loop-peeling.cc 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/loop-peeling.h"
#include "src/compiler/node.h"
#include "src/compiler/node-marker.h"
10
#include "src/compiler/node-properties.h"
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#include "src/zone.h"

// Loop peeling is an optimization that copies the body of a loop, creating
// a new copy of the body called the "peeled iteration" that represents the
// first iteration. Beginning with a loop as follows:

//             E
//             |                 A
//             |                 |                     (backedges)
//             | +---------------|---------------------------------+
//             | | +-------------|-------------------------------+ |
//             | | |             | +--------+                    | |
//             | | |             | | +----+ |                    | |
//             | | |             | | |    | |                    | |
//           ( Loop )<-------- ( phiA )   | |                    | |
//              |                 |       | |                    | |
//      ((======P=================U=======|=|=====))             | |
//      ((                                | |     ))             | |
//      ((        X <---------------------+ |     ))             | |
//      ((                                  |     ))             | |
//      ((     body                         |     ))             | |
//      ((                                  |     ))             | |
//      ((        Y <-----------------------+     ))             | |
//      ((                                        ))             | |
//      ((===K====L====M==========================))             | |
//           |    |    |                                         | |
//           |    |    +-----------------------------------------+ |
//           |    +------------------------------------------------+
//           |
//          exit

// The body of the loop is duplicated so that all nodes considered "inside"
// the loop (e.g. {P, U, X, Y, K, L, M}) have a corresponding copies in the
// peeled iteration (e.g. {P', U', X', Y', K', L', M'}). What were considered
// backedges of the loop correspond to edges from the peeled iteration to
// the main loop body, with multiple backedges requiring a merge.

// Similarly, any exits from the loop body need to be merged with "exits"
// from the peeled iteration, resulting in the graph as follows:

//             E
//             |                 A
//             |                 |
//      ((=====P'================U'===============))
//      ((                                        ))
//      ((        X'<-------------+               ))
//      ((                        |               ))
//      ((   peeled iteration     |               ))
//      ((                        |               ))
//      ((        Y'<-----------+ |               ))
//      ((                      | |               ))
//      ((===K'===L'====M'======|=|===============))
//           |    |     |       | |
//  +--------+    +-+ +-+       | |
//  |               | |         | |
//  |              Merge <------phi
//  |                |           |
//  |          +-----+           |
//  |          |                 |                     (backedges)
//  |          | +---------------|---------------------------------+
//  |          | | +-------------|-------------------------------+ |
//  |          | | |             | +--------+                    | |
//  |          | | |             | | +----+ |                    | |
//  |          | | |             | | |    | |                    | |
//  |        ( Loop )<-------- ( phiA )   | |                    | |
//  |           |                 |       | |                    | |
//  |   ((======P=================U=======|=|=====))             | |
//  |   ((                                | |     ))             | |
//  |   ((        X <---------------------+ |     ))             | |
//  |   ((                                  |     ))             | |
//  |   ((     body                         |     ))             | |
//  |   ((                                  |     ))             | |
//  |   ((        Y <-----------------------+     ))             | |
//  |   ((                                        ))             | |
//  |   ((===K====L====M==========================))             | |
//  |        |    |    |                                         | |
//  |        |    |    +-----------------------------------------+ |
//  |        |    +------------------------------------------------+
//  |        |
//  |        |
//  +----+ +-+
//       | |
//      Merge
//        |
//      exit

// Note that the boxes ((===)) above are not explicitly represented in the
// graph, but are instead computed by the {LoopFinder}.

namespace v8 {
namespace internal {
namespace compiler {

struct Peeling {
  // Maps a node to its index in the {pairs} vector.
  NodeMarker<size_t> node_map;
  // The vector which contains the mapped nodes.
  NodeVector* pairs;

  Peeling(Graph* graph, Zone* tmp_zone, size_t max, NodeVector* p)
      : node_map(graph, static_cast<uint32_t>(max)), pairs(p) {}

  Node* map(Node* node) {
    if (node_map.Get(node) == 0) return node;
    return pairs->at(node_map.Get(node));
  }

  void Insert(Node* original, Node* copy) {
    node_map.Set(original, 1 + pairs->size());
    pairs->push_back(original);
    pairs->push_back(copy);
  }

  void CopyNodes(Graph* graph, Zone* tmp_zone, Node* dead, NodeRange nodes) {
    NodeVector inputs(tmp_zone);
    // Copy all the nodes first.
    for (Node* node : nodes) {
      inputs.clear();
129 130 131 132 133 134 135 136
      for (Node* input : node->inputs()) {
        inputs.push_back(map(input));
      }
      Node* copy = graph->NewNode(node->op(), node->InputCount(), &inputs[0]);
      if (NodeProperties::IsTyped(node)) {
        NodeProperties::SetType(copy, NodeProperties::GetType(node));
      }
      Insert(node, copy);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    }

    // Fix remaining inputs of the copies.
    for (Node* original : nodes) {
      Node* copy = pairs->at(node_map.Get(original));
      for (int i = 0; i < copy->InputCount(); i++) {
        copy->ReplaceInput(i, map(original->InputAt(i)));
      }
    }
  }

  bool Marked(Node* node) { return node_map.Get(node) > 0; }
};


class PeeledIterationImpl : public PeeledIteration {
 public:
  NodeVector node_pairs_;
  explicit PeeledIterationImpl(Zone* zone) : node_pairs_(zone) {}
};


Node* PeeledIteration::map(Node* node) {
  // TODO(turbofan): we use a simple linear search, since the peeled iteration
  // is really only used in testing.
  PeeledIterationImpl* impl = static_cast<PeeledIterationImpl*>(this);
  for (size_t i = 0; i < impl->node_pairs_.size(); i += 2) {
    if (impl->node_pairs_[i] == node) return impl->node_pairs_[i + 1];
  }
  return node;
}

169
bool LoopPeeler::CanPeel(LoopTree* loop_tree, LoopTree::Loop* loop) {
170 171
  // Look for returns and if projections that are outside the loop but whose
  // control input is inside the loop.
172
  Node* loop_node = loop_tree->GetLoopControl(loop);
173 174 175
  for (Node* node : loop_tree->LoopNodes(loop)) {
    for (Node* use : node->uses()) {
      if (!loop_tree->Contains(loop, use)) {
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        bool unmarked_exit;
        switch (node->opcode()) {
          case IrOpcode::kLoopExit:
            unmarked_exit = (node->InputAt(1) != loop_node);
            break;
          case IrOpcode::kLoopExitValue:
          case IrOpcode::kLoopExitEffect:
            unmarked_exit = (node->InputAt(1)->InputAt(1) != loop_node);
            break;
          default:
            unmarked_exit = (use->opcode() != IrOpcode::kTerminate);
        }
        if (unmarked_exit) {
          if (FLAG_trace_turbo_graph) {
            Node* loop_node = loop_tree->GetLoopControl(loop);
            PrintF(
                "Cannot peel loop %i. Loop exit without explicit mark: Node %i "
                "(%s) is inside "
                "loop, but its use %i (%s) is outside.\n",
                loop_node->id(), node->id(), node->op()->mnemonic(), use->id(),
                use->op()->mnemonic());
          }
          return false;
199 200 201 202
        }
      }
    }
  }
203
  return true;
204 205 206
}


207 208 209
PeeledIteration* LoopPeeler::Peel(Graph* graph, CommonOperatorBuilder* common,
                                  LoopTree* loop_tree, LoopTree::Loop* loop,
                                  Zone* tmp_zone) {
210
  if (!CanPeel(loop_tree, loop)) return nullptr;
211 212 213 214

  //============================================================================
  // Construct the peeled iteration.
  //============================================================================
215
  PeeledIterationImpl* iter = new (tmp_zone) PeeledIterationImpl(tmp_zone);
216
  size_t estimated_peeled_size = 5 + (loop->TotalSize()) * 2;
217 218
  Peeling peeling(graph, tmp_zone, estimated_peeled_size, &iter->node_pairs_);

219
  Node* dead = graph->NewNode(common->Dead());
220 221 222

  // Map the loop header nodes to their entry values.
  for (Node* node : loop_tree->HeaderNodes(loop)) {
223
    peeling.Insert(node, node->InputAt(kAssumedLoopEntryIndex));
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  }

  // Copy all the nodes of loop body for the peeled iteration.
  peeling.CopyNodes(graph, tmp_zone, dead, loop_tree->BodyNodes(loop));

  //============================================================================
  // Replace the entry to the loop with the output of the peeled iteration.
  //============================================================================
  Node* loop_node = loop_tree->GetLoopControl(loop);
  Node* new_entry;
  int backedges = loop_node->InputCount() - 1;
  if (backedges > 1) {
    // Multiple backedges from original loop, therefore multiple output edges
    // from the peeled iteration.
    NodeVector inputs(tmp_zone);
    for (int i = 1; i < loop_node->InputCount(); i++) {
      inputs.push_back(peeling.map(loop_node->InputAt(i)));
    }
    Node* merge =
        graph->NewNode(common->Merge(backedges), backedges, &inputs[0]);

    // Merge values from the multiple output edges of the peeled iteration.
    for (Node* node : loop_tree->HeaderNodes(loop)) {
      if (node->opcode() == IrOpcode::kLoop) continue;  // already done.
      inputs.clear();
      for (int i = 0; i < backedges; i++) {
        inputs.push_back(peeling.map(node->InputAt(1 + i)));
      }
      for (Node* input : inputs) {
        if (input != inputs[0]) {  // Non-redundant phi.
          inputs.push_back(merge);
255
          const Operator* op = common->ResizeMergeOrPhi(node->op(), backedges);
256 257 258 259 260 261 262 263 264 265 266
          Node* phi = graph->NewNode(op, backedges + 1, &inputs[0]);
          node->ReplaceInput(0, phi);
          break;
        }
      }
    }
    new_entry = merge;
  } else {
    // Only one backedge, simply replace the input to loop with output of
    // peeling.
    for (Node* node : loop_tree->HeaderNodes(loop)) {
267
      node->ReplaceInput(0, peeling.map(node->InputAt(1)));
268 269 270 271 272 273
    }
    new_entry = peeling.map(loop_node->InputAt(1));
  }
  loop_node->ReplaceInput(0, new_entry);

  //============================================================================
274
  // Change the exit and exit markers to merge/phi/effect-phi.
275
  //============================================================================
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  for (Node* exit : loop_tree->ExitNodes(loop)) {
    switch (exit->opcode()) {
      case IrOpcode::kLoopExit:
        // Change the loop exit node to a merge node.
        exit->ReplaceInput(1, peeling.map(exit->InputAt(0)));
        NodeProperties::ChangeOp(exit, common->Merge(2));
        break;
      case IrOpcode::kLoopExitValue:
        // Change exit marker to phi.
        exit->InsertInput(graph->zone(), 1, peeling.map(exit->InputAt(0)));
        NodeProperties::ChangeOp(
            exit, common->Phi(MachineRepresentation::kTagged, 2));
        break;
      case IrOpcode::kLoopExitEffect:
        // Change effect exit marker to effect phi.
        exit->InsertInput(graph->zone(), 1, peeling.map(exit->InputAt(0)));
        NodeProperties::ChangeOp(exit, common->EffectPhi(2));
        break;
      default:
        break;
    }
297
  }
298 299
  return iter;
}
300

301
namespace {
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
void PeelInnerLoops(Graph* graph, CommonOperatorBuilder* common,
                    LoopTree* loop_tree, LoopTree::Loop* loop,
                    Zone* temp_zone) {
  // If the loop has nested loops, peel inside those.
  if (!loop->children().empty()) {
    for (LoopTree::Loop* inner_loop : loop->children()) {
      PeelInnerLoops(graph, common, loop_tree, inner_loop, temp_zone);
    }
    return;
  }
  // Only peel small-enough loops.
  if (loop->TotalSize() > LoopPeeler::kMaxPeeledNodes) return;
  if (FLAG_trace_turbo_graph) {
    PrintF("Peeling loop with header: ");
    for (Node* node : loop_tree->HeaderNodes(loop)) {
      PrintF("%i ", node->id());
319 320 321
    }
  }

322
  LoopPeeler::Peel(graph, common, loop_tree, loop, temp_zone);
323 324
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
void EliminateLoopExit(Node* node) {
  DCHECK_EQ(IrOpcode::kLoopExit, node->opcode());
  // The exit markers take the loop exit as input. We iterate over uses
  // and remove all the markers from the graph.
  for (Edge edge : node->use_edges()) {
    if (NodeProperties::IsControlEdge(edge)) {
      Node* marker = edge.from();
      if (marker->opcode() == IrOpcode::kLoopExitValue) {
        NodeProperties::ReplaceUses(marker, marker->InputAt(0));
        marker->Kill();
      } else if (marker->opcode() == IrOpcode::kLoopExitEffect) {
        NodeProperties::ReplaceUses(marker, nullptr,
                                    NodeProperties::GetEffectInput(marker));
        marker->Kill();
      }
    }
  }
  NodeProperties::ReplaceUses(node, nullptr, nullptr,
                              NodeProperties::GetControlInput(node, 0));
  node->Kill();
}

}  // namespace

349 350 351 352 353 354 355 356 357 358 359
// static
void LoopPeeler::PeelInnerLoopsOfTree(Graph* graph,
                                      CommonOperatorBuilder* common,
                                      LoopTree* loop_tree, Zone* temp_zone) {
  for (LoopTree::Loop* loop : loop_tree->outer_loops()) {
    PeelInnerLoops(graph, common, loop_tree, loop, temp_zone);
  }

  EliminateLoopExits(graph, temp_zone);
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
// static
void LoopPeeler::EliminateLoopExits(Graph* graph, Zone* temp_zone) {
  ZoneQueue<Node*> queue(temp_zone);
  ZoneVector<bool> visited(graph->NodeCount(), false, temp_zone);
  queue.push(graph->end());
  while (!queue.empty()) {
    Node* node = queue.front();
    queue.pop();

    if (node->opcode() == IrOpcode::kLoopExit) {
      Node* control = NodeProperties::GetControlInput(node);
      EliminateLoopExit(node);
      if (!visited[control->id()]) {
        visited[control->id()] = true;
        queue.push(control);
      }
    } else {
      for (int i = 0; i < node->op()->ControlInputCount(); i++) {
        Node* control = NodeProperties::GetControlInput(node, i);
        if (!visited[control->id()]) {
          visited[control->id()] = true;
          queue.push(control);
        }
      }
    }
  }
}

388 389 390
}  // namespace compiler
}  // namespace internal
}  // namespace v8