conversions.cc 45 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#include "src/conversions.h"

7
#include <limits.h>
8
#include <stdarg.h>
9
#include <cmath>
10

11
#include "src/allocation.h"
12
#include "src/assert-scope.h"
13
#include "src/char-predicates-inl.h"
14
#include "src/dtoa.h"
marja's avatar
marja committed
15
#include "src/handles.h"
16
#include "src/heap/factory.h"
17
#include "src/objects-inl.h"
18
#include "src/objects/bigint.h"
19
#include "src/strtod.h"
20
#include "src/unicode-cache-inl.h"
21
#include "src/utils.h"
22

23
#if defined(_STLP_VENDOR_CSTD)
24
// STLPort doesn't import fpclassify into the std namespace.
25 26 27
#define FPCLASSIFY_NAMESPACE
#else
#define FPCLASSIFY_NAMESPACE std
28 29
#endif

30 31
namespace v8 {
namespace internal {
32

33 34
namespace {

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
inline double JunkStringValue() {
  return bit_cast<double, uint64_t>(kQuietNaNMask);
}

inline double SignedZero(bool negative) {
  return negative ? uint64_to_double(Double::kSignMask) : 0.0;
}

inline bool isDigit(int x, int radix) {
  return (x >= '0' && x <= '9' && x < '0' + radix) ||
         (radix > 10 && x >= 'a' && x < 'a' + radix - 10) ||
         (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
}

inline bool isBinaryDigit(int x) { return x == '0' || x == '1'; }

template <class Iterator, class EndMark>
bool SubStringEquals(Iterator* current, EndMark end, const char* substring) {
  DCHECK(**current == *substring);
  for (substring++; *substring != '\0'; substring++) {
    ++*current;
    if (*current == end || **current != *substring) return false;
  }
  ++*current;
  return true;
}

// Returns true if a nonspace character has been found and false if the
// end was been reached before finding a nonspace character.
template <class Iterator, class EndMark>
inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, Iterator* current,
                              EndMark end) {
  while (*current != end) {
    if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
    ++*current;
  }
  return false;
}

// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
template <int radix_log_2, class Iterator, class EndMark>
double InternalStringToIntDouble(UnicodeCache* unicode_cache, Iterator current,
                                 EndMark end, bool negative,
                                 bool allow_trailing_junk) {
  DCHECK(current != end);

  // Skip leading 0s.
  while (*current == '0') {
    ++current;
    if (current == end) return SignedZero(negative);
  }

  int64_t number = 0;
  int exponent = 0;
  const int radix = (1 << radix_log_2);

  int lim_0 = '0' + (radix < 10 ? radix : 10);
  int lim_a = 'a' + (radix - 10);
  int lim_A = 'A' + (radix - 10);

  do {
    int digit;
    if (*current >= '0' && *current < lim_0) {
      digit = static_cast<char>(*current) - '0';
    } else if (*current >= 'a' && *current < lim_a) {
      digit = static_cast<char>(*current) - 'a' + 10;
    } else if (*current >= 'A' && *current < lim_A) {
      digit = static_cast<char>(*current) - 'A' + 10;
    } else {
      if (allow_trailing_junk ||
          !AdvanceToNonspace(unicode_cache, &current, end)) {
        break;
      } else {
        return JunkStringValue();
      }
    }

    number = number * radix + digit;
    int overflow = static_cast<int>(number >> 53);
    if (overflow != 0) {
      // Overflow occurred. Need to determine which direction to round the
      // result.
      int overflow_bits_count = 1;
      while (overflow > 1) {
        overflow_bits_count++;
        overflow >>= 1;
      }

      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
      number >>= overflow_bits_count;
      exponent = overflow_bits_count;

      bool zero_tail = true;
      while (true) {
        ++current;
        if (current == end || !isDigit(*current, radix)) break;
        zero_tail = zero_tail && *current == '0';
        exponent += radix_log_2;
      }

      if (!allow_trailing_junk &&
          AdvanceToNonspace(unicode_cache, &current, end)) {
        return JunkStringValue();
      }

      int middle_value = (1 << (overflow_bits_count - 1));
      if (dropped_bits > middle_value) {
        number++;  // Rounding up.
      } else if (dropped_bits == middle_value) {
        // Rounding to even to consistency with decimals: half-way case rounds
        // up if significant part is odd and down otherwise.
        if ((number & 1) != 0 || !zero_tail) {
          number++;  // Rounding up.
        }
      }

      // Rounding up may cause overflow.
      if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
        exponent++;
        number >>= 1;
      }
      break;
    }
    ++current;
  } while (current != end);

  DCHECK(number < ((int64_t)1 << 53));
  DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);

  if (exponent == 0) {
    if (negative) {
      if (number == 0) return -0.0;
      number = -number;
    }
    return static_cast<double>(number);
  }

173
  DCHECK_NE(number, 0);
174 175 176 177
  return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
}

// ES6 18.2.5 parseInt(string, radix) (with NumberParseIntHelper subclass);
178 179
// and BigInt parsing cases from https://tc39.github.io/proposal-bigint/
// (with StringToBigIntHelper subclass).
180
class StringToIntHelper {
181
 public:
182 183 184 185
  StringToIntHelper(Isolate* isolate, Handle<String> subject, int radix)
      : isolate_(isolate), subject_(subject), radix_(radix) {
    DCHECK(subject->IsFlat());
  }
186

187 188 189 190 191 192
  // Used for the StringToBigInt operation.
  StringToIntHelper(Isolate* isolate, Handle<String> subject)
      : isolate_(isolate), subject_(subject) {
    DCHECK(subject->IsFlat());
  }

193 194 195 196
  // Used for parsing BigInt literals, where the input is a Zone-allocated
  // buffer of one-byte digits, along with an optional radix prefix.
  StringToIntHelper(Isolate* isolate, const uint8_t* subject, int length)
      : isolate_(isolate), raw_one_byte_subject_(subject), length_(length) {}
197
  virtual ~StringToIntHelper() {}
198

199 200 201 202
 protected:
  // Subclasses must implement these:
  virtual void AllocateResult() = 0;
  virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) = 0;
203

204 205 206 207 208 209
  // Subclasses must call this to do all the work.
  void ParseInt();

  // Subclasses may override this.
  virtual void HandleSpecialCases() {}

210 211 212 213 214 215 216
  // Subclass constructors should call these for configuration before calling
  // ParseInt().
  void set_allow_binary_and_octal_prefixes() {
    allow_binary_and_octal_prefixes_ = true;
  }
  void set_disallow_trailing_junk() { allow_trailing_junk_ = false; }

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  bool IsOneByte() const {
    return raw_one_byte_subject_ != nullptr ||
           subject_->IsOneByteRepresentationUnderneath();
  }

  Vector<const uint8_t> GetOneByteVector() {
    if (raw_one_byte_subject_ != nullptr) {
      return Vector<const uint8_t>(raw_one_byte_subject_, length_);
    }
    return subject_->GetFlatContent().ToOneByteVector();
  }

  Vector<const uc16> GetTwoByteVector() {
    return subject_->GetFlatContent().ToUC16Vector();
  }

233
  // Subclasses get access to internal state:
234
  enum State { kRunning, kError, kJunk, kEmpty, kZero, kDone };
235

236 237
  enum class Sign { kNegative, kPositive, kNone };

238 239 240 241
  Isolate* isolate() { return isolate_; }
  int radix() { return radix_; }
  int cursor() { return cursor_; }
  int length() { return length_; }
242 243
  bool negative() { return sign_ == Sign::kNegative; }
  Sign sign() { return sign_; }
244 245
  State state() { return state_; }
  void set_state(State state) { state_ = state; }
246 247

 private:
248 249 250 251 252 253 254
  template <class Char>
  void DetectRadixInternal(Char current, int length);
  template <class Char>
  void ParseInternal(Char start);

  Isolate* isolate_;
  Handle<String> subject_;
255 256
  const uint8_t* raw_one_byte_subject_ = nullptr;
  int radix_ = 0;
257 258
  int cursor_ = 0;
  int length_ = 0;
259
  Sign sign_ = Sign::kNone;
260
  bool leading_zero_ = false;
261 262
  bool allow_binary_and_octal_prefixes_ = false;
  bool allow_trailing_junk_ = true;
263
  State state_ = kRunning;
264 265
};

266 267 268
void StringToIntHelper::ParseInt() {
  {
    DisallowHeapAllocation no_gc;
269 270
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
271 272
      DetectRadixInternal(vector.start(), vector.length());
    } else {
273
      Vector<const uc16> vector = GetTwoByteVector();
274 275 276 277 278 279 280 281 282
      DetectRadixInternal(vector.start(), vector.length());
    }
  }
  if (state_ != kRunning) return;
  AllocateResult();
  HandleSpecialCases();
  if (state_ != kRunning) return;
  {
    DisallowHeapAllocation no_gc;
283 284
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
285 286 287
      DCHECK_EQ(length_, vector.length());
      ParseInternal(vector.start());
    } else {
288
      Vector<const uc16> vector = GetTwoByteVector();
289 290 291 292
      DCHECK_EQ(length_, vector.length());
      ParseInternal(vector.start());
    }
  }
293
  DCHECK_NE(state_, kRunning);
294 295 296 297 298 299 300 301
}

template <class Char>
void StringToIntHelper::DetectRadixInternal(Char current, int length) {
  Char start = current;
  length_ = length;
  Char end = start + length;
  UnicodeCache* unicode_cache = isolate_->unicode_cache();
302

303
  if (!AdvanceToNonspace(unicode_cache, &current, end)) {
304
    return set_state(kEmpty);
305 306 307 308 309 310 311 312
  }

  if (*current == '+') {
    // Ignore leading sign; skip following spaces.
    ++current;
    if (current == end) {
      return set_state(kJunk);
    }
313
    sign_ = Sign::kPositive;
314 315 316 317 318
  } else if (*current == '-') {
    ++current;
    if (current == end) {
      return set_state(kJunk);
    }
319
    sign_ = Sign::kNegative;
320 321 322 323 324 325 326 327 328 329 330 331
  }

  if (radix_ == 0) {
    // Radix detection.
    radix_ = 10;
    if (*current == '0') {
      ++current;
      if (current == end) return set_state(kZero);
      if (*current == 'x' || *current == 'X') {
        radix_ = 16;
        ++current;
        if (current == end) return set_state(kJunk);
332
      } else if (allow_binary_and_octal_prefixes_ &&
333 334 335
                 (*current == 'o' || *current == 'O')) {
        radix_ = 8;
        ++current;
Daniel Ehrenberg's avatar
Daniel Ehrenberg committed
336
        if (current == end) return set_state(kJunk);
337
      } else if (allow_binary_and_octal_prefixes_ &&
338 339 340
                 (*current == 'b' || *current == 'B')) {
        radix_ = 2;
        ++current;
Daniel Ehrenberg's avatar
Daniel Ehrenberg committed
341
        if (current == end) return set_state(kJunk);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
      } else {
        leading_zero_ = true;
      }
    }
  } else if (radix_ == 16) {
    if (*current == '0') {
      // Allow "0x" prefix.
      ++current;
      if (current == end) return set_state(kZero);
      if (*current == 'x' || *current == 'X') {
        ++current;
        if (current == end) return set_state(kJunk);
      } else {
        leading_zero_ = true;
      }
    }
  }
  // Skip leading zeros.
  while (*current == '0') {
    leading_zero_ = true;
    ++current;
    if (current == end) return set_state(kZero);
  }

  if (!leading_zero_ && !isDigit(*current, radix_)) {
    return set_state(kJunk);
  }

  DCHECK(radix_ >= 2 && radix_ <= 36);
  STATIC_ASSERT(String::kMaxLength <= INT_MAX);
  cursor_ = static_cast<int>(current - start);
373 374
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
template <class Char>
void StringToIntHelper::ParseInternal(Char start) {
  Char current = start + cursor_;
  Char end = start + length_;

  // The following code causes accumulating rounding error for numbers greater
  // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
  // 16, or 32, then mathInt may be an implementation-dependent approximation to
  // the mathematical integer value" (15.1.2.2).

  int lim_0 = '0' + (radix_ < 10 ? radix_ : 10);
  int lim_a = 'a' + (radix_ - 10);
  int lim_A = 'A' + (radix_ - 10);

  // NOTE: The code for computing the value may seem a bit complex at
  // first glance. It is structured to use 32-bit multiply-and-add
  // loops as long as possible to avoid losing precision.

  bool done = false;
  do {
    // Parse the longest part of the string starting at {current}
    // possible while keeping the multiplier, and thus the part
    // itself, within 32 bits.
    uint32_t part = 0, multiplier = 1;
    while (true) {
      uint32_t d;
      if (*current >= '0' && *current < lim_0) {
        d = *current - '0';
      } else if (*current >= 'a' && *current < lim_a) {
        d = *current - 'a' + 10;
      } else if (*current >= 'A' && *current < lim_A) {
        d = *current - 'A' + 10;
      } else {
        done = true;
        break;
      }

      // Update the value of the part as long as the multiplier fits
      // in 32 bits. When we can't guarantee that the next iteration
      // will not overflow the multiplier, we stop parsing the part
      // by leaving the loop.
416
      const uint32_t kMaximumMultiplier = 0xFFFFFFFFU / 36;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
      uint32_t m = multiplier * static_cast<uint32_t>(radix_);
      if (m > kMaximumMultiplier) break;
      part = part * radix_ + d;
      multiplier = m;
      DCHECK(multiplier > part);

      ++current;
      if (current == end) {
        done = true;
        break;
      }
    }

    // Update the value and skip the part in the string.
    ResultMultiplyAdd(multiplier, part);
  } while (!done);

434 435 436 437 438
  if (!allow_trailing_junk_ &&
      AdvanceToNonspace(isolate_->unicode_cache(), &current, end)) {
    return set_state(kJunk);
  }

439
  return set_state(kDone);
440 441
}

442 443 444 445 446 447 448 449 450
class NumberParseIntHelper : public StringToIntHelper {
 public:
  NumberParseIntHelper(Isolate* isolate, Handle<String> string, int radix)
      : StringToIntHelper(isolate, string, radix) {}

  double GetResult() {
    ParseInt();
    switch (state()) {
      case kJunk:
451
      case kEmpty:
452 453 454 455 456 457 458 459 460 461 462
        return JunkStringValue();
      case kZero:
        return SignedZero(negative());
      case kDone:
        return negative() ? -result_ : result_;
      case kError:
      case kRunning:
        break;
    }
    UNREACHABLE();
  }
463

464 465 466 467 468 469 470 471 472 473 474
 protected:
  virtual void AllocateResult() {}
  virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) {
    result_ = result_ * multiplier + part;
  }

 private:
  virtual void HandleSpecialCases() {
    bool is_power_of_two = base::bits::IsPowerOfTwo(radix());
    if (!is_power_of_two && radix() != 10) return;
    DisallowHeapAllocation no_gc;
475 476
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
477 478 479 480
      DCHECK_EQ(length(), vector.length());
      result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.start())
                                : HandleBaseTenCase(vector.start());
    } else {
481
      Vector<const uc16> vector = GetTwoByteVector();
482 483 484 485 486
      DCHECK_EQ(length(), vector.length());
      result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.start())
                                : HandleBaseTenCase(vector.start());
    }
    set_state(kDone);
487
  }
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

  template <class Char>
  double HandlePowerOfTwoCase(Char start) {
    Char current = start + cursor();
    Char end = start + length();
    UnicodeCache* unicode_cache = isolate()->unicode_cache();
    const bool allow_trailing_junk = true;
    // GetResult() will take care of the sign bit, so ignore it for now.
    const bool negative = false;
    switch (radix()) {
      case 2:
        return InternalStringToIntDouble<1>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);
      case 4:
        return InternalStringToIntDouble<2>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);
      case 8:
        return InternalStringToIntDouble<3>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);

      case 16:
        return InternalStringToIntDouble<4>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);

      case 32:
        return InternalStringToIntDouble<5>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);
      default:
        UNREACHABLE();
    }
  }

  template <class Char>
  double HandleBaseTenCase(Char start) {
    // Parsing with strtod.
    Char current = start + cursor();
    Char end = start + length();
    const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
    // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
    // end.
    const int kBufferSize = kMaxSignificantDigits + 2;
    char buffer[kBufferSize];
    int buffer_pos = 0;
    while (*current >= '0' && *current <= '9') {
      if (buffer_pos <= kMaxSignificantDigits) {
        // If the number has more than kMaxSignificantDigits it will be parsed
        // as infinity.
535
        DCHECK_LT(buffer_pos, kBufferSize);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        buffer[buffer_pos++] = static_cast<char>(*current);
      }
      ++current;
      if (current == end) break;
    }

    SLOW_DCHECK(buffer_pos < kBufferSize);
    buffer[buffer_pos] = '\0';
    Vector<const char> buffer_vector(buffer, buffer_pos);
    return Strtod(buffer_vector, 0);
  }

  double result_ = 0;
};

// Converts a string to a double value. Assumes the Iterator supports
// the following operations:
// 1. current == end (other ops are not allowed), current != end.
// 2. *current - gets the current character in the sequence.
// 3. ++current (advances the position).
template <class Iterator, class EndMark>
double InternalStringToDouble(UnicodeCache* unicode_cache, Iterator current,
                              EndMark end, int flags, double empty_string_val) {
  // To make sure that iterator dereferencing is valid the following
  // convention is used:
  // 1. Each '++current' statement is followed by check for equality to 'end'.
  // 2. If AdvanceToNonspace returned false then current == end.
  // 3. If 'current' becomes be equal to 'end' the function returns or goes to
  // 'parsing_done'.
  // 4. 'current' is not dereferenced after the 'parsing_done' label.
  // 5. Code before 'parsing_done' may rely on 'current != end'.
  if (!AdvanceToNonspace(unicode_cache, &current, end)) {
    return empty_string_val;
  }

  const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;

  // Maximum number of significant digits in decimal representation.
  // The longest possible double in decimal representation is
  // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
  // (768 digits). If we parse a number whose first digits are equal to a
  // mean of 2 adjacent doubles (that could have up to 769 digits) the result
  // must be rounded to the bigger one unless the tail consists of zeros, so
  // we don't need to preserve all the digits.
  const int kMaxSignificantDigits = 772;

  // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
  const int kBufferSize = kMaxSignificantDigits + 10;
  char buffer[kBufferSize];  // NOLINT: size is known at compile time.
  int buffer_pos = 0;

  // Exponent will be adjusted if insignificant digits of the integer part
  // or insignificant leading zeros of the fractional part are dropped.
  int exponent = 0;
  int significant_digits = 0;
  int insignificant_digits = 0;
  bool nonzero_digit_dropped = false;

  enum Sign { NONE, NEGATIVE, POSITIVE };

  Sign sign = NONE;

  if (*current == '+') {
    // Ignore leading sign.
    ++current;
    if (current == end) return JunkStringValue();
    sign = POSITIVE;
  } else if (*current == '-') {
    ++current;
    if (current == end) return JunkStringValue();
    sign = NEGATIVE;
  }

  static const char kInfinityString[] = "Infinity";
  if (*current == kInfinityString[0]) {
    if (!SubStringEquals(&current, end, kInfinityString)) {
      return JunkStringValue();
    }

    if (!allow_trailing_junk &&
        AdvanceToNonspace(unicode_cache, &current, end)) {
      return JunkStringValue();
    }

620
    DCHECK_EQ(buffer_pos, 0);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
  }

  bool leading_zero = false;
  if (*current == '0') {
    ++current;
    if (current == end) return SignedZero(sign == NEGATIVE);

    leading_zero = true;

    // It could be hexadecimal value.
    if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
      ++current;
      if (current == end || !isDigit(*current, 16) || sign != NONE) {
        return JunkStringValue();  // "0x".
      }

      return InternalStringToIntDouble<4>(unicode_cache, current, end, false,
                                          allow_trailing_junk);

      // It could be an explicit octal value.
    } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
      ++current;
      if (current == end || !isDigit(*current, 8) || sign != NONE) {
        return JunkStringValue();  // "0o".
      }

      return InternalStringToIntDouble<3>(unicode_cache, current, end, false,
                                          allow_trailing_junk);

      // It could be a binary value.
    } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
      ++current;
      if (current == end || !isBinaryDigit(*current) || sign != NONE) {
        return JunkStringValue();  // "0b".
      }

      return InternalStringToIntDouble<1>(unicode_cache, current, end, false,
                                          allow_trailing_junk);
    }

    // Ignore leading zeros in the integer part.
    while (*current == '0') {
      ++current;
      if (current == end) return SignedZero(sign == NEGATIVE);
    }
  }

  bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;

  // Copy significant digits of the integer part (if any) to the buffer.
  while (*current >= '0' && *current <= '9') {
    if (significant_digits < kMaxSignificantDigits) {
674
      DCHECK_LT(buffer_pos, kBufferSize);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
      buffer[buffer_pos++] = static_cast<char>(*current);
      significant_digits++;
      // Will later check if it's an octal in the buffer.
    } else {
      insignificant_digits++;  // Move the digit into the exponential part.
      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
    }
    octal = octal && *current < '8';
    ++current;
    if (current == end) goto parsing_done;
  }

  if (significant_digits == 0) {
    octal = false;
  }

  if (*current == '.') {
    if (octal && !allow_trailing_junk) return JunkStringValue();
    if (octal) goto parsing_done;

    ++current;
    if (current == end) {
      if (significant_digits == 0 && !leading_zero) {
        return JunkStringValue();
      } else {
        goto parsing_done;
      }
    }

    if (significant_digits == 0) {
      // octal = false;
      // Integer part consists of 0 or is absent. Significant digits start after
      // leading zeros (if any).
      while (*current == '0') {
        ++current;
        if (current == end) return SignedZero(sign == NEGATIVE);
        exponent--;  // Move this 0 into the exponent.
      }
    }

    // There is a fractional part.  We don't emit a '.', but adjust the exponent
    // instead.
    while (*current >= '0' && *current <= '9') {
      if (significant_digits < kMaxSignificantDigits) {
719
        DCHECK_LT(buffer_pos, kBufferSize);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        buffer[buffer_pos++] = static_cast<char>(*current);
        significant_digits++;
        exponent--;
      } else {
        // Ignore insignificant digits in the fractional part.
        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
      }
      ++current;
      if (current == end) goto parsing_done;
    }
  }

  if (!leading_zero && exponent == 0 && significant_digits == 0) {
    // If leading_zeros is true then the string contains zeros.
    // If exponent < 0 then string was [+-]\.0*...
    // If significant_digits != 0 the string is not equal to 0.
    // Otherwise there are no digits in the string.
    return JunkStringValue();
  }

  // Parse exponential part.
  if (*current == 'e' || *current == 'E') {
    if (octal) return JunkStringValue();
    ++current;
    if (current == end) {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
        return JunkStringValue();
      }
    }
    char sign = '+';
    if (*current == '+' || *current == '-') {
      sign = static_cast<char>(*current);
      ++current;
      if (current == end) {
        if (allow_trailing_junk) {
          goto parsing_done;
        } else {
          return JunkStringValue();
        }
      }
    }

    if (current == end || *current < '0' || *current > '9') {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
        return JunkStringValue();
      }
    }

    const int max_exponent = INT_MAX / 2;
    DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
    int num = 0;
    do {
      // Check overflow.
      int digit = *current - '0';
      if (num >= max_exponent / 10 &&
          !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
        num = max_exponent;
      } else {
        num = num * 10 + digit;
      }
      ++current;
    } while (current != end && *current >= '0' && *current <= '9');

    exponent += (sign == '-' ? -num : num);
  }

  if (!allow_trailing_junk && AdvanceToNonspace(unicode_cache, &current, end)) {
    return JunkStringValue();
  }

parsing_done:
  exponent += insignificant_digits;

  if (octal) {
    return InternalStringToIntDouble<3>(unicode_cache, buffer,
                                        buffer + buffer_pos, sign == NEGATIVE,
                                        allow_trailing_junk);
  }

  if (nonzero_digit_dropped) {
    buffer[buffer_pos++] = '1';
    exponent--;
  }

  SLOW_DCHECK(buffer_pos < kBufferSize);
  buffer[buffer_pos] = '\0';

  double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
  return (sign == NEGATIVE) ? -converted : converted;
813 814
}

815
}  // namespace
816

817 818
double StringToDouble(UnicodeCache* unicode_cache,
                      const char* str, int flags, double empty_string_val) {
819 820 821 822 823
  // We cast to const uint8_t* here to avoid instantiating the
  // InternalStringToDouble() template for const char* as well.
  const uint8_t* start = reinterpret_cast<const uint8_t*>(str);
  const uint8_t* end = start + StrLength(str);
  return InternalStringToDouble(unicode_cache, start, end, flags,
824
                                empty_string_val);
825 826 827
}


828
double StringToDouble(UnicodeCache* unicode_cache,
829
                      Vector<const uint8_t> str,
830 831
                      int flags,
                      double empty_string_val) {
832 833 834 835 836
  // We cast to const uint8_t* here to avoid instantiating the
  // InternalStringToDouble() template for const char* as well.
  const uint8_t* start = reinterpret_cast<const uint8_t*>(str.start());
  const uint8_t* end = start + str.length();
  return InternalStringToDouble(unicode_cache, start, end, flags,
837
                                empty_string_val);
838 839
}

840

841 842 843 844 845 846 847 848 849
double StringToDouble(UnicodeCache* unicode_cache,
                      Vector<const uc16> str,
                      int flags,
                      double empty_string_val) {
  const uc16* end = str.start() + str.length();
  return InternalStringToDouble(unicode_cache, str.start(), end, flags,
                                empty_string_val);
}

850 851 852
double StringToInt(Isolate* isolate, Handle<String> string, int radix) {
  NumberParseIntHelper helper(isolate, string, radix);
  return helper.GetResult();
853 854
}

855
class StringToBigIntHelper : public StringToIntHelper {
856
 public:
857
  enum class Behavior { kStringToBigInt, kLiteral };
858 859

  // Used for StringToBigInt operation (BigInt constructor and == operator).
860
  StringToBigIntHelper(Isolate* isolate, Handle<String> string)
861 862 863 864 865
      : StringToIntHelper(isolate, string),
        behavior_(Behavior::kStringToBigInt) {
    set_allow_binary_and_octal_prefixes();
    set_disallow_trailing_junk();
  }
866

867 868
  // Used for parsing BigInt literals, where the input is a buffer of
  // one-byte ASCII digits, along with an optional radix prefix.
869
  StringToBigIntHelper(Isolate* isolate, const uint8_t* string, int length)
870
      : StringToIntHelper(isolate, string, length),
871 872 873
        behavior_(Behavior::kLiteral) {
    set_allow_binary_and_octal_prefixes();
  }
874

875 876
  MaybeHandle<BigInt> GetResult() {
    ParseInt();
877 878 879 880
    if (behavior_ == Behavior::kStringToBigInt && sign() != Sign::kNone &&
        radix() != 10) {
      return MaybeHandle<BigInt>();
    }
881
    if (state() == kEmpty) {
882
      if (behavior_ == Behavior::kStringToBigInt) {
883 884 885 886 887
        set_state(kZero);
      } else {
        UNREACHABLE();
      }
    }
888 889
    switch (state()) {
      case kJunk:
890
        if (should_throw() == kThrowOnError) {
891 892 893 894
          THROW_NEW_ERROR(isolate(),
                          NewSyntaxError(MessageTemplate::kBigIntInvalidString),
                          BigInt);
        } else {
895
          DCHECK_EQ(should_throw(), kDontThrow);
896 897
          return MaybeHandle<BigInt>();
        }
898
      case kZero:
899
        return BigInt::Zero(isolate());
900
      case kError:
901
        DCHECK_EQ(should_throw() == kThrowOnError,
902
                  isolate()->has_pending_exception());
903 904
        return MaybeHandle<BigInt>();
      case kDone:
905
        return BigInt::Finalize(result_, negative());
906
      case kEmpty:
907 908 909 910 911
      case kRunning:
        break;
    }
    UNREACHABLE();
  }
912

913 914 915 916 917 918 919
 protected:
  virtual void AllocateResult() {
    // We have to allocate a BigInt that's big enough to fit the result.
    // Conseratively assume that all remaining digits are significant.
    // Optimization opportunity: Would it makes sense to scan for trailing
    // junk before allocating the result?
    int charcount = length() - cursor();
920 921 922 923 924 925
    // For literals, we pretenure the allocated BigInt, since it's about
    // to be stored in the interpreter's constants array.
    PretenureFlag pretenure =
        behavior_ == Behavior::kLiteral ? TENURED : NOT_TENURED;
    MaybeHandle<FreshlyAllocatedBigInt> maybe = BigInt::AllocateFor(
        isolate(), radix(), charcount, should_throw(), pretenure);
926 927 928 929 930 931
    if (!maybe.ToHandle(&result_)) {
      set_state(kError);
    }
  }

  virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) {
932 933
    BigInt::InplaceMultiplyAdd(result_, static_cast<uintptr_t>(multiplier),
                               static_cast<uintptr_t>(part));
934 935 936
  }

 private:
937
  ShouldThrow should_throw() const { return kDontThrow; }
938

939
  Handle<FreshlyAllocatedBigInt> result_;
940
  Behavior behavior_;
941 942
};

943
MaybeHandle<BigInt> StringToBigInt(Isolate* isolate, Handle<String> string) {
944
  string = String::Flatten(string);
945
  StringToBigIntHelper helper(isolate, string);
946 947
  return helper.GetResult();
}
948

949
MaybeHandle<BigInt> BigIntLiteral(Isolate* isolate, const char* string) {
950
  StringToBigIntHelper helper(isolate, reinterpret_cast<const uint8_t*>(string),
951 952 953 954
                              static_cast<int>(strlen(string)));
  return helper.GetResult();
}

955
const char* DoubleToCString(double v, Vector<char> buffer) {
956
  switch (FPCLASSIFY_NAMESPACE::fpclassify(v)) {
957 958 959
    case FP_NAN: return "NaN";
    case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity");
    case FP_ZERO: return "0";
960
    default: {
961
      SimpleStringBuilder builder(buffer.start(), buffer.length());
962 963
      int decimal_point;
      int sign;
964
      const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1;
965
      char decimal_rep[kV8DtoaBufferCapacity];
966
      int length;
967

968 969 970
      DoubleToAscii(v, DTOA_SHORTEST, 0,
                    Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                    &sign, &length, &decimal_point);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

      if (sign) builder.AddCharacter('-');

      if (length <= decimal_point && decimal_point <= 21) {
        // ECMA-262 section 9.8.1 step 6.
        builder.AddString(decimal_rep);
        builder.AddPadding('0', decimal_point - length);

      } else if (0 < decimal_point && decimal_point <= 21) {
        // ECMA-262 section 9.8.1 step 7.
        builder.AddSubstring(decimal_rep, decimal_point);
        builder.AddCharacter('.');
        builder.AddString(decimal_rep + decimal_point);

      } else if (decimal_point <= 0 && decimal_point > -6) {
        // ECMA-262 section 9.8.1 step 8.
        builder.AddString("0.");
        builder.AddPadding('0', -decimal_point);
        builder.AddString(decimal_rep);

      } else {
        // ECMA-262 section 9.8.1 step 9 and 10 combined.
        builder.AddCharacter(decimal_rep[0]);
        if (length != 1) {
          builder.AddCharacter('.');
          builder.AddString(decimal_rep + 1);
        }
        builder.AddCharacter('e');
        builder.AddCharacter((decimal_point >= 0) ? '+' : '-');
        int exponent = decimal_point - 1;
        if (exponent < 0) exponent = -exponent;
1002
        builder.AddDecimalInteger(exponent);
1003
      }
1004
      return builder.Finalize();
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    }
  }
}


const char* IntToCString(int n, Vector<char> buffer) {
  bool negative = false;
  if (n < 0) {
    // We must not negate the most negative int.
    if (n == kMinInt) return DoubleToCString(n, buffer);
    negative = true;
    n = -n;
  }
  // Build the string backwards from the least significant digit.
  int i = buffer.length();
  buffer[--i] = '\0';
  do {
    buffer[--i] = '0' + (n % 10);
    n /= 10;
  } while (n);
  if (negative) buffer[--i] = '-';
  return buffer.start() + i;
}


char* DoubleToFixedCString(double value, int f) {
1031
  const int kMaxDigitsBeforePoint = 21;
1032
  const double kFirstNonFixed = 1e21;
1033 1034
  DCHECK_GE(f, 0);
  DCHECK_LE(f, kMaxFractionDigits);
1035 1036 1037 1038 1039 1040 1041 1042

  bool negative = false;
  double abs_value = value;
  if (value < 0) {
    abs_value = -value;
    negative = true;
  }

1043 1044 1045
  // If abs_value has more than kMaxDigitsBeforePoint digits before the point
  // use the non-fixed conversion routine.
  if (abs_value >= kFirstNonFixed) {
1046
    char arr[kMaxFractionDigits];
1047
    Vector<char> buffer(arr, arraysize(arr));
1048 1049 1050 1051 1052 1053
    return StrDup(DoubleToCString(value, buffer));
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
1054
  // Add space for the '\0' byte.
1055
  const int kDecimalRepCapacity =
1056
      kMaxDigitsBeforePoint + kMaxFractionDigits + 1;
1057 1058
  char decimal_rep[kDecimalRepCapacity];
  int decimal_rep_length;
1059 1060 1061
  DoubleToAscii(value, DTOA_FIXED, f,
                Vector<char>(decimal_rep, kDecimalRepCapacity),
                &sign, &decimal_rep_length, &decimal_point);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

  // Create a representation that is padded with zeros if needed.
  int zero_prefix_length = 0;
  int zero_postfix_length = 0;

  if (decimal_point <= 0) {
    zero_prefix_length = -decimal_point + 1;
    decimal_point = 1;
  }

  if (zero_prefix_length + decimal_rep_length < decimal_point + f) {
    zero_postfix_length = decimal_point + f - decimal_rep_length -
                          zero_prefix_length;
  }

  unsigned rep_length =
      zero_prefix_length + decimal_rep_length + zero_postfix_length;
1079
  SimpleStringBuilder rep_builder(rep_length + 1);
1080 1081 1082 1083 1084 1085 1086 1087
  rep_builder.AddPadding('0', zero_prefix_length);
  rep_builder.AddString(decimal_rep);
  rep_builder.AddPadding('0', zero_postfix_length);
  char* rep = rep_builder.Finalize();

  // Create the result string by appending a minus and putting in a
  // decimal point if needed.
  unsigned result_size = decimal_point + f + 2;
1088
  SimpleStringBuilder builder(result_size + 1);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
  if (negative) builder.AddCharacter('-');
  builder.AddSubstring(rep, decimal_point);
  if (f > 0) {
    builder.AddCharacter('.');
    builder.AddSubstring(rep + decimal_point, f);
  }
  DeleteArray(rep);
  return builder.Finalize();
}


static char* CreateExponentialRepresentation(char* decimal_rep,
                                             int exponent,
                                             bool negative,
                                             int significant_digits) {
  bool negative_exponent = false;
  if (exponent < 0) {
    negative_exponent = true;
    exponent = -exponent;
  }

  // Leave room in the result for appending a minus, for a period, the
  // letter 'e', a minus or a plus depending on the exponent, and a
  // three digit exponent.
  unsigned result_size = significant_digits + 7;
1114
  SimpleStringBuilder builder(result_size + 1);
1115 1116 1117 1118 1119 1120

  if (negative) builder.AddCharacter('-');
  builder.AddCharacter(decimal_rep[0]);
  if (significant_digits != 1) {
    builder.AddCharacter('.');
    builder.AddString(decimal_rep + 1);
1121 1122
    int rep_length = StrLength(decimal_rep);
    builder.AddPadding('0', significant_digits - rep_length);
1123 1124 1125 1126
  }

  builder.AddCharacter('e');
  builder.AddCharacter(negative_exponent ? '-' : '+');
1127
  builder.AddDecimalInteger(exponent);
1128 1129 1130 1131 1132 1133
  return builder.Finalize();
}


char* DoubleToExponentialCString(double value, int f) {
  // f might be -1 to signal that f was undefined in JavaScript.
1134
  DCHECK(f >= -1 && f <= kMaxFractionDigits);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

  bool negative = false;
  if (value < 0) {
    value = -value;
    negative = true;
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
1145 1146 1147
  // f corresponds to the digits after the point. There is always one digit
  // before the point. The number of requested_digits equals hence f + 1.
  // And we have to add one character for the null-terminator.
1148
  const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1 + 1;
1149 1150
  // Make sure that the buffer is big enough, even if we fall back to the
  // shortest representation (which happens when f equals -1).
1151
  DCHECK_LE(kBase10MaximalLength, kMaxFractionDigits + 1);
1152
  char decimal_rep[kV8DtoaBufferCapacity];
1153 1154
  int decimal_rep_length;

1155
  if (f == -1) {
1156 1157 1158 1159
    DoubleToAscii(value, DTOA_SHORTEST, 0,
                  Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                  &sign, &decimal_rep_length, &decimal_point);
    f = decimal_rep_length - 1;
1160
  } else {
1161 1162 1163
    DoubleToAscii(value, DTOA_PRECISION, f + 1,
                  Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                  &sign, &decimal_rep_length, &decimal_point);
1164
  }
1165
  DCHECK_GT(decimal_rep_length, 0);
1166
  DCHECK(decimal_rep_length <= f + 1);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

  int exponent = decimal_point - 1;
  char* result =
      CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1);

  return result;
}


char* DoubleToPrecisionCString(double value, int p) {
1177
  const int kMinimalDigits = 1;
1178
  DCHECK(p >= kMinimalDigits && p <= kMaxFractionDigits);
1179
  USE(kMinimalDigits);
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

  bool negative = false;
  if (value < 0) {
    value = -value;
    negative = true;
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
1190
  // Add one for the terminating null character.
1191
  const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1;
1192
  char decimal_rep[kV8DtoaBufferCapacity];
1193 1194
  int decimal_rep_length;

1195 1196 1197
  DoubleToAscii(value, DTOA_PRECISION, p,
                Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                &sign, &decimal_rep_length, &decimal_point);
1198
  DCHECK(decimal_rep_length <= p);
1199 1200 1201

  int exponent = decimal_point - 1;

1202
  char* result = nullptr;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

  if (exponent < -6 || exponent >= p) {
    result =
        CreateExponentialRepresentation(decimal_rep, exponent, negative, p);
  } else {
    // Use fixed notation.
    //
    // Leave room in the result for appending a minus, a period and in
    // the case where decimal_point is not positive for a zero in
    // front of the period.
    unsigned result_size = (decimal_point <= 0)
        ? -decimal_point + p + 3
        : p + 2;
1216
    SimpleStringBuilder builder(result_size + 1);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    if (negative) builder.AddCharacter('-');
    if (decimal_point <= 0) {
      builder.AddString("0.");
      builder.AddPadding('0', -decimal_point);
      builder.AddString(decimal_rep);
      builder.AddPadding('0', p - decimal_rep_length);
    } else {
      const int m = Min(decimal_rep_length, decimal_point);
      builder.AddSubstring(decimal_rep, m);
      builder.AddPadding('0', decimal_point - decimal_rep_length);
      if (decimal_point < p) {
        builder.AddCharacter('.');
        const int extra = negative ? 2 : 1;
        if (decimal_rep_length > decimal_point) {
1231
          const int len = StrLength(decimal_rep + decimal_point);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
          const int n = Min(len, p - (builder.position() - extra));
          builder.AddSubstring(decimal_rep + decimal_point, n);
        }
        builder.AddPadding('0', extra + (p - builder.position()));
      }
    }
    result = builder.Finalize();
  }

  return result;
}

char* DoubleToRadixCString(double value, int radix) {
1245
  DCHECK(radix >= 2 && radix <= 36);
1246 1247
  DCHECK(std::isfinite(value));
  DCHECK_NE(0.0, value);
1248 1249 1250
  // Character array used for conversion.
  static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";

1251 1252
  // Temporary buffer for the result. We start with the decimal point in the
  // middle and write to the left for the integer part and to the right for the
1253 1254 1255 1256
  // fractional part. 1024 characters for the exponent and 52 for the mantissa
  // either way, with additional space for sign, decimal point and string
  // termination should be sufficient.
  static const int kBufferSize = 2200;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
  char buffer[kBufferSize];
  int integer_cursor = kBufferSize / 2;
  int fraction_cursor = integer_cursor;

  bool negative = value < 0;
  if (negative) value = -value;

  // Split the value into an integer part and a fractional part.
  double integer = std::floor(value);
  double fraction = value - integer;
  // We only compute fractional digits up to the input double's precision.
  double delta = 0.5 * (Double(value).NextDouble() - value);
1269 1270
  delta = std::max(Double(0.0).NextDouble(), delta);
  DCHECK_GT(delta, 0.0);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
  if (fraction > delta) {
    // Insert decimal point.
    buffer[fraction_cursor++] = '.';
    do {
      // Shift up by one digit.
      fraction *= radix;
      delta *= radix;
      // Write digit.
      int digit = static_cast<int>(fraction);
      buffer[fraction_cursor++] = chars[digit];
      // Calculate remainder.
      fraction -= digit;
      // Round to even.
      if (fraction > 0.5 || (fraction == 0.5 && (digit & 1))) {
        if (fraction + delta > 1) {
          // We need to back trace already written digits in case of carry-over.
          while (true) {
            fraction_cursor--;
            if (fraction_cursor == kBufferSize / 2) {
              CHECK_EQ('.', buffer[fraction_cursor]);
              // Carry over to the integer part.
              integer += 1;
              break;
            }
            char c = buffer[fraction_cursor];
            // Reconstruct digit.
            int digit = c > '9' ? (c - 'a' + 10) : (c - '0');
            if (digit + 1 < radix) {
              buffer[fraction_cursor++] = chars[digit + 1];
              break;
            }
          }
          break;
        }
      }
    } while (fraction > delta);
  }
1308

1309 1310 1311 1312 1313
  // Compute integer digits. Fill unrepresented digits with zero.
  while (Double(integer / radix).Exponent() > 0) {
    integer /= radix;
    buffer[--integer_cursor] = '0';
  }
1314
  do {
1315
    double remainder = Modulo(integer, radix);
1316 1317
    buffer[--integer_cursor] = chars[static_cast<int>(remainder)];
    integer = (integer - remainder) / radix;
1318 1319 1320 1321 1322
  } while (integer > 0);

  // Add sign and terminate string.
  if (negative) buffer[--integer_cursor] = '-';
  buffer[fraction_cursor++] = '\0';
1323 1324
  DCHECK_LT(fraction_cursor, kBufferSize);
  DCHECK_LE(0, integer_cursor);
1325 1326 1327 1328
  // Allocate new string as return value.
  char* result = NewArray<char>(fraction_cursor - integer_cursor);
  memcpy(result, buffer + integer_cursor, fraction_cursor - integer_cursor);
  return result;
1329 1330
}

1331

1332
// ES6 18.2.4 parseFloat(string)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
double StringToDouble(UnicodeCache* unicode_cache, Handle<String> string,
                      int flags, double empty_string_val) {
  Handle<String> flattened = String::Flatten(string);
  {
    DisallowHeapAllocation no_gc;
    String::FlatContent flat = flattened->GetFlatContent();
    DCHECK(flat.IsFlat());
    if (flat.IsOneByte()) {
      return StringToDouble(unicode_cache, flat.ToOneByteVector(), flags,
                            empty_string_val);
    } else {
      return StringToDouble(unicode_cache, flat.ToUC16Vector(), flags,
                            empty_string_val);
    }
1347 1348 1349 1350
  }
}


dcarney's avatar
dcarney committed
1351 1352 1353 1354 1355
bool IsSpecialIndex(UnicodeCache* unicode_cache, String* string) {
  // Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX
  const int kBufferSize = 24;
  const int length = string->length();
  if (length == 0 || length > kBufferSize) return false;
1356
  uint16_t buffer[kBufferSize];
dcarney's avatar
dcarney committed
1357 1358 1359
  String::WriteToFlat(string, buffer, 0, length);
  // If the first char is not a digit or a '-' or we can't match 'NaN' or
  // '(-)Infinity', bailout immediately.
1360
  int offset = 0;
dcarney's avatar
dcarney committed
1361 1362 1363 1364 1365 1366 1367 1368 1369
  if (!IsDecimalDigit(buffer[0])) {
    if (buffer[0] == '-') {
      if (length == 1) return false;  // Just '-' is bad.
      if (!IsDecimalDigit(buffer[1])) {
        if (buffer[1] == 'I' && length == 9) {
          // Allow matching of '-Infinity' below.
        } else {
          return false;
        }
1370
      }
dcarney's avatar
dcarney committed
1371 1372 1373 1374 1375 1376 1377 1378
      offset++;
    } else if (buffer[0] == 'I' && length == 8) {
      // Allow matching of 'Infinity' below.
    } else if (buffer[0] == 'N' && length == 3) {
      // Match NaN.
      return buffer[1] == 'a' && buffer[2] == 'N';
    } else {
      return false;
1379 1380
    }
  }
dcarney's avatar
dcarney committed
1381 1382 1383 1384 1385 1386 1387
  // Expected fast path: key is an integer.
  static const int kRepresentableIntegerLength = 15;  // (-)XXXXXXXXXXXXXXX
  if (length - offset <= kRepresentableIntegerLength) {
    const int initial_offset = offset;
    bool matches = true;
    for (; offset < length; offset++) {
      matches &= IsDecimalDigit(buffer[offset]);
1388
    }
dcarney's avatar
dcarney committed
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
    if (matches) {
      // Match 0 and -0.
      if (buffer[initial_offset] == '0') return initial_offset == length - 1;
      return true;
    }
  }
  // Slow path: test DoubleToString(StringToDouble(string)) == string.
  Vector<const uint16_t> vector(buffer, length);
  double d = StringToDouble(unicode_cache, vector, NO_FLAGS);
  if (std::isnan(d)) return false;
  // Compute reverse string.
  char reverse_buffer[kBufferSize + 1];  // Result will be /0 terminated.
  Vector<char> reverse_vector(reverse_buffer, arraysize(reverse_buffer));
  const char* reverse_string = DoubleToCString(d, reverse_vector);
  for (int i = 0; i < length; ++i) {
    if (static_cast<uint16_t>(reverse_string[i]) != buffer[i]) return false;
1405 1406 1407
  }
  return true;
}
1408 1409
}  // namespace internal
}  // namespace v8