutable_event->user_data = new LineInfo();
      break;
    }
    case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
      LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2161
      PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
2162 2163 2164 2165
      break;
    }
  }
}
2166
#endif
2167 2168 2169
}  // namespace GDBJITInterface
}  // namespace internal
}  // namespace v8