simulator-ppc.cc 127 KB
Newer Older
1 2 3 4
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6 7 8
#include "src/ppc/simulator-ppc.h"

#if defined(USE_SIMULATOR)

9 10 11 12 13
#include <stdarg.h>
#include <stdlib.h>
#include <cmath>

#include "src/assembler.h"
14
#include "src/base/bits.h"
15
#include "src/base/lazy-instance.h"
16
#include "src/disasm.h"
17
#include "src/macro-assembler.h"
18
#include "src/objects-inl.h"
19
#include "src/ostreams.h"
20
#include "src/ppc/constants-ppc.h"
21
#include "src/ppc/frame-constants-ppc.h"
22
#include "src/register-configuration.h"
23
#include "src/runtime/runtime-utils.h"
24 25 26 27 28

// Only build the simulator if not compiling for real PPC hardware.
namespace v8 {
namespace internal {

29
DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor,
30
                                Simulator::GlobalMonitor::Get)
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// ::v8::internal::OS in the same way as SNPrintF is that the
// Windows C Run-Time Library does not provide vsscanf.
#define SScanF sscanf  // NOLINT

// The PPCDebugger class is used by the simulator while debugging simulated
// PowerPC code.
class PPCDebugger {
 public:
  explicit PPCDebugger(Simulator* sim) : sim_(sim) {}

  void Stop(Instruction* instr);
  void Debug();

 private:
48
  static const Instr kBreakpointInstr = (TWI | 0x1F * B21);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  static const Instr kNopInstr = (ORI);  // ori, 0,0,0

  Simulator* sim_;

  intptr_t GetRegisterValue(int regnum);
  double GetRegisterPairDoubleValue(int regnum);
  double GetFPDoubleRegisterValue(int regnum);
  bool GetValue(const char* desc, intptr_t* value);
  bool GetFPDoubleValue(const char* desc, double* value);

  // Set or delete a breakpoint. Returns true if successful.
  bool SetBreakpoint(Instruction* break_pc);
  bool DeleteBreakpoint(Instruction* break_pc);

  // Undo and redo all breakpoints. This is needed to bracket disassembly and
  // execution to skip past breakpoints when run from the debugger.
  void UndoBreakpoints();
  void RedoBreakpoints();
};

void PPCDebugger::Stop(Instruction* instr) {
  // Get the stop code.
  // use of kStopCodeMask not right on PowerPC
  uint32_t code = instr->SvcValue() & kStopCodeMask;
  // Retrieve the encoded address, which comes just after this stop.
74
  char* msg = *reinterpret_cast<char**>(sim_->get_pc() + kInstrSize);
75 76 77 78 79 80 81 82 83 84
  // Update this stop description.
  if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
    sim_->watched_stops_[code].desc = msg;
  }
  // Print the stop message and code if it is not the default code.
  if (code != kMaxStopCode) {
    PrintF("Simulator hit stop %u: %s\n", code, msg);
  } else {
    PrintF("Simulator hit %s\n", msg);
  }
85
  sim_->set_pc(sim_->get_pc() + kInstrSize + kPointerSize);
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  Debug();
}

intptr_t PPCDebugger::GetRegisterValue(int regnum) {
  return sim_->get_register(regnum);
}


double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
  return sim_->get_double_from_register_pair(regnum);
}


double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
  return sim_->get_double_from_d_register(regnum);
}


bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
  int regnum = Registers::Number(desc);
  if (regnum != kNoRegister) {
    *value = GetRegisterValue(regnum);
    return true;
  } else {
    if (strncmp(desc, "0x", 2) == 0) {
      return SScanF(desc + 2, "%" V8PRIxPTR,
                    reinterpret_cast<uintptr_t*>(value)) == 1;
    } else {
      return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
             1;
    }
  }
  return false;
}


bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
123
  int regnum = DoubleRegisters::Number(desc);
124 125 126 127 128 129 130 131 132 133
  if (regnum != kNoRegister) {
    *value = sim_->get_double_from_d_register(regnum);
    return true;
  }
  return false;
}


bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
  // Check if a breakpoint can be set. If not return without any side-effects.
134
  if (sim_->break_pc_ != nullptr) {
135 136 137 138 139 140 141 142 143 144 145 146 147
    return false;
  }

  // Set the breakpoint.
  sim_->break_pc_ = break_pc;
  sim_->break_instr_ = break_pc->InstructionBits();
  // Not setting the breakpoint instruction in the code itself. It will be set
  // when the debugger shell continues.
  return true;
}


bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
148
  if (sim_->break_pc_ != nullptr) {
149 150 151
    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
  }

152
  sim_->break_pc_ = nullptr;
153 154 155 156 157 158
  sim_->break_instr_ = 0;
  return true;
}


void PPCDebugger::UndoBreakpoints() {
159
  if (sim_->break_pc_ != nullptr) {
160 161 162 163 164 165
    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
  }
}


void PPCDebugger::RedoBreakpoints() {
166
  if (sim_->break_pc_ != nullptr) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
  }
}


void PPCDebugger::Debug() {
  intptr_t last_pc = -1;
  bool done = false;

#define COMMAND_SIZE 63
#define ARG_SIZE 255

#define STR(a) #a
#define XSTR(a) STR(a)

  char cmd[COMMAND_SIZE + 1];
  char arg1[ARG_SIZE + 1];
  char arg2[ARG_SIZE + 1];
  char* argv[3] = {cmd, arg1, arg2};

  // make sure to have a proper terminating character if reaching the limit
  cmd[COMMAND_SIZE] = 0;
  arg1[ARG_SIZE] = 0;
  arg2[ARG_SIZE] = 0;

  // Undo all set breakpoints while running in the debugger shell. This will
  // make them invisible to all commands.
  UndoBreakpoints();
  // Disable tracing while simulating
  bool trace = ::v8::internal::FLAG_trace_sim;
  ::v8::internal::FLAG_trace_sim = false;

  while (!done && !sim_->has_bad_pc()) {
    if (last_pc != sim_->get_pc()) {
      disasm::NameConverter converter;
      disasm::Disassembler dasm(converter);
      // use a reasonably large buffer
      v8::internal::EmbeddedVector<char, 256> buffer;
      dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
206
      PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(), buffer.begin());
207 208 209
      last_pc = sim_->get_pc();
    }
    char* line = ReadLine("sim> ");
210
    if (line == nullptr) {
211 212 213
      break;
    } else {
      char* last_input = sim_->last_debugger_input();
214
      if (strcmp(line, "\n") == 0 && last_input != nullptr) {
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        line = last_input;
      } else {
        // Ownership is transferred to sim_;
        sim_->set_last_debugger_input(line);
      }
      // Use sscanf to parse the individual parts of the command line. At the
      // moment no command expects more than two parameters.
      int argc = SScanF(line,
                        "%" XSTR(COMMAND_SIZE) "s "
                        "%" XSTR(ARG_SIZE) "s "
                        "%" XSTR(ARG_SIZE) "s",
                        cmd, arg1, arg2);
      if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
        intptr_t value;

        // If at a breakpoint, proceed past it.
        if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
232
                ->InstructionBits() == 0x7D821008) {
233
          sim_->set_pc(sim_->get_pc() + kInstrSize);
234 235 236 237 238 239 240 241 242 243 244 245 246 247
        } else {
          sim_->ExecuteInstruction(
              reinterpret_cast<Instruction*>(sim_->get_pc()));
        }

        if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
          for (int i = 1; i < value; i++) {
            disasm::NameConverter converter;
            disasm::Disassembler dasm(converter);
            // use a reasonably large buffer
            v8::internal::EmbeddedVector<char, 256> buffer;
            dasm.InstructionDecode(buffer,
                                   reinterpret_cast<byte*>(sim_->get_pc()));
            PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(),
248
                   buffer.begin());
249 250 251 252 253 254 255
            sim_->ExecuteInstruction(
                reinterpret_cast<Instruction*>(sim_->get_pc()));
          }
        }
      } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
        // If at a breakpoint, proceed past it.
        if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
256
                ->InstructionBits() == 0x7D821008) {
257
          sim_->set_pc(sim_->get_pc() + kInstrSize);
258 259 260 261 262 263 264 265 266 267 268 269 270 271
        } else {
          // Execute the one instruction we broke at with breakpoints disabled.
          sim_->ExecuteInstruction(
              reinterpret_cast<Instruction*>(sim_->get_pc()));
        }
        // Leave the debugger shell.
        done = true;
      } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
        if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
          intptr_t value;
          double dvalue;
          if (strcmp(arg1, "all") == 0) {
            for (int i = 0; i < kNumRegisters; i++) {
              value = GetRegisterValue(i);
272
              PrintF("    %3s: %08" V8PRIxPTR,
273
                     RegisterName(Register::from_code(i)), value);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
              if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
                  (i % 2) == 0) {
                dvalue = GetRegisterPairDoubleValue(i);
                PrintF(" (%f)\n", dvalue);
              } else if (i != 0 && !((i + 1) & 3)) {
                PrintF("\n");
              }
            }
            PrintF("  pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
                   "  "
                   "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
                   sim_->special_reg_pc_, sim_->special_reg_lr_,
                   sim_->special_reg_ctr_, sim_->special_reg_xer_,
                   sim_->condition_reg_);
          } else if (strcmp(arg1, "alld") == 0) {
            for (int i = 0; i < kNumRegisters; i++) {
              value = GetRegisterValue(i);
              PrintF("     %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
292
                     RegisterName(Register::from_code(i)), value, value);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
              if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
                  (i % 2) == 0) {
                dvalue = GetRegisterPairDoubleValue(i);
                PrintF(" (%f)\n", dvalue);
              } else if (!((i + 1) % 2)) {
                PrintF("\n");
              }
            }
            PrintF("   pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
                   "  "
                   "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
                   sim_->special_reg_pc_, sim_->special_reg_lr_,
                   sim_->special_reg_ctr_, sim_->special_reg_xer_,
                   sim_->condition_reg_);
          } else if (strcmp(arg1, "allf") == 0) {
            for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
              dvalue = GetFPDoubleRegisterValue(i);
              uint64_t as_words = bit_cast<uint64_t>(dvalue);
311
              PrintF("%3s: %f 0x%08x %08x\n",
312
                     RegisterName(DoubleRegister::from_code(i)), dvalue,
313
                     static_cast<uint32_t>(as_words >> 32),
314
                     static_cast<uint32_t>(as_words & 0xFFFFFFFF));
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
            }
          } else if (arg1[0] == 'r' &&
                     (arg1[1] >= '0' && arg1[1] <= '9' &&
                      (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
                                           arg1[3] == '\0')))) {
            int regnum = strtoul(&arg1[1], 0, 10);
            if (regnum != kNoRegister) {
              value = GetRegisterValue(regnum);
              PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
                     value);
            } else {
              PrintF("%s unrecognized\n", arg1);
            }
          } else {
            if (GetValue(arg1, &value)) {
              PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
                     value);
            } else if (GetFPDoubleValue(arg1, &dvalue)) {
              uint64_t as_words = bit_cast<uint64_t>(dvalue);
              PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
                     static_cast<uint32_t>(as_words >> 32),
336
                     static_cast<uint32_t>(as_words & 0xFFFFFFFF));
337 338 339 340 341 342 343 344 345 346 347
            } else {
              PrintF("%s unrecognized\n", arg1);
            }
          }
        } else {
          PrintF("print <register>\n");
        }
      } else if ((strcmp(cmd, "po") == 0) ||
                 (strcmp(cmd, "printobject") == 0)) {
        if (argc == 2) {
          intptr_t value;
348
          StdoutStream os;
349
          if (GetValue(arg1, &value)) {
350
            Object obj(value);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            os << arg1 << ": \n";
#ifdef DEBUG
            obj->Print(os);
            os << "\n";
#else
            os << Brief(obj) << "\n";
#endif
          } else {
            os << arg1 << " unrecognized\n";
          }
        } else {
          PrintF("printobject <value>\n");
        }
      } else if (strcmp(cmd, "setpc") == 0) {
        intptr_t value;

        if (!GetValue(arg1, &value)) {
          PrintF("%s unrecognized\n", arg1);
          continue;
        }
        sim_->set_pc(value);
      } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
373 374
        intptr_t* cur = nullptr;
        intptr_t* end = nullptr;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        int next_arg = 1;

        if (strcmp(cmd, "stack") == 0) {
          cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
        } else {  // "mem"
          intptr_t value;
          if (!GetValue(arg1, &value)) {
            PrintF("%s unrecognized\n", arg1);
            continue;
          }
          cur = reinterpret_cast<intptr_t*>(value);
          next_arg++;
        }

        intptr_t words;  // likely inaccurate variable name for 64bit
        if (argc == next_arg) {
          words = 10;
        } else {
          if (!GetValue(argv[next_arg], &words)) {
            words = 10;
          }
        }
        end = cur + words;

        while (cur < end) {
          PrintF("  0x%08" V8PRIxPTR ":  0x%08" V8PRIxPTR " %10" V8PRIdPTR,
                 reinterpret_cast<intptr_t>(cur), *cur, *cur);
402
          Object obj(*cur);
403
          Heap* current_heap = sim_->isolate_->heap();
404
          if (obj.IsSmi() || current_heap->Contains(HeapObject::cast(obj))) {
405
            PrintF(" (");
406 407
            if (obj.IsSmi()) {
              PrintF("smi %d", Smi::ToInt(obj));
408 409 410 411 412 413 414 415 416 417 418 419 420 421
            } else {
              obj->ShortPrint();
            }
            PrintF(")");
          }
          PrintF("\n");
          cur++;
        }
      } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
        disasm::NameConverter converter;
        disasm::Disassembler dasm(converter);
        // use a reasonably large buffer
        v8::internal::EmbeddedVector<char, 256> buffer;

422 423 424
        byte* prev = nullptr;
        byte* cur = nullptr;
        byte* end = nullptr;
425 426 427

        if (argc == 1) {
          cur = reinterpret_cast<byte*>(sim_->get_pc());
428
          end = cur + (10 * kInstrSize);
429 430 431 432 433 434 435 436
        } else if (argc == 2) {
          int regnum = Registers::Number(arg1);
          if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
            // The argument is an address or a register name.
            intptr_t value;
            if (GetValue(arg1, &value)) {
              cur = reinterpret_cast<byte*>(value);
              // Disassemble 10 instructions at <arg1>.
437
              end = cur + (10 * kInstrSize);
438 439 440 441 442 443 444
            }
          } else {
            // The argument is the number of instructions.
            intptr_t value;
            if (GetValue(arg1, &value)) {
              cur = reinterpret_cast<byte*>(sim_->get_pc());
              // Disassemble <arg1> instructions.
445
              end = cur + (value * kInstrSize);
446 447 448 449 450 451 452
            }
          }
        } else {
          intptr_t value1;
          intptr_t value2;
          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
            cur = reinterpret_cast<byte*>(value1);
453
            end = cur + (value2 * kInstrSize);
454 455 456 457 458 459 460
          }
        }

        while (cur < end) {
          prev = cur;
          cur += dasm.InstructionDecode(buffer, cur);
          PrintF("  0x%08" V8PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(prev),
461
                 buffer.begin());
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        }
      } else if (strcmp(cmd, "gdb") == 0) {
        PrintF("relinquishing control to gdb\n");
        v8::base::OS::DebugBreak();
        PrintF("regaining control from gdb\n");
      } else if (strcmp(cmd, "break") == 0) {
        if (argc == 2) {
          intptr_t value;
          if (GetValue(arg1, &value)) {
            if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
              PrintF("setting breakpoint failed\n");
            }
          } else {
            PrintF("%s unrecognized\n", arg1);
          }
        } else {
          PrintF("break <address>\n");
        }
      } else if (strcmp(cmd, "del") == 0) {
481
        if (!DeleteBreakpoint(nullptr)) {
482 483 484 485 486 487 488 489 490 491 492 493 494 495
          PrintF("deleting breakpoint failed\n");
        }
      } else if (strcmp(cmd, "cr") == 0) {
        PrintF("Condition reg: %08x\n", sim_->condition_reg_);
      } else if (strcmp(cmd, "lr") == 0) {
        PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
      } else if (strcmp(cmd, "ctr") == 0) {
        PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
      } else if (strcmp(cmd, "xer") == 0) {
        PrintF("XER: %08x\n", sim_->special_reg_xer_);
      } else if (strcmp(cmd, "fpscr") == 0) {
        PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
      } else if (strcmp(cmd, "stop") == 0) {
        intptr_t value;
496
        intptr_t stop_pc = sim_->get_pc() - (kInstrSize + kPointerSize);
497 498
        Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
        Instruction* msg_address =
499
            reinterpret_cast<Instruction*>(stop_pc + kInstrSize);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
          // Remove the current stop.
          if (sim_->isStopInstruction(stop_instr)) {
            stop_instr->SetInstructionBits(kNopInstr);
            msg_address->SetInstructionBits(kNopInstr);
          } else {
            PrintF("Not at debugger stop.\n");
          }
        } else if (argc == 3) {
          // Print information about all/the specified breakpoint(s).
          if (strcmp(arg1, "info") == 0) {
            if (strcmp(arg2, "all") == 0) {
              PrintF("Stop information:\n");
              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
                sim_->PrintStopInfo(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->PrintStopInfo(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          } else if (strcmp(arg1, "enable") == 0) {
            // Enable all/the specified breakpoint(s).
            if (strcmp(arg2, "all") == 0) {
              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
                sim_->EnableStop(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->EnableStop(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          } else if (strcmp(arg1, "disable") == 0) {
            // Disable all/the specified breakpoint(s).
            if (strcmp(arg2, "all") == 0) {
              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
                sim_->DisableStop(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->DisableStop(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          }
        } else {
          PrintF("Wrong usage. Use help command for more information.\n");
        }
      } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
        ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
        PrintF("Trace of executed instructions is %s\n",
               ::v8::internal::FLAG_trace_sim ? "on" : "off");
      } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
        PrintF("cont\n");
        PrintF("  continue execution (alias 'c')\n");
        PrintF("stepi [num instructions]\n");
        PrintF("  step one/num instruction(s) (alias 'si')\n");
        PrintF("print <register>\n");
        PrintF("  print register content (alias 'p')\n");
        PrintF("  use register name 'all' to display all integer registers\n");
        PrintF(
            "  use register name 'alld' to display integer registers "
            "with decimal values\n");
        PrintF("  use register name 'rN' to display register number 'N'\n");
        PrintF("  add argument 'fp' to print register pair double values\n");
        PrintF(
            "  use register name 'allf' to display floating-point "
            "registers\n");
        PrintF("printobject <register>\n");
        PrintF("  print an object from a register (alias 'po')\n");
        PrintF("cr\n");
        PrintF("  print condition register\n");
        PrintF("lr\n");
        PrintF("  print link register\n");
        PrintF("ctr\n");
        PrintF("  print ctr register\n");
        PrintF("xer\n");
        PrintF("  print XER\n");
        PrintF("fpscr\n");
        PrintF("  print FPSCR\n");
        PrintF("stack [<num words>]\n");
        PrintF("  dump stack content, default dump 10 words)\n");
        PrintF("mem <address> [<num words>]\n");
        PrintF("  dump memory content, default dump 10 words)\n");
        PrintF("disasm [<instructions>]\n");
        PrintF("disasm [<address/register>]\n");
        PrintF("disasm [[<address/register>] <instructions>]\n");
        PrintF("  disassemble code, default is 10 instructions\n");
        PrintF("  from pc (alias 'di')\n");
        PrintF("gdb\n");
        PrintF("  enter gdb\n");
        PrintF("break <address>\n");
        PrintF("  set a break point on the address\n");
        PrintF("del\n");
        PrintF("  delete the breakpoint\n");
        PrintF("trace (alias 't')\n");
        PrintF("  toogle the tracing of all executed statements\n");
        PrintF("stop feature:\n");
        PrintF("  Description:\n");
        PrintF("    Stops are debug instructions inserted by\n");
        PrintF("    the Assembler::stop() function.\n");
        PrintF("    When hitting a stop, the Simulator will\n");
601
        PrintF("    stop and give control to the PPCDebugger.\n");
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
        PrintF("    The first %d stop codes are watched:\n",
               Simulator::kNumOfWatchedStops);
        PrintF("    - They can be enabled / disabled: the Simulator\n");
        PrintF("      will / won't stop when hitting them.\n");
        PrintF("    - The Simulator keeps track of how many times they \n");
        PrintF("      are met. (See the info command.) Going over a\n");
        PrintF("      disabled stop still increases its counter. \n");
        PrintF("  Commands:\n");
        PrintF("    stop info all/<code> : print infos about number <code>\n");
        PrintF("      or all stop(s).\n");
        PrintF("    stop enable/disable all/<code> : enables / disables\n");
        PrintF("      all or number <code> stop(s)\n");
        PrintF("    stop unstop\n");
        PrintF("      ignore the stop instruction at the current location\n");
        PrintF("      from now on\n");
      } else {
        PrintF("Unknown command: %s\n", cmd);
      }
    }
  }

  // Add all the breakpoints back to stop execution and enter the debugger
  // shell when hit.
  RedoBreakpoints();
  // Restore tracing
  ::v8::internal::FLAG_trace_sim = trace;

#undef COMMAND_SIZE
#undef ARG_SIZE

#undef STR
#undef XSTR
}

636
bool Simulator::ICacheMatch(void* one, void* two) {
637 638
  DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0);
  DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
  return one == two;
}


static uint32_t ICacheHash(void* key) {
  return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}


static bool AllOnOnePage(uintptr_t start, int size) {
  intptr_t start_page = (start & ~CachePage::kPageMask);
  intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
  return start_page == end_page;
}


void Simulator::set_last_debugger_input(char* input) {
  DeleteArray(last_debugger_input_);
  last_debugger_input_ = input;
}

660 661 662 663
void Simulator::SetRedirectInstruction(Instruction* instruction) {
  instruction->SetInstructionBits(rtCallRedirInstr | kCallRtRedirected);
}

664 665
void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
                            void* start_addr, size_t size) {
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
  intptr_t start = reinterpret_cast<intptr_t>(start_addr);
  int intra_line = (start & CachePage::kLineMask);
  start -= intra_line;
  size += intra_line;
  size = ((size - 1) | CachePage::kLineMask) + 1;
  int offset = (start & CachePage::kPageMask);
  while (!AllOnOnePage(start, size - 1)) {
    int bytes_to_flush = CachePage::kPageSize - offset;
    FlushOnePage(i_cache, start, bytes_to_flush);
    start += bytes_to_flush;
    size -= bytes_to_flush;
    DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
    offset = 0;
  }
  if (size != 0) {
    FlushOnePage(i_cache, start, size);
  }
}

685 686
CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
                                   void* page) {
687
  base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
688
  if (entry->value == nullptr) {
689 690 691 692 693 694 695 696
    CachePage* new_page = new CachePage();
    entry->value = new_page;
  }
  return reinterpret_cast<CachePage*>(entry->value);
}


// Flush from start up to and not including start + size.
697 698
void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
                             intptr_t start, int size) {
699
  DCHECK_LE(size, CachePage::kPageSize);
700
  DCHECK(AllOnOnePage(start, size - 1));
701 702
  DCHECK_EQ(start & CachePage::kLineMask, 0);
  DCHECK_EQ(size & CachePage::kLineMask, 0);
703 704 705 706 707 708 709
  void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
  int offset = (start & CachePage::kPageMask);
  CachePage* cache_page = GetCachePage(i_cache, page);
  char* valid_bytemap = cache_page->ValidityByte(offset);
  memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}

710 711
void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
                            Instruction* instr) {
712 713 714 715 716 717 718 719 720 721
  intptr_t address = reinterpret_cast<intptr_t>(instr);
  void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
  void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
  int offset = (address & CachePage::kPageMask);
  CachePage* cache_page = GetCachePage(i_cache, page);
  char* cache_valid_byte = cache_page->ValidityByte(offset);
  bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
  char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
  if (cache_hit) {
    // Check that the data in memory matches the contents of the I-cache.
722 723
    CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
                       cache_page->CachedData(offset), kInstrSize));
724 725 726 727 728 729 730 731 732 733 734 735
  } else {
    // Cache miss.  Load memory into the cache.
    memcpy(cached_line, line, CachePage::kLineLength);
    *cache_valid_byte = CachePage::LINE_VALID;
  }
}


Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
#if V8_TARGET_ARCH_PPC64
736
  size_t stack_size = FLAG_sim_stack_size * KB;
737
#else
738
  size_t stack_size = MB;  // allocate 1MB for stack
739
#endif
740
  stack_size += 2 * stack_protection_size_;
741 742 743
  stack_ = reinterpret_cast<char*>(malloc(stack_size));
  pc_modified_ = false;
  icount_ = 0;
744
  break_pc_ = nullptr;
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
  break_instr_ = 0;

  // Set up architecture state.
  // All registers are initialized to zero to start with.
  for (int i = 0; i < kNumGPRs; i++) {
    registers_[i] = 0;
  }
  condition_reg_ = 0;
  fp_condition_reg_ = 0;
  special_reg_pc_ = 0;
  special_reg_lr_ = 0;
  special_reg_ctr_ = 0;

  // Initializing FP registers.
  for (int i = 0; i < kNumFPRs; i++) {
    fp_registers_[i] = 0.0;
  }

  // The sp is initialized to point to the bottom (high address) of the
  // allocated stack area. To be safe in potential stack underflows we leave
  // some buffer below.
766 767
  registers_[sp] =
      reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
768

769
  last_debugger_input_ = nullptr;
770 771
}

772 773 774
Simulator::~Simulator() {
  free(stack_);
}
775

776

777 778 779 780
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
  v8::internal::Isolate::PerIsolateThreadData* isolate_data =
      isolate->FindOrAllocatePerThreadDataForThisThread();
781
  DCHECK_NOT_NULL(isolate_data);
782 783

  Simulator* sim = isolate_data->simulator();
784
  if (sim == nullptr) {
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
    // TODO(146): delete the simulator object when a thread/isolate goes away.
    sim = new Simulator(isolate);
    isolate_data->set_simulator(sim);
  }
  return sim;
}


// Sets the register in the architecture state.
void Simulator::set_register(int reg, intptr_t value) {
  DCHECK((reg >= 0) && (reg < kNumGPRs));
  registers_[reg] = value;
}


// Get the register from the architecture state.
intptr_t Simulator::get_register(int reg) const {
  DCHECK((reg >= 0) && (reg < kNumGPRs));
  // Stupid code added to avoid bug in GCC.
  // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
  if (reg >= kNumGPRs) return 0;
  // End stupid code.
  return registers_[reg];
}


double Simulator::get_double_from_register_pair(int reg) {
  DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));

  double dm_val = 0.0;
#if !V8_TARGET_ARCH_PPC64  // doesn't make sense in 64bit mode
  // Read the bits from the unsigned integer register_[] array
  // into the double precision floating point value and return it.
  char buffer[sizeof(fp_registers_[0])];
  memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
  memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
#endif
  return (dm_val);
}


// Raw access to the PC register.
void Simulator::set_pc(intptr_t value) {
  pc_modified_ = true;
  special_reg_pc_ = value;
}


bool Simulator::has_bad_pc() const {
  return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
}


// Raw access to the PC register without the special adjustment when reading.
intptr_t Simulator::get_pc() const { return special_reg_pc_; }

841 842
// Accessor to the internal Link Register
intptr_t Simulator::get_lr() const { return special_reg_lr_; }
843 844 845 846 847 848 849 850 851 852 853 854 855

// Runtime FP routines take:
// - two double arguments
// - one double argument and zero or one integer arguments.
// All are consructed here from d1, d2 and r3.
void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
  *x = get_double_from_d_register(1);
  *y = get_double_from_d_register(2);
  *z = get_register(3);
}


// The return value is in d1.
856 857 858
void Simulator::SetFpResult(const double& result) {
  set_d_register_from_double(1, result);
}
859 860 861 862 863


void Simulator::TrashCallerSaveRegisters() {
// We don't trash the registers with the return value.
#if 0  // A good idea to trash volatile registers, needs to be done
864 865 866
  registers_[2] = 0x50BAD4U;
  registers_[3] = 0x50BAD4U;
  registers_[12] = 0x50BAD4U;
867 868 869
#endif
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
#define GENERATE_RW_FUNC(size, type)                             \
  type Simulator::Read##size(uintptr_t addr) {                   \
    type value;                                                  \
    Read(addr, &value);                                          \
    return value;                                                \
  }                                                              \
  type Simulator::ReadEx##size(uintptr_t addr) {                 \
    type value;                                                  \
    ReadEx(addr, &value);                                        \
    return value;                                                \
  }                                                              \
  void Simulator::Write##size(uintptr_t addr, type value) {      \
    Write(addr, value);                                          \
  }                                                              \
  int32_t Simulator::WriteEx##size(uintptr_t addr, type value) { \
    return WriteEx(addr, value);                                 \
886
  }
887

888
RW_VAR_LIST(GENERATE_RW_FUNC)
889
#undef GENERATE_RW_FUNC
890 891

// Returns the limit of the stack area to enable checking for stack overflows.
892 893 894 895 896 897 898 899 900
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
  // The simulator uses a separate JS stack. If we have exhausted the C stack,
  // we also drop down the JS limit to reflect the exhaustion on the JS stack.
  if (GetCurrentStackPosition() < c_limit) {
    return reinterpret_cast<uintptr_t>(get_sp());
  }

  // Otherwise the limit is the JS stack. Leave a safety margin to prevent
  // overrunning the stack when pushing values.
901
  return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
}


// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
  PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
         reinterpret_cast<intptr_t>(instr), format);
  UNIMPLEMENTED();
}


// Calculate C flag value for additions.
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
  uint32_t uleft = static_cast<uint32_t>(left);
  uint32_t uright = static_cast<uint32_t>(right);
917
  uint32_t urest = 0xFFFFFFFFU - uleft;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

  return (uright > urest) ||
         (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
}


// Calculate C flag value for subtractions.
bool Simulator::BorrowFrom(int32_t left, int32_t right) {
  uint32_t uleft = static_cast<uint32_t>(left);
  uint32_t uright = static_cast<uint32_t>(right);

  return (uright > uleft);
}


// Calculate V flag value for additions and subtractions.
bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
                             bool addition) {
  bool overflow;
  if (addition) {
    // operands have the same sign
    overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
               // and operands and result have different sign
               &&
               ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
  } else {
    // operands have different signs
    overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
               // and first operand and result have different signs
               &&
               ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
  }
  return overflow;
}

953
static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
954 955
  *x = static_cast<intptr_t>(pair->x);
  *y = static_cast<intptr_t>(pair->y);
956
}
957

mbrandy's avatar
mbrandy committed
958 959 960
// Calls into the V8 runtime.
typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
                                         intptr_t arg2, intptr_t arg3,
961 962 963
                                         intptr_t arg4, intptr_t arg5,
                                         intptr_t arg6, intptr_t arg7,
                                         intptr_t arg8);
mbrandy's avatar
mbrandy committed
964 965 966
typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
                                               intptr_t arg2, intptr_t arg3,
                                               intptr_t arg4, intptr_t arg5);
967

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
// These prototypes handle the four types of FP calls.
typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPCall)(double darg0);
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);

// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);

// This signature supports direct call to accessor getter callback.
typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
                                                    intptr_t arg1, void* arg2);

// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime.
void Simulator::SoftwareInterrupt(Instruction* instr) {
  int svc = instr->SvcValue();
  switch (svc) {
    case kCallRtRedirected: {
      // Check if stack is aligned. Error if not aligned is reported below to
      // include information on the function called.
      bool stack_aligned =
          (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
          0;
995
      Redirection* redirection = Redirection::FromInstruction(instr);
996 997
      const int kArgCount = 9;
      const int kRegisterArgCount = 8;
998 999
      int arg0_regnum = 3;
      intptr_t result_buffer = 0;
mbrandy's avatar
mbrandy committed
1000
      bool uses_result_buffer =
mbrandy's avatar
mbrandy committed
1001 1002
          (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
           !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
mbrandy's avatar
mbrandy committed
1003
      if (uses_result_buffer) {
1004 1005 1006 1007
        result_buffer = get_register(r3);
        arg0_regnum++;
      }
      intptr_t arg[kArgCount];
1008 1009
      // First eight arguments in registers r3-r10.
      for (int i = 0; i < kRegisterArgCount; i++) {
1010 1011
        arg[i] = get_register(arg0_regnum + i);
      }
1012 1013 1014 1015 1016
      intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp));
      // Remaining argument on stack
      arg[kRegisterArgCount] = stack_pointer[kStackFrameExtraParamSlot];
      STATIC_ASSERT(kArgCount == kRegisterArgCount + 1);
      STATIC_ASSERT(kMaxCParameters == 9);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
      bool fp_call =
          (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
          (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
          (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
          (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
      // This is dodgy but it works because the C entry stubs are never moved.
      // See comment in codegen-arm.cc and bug 1242173.
      intptr_t saved_lr = special_reg_lr_;
      intptr_t external =
          reinterpret_cast<intptr_t>(redirection->external_function());
      if (fp_call) {
        double dval0, dval1;  // one or two double parameters
        intptr_t ival;        // zero or one integer parameters
        int iresult = 0;      // integer return value
        double dresult = 0;   // double return value
        GetFpArgs(&dval0, &dval1, &ival);
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          SimulatorRuntimeCall generic_target =
              reinterpret_cast<SimulatorRuntimeCall>(external);
          switch (redirection->type()) {
            case ExternalReference::BUILTIN_FP_FP_CALL:
            case ExternalReference::BUILTIN_COMPARE_CALL:
              PrintF("Call to host function at %p with args %f, %f",
1040
                     reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
1041
                     dval0, dval1);
1042 1043 1044
              break;
            case ExternalReference::BUILTIN_FP_CALL:
              PrintF("Call to host function at %p with arg %f",
1045
                     reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
1046
                     dval0);
1047 1048 1049
              break;
            case ExternalReference::BUILTIN_FP_INT_CALL:
              PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
1050
                     reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
1051
                     dval0, ival);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
              break;
            default:
              UNREACHABLE();
              break;
          }
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
                   get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        switch (redirection->type()) {
          case ExternalReference::BUILTIN_COMPARE_CALL: {
            SimulatorRuntimeCompareCall target =
                reinterpret_cast<SimulatorRuntimeCompareCall>(external);
            iresult = target(dval0, dval1);
            set_register(r3, iresult);
            break;
          }
          case ExternalReference::BUILTIN_FP_FP_CALL: {
            SimulatorRuntimeFPFPCall target =
                reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
            dresult = target(dval0, dval1);
            SetFpResult(dresult);
            break;
          }
          case ExternalReference::BUILTIN_FP_CALL: {
            SimulatorRuntimeFPCall target =
                reinterpret_cast<SimulatorRuntimeFPCall>(external);
            dresult = target(dval0);
            SetFpResult(dresult);
            break;
          }
          case ExternalReference::BUILTIN_FP_INT_CALL: {
            SimulatorRuntimeFPIntCall target =
                reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
            dresult = target(dval0, ival);
            SetFpResult(dresult);
            break;
          }
          default:
            UNREACHABLE();
            break;
        }
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          switch (redirection->type()) {
            case ExternalReference::BUILTIN_COMPARE_CALL:
              PrintF("Returned %08x\n", iresult);
              break;
            case ExternalReference::BUILTIN_FP_FP_CALL:
            case ExternalReference::BUILTIN_FP_CALL:
            case ExternalReference::BUILTIN_FP_INT_CALL:
              PrintF("Returned %f\n", dresult);
              break;
            default:
              UNREACHABLE();
              break;
          }
        }
      } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
        // See callers of MacroAssembler::CallApiFunctionAndReturn for
        // explanation of register usage.
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          PrintF("Call to host function at %p args %08" V8PRIxPTR,
                 reinterpret_cast<void*>(external), arg[0]);
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
                   get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        SimulatorRuntimeDirectApiCall target =
            reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
        target(arg[0]);
      } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
        // See callers of MacroAssembler::CallApiFunctionAndReturn for
        // explanation of register usage.
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          PrintF("Call to host function at %p args %08" V8PRIxPTR
                 " %08" V8PRIxPTR,
                 reinterpret_cast<void*>(external), arg[0], arg[1]);
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
                   get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        SimulatorRuntimeProfilingApiCall target =
            reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
        target(arg[0], Redirection::ReverseRedirection(arg[1]));
      } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
        // See callers of MacroAssembler::CallApiFunctionAndReturn for
        // explanation of register usage.
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          PrintF("Call to host function at %p args %08" V8PRIxPTR
                 " %08" V8PRIxPTR,
                 reinterpret_cast<void*>(external), arg[0], arg[1]);
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
                   get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        SimulatorRuntimeDirectGetterCall target =
            reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1161 1162 1163
        if (!ABI_PASSES_HANDLES_IN_REGS) {
          arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
        }
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        target(arg[0], arg[1]);
      } else if (redirection->type() ==
                 ExternalReference::PROFILING_GETTER_CALL) {
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          PrintF("Call to host function at %p args %08" V8PRIxPTR
                 " %08" V8PRIxPTR " %08" V8PRIxPTR,
                 reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
                   get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        SimulatorRuntimeProfilingGetterCall target =
            reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
1180 1181 1182
        if (!ABI_PASSES_HANDLES_IN_REGS) {
          arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
        }
1183 1184 1185 1186 1187 1188 1189 1190 1191
        target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
      } else {
        // builtin call.
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          SimulatorRuntimeCall target =
              reinterpret_cast<SimulatorRuntimeCall>(external);
          PrintF(
              "Call to host function at %p,\n"
              "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1192
              ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1193
              ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
1194 1195
              reinterpret_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1],
              arg[2], arg[3], arg[4], arg[5], arg[6], arg[7], arg[8]);
1196 1197 1198 1199 1200 1201 1202
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
                   get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
1203 1204 1205 1206
        if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
          SimulatorRuntimePairCall target =
              reinterpret_cast<SimulatorRuntimePairCall>(external);
          ObjectPair result =
1207
              target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1208 1209 1210
          intptr_t x;
          intptr_t y;
          decodeObjectPair(&result, &x, &y);
1211
          if (::v8::internal::FLAG_trace_sim) {
1212
            PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
1213
          }
1214 1215 1216
          if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) {
            set_register(r3, x);
            set_register(r4, y);
mbrandy's avatar
mbrandy committed
1217
          } else {
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
            memcpy(reinterpret_cast<void*>(result_buffer), &result,
                   sizeof(ObjectPair));
            set_register(r3, result_buffer);
          }
        } else {
          DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
          SimulatorRuntimeCall target =
              reinterpret_cast<SimulatorRuntimeCall>(external);
          intptr_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4],
                                   arg[5], arg[6], arg[7], arg[8]);
          if (::v8::internal::FLAG_trace_sim) {
            PrintF("Returned %08" V8PRIxPTR "\n", result);
1230
          }
1231
          set_register(r3, result);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        }
      }
      set_pc(saved_lr);
      break;
    }
    case kBreakpoint: {
      PPCDebugger dbg(this);
      dbg.Debug();
      break;
    }
    // stop uses all codes greater than 1 << 23.
    default: {
      if (svc >= (1 << 23)) {
        uint32_t code = svc & kStopCodeMask;
        if (isWatchedStop(code)) {
          IncreaseStopCounter(code);
        }
        // Stop if it is enabled, otherwise go on jumping over the stop
        // and the message address.
        if (isEnabledStop(code)) {
          PPCDebugger dbg(this);
          dbg.Stop(instr);
        } else {
1255
          set_pc(get_pc() + kInstrSize + kPointerSize);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        }
      } else {
        // This is not a valid svc code.
        UNREACHABLE();
        break;
      }
    }
  }
}


// Stop helper functions.
bool Simulator::isStopInstruction(Instruction* instr) {
  return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
}


bool Simulator::isWatchedStop(uint32_t code) {
1274
  DCHECK_LE(code, kMaxStopCode);
1275 1276 1277 1278 1279
  return code < kNumOfWatchedStops;
}


bool Simulator::isEnabledStop(uint32_t code) {
1280
  DCHECK_LE(code, kMaxStopCode);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
  // Unwatched stops are always enabled.
  return !isWatchedStop(code) ||
         !(watched_stops_[code].count & kStopDisabledBit);
}


void Simulator::EnableStop(uint32_t code) {
  DCHECK(isWatchedStop(code));
  if (!isEnabledStop(code)) {
    watched_stops_[code].count &= ~kStopDisabledBit;
  }
}


void Simulator::DisableStop(uint32_t code) {
  DCHECK(isWatchedStop(code));
  if (isEnabledStop(code)) {
    watched_stops_[code].count |= kStopDisabledBit;
  }
}


void Simulator::IncreaseStopCounter(uint32_t code) {
1304
  DCHECK_LE(code, kMaxStopCode);
1305
  DCHECK(isWatchedStop(code));
1306
  if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) {
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    PrintF(
        "Stop counter for code %i has overflowed.\n"
        "Enabling this code and reseting the counter to 0.\n",
        code);
    watched_stops_[code].count = 0;
    EnableStop(code);
  } else {
    watched_stops_[code].count++;
  }
}


// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
1321
  DCHECK_LE(code, kMaxStopCode);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
  if (!isWatchedStop(code)) {
    PrintF("Stop not watched.");
  } else {
    const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
    int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
    // Don't print the state of unused breakpoints.
    if (count != 0) {
      if (watched_stops_[code].desc) {
        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
               state, count, watched_stops_[code].desc);
      } else {
        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
               count);
      }
    }
  }
}


void Simulator::SetCR0(intptr_t result, bool setSO) {
  int bf = 0;
  if (result < 0) {
    bf |= 0x80000000;
  }
  if (result > 0) {
    bf |= 0x40000000;
  }
  if (result == 0) {
    bf |= 0x20000000;
  }
  if (setSO) {
    bf |= 0x10000000;
  }
  condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
}


1359
void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
1360 1361 1362 1363 1364 1365 1366 1367
  int bo = instr->Bits(25, 21) << 21;
  int condition_bit = instr->Bits(20, 16);
  int condition_mask = 0x80000000 >> condition_bit;
  switch (bo) {
    case DCBNZF:  // Decrement CTR; branch if CTR != 0 and condition false
    case DCBEZF:  // Decrement CTR; branch if CTR == 0 and condition false
      UNIMPLEMENTED();
    case BF: {  // Branch if condition false
1368
      if (condition_reg_ & condition_mask) return;
1369 1370 1371 1372 1373 1374
      break;
    }
    case DCBNZT:  // Decrement CTR; branch if CTR != 0 and condition true
    case DCBEZT:  // Decrement CTR; branch if CTR == 0 and condition true
      UNIMPLEMENTED();
    case BT: {  // Branch if condition true
1375
      if (!(condition_reg_ & condition_mask)) return;
1376 1377 1378 1379 1380
      break;
    }
    case DCBNZ:  // Decrement CTR; branch if CTR != 0
    case DCBEZ:  // Decrement CTR; branch if CTR == 0
      special_reg_ctr_ -= 1;
1381
      if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
1382 1383 1384 1385 1386 1387 1388
      break;
    case BA: {                   // Branch always
      break;
    }
    default:
      UNIMPLEMENTED();  // Invalid encoding
  }
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

  intptr_t old_pc = get_pc();

  switch (type) {
    case BC_OFFSET: {
      int offset = (instr->Bits(15, 2) << 18) >> 16;
      set_pc(old_pc + offset);
      break;
    }
    case BC_LINK_REG:
      set_pc(special_reg_lr_);
      break;
    case BC_CTR_REG:
      set_pc(special_reg_ctr_);
      break;
  }

  if (instr->Bit(0) == 1) {  // LK flag set
    special_reg_lr_ = old_pc + 4;
  }
1409 1410
}

1411 1412
void Simulator::ExecuteGeneric(Instruction* instr) {
  uint32_t opcode = instr->OpcodeBase();
sampsong's avatar
sampsong committed
1413
  switch (opcode) {
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
    case SUBFIC: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      intptr_t ra_val = get_register(ra);
      int32_t im_val = instr->Bits(15, 0);
      im_val = SIGN_EXT_IMM16(im_val);
      intptr_t alu_out = im_val - ra_val;
      set_register(rt, alu_out);
      // todo - handle RC bit
      break;
    }
    case CMPLI: {
      int ra = instr->RAValue();
      uint32_t im_val = instr->Bits(15, 0);
      int cr = instr->Bits(25, 23);
      uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
      int L = instr->Bit(21);
      if (L) {
#endif
        uintptr_t ra_val = get_register(ra);
        if (ra_val < im_val) {
          bf |= 0x80000000;
        }
        if (ra_val > im_val) {
          bf |= 0x40000000;
        }
        if (ra_val == im_val) {
          bf |= 0x20000000;
        }
#if V8_TARGET_ARCH_PPC64
      } else {
        uint32_t ra_val = get_register(ra);
        if (ra_val < im_val) {
          bf |= 0x80000000;
        }
        if (ra_val > im_val) {
          bf |= 0x40000000;
        }
        if (ra_val == im_val) {
          bf |= 0x20000000;
        }
      }
#endif
      uint32_t condition_mask = 0xF0000000U >> (cr * 4);
      uint32_t condition = bf >> (cr * 4);
      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
      break;
    }
    case CMPI: {
      int ra = instr->RAValue();
      int32_t im_val = instr->Bits(15, 0);
      im_val = SIGN_EXT_IMM16(im_val);
      int cr = instr->Bits(25, 23);
      uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
      int L = instr->Bit(21);
      if (L) {
#endif
        intptr_t ra_val = get_register(ra);
        if (ra_val < im_val) {
          bf |= 0x80000000;
        }
        if (ra_val > im_val) {
          bf |= 0x40000000;
        }
        if (ra_val == im_val) {
          bf |= 0x20000000;
        }
#if V8_TARGET_ARCH_PPC64
      } else {
        int32_t ra_val = get_register(ra);
        if (ra_val < im_val) {
          bf |= 0x80000000;
        }
        if (ra_val > im_val) {
          bf |= 0x40000000;
        }
        if (ra_val == im_val) {
          bf |= 0x20000000;
        }
      }
#endif
      uint32_t condition_mask = 0xF0000000U >> (cr * 4);
      uint32_t condition = bf >> (cr * 4);
      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
      break;
    }
    case ADDIC: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      uintptr_t ra_val = get_register(ra);
      uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
      uintptr_t alu_out = ra_val + im_val;
      // Check overflow
      if (~ra_val < im_val) {
        special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
      } else {
        special_reg_xer_ &= ~0xF0000000;
      }
      set_register(rt, alu_out);
      break;
    }
    case ADDI: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
      intptr_t alu_out;
      if (ra == 0) {
        alu_out = im_val;
      } else {
        intptr_t ra_val = get_register(ra);
        alu_out = ra_val + im_val;
      }
      set_register(rt, alu_out);
      // todo - handle RC bit
      break;
    }
    case ADDIS: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int32_t im_val = (instr->Bits(15, 0) << 16);
      intptr_t alu_out;
      if (ra == 0) {  // treat r0 as zero
        alu_out = im_val;
      } else {
        intptr_t ra_val = get_register(ra);
        alu_out = ra_val + im_val;
      }
      set_register(rt, alu_out);
      break;
    }
    case BCX: {
      ExecuteBranchConditional(instr, BC_OFFSET);
      break;
    }
    case BX: {
      int offset = (instr->Bits(25, 2) << 8) >> 6;
      if (instr->Bit(0) == 1) {  // LK flag set
        special_reg_lr_ = get_pc() + 4;
      }
      set_pc(get_pc() + offset);
      // todo - AA flag
      break;
    }
1559 1560
    case MCRF:
      UNIMPLEMENTED();  // Not used by V8.
1561 1562
    case BCLRX:
      ExecuteBranchConditional(instr, BC_LINK_REG);
1563
      break;
1564 1565
    case BCCTRX:
      ExecuteBranchConditional(instr, BC_CTR_REG);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
      break;
    case CRNOR:
    case RFI:
    case CRANDC:
      UNIMPLEMENTED();
    case ISYNC: {
      // todo - simulate isync
      break;
    }
    case CRXOR: {
      int bt = instr->Bits(25, 21);
      int ba = instr->Bits(20, 16);
      int bb = instr->Bits(15, 11);
      int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
      int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
      int bt_val = ba_val ^ bb_val;
      bt_val = bt_val << (31 - bt);  // shift bit to correct destination
      condition_reg_ &= ~(0x80000000 >> bt);
      condition_reg_ |= bt_val;
      break;
    }
    case CREQV: {
      int bt = instr->Bits(25, 21);
      int ba = instr->Bits(20, 16);
      int bb = instr->Bits(15, 11);
      int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
      int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
      int bt_val = 1 - (ba_val ^ bb_val);
      bt_val = bt_val << (31 - bt);  // shift bit to correct destination
      condition_reg_ &= ~(0x80000000 >> bt);
      condition_reg_ |= bt_val;
      break;
    }
    case CRNAND:
    case CRAND:
    case CRORC:
1602
    case CROR: {
1603
      UNIMPLEMENTED();  // Not used by V8.
1604
      break;
1605
    }
1606
    case RLWIMIX: {
1607
      int ra = instr->RAValue();
1608
      int rs = instr->RSValue();
1609
      uint32_t rs_val = get_register(rs);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
      int32_t ra_val = get_register(ra);
      int sh = instr->Bits(15, 11);
      int mb = instr->Bits(10, 6);
      int me = instr->Bits(5, 1);
      uint32_t result = base::bits::RotateLeft32(rs_val, sh);
      int mask = 0;
      if (mb < me + 1) {
        int bit = 0x80000000 >> mb;
        for (; mb <= me; mb++) {
          mask |= bit;
          bit >>= 1;
        }
      } else if (mb == me + 1) {
1623
        mask = 0xFFFFFFFF;
1624 1625
      } else {                             // mb > me+1
        int bit = 0x80000000 >> (me + 1);  // needs to be tested
1626
        mask = 0xFFFFFFFF;
1627 1628 1629 1630 1631 1632 1633 1634
        for (; me < mb; me++) {
          mask ^= bit;
          bit >>= 1;
        }
      }
      result &= mask;
      ra_val &= ~mask;
      result |= ra_val;
1635 1636 1637 1638 1639 1640
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
1641 1642
    case RLWINMX:
    case RLWNMX: {
1643
      int ra = instr->RAValue();
1644 1645 1646 1647 1648 1649 1650 1651
      int rs = instr->RSValue();
      uint32_t rs_val = get_register(rs);
      int sh = 0;
      if (opcode == RLWINMX) {
        sh = instr->Bits(15, 11);
      } else {
        int rb = instr->RBValue();
        uint32_t rb_val = get_register(rb);
1652
        sh = (rb_val & 0x1F);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
      }
      int mb = instr->Bits(10, 6);
      int me = instr->Bits(5, 1);
      uint32_t result = base::bits::RotateLeft32(rs_val, sh);
      int mask = 0;
      if (mb < me + 1) {
        int bit = 0x80000000 >> mb;
        for (; mb <= me; mb++) {
          mask |= bit;
          bit >>= 1;
        }
      } else if (mb == me + 1) {
1665
        mask = 0xFFFFFFFF;
1666 1667
      } else {                             // mb > me+1
        int bit = 0x80000000 >> (me + 1);  // needs to be tested
1668
        mask = 0xFFFFFFFF;
1669 1670 1671 1672 1673 1674
        for (; me < mb; me++) {
          mask ^= bit;
          bit >>= 1;
        }
      }
      result &= mask;
1675 1676 1677 1678 1679 1680
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
1681 1682
    case ORI: {
      int rs = instr->RSValue();
1683
      int ra = instr->RAValue();
1684 1685 1686 1687
      intptr_t rs_val = get_register(rs);
      uint32_t im_val = instr->Bits(15, 0);
      intptr_t alu_out = rs_val | im_val;
      set_register(ra, alu_out);
1688 1689
      break;
    }
1690 1691
    case ORIS: {
      int rs = instr->RSValue();
1692
      int ra = instr->RAValue();
1693 1694 1695 1696
      intptr_t rs_val = get_register(rs);
      uint32_t im_val = instr->Bits(15, 0);
      intptr_t alu_out = rs_val | (im_val << 16);
      set_register(ra, alu_out);
1697 1698
      break;
    }
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    case XORI: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      intptr_t rs_val = get_register(rs);
      uint32_t im_val = instr->Bits(15, 0);
      intptr_t alu_out = rs_val ^ im_val;
      set_register(ra, alu_out);
      // todo - set condition based SO bit
      break;
    }
    case XORIS: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      intptr_t rs_val = get_register(rs);
      uint32_t im_val = instr->Bits(15, 0);
      intptr_t alu_out = rs_val ^ (im_val << 16);
      set_register(ra, alu_out);
      break;
    }
    case ANDIx: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      intptr_t rs_val = get_register(rs);
      uint32_t im_val = instr->Bits(15, 0);
      intptr_t alu_out = rs_val & im_val;
      set_register(ra, alu_out);
      SetCR0(alu_out);
      break;
    }
    case ANDISx: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      intptr_t rs_val = get_register(rs);
      uint32_t im_val = instr->Bits(15, 0);
      intptr_t alu_out = rs_val & (im_val << 16);
      set_register(ra, alu_out);
      SetCR0(alu_out);
      break;
    }
    case SRWX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uint32_t rs_val = get_register(rs);
1743
      uintptr_t rb_val = get_register(rb) & 0x3F;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
      intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
#if V8_TARGET_ARCH_PPC64
    case SRDX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uintptr_t rs_val = get_register(rs);
1757
      uintptr_t rb_val = get_register(rb) & 0x7F;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
      intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
#endif
    case MODUW: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uint32_t ra_val = get_register(ra);
      uint32_t rb_val = get_register(rb);
      uint32_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val;
      set_register(rt, alu_out);
      break;
    }
#if V8_TARGET_ARCH_PPC64
    case MODUD: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uint64_t ra_val = get_register(ra);
      uint64_t rb_val = get_register(rb);
      uint64_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val;
      set_register(rt, alu_out);
      break;
    }
#endif
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
    case MODSW: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int32_t ra_val = get_register(ra);
      int32_t rb_val = get_register(rb);
      bool overflow = (ra_val == kMinInt && rb_val == -1);
      // result is undefined if divisor is zero or if operation
      // is 0x80000000 / -1.
      int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val % rb_val;
      set_register(rt, alu_out);
      break;
    }
#if V8_TARGET_ARCH_PPC64
    case MODSD: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int64_t ra_val = get_register(ra);
      int64_t rb_val = get_register(rb);
      int64_t one = 1;  // work-around gcc
      int64_t kMinLongLong = (one << 63);
      // result is undefined if divisor is zero or if operation
      // is 0x80000000_00000000 / -1.
      int64_t alu_out =
          (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
              ? -1
              : ra_val % rb_val;
      set_register(rt, alu_out);
      break;
    }
1819 1820 1821 1822 1823 1824
#endif
    case SRAW: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int32_t rs_val = get_register(rs);
1825
      intptr_t rb_val = get_register(rb) & 0x3F;
1826
      intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
#if V8_TARGET_ARCH_PPC64
    case SRAD: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t rs_val = get_register(rs);
1839
      intptr_t rb_val = get_register(rb) & 0x7F;
1840
      intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
#endif
    case SRAWIX: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      int sh = instr->Bits(15, 11);
      int32_t rs_val = get_register(rs);
      intptr_t result = rs_val >> sh;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
#if V8_TARGET_ARCH_PPC64
    case EXTSW: {
1862
      const int shift = kBitsPerSystemPointer - 32;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      intptr_t rs_val = get_register(rs);
      intptr_t ra_val = (rs_val << shift) >> shift;
      set_register(ra, ra_val);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(ra_val);
      }
      break;
    }
#endif
    case EXTSH: {
1875
      const int shift = kBitsPerSystemPointer - 16;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      intptr_t rs_val = get_register(rs);
      intptr_t ra_val = (rs_val << shift) >> shift;
      set_register(ra, ra_val);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(ra_val);
      }
      break;
    }
    case EXTSB: {
1887
      const int shift = kBitsPerSystemPointer - 8;
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      intptr_t rs_val = get_register(rs);
      intptr_t ra_val = (rs_val << shift) >> shift;
      set_register(ra, ra_val);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(ra_val);
      }
      break;
    }
    case LFSUX:
    case LFSX: {
      int frt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
1905
      int32_t val = ReadW(ra_val + rb_val);
1906
      float* fptr = reinterpret_cast<float*>(&val);
1907 1908
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
      // Conversion using double changes sNan to qNan on ia32/x64
1909
      if ((val & 0x7F800000) == 0x7F800000) {
1910
        int64_t dval = static_cast<int64_t>(val);
1911 1912
        dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) |
               ((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) | 0x0;
1913 1914 1915 1916 1917
        set_d_register(frt, dval);
      } else {
        set_d_register_from_double(frt, static_cast<double>(*fptr));
      }
#else
1918
      set_d_register_from_double(frt, static_cast<double>(*fptr));
1919
#endif
1920
      if (opcode == LFSUX) {
1921
        DCHECK_NE(ra, 0);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
    case LFDUX:
    case LFDX: {
      int frt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
1933 1934
      int64_t dptr = ReadDW(ra_val + rb_val);
      set_d_register(frt, dptr);
1935
      if (opcode == LFDUX) {
1936
        DCHECK_NE(ra, 0);
1937 1938 1939 1940
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
1941 1942 1943 1944 1945 1946 1947 1948 1949
    case STFSUX: V8_FALLTHROUGH;
    case STFSX: {
      int frs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
      float frs_val = static_cast<float>(get_double_from_d_register(frs));
      int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
1950
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
1951 1952 1953 1954 1955 1956 1957 1958
      // Conversion using double changes sNan to qNan on ia32/x64
      int32_t sval = 0;
      int64_t dval = get_d_register(frs);
      if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) {
        sval = ((dval & 0xC000000000000000) >> 32) |
               ((dval & 0x07FFFFFFE0000000) >> 29);
        p = &sval;
      } else {
1959
        p = reinterpret_cast<int32_t*>(&frs_val);
1960 1961 1962
      }
#else
      p = reinterpret_cast<int32_t*>(&frs_val);
1963
#endif
1964
      WriteW(ra_val + rb_val, *p);
1965 1966 1967 1968 1969
      if (opcode == STFSUX) {
        DCHECK_NE(ra, 0);
        set_register(ra, ra_val + rb_val);
      }
      break;
1970
    }
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    case STFDUX: V8_FALLTHROUGH;
    case STFDX: {
      int frs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
      int64_t frs_val = get_d_register(frs);
      WriteDW(ra_val + rb_val, frs_val);
      if (opcode == STFDUX) {
        DCHECK_NE(ra, 0);
        set_register(ra, ra_val + rb_val);
      }
      break;
1985
    }
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    case POPCNTW: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      uintptr_t rs_val = get_register(rs);
      uintptr_t count = 0;
      int n = 0;
      uintptr_t bit = 0x80000000;
      for (; n < 32; n++) {
        if (bit & rs_val) count++;
        bit >>= 1;
      }
      set_register(ra, count);
      break;
    }
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
#if V8_TARGET_ARCH_PPC64
    case POPCNTD: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      uintptr_t rs_val = get_register(rs);
      uintptr_t count = 0;
      int n = 0;
      uintptr_t bit = 0x8000000000000000UL;
      for (; n < 64; n++) {
        if (bit & rs_val) count++;
        bit >>= 1;
      }
      set_register(ra, count);
      break;
    }
#endif
2016 2017
    case SYNC: {
      // todo - simulate sync
2018
      __sync_synchronize();
2019 2020 2021 2022 2023 2024
      break;
    }
    case ICBI: {
      // todo - simulate icbi
      break;
    }
2025 2026 2027 2028 2029 2030 2031

    case LWZU:
    case LWZ: {
      int ra = instr->RAValue();
      int rt = instr->RTValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
2032
      set_register(rt, ReadWU(ra_val + offset));
2033
      if (opcode == LWZU) {
2034
        DCHECK_NE(ra, 0);
2035 2036
        set_register(ra, ra_val + offset);
      }
2037 2038 2039
      break;
    }

2040 2041 2042 2043 2044 2045 2046 2047
    case LBZU:
    case LBZ: {
      int ra = instr->RAValue();
      int rt = instr->RTValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
      set_register(rt, ReadB(ra_val + offset) & 0xFF);
      if (opcode == LBZU) {
2048
        DCHECK_NE(ra, 0);
2049 2050 2051 2052
        set_register(ra, ra_val + offset);
      }
      break;
    }
2053

2054 2055 2056 2057 2058 2059 2060
    case STWU:
    case STW: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int32_t rs_val = get_register(rs);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
2061
      WriteW(ra_val + offset, rs_val);
2062
      if (opcode == STWU) {
2063
        DCHECK_NE(ra, 0);
2064 2065 2066 2067
        set_register(ra, ra_val + offset);
      }
      break;
    }
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
    case SRADIX: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
      intptr_t rs_val = get_register(rs);
      intptr_t result = rs_val >> sh;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
    case STBCX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int8_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      SetCR0(WriteExB(ra_val + rb_val, rs_val));
      break;
    }
    case STHCX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int16_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
2097
      SetCR0(WriteExH(ra_val + rb_val, rs_val));
2098 2099 2100 2101 2102 2103 2104 2105 2106
      break;
    }
    case STWCX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int32_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
2107
      SetCR0(WriteExW(ra_val + rb_val, rs_val));
2108 2109
      break;
    }
2110 2111 2112 2113 2114 2115 2116
    case STDCX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int64_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
2117
      SetCR0(WriteExDW(ra_val + rb_val, rs_val));
2118 2119
      break;
    }
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
    case TW: {
      // used for call redirection in simulation mode
      SoftwareInterrupt(instr);
      break;
    }
    case CMP: {
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int cr = instr->Bits(25, 23);
      uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
      int L = instr->Bit(21);
      if (L) {
#endif
        intptr_t ra_val = get_register(ra);
        intptr_t rb_val = get_register(rb);
        if (ra_val < rb_val) {
          bf |= 0x80000000;
        }
        if (ra_val > rb_val) {
          bf |= 0x40000000;
        }
        if (ra_val == rb_val) {
          bf |= 0x20000000;
        }
#if V8_TARGET_ARCH_PPC64
      } else {
        int32_t ra_val = get_register(ra);
        int32_t rb_val = get_register(rb);
        if (ra_val < rb_val) {
          bf |= 0x80000000;
        }
        if (ra_val > rb_val) {
          bf |= 0x40000000;
        }
        if (ra_val == rb_val) {
          bf |= 0x20000000;
        }
      }
#endif
      uint32_t condition_mask = 0xF0000000U >> (cr * 4);
      uint32_t condition = bf >> (cr * 4);
      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
      break;
    }
    case SUBFCX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      // int oe = instr->Bit(10);
      uintptr_t ra_val = get_register(ra);
      uintptr_t rb_val = get_register(rb);
      uintptr_t alu_out = ~ra_val + rb_val + 1;
2173 2174
      // Set carry
      if (ra_val <= rb_val) {
2175
        special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
2176 2177
      } else {
        special_reg_xer_ &= ~0xF0000000;
2178
      }
2179
      set_register(rt, alu_out);
2180 2181 2182
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
      // todo - handle OE bit
      break;
    }
    case SUBFEX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      // int oe = instr->Bit(10);
      uintptr_t ra_val = get_register(ra);
      uintptr_t rb_val = get_register(rb);
      uintptr_t alu_out = ~ra_val + rb_val;
      if (special_reg_xer_ & 0x20000000) {
        alu_out += 1;
      }
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(static_cast<intptr_t>(alu_out));
      }
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
      // todo - handle OE bit
      break;
    }
    case ADDCX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      // int oe = instr->Bit(10);
      uintptr_t ra_val = get_register(ra);
      uintptr_t rb_val = get_register(rb);
      uintptr_t alu_out = ra_val + rb_val;
2212
      // Set carry
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
      if (~ra_val < rb_val) {
        special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
      } else {
        special_reg_xer_ &= ~0xF0000000;
      }
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(static_cast<intptr_t>(alu_out));
      }
      // todo - handle OE bit
      break;
    }
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
    case ADDEX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      // int oe = instr->Bit(10);
      uintptr_t ra_val = get_register(ra);
      uintptr_t rb_val = get_register(rb);
      uintptr_t alu_out = ra_val + rb_val;
      if (special_reg_xer_ & 0x20000000) {
        alu_out += 1;
      }
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(static_cast<intptr_t>(alu_out));
      }
      // todo - handle OE bit
      break;
    }
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
    case MULHWX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
      int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
      int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
      alu_out >>= 32;
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(static_cast<intptr_t>(alu_out));
      }
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
      break;
    }
    case MULHWUX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
      uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
      uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
      alu_out >>= 32;
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(static_cast<intptr_t>(alu_out));
      }
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
      break;
    }
    case NEGX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      intptr_t ra_val = get_register(ra);
      intptr_t alu_out = 1 + ~ra_val;
#if V8_TARGET_ARCH_PPC64
      intptr_t one = 1;  // work-around gcc
      intptr_t kOverflowVal = (one << 63);
#else
      intptr_t kOverflowVal = kMinInt;
#endif
      set_register(rt, alu_out);
      if (instr->Bit(10)) {  // OE bit set
        if (ra_val == kOverflowVal) {
          special_reg_xer_ |= 0xC0000000;  // set SO,OV
        } else {
          special_reg_xer_ &= ~0x40000000;  // clear OV
        }
      }
      if (instr->Bit(0)) {  // RC bit set
        bool setSO = (special_reg_xer_ & 0x80000000);
        SetCR0(alu_out, setSO);
      }
      break;
    }
    case SLWX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uint32_t rs_val = get_register(rs);
2301
      uintptr_t rb_val = get_register(rb) & 0x3F;
2302
      uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val;
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
#if V8_TARGET_ARCH_PPC64
    case SLDX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uintptr_t rs_val = get_register(rs);
2315
      uintptr_t rb_val = get_register(rb) & 0x7F;
2316
      uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      break;
    }
    case MFVSRD: {
      DCHECK(!instr->Bit(0));
      int frt = instr->RTValue();
      int ra = instr->RAValue();
2327 2328
      int64_t frt_val = get_d_register(frt);
      set_register(ra, frt_val);
2329 2330 2331 2332 2333 2334
      break;
    }
    case MFVSRWZ: {
      DCHECK(!instr->Bit(0));
      int frt = instr->RTValue();
      int ra = instr->RAValue();
2335 2336
      int64_t frt_val = get_d_register(frt);
      set_register(ra, static_cast<uint32_t>(frt_val));
2337 2338 2339 2340 2341 2342 2343
      break;
    }
    case MTVSRD: {
      DCHECK(!instr->Bit(0));
      int frt = instr->RTValue();
      int ra = instr->RAValue();
      int64_t ra_val = get_register(ra);
2344
      set_d_register(frt, ra_val);
2345 2346 2347 2348 2349 2350 2351
      break;
    }
    case MTVSRWA: {
      DCHECK(!instr->Bit(0));
      int frt = instr->RTValue();
      int ra = instr->RAValue();
      int64_t ra_val = static_cast<int32_t>(get_register(ra));
2352
      set_d_register(frt, ra_val);
2353 2354 2355 2356 2357 2358 2359
      break;
    }
    case MTVSRWZ: {
      DCHECK(!instr->Bit(0));
      int frt = instr->RTValue();
      int ra = instr->RAValue();
      uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
2360
      set_d_register(frt, ra_val);
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
      break;
    }
#endif
    case CNTLZWX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      uintptr_t rs_val = get_register(rs);
      uintptr_t count = 0;
      int n = 0;
      uintptr_t bit = 0x80000000;
      for (; n < 32; n++) {
        if (bit & rs_val) break;
        count++;
        bit >>= 1;
      }
      set_register(ra, count);
      if (instr->Bit(0)) {  // RC Bit set
        int bf = 0;
        if (count > 0) {
          bf |= 0x40000000;
        }
        if (count == 0) {
          bf |= 0x20000000;
        }
        condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
      }
      break;
    }
#if V8_TARGET_ARCH_PPC64
    case CNTLZDX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      uintptr_t rs_val = get_register(rs);
      uintptr_t count = 0;
      int n = 0;
      uintptr_t bit = 0x8000000000000000UL;
      for (; n < 64; n++) {
        if (bit & rs_val) break;
        count++;
        bit >>= 1;
      }
      set_register(ra, count);
      if (instr->Bit(0)) {  // RC Bit set
        int bf = 0;
        if (count > 0) {
          bf |= 0x40000000;
        }
        if (count == 0) {
          bf |= 0x20000000;
        }
        condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
      }
      break;
    }
#endif
    case ANDX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      intptr_t alu_out = rs_val & rb_val;
      set_register(ra, alu_out);
      if (instr->Bit(0)) {  // RC Bit set
        SetCR0(alu_out);
      }
      break;
    }
    case ANDCX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      intptr_t alu_out = rs_val & ~rb_val;
      set_register(ra, alu_out);
      if (instr->Bit(0)) {  // RC Bit set
        SetCR0(alu_out);
      }
      break;
    }
    case CMPL: {
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int cr = instr->Bits(25, 23);
      uint32_t bf = 0;
#if V8_TARGET_ARCH_PPC64
      int L = instr->Bit(21);
      if (L) {
#endif
        uintptr_t ra_val = get_register(ra);
        uintptr_t rb_val = get_register(rb);
        if (ra_val < rb_val) {
          bf |= 0x80000000;
        }
        if (ra_val > rb_val) {
          bf |= 0x40000000;
        }
        if (ra_val == rb_val) {
          bf |= 0x20000000;
        }
#if V8_TARGET_ARCH_PPC64
      } else {
        uint32_t ra_val = get_register(ra);
        uint32_t rb_val = get_register(rb);
        if (ra_val < rb_val) {
          bf |= 0x80000000;
        }
        if (ra_val > rb_val) {
          bf |= 0x40000000;
        }
        if (ra_val == rb_val) {
          bf |= 0x20000000;
        }
      }
#endif
      uint32_t condition_mask = 0xF0000000U >> (cr * 4);
      uint32_t condition = bf >> (cr * 4);
      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
      break;
    }
    case SUBFX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      // int oe = instr->Bit(10);
      intptr_t ra_val = get_register(ra);
      intptr_t rb_val = get_register(rb);
      intptr_t alu_out = rb_val - ra_val;
      // todo - figure out underflow
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC Bit set
        SetCR0(alu_out);
      }
      // todo - handle OE bit
      break;
    }
    case ADDZEX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      intptr_t ra_val = get_register(ra);
      if (special_reg_xer_ & 0x20000000) {
        ra_val += 1;
      }
      set_register(rt, ra_val);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(ra_val);
      }
      // todo - handle OE bit
      break;
    }
    case NORX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      intptr_t alu_out = ~(rs_val | rb_val);
      set_register(ra, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      break;
    }
    case MULLW: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
      int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
      int32_t alu_out = ra_val * rb_val;
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      // todo - handle OE bit
      break;
    }
#if V8_TARGET_ARCH_PPC64
    case MULLD: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int64_t ra_val = get_register(ra);
      int64_t rb_val = get_register(rb);
      int64_t alu_out = ra_val * rb_val;
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      // todo - handle OE bit
      break;
    }
#endif
    case DIVW: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int32_t ra_val = get_register(ra);
      int32_t rb_val = get_register(rb);
      bool overflow = (ra_val == kMinInt && rb_val == -1);
      // result is undefined if divisor is zero or if operation
      // is 0x80000000 / -1.
      int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
      set_register(rt, alu_out);
      if (instr->Bit(10)) {  // OE bit set
        if (overflow) {
          special_reg_xer_ |= 0xC0000000;  // set SO,OV
        } else {
          special_reg_xer_ &= ~0x40000000;  // clear OV
        }
      }
      if (instr->Bit(0)) {  // RC bit set
        bool setSO = (special_reg_xer_ & 0x80000000);
        SetCR0(alu_out, setSO);
      }
      break;
    }
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
    case DIVWU: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uint32_t ra_val = get_register(ra);
      uint32_t rb_val = get_register(rb);
      bool overflow = (rb_val == 0);
      // result is undefined if divisor is zero
      uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
      set_register(rt, alu_out);
      if (instr->Bit(10)) {  // OE bit set
        if (overflow) {
          special_reg_xer_ |= 0xC0000000;  // set SO,OV
        } else {
          special_reg_xer_ &= ~0x40000000;  // clear OV
        }
      }
      if (instr->Bit(0)) {  // RC bit set
        bool setSO = (special_reg_xer_ & 0x80000000);
        SetCR0(alu_out, setSO);
      }
      break;
    }
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
#if V8_TARGET_ARCH_PPC64
    case DIVD: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int64_t ra_val = get_register(ra);
      int64_t rb_val = get_register(rb);
      int64_t one = 1;  // work-around gcc
      int64_t kMinLongLong = (one << 63);
      // result is undefined if divisor is zero or if operation
      // is 0x80000000_00000000 / -1.
      int64_t alu_out =
          (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
              ? -1
              : ra_val / rb_val;
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      // todo - handle OE bit
      break;
    }
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
    case DIVDU: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      uint64_t ra_val = get_register(ra);
      uint64_t rb_val = get_register(rb);
      // result is undefined if divisor is zero
      uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      // todo - handle OE bit
      break;
    }
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
#endif
    case ADDX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      // int oe = instr->Bit(10);
      intptr_t ra_val = get_register(ra);
      intptr_t rb_val = get_register(rb);
      intptr_t alu_out = ra_val + rb_val;
      set_register(rt, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      // todo - handle OE bit
      break;
    }
    case XORX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      intptr_t alu_out = rs_val ^ rb_val;
      set_register(ra, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      break;
    }
    case ORX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      intptr_t alu_out = rs_val | rb_val;
      set_register(ra, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      break;
    }
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
    case ORC: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      intptr_t alu_out = rs_val | ~rb_val;
      set_register(ra, alu_out);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(alu_out);
      }
      break;
    }
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
    case MFSPR: {
      int rt = instr->RTValue();
      int spr = instr->Bits(20, 11);
      if (spr != 256) {
        UNIMPLEMENTED();  // Only LRLR supported
      }
      set_register(rt, special_reg_lr_);
      break;
    }
    case MTSPR: {
      int rt = instr->RTValue();
      intptr_t rt_val = get_register(rt);
      int spr = instr->Bits(20, 11);
      if (spr == 256) {
        special_reg_lr_ = rt_val;
      } else if (spr == 288) {
        special_reg_ctr_ = rt_val;
      } else if (spr == 32) {
        special_reg_xer_ = rt_val;
      } else {
        UNIMPLEMENTED();  // Only LR supported
      }
      break;
    }
    case MFCR: {
      int rt = instr->RTValue();
      set_register(rt, condition_reg_);
      break;
    }
    case STWUX:
    case STWX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int32_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
2731
      WriteW(ra_val + rb_val, rs_val);
2732
      if (opcode == STWUX) {
2733
        DCHECK_NE(ra, 0);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
    case STBUX:
    case STBX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int8_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      WriteB(ra_val + rb_val, rs_val);
      if (opcode == STBUX) {
2748
        DCHECK_NE(ra, 0);
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
    case STHUX:
    case STHX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int16_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
2761
      WriteH(ra_val + rb_val, rs_val);
2762
      if (opcode == STHUX) {
2763
        DCHECK_NE(ra, 0);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
    case LWZX:
    case LWZUX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
2775
      set_register(rt, ReadWU(ra_val + rb_val));
2776 2777 2778 2779 2780 2781 2782
      if (opcode == LWZUX) {
        DCHECK(ra != 0 && ra != rt);
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
#if V8_TARGET_ARCH_PPC64
2783 2784 2785 2786 2787 2788
    case LWAX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
2789
      set_register(rt, ReadW(ra_val + rb_val));
2790 2791
      break;
    }
2792 2793 2794 2795 2796 2797 2798
    case LDX:
    case LDUX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
2799 2800
      intptr_t result = ReadDW(ra_val + rb_val);
      set_register(rt, result);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
      if (opcode == LDUX) {
        DCHECK(ra != 0 && ra != rt);
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
    case STDX:
    case STDUX: {
      int rs = instr->RSValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rs_val = get_register(rs);
      intptr_t rb_val = get_register(rb);
      WriteDW(ra_val + rb_val, rs_val);
      if (opcode == STDUX) {
2817
        DCHECK_NE(ra, 0);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
#endif
    case LBZX:
    case LBZUX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
      set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
      if (opcode == LBZUX) {
        DCHECK(ra != 0 && ra != rt);
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
    case LHZX:
    case LHZUX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
2844
      set_register(rt, ReadHU(ra_val + rb_val) & 0xFFFF);
2845 2846 2847 2848 2849 2850
      if (opcode == LHZUX) {
        DCHECK(ra != 0 && ra != rt);
        set_register(ra, ra_val + rb_val);
      }
      break;
    }
2851
    case LHAX: {
2852 2853 2854 2855 2856
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
2857
      set_register(rt, ReadH(ra_val + rb_val));
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
      break;
    }
    case LBARX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
      set_register(rt, ReadExBU(ra_val + rb_val) & 0xFF);
      break;
    }
    case LHARX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
2875
      set_register(rt, ReadExHU(ra_val + rb_val));
2876 2877 2878 2879 2880 2881 2882 2883
      break;
    }
    case LWARX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
2884
      set_register(rt, ReadExWU(ra_val + rb_val));
2885 2886
      break;
    }
2887 2888 2889 2890 2891 2892
    case LDARX: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
2893
      set_register(rt, ReadExDWU(ra_val + rb_val));
2894 2895
      break;
    }
2896 2897 2898 2899
    case DCBF: {
      // todo - simulate dcbf
      break;
    }
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
    case ISEL: {
      int rt = instr->RTValue();
      int ra = instr->RAValue();
      int rb = instr->RBValue();
      int condition_bit = instr->RCValue();
      int condition_mask = 0x80000000 >> condition_bit;
      intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
      intptr_t rb_val = get_register(rb);
      intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
      set_register(rt, value);
      break;
    }
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921
    case STBU:
    case STB: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int8_t rs_val = get_register(rs);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
      WriteB(ra_val + offset, rs_val);
      if (opcode == STBU) {
2922
        DCHECK_NE(ra, 0);
2923 2924 2925 2926
        set_register(ra, ra_val + offset);
      }
      break;
    }
2927

2928 2929 2930 2931 2932 2933
    case LHZU:
    case LHZ: {
      int ra = instr->RAValue();
      int rt = instr->RTValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
2934
      uintptr_t result = ReadHU(ra_val + offset) & 0xFFFF;
2935 2936 2937 2938 2939 2940
      set_register(rt, result);
      if (opcode == LHZU) {
        set_register(ra, ra_val + offset);
      }
      break;
    }
2941

2942 2943 2944 2945 2946 2947
    case LHA:
    case LHAU: {
      int ra = instr->RAValue();
      int rt = instr->RTValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
2948
      intptr_t result = ReadH(ra_val + offset);
2949 2950 2951 2952 2953
      set_register(rt, result);
      if (opcode == LHAU) {
        set_register(ra, ra_val + offset);
      }
      break;
2954
    }
2955 2956 2957 2958 2959 2960 2961 2962

    case STHU:
    case STH: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int16_t rs_val = get_register(rs);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
2963
      WriteH(ra_val + offset, rs_val);
2964
      if (opcode == STHU) {
2965
        DCHECK_NE(ra, 0);
2966 2967 2968
        set_register(ra, ra_val + offset);
      }
      break;
2969
    }
2970

2971 2972 2973 2974 2975
    case LMW:
    case STMW: {
      UNIMPLEMENTED();
      break;
    }
2976

2977 2978
    case LFSU:
    case LFS: {
2979
      int frt = instr->RTValue();
2980 2981 2982
      int ra = instr->RAValue();
      int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2983
      int32_t val = ReadW(ra_val + offset);
2984 2985
      float* fptr = reinterpret_cast<float*>(&val);
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
2986
      // Conversion using double changes sNan to qNan on ia32/x64
2987
      if ((val & 0x7F800000) == 0x7F800000) {
2988
        int64_t dval = static_cast<int64_t>(val);
2989 2990
        dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) |
               ((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) | 0x0;
2991
        set_d_register(frt, dval);
2992 2993 2994
      } else {
        set_d_register_from_double(frt, static_cast<double>(*fptr));
      }
2995 2996
#else
      set_d_register_from_double(frt, static_cast<double>(*fptr));
2997 2998
#endif
      if (opcode == LFSU) {
2999
        DCHECK_NE(ra, 0);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
        set_register(ra, ra_val + offset);
      }
      break;
    }

    case LFDU:
    case LFD: {
      int frt = instr->RTValue();
      int ra = instr->RAValue();
      int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3011 3012
      int64_t dptr = ReadDW(ra_val + offset);
      set_d_register(frt, dptr);
3013
      if (opcode == LFDU) {
3014
        DCHECK_NE(ra, 0);
3015 3016 3017 3018 3019
        set_register(ra, ra_val + offset);
      }
      break;
    }

3020 3021 3022 3023 3024 3025 3026 3027
    case STFSU: V8_FALLTHROUGH;
    case STFS: {
      int frs = instr->RSValue();
      int ra = instr->RAValue();
      int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      float frs_val = static_cast<float>(get_double_from_d_register(frs));
      int32_t* p;
3028
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
3029 3030 3031 3032 3033 3034 3035 3036
      // Conversion using double changes sNan to qNan on ia32/x64
      int32_t sval = 0;
      int64_t dval = get_d_register(frs);
      if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) {
        sval = ((dval & 0xC000000000000000) >> 32) |
               ((dval & 0x07FFFFFFE0000000) >> 29);
        p = &sval;
      } else {
3037
        p = reinterpret_cast<int32_t*>(&frs_val);
3038 3039 3040
      }
#else
      p = reinterpret_cast<int32_t*>(&frs_val);
3041
#endif
3042
      WriteW(ra_val + offset, *p);
3043 3044 3045 3046 3047
      if (opcode == STFSU) {
        DCHECK_NE(ra, 0);
        set_register(ra, ra_val + offset);
      }
      break;
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
    }
    case STFDU:
    case STFD: {
      int frs = instr->RSValue();
      int ra = instr->RAValue();
      int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
      intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
      int64_t frs_val = get_d_register(frs);
      WriteDW(ra_val + offset, frs_val);
      if (opcode == STFDU) {
3058
        DCHECK_NE(ra, 0);
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
        set_register(ra, ra_val + offset);
      }
      break;
    }

    case FCFIDS: {
      // fcfids
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      int64_t frb_val = get_d_register(frb);
      double frt_val = static_cast<float>(frb_val);
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FCFIDUS: {
      // fcfidus
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      uint64_t frb_val = get_d_register(frb);
      double frt_val = static_cast<float>(frb_val);
      set_d_register_from_double(frt, frt_val);
      return;
    }

    case FDIV: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frt_val = fra_val / frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FSUB: {
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frt_val = fra_val - frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FADD: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frt_val = fra_val + frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FSQRT: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
3117
      double frt_val = std::sqrt(frb_val);
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FSEL: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      int frc = instr->RCValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frc_val = get_double_from_d_register(frc);
      double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FMUL: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frc = instr->RCValue();
      double fra_val = get_double_from_d_register(fra);
      double frc_val = get_double_from_d_register(frc);
      double frt_val = fra_val * frc_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FMSUB: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      int frc = instr->RCValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frc_val = get_double_from_d_register(frc);
      double frt_val = (fra_val * frc_val) - frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FMADD: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      int frc = instr->RCValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frc_val = get_double_from_d_register(frc);
      double frt_val = (fra_val * frc_val) + frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FCMPU: {
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      int cr = instr->Bits(25, 23);
      int bf = 0;
      if (fra_val < frb_val) {
        bf |= 0x80000000;
      }
      if (fra_val > frb_val) {
        bf |= 0x40000000;
      }
      if (fra_val == frb_val) {
        bf |= 0x20000000;
      }
      if (std::isunordered(fra_val, frb_val)) {
        bf |= 0x10000000;
      }
      int condition_mask = 0xF0000000 >> (cr * 4);
      int condition = bf >> (cr * 4);
      condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
      return;
    }
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
    case FRIN: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
      double frt_val = std::round(frb_val);
      set_d_register_from_double(frt, frt_val);
      if (instr->Bit(0)) {  // RC bit set
                            //  UNIMPLEMENTED();
      }
      return;
    }
    case FRIZ: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
      double frt_val = std::trunc(frb_val);
      set_d_register_from_double(frt, frt_val);
      if (instr->Bit(0)) {  // RC bit set
                            //  UNIMPLEMENTED();
      }
      return;
    }
    case FRIP: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
      double frt_val = std::ceil(frb_val);
      set_d_register_from_double(frt, frt_val);
      if (instr->Bit(0)) {  // RC bit set
                            //  UNIMPLEMENTED();
      }
      return;
    }
    case FRIM: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
      double frt_val = std::floor(frb_val);
      set_d_register_from_double(frt, frt_val);
      if (instr->Bit(0)) {  // RC bit set
                            //  UNIMPLEMENTED();
      }
      return;
    }
3235 3236 3237
    case FRSP: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
3238 3239
      // frsp round 8-byte double-precision value to
      // single-precision value
3240
      double frb_val = get_double_from_d_register(frb);
3241 3242
      double frt_val = static_cast<float>(frb_val);
      set_d_register_from_double(frt, frt_val);
3243 3244 3245 3246 3247 3248 3249 3250
      if (instr->Bit(0)) {  // RC bit set
                            //  UNIMPLEMENTED();
      }
      return;
    }
    case FCFID: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
3251 3252
      int64_t frb_val = get_d_register(frb);
      double frt_val = static_cast<double>(frb_val);
3253
      set_d_register_from_double(frt, frt_val);
3254 3255 3256 3257 3258
      return;
    }
    case FCFIDU: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
3259 3260
      uint64_t frb_val = get_d_register(frb);
      double frt_val = static_cast<double>(frb_val);
3261
      set_d_register_from_double(frt, frt_val);
3262 3263
      return;
    }
3264 3265
    case FCTID:
    case FCTIDZ: {
3266 3267 3268
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
3269 3270
      int mode = (opcode == FCTIDZ) ? kRoundToZero
                                    : (fp_condition_reg_ & kFPRoundingModeMask);
3271 3272
      int64_t frt_val;
      int64_t one = 1;  // work-around gcc
3273 3274
      int64_t kMinVal = (one << 63);
      int64_t kMaxVal = kMinVal - 1;
3275
      bool invalid_convert = false;
3276

3277 3278
      if (std::isnan(frb_val)) {
        frt_val = kMinVal;
3279
        invalid_convert = true;
3280
      } else {
3281
        switch (mode) {
3282
          case kRoundToZero:
3283
            frb_val = std::trunc(frb_val);
3284 3285
            break;
          case kRoundToPlusInf:
3286
            frb_val = std::ceil(frb_val);
3287 3288
            break;
          case kRoundToMinusInf:
3289
            frb_val = std::floor(frb_val);
3290 3291 3292 3293 3294
            break;
          default:
            UNIMPLEMENTED();  // Not used by V8.
            break;
        }
3295 3296 3297 3298 3299 3300 3301 3302 3303
        if (frb_val < static_cast<double>(kMinVal)) {
          frt_val = kMinVal;
          invalid_convert = true;
        } else if (frb_val >= static_cast<double>(kMaxVal)) {
          frt_val = kMaxVal;
          invalid_convert = true;
        } else {
          frt_val = (int64_t)frb_val;
        }
3304
      }
3305
      set_d_register(frt, frt_val);
3306
      if (invalid_convert) SetFPSCR(VXCVI);
3307 3308
      return;
    }
3309 3310
    case FCTIDU:
    case FCTIDUZ: {
3311 3312 3313
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
3314 3315 3316
      int mode = (opcode == FCTIDUZ)
                     ? kRoundToZero
                     : (fp_condition_reg_ & kFPRoundingModeMask);
3317
      uint64_t frt_val;
3318 3319
      uint64_t kMinVal = 0;
      uint64_t kMaxVal = kMinVal - 1;
3320
      bool invalid_convert = false;
3321

3322 3323
      if (std::isnan(frb_val)) {
        frt_val = kMinVal;
3324
        invalid_convert = true;
3325
      } else {
3326
        switch (mode) {
3327
          case kRoundToZero:
3328
            frb_val = std::trunc(frb_val);
3329 3330
            break;
          case kRoundToPlusInf:
3331
            frb_val = std::ceil(frb_val);
3332 3333
            break;
          case kRoundToMinusInf:
3334
            frb_val = std::floor(frb_val);
3335 3336 3337 3338 3339
            break;
          default:
            UNIMPLEMENTED();  // Not used by V8.
            break;
        }
3340 3341 3342 3343 3344 3345 3346 3347 3348
        if (frb_val < static_cast<double>(kMinVal)) {
          frt_val = kMinVal;
          invalid_convert = true;
        } else if (frb_val >= static_cast<double>(kMaxVal)) {
          frt_val = kMaxVal;
          invalid_convert = true;
        } else {
          frt_val = (uint64_t)frb_val;
        }
3349 3350
      }
      set_d_register(frt, frt_val);
3351
      if (invalid_convert) SetFPSCR(VXCVI);
3352 3353
      return;
    }
3354 3355 3356 3357 3358
    case FCTIW:
    case FCTIWZ: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
3359 3360
      int mode = (opcode == FCTIWZ) ? kRoundToZero
                                    : (fp_condition_reg_ & kFPRoundingModeMask);
3361
      int64_t frt_val;
3362 3363
      int64_t kMinVal = kMinInt;
      int64_t kMaxVal = kMaxInt;
3364

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
      if (std::isnan(frb_val)) {
        frt_val = kMinVal;
      } else {
        switch (mode) {
          case kRoundToZero:
            frb_val = std::trunc(frb_val);
            break;
          case kRoundToPlusInf:
            frb_val = std::ceil(frb_val);
            break;
          case kRoundToMinusInf:
            frb_val = std::floor(frb_val);
            break;
          case kRoundToNearest: {
            double orig = frb_val;
            frb_val = lround(frb_val);
            // Round to even if exactly halfway.  (lround rounds up)
            if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) {
              frb_val += ((frb_val > 0) ? -1.0 : 1.0);
            }
            break;
3386
          }
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
          default:
            UNIMPLEMENTED();  // Not used by V8.
            break;
        }
        if (frb_val < kMinVal) {
          frt_val = kMinVal;
        } else if (frb_val > kMaxVal) {
          frt_val = kMaxVal;
        } else {
          frt_val = (int64_t)frb_val;
3397 3398
        }
      }
3399
      set_d_register(frt, frt_val);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
      return;
    }
    case FNEG: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
      double frt_val = -frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case FMR: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
3413 3414
      int64_t frb_val = get_d_register(frb);
      set_d_register(frt, frb_val);
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
      return;
    }
    case MTFSFI: {
      int bf = instr->Bits(25, 23);
      int imm = instr->Bits(15, 12);
      int fp_condition_mask = 0xF0000000 >> (bf * 4);
      fp_condition_reg_ &= ~fp_condition_mask;
      fp_condition_reg_ |= (imm << (28 - (bf * 4)));
      if (instr->Bit(0)) {  // RC bit set
        condition_reg_ &= 0xF0FFFFFF;
        condition_reg_ |= (imm << 23);
      }
      return;
    }
    case MTFSF: {
      int frb = instr->RBValue();
3431
      int64_t frb_dval = get_d_register(frb);
3432
      int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xFFFFFFFF);
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
      int l = instr->Bits(25, 25);
      if (l == 1) {
        fp_condition_reg_ = frb_ival;
      } else {
        UNIMPLEMENTED();
      }
      if (instr->Bit(0)) {  // RC bit set
        UNIMPLEMENTED();
        // int w = instr->Bits(16, 16);
        // int flm = instr->Bits(24, 17);
      }
      return;
    }
    case MFFS: {
      int frt = instr->RTValue();
      int64_t lval = static_cast<int64_t>(fp_condition_reg_);
3449
      set_d_register(frt, lval);
3450 3451
      return;
    }
3452 3453 3454 3455 3456
    case MCRFS: {
      int bf = instr->Bits(25, 23);
      int bfa = instr->Bits(20, 18);
      int cr_shift = (7 - bf) * CRWIDTH;
      int fp_shift = (7 - bfa) * CRWIDTH;
3457 3458
      int field_val = (fp_condition_reg_ >> fp_shift) & 0xF;
      condition_reg_ &= ~(0x0F << cr_shift);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
      condition_reg_ |= (field_val << cr_shift);
      // Clear copied exception bits
      switch (bfa) {
        case 5:
          ClearFPSCR(VXSOFT);
          ClearFPSCR(VXSQRT);
          ClearFPSCR(VXCVI);
          break;
        default:
          UNIMPLEMENTED();
          break;
      }
      return;
    }
    case MTFSB0: {
      int bt = instr->Bits(25, 21);
      ClearFPSCR(bt);
      if (instr->Bit(0)) {  // RC bit set
        UNIMPLEMENTED();
      }
      return;
    }
    case MTFSB1: {
      int bt = instr->Bits(25, 21);
      SetFPSCR(bt);
      if (instr->Bit(0)) {  // RC bit set
        UNIMPLEMENTED();
      }
      return;
    }
3489 3490 3491 3492 3493 3494 3495 3496
    case FABS: {
      int frt = instr->RTValue();
      int frb = instr->RBValue();
      double frb_val = get_double_from_d_register(frb);
      double frt_val = std::fabs(frb_val);
      set_d_register_from_double(frt, frt_val);
      return;
    }
3497

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

#if V8_TARGET_ARCH_PPC64
    case RLDICL: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      uintptr_t rs_val = get_register(rs);
      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
      int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
      DCHECK(sh >= 0 && sh <= 63);
      DCHECK(mb >= 0 && mb <= 63);
3508
      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3509
      uintptr_t mask = 0xFFFFFFFFFFFFFFFF >> mb;
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
      result &= mask;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      return;
    }
    case RLDICR: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      uintptr_t rs_val = get_register(rs);
      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
      int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
      DCHECK(sh >= 0 && sh <= 63);
      DCHECK(me >= 0 && me <= 63);
3525
      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3526
      uintptr_t mask = 0xFFFFFFFFFFFFFFFF << (63 - me);
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
      result &= mask;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      return;
    }
    case RLDIC: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      uintptr_t rs_val = get_register(rs);
      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
      int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
      DCHECK(sh >= 0 && sh <= 63);
      DCHECK(mb >= 0 && mb <= 63);
3542
      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3543
      uintptr_t mask = (0xFFFFFFFFFFFFFFFF >> mb) & (0xFFFFFFFFFFFFFFFF << sh);
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
      result &= mask;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      return;
    }
    case RLDIMI: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      uintptr_t rs_val = get_register(rs);
      intptr_t ra_val = get_register(ra);
      int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
      int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
      int me = 63 - sh;
3559
      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3560 3561 3562 3563 3564 3565 3566 3567
      uintptr_t mask = 0;
      if (mb < me + 1) {
        uintptr_t bit = 0x8000000000000000 >> mb;
        for (; mb <= me; mb++) {
          mask |= bit;
          bit >>= 1;
        }
      } else if (mb == me + 1) {
3568
        mask = 0xFFFFFFFFFFFFFFFF;
3569 3570
      } else {                                           // mb > me+1
        uintptr_t bit = 0x8000000000000000 >> (me + 1);  // needs to be tested
3571
        mask = 0xFFFFFFFFFFFFFFFF;
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
        for (; me < mb; me++) {
          mask ^= bit;
          bit >>= 1;
        }
      }
      result &= mask;
      ra_val &= ~mask;
      result |= ra_val;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      return;
    }
    case RLDCL: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      int rb = instr->RBValue();
      uintptr_t rs_val = get_register(rs);
      uintptr_t rb_val = get_register(rb);
3592
      int sh = (rb_val & 0x3F);
3593 3594 3595
      int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
      DCHECK(sh >= 0 && sh <= 63);
      DCHECK(mb >= 0 && mb <= 63);
3596
      uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3597
      uintptr_t mask = 0xFFFFFFFFFFFFFFFF >> mb;
3598 3599 3600 3601 3602 3603 3604
      result &= mask;
      set_register(ra, result);
      if (instr->Bit(0)) {  // RC bit set
        SetCR0(result);
      }
      return;
    }
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

    case LD:
    case LDU:
    case LWA: {
      int ra = instr->RAValue();
      int rt = instr->RTValue();
      int64_t ra_val = ra == 0 ? 0 : get_register(ra);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
      switch (instr->Bits(1, 0)) {
        case 0: {  // ld
3615 3616
          intptr_t result = ReadDW(ra_val + offset);
          set_register(rt, result);
3617 3618 3619
          break;
        }
        case 1: {  // ldu
3620 3621
          intptr_t result = ReadDW(ra_val + offset);
          set_register(rt, result);
3622
          DCHECK_NE(ra, 0);
3623 3624 3625 3626
          set_register(ra, ra_val + offset);
          break;
        }
        case 2: {  // lwa
3627
          intptr_t result = ReadW(ra_val + offset);
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
          set_register(rt, result);
          break;
        }
      }
      break;
    }

    case STD:
    case STDU: {
      int ra = instr->RAValue();
      int rs = instr->RSValue();
      int64_t ra_val = ra == 0 ? 0 : get_register(ra);
      int64_t rs_val = get_register(rs);
      int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
      WriteDW(ra_val + offset, rs_val);
      if (opcode == STDU) {
3644
        DCHECK_NE(ra, 0);
3645 3646 3647 3648
        set_register(ra, ra_val + offset);
      }
      break;
    }
3649 3650
#endif

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
    case XSADDDP: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frt_val = fra_val + frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case XSSUBDP: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frt_val = fra_val - frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case XSMULDP: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frt_val = fra_val * frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
    case XSDIVDP: {
      int frt = instr->RTValue();
      int fra = instr->RAValue();
      int frb = instr->RBValue();
      double fra_val = get_double_from_d_register(fra);
      double frb_val = get_double_from_d_register(frb);
      double frt_val = fra_val / frb_val;
      set_d_register_from_double(frt, frt_val);
      return;
    }
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706

    default: {
      UNIMPLEMENTED();
      break;
    }
  }
}  // NOLINT


void Simulator::Trace(Instruction* instr) {
  disasm::NameConverter converter;
  disasm::Disassembler dasm(converter);
  // use a reasonably large buffer
  v8::internal::EmbeddedVector<char, 256> buffer;
  dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
  PrintF("%05d  %08" V8PRIxPTR "  %s\n", icount_,
3707
         reinterpret_cast<intptr_t>(instr), buffer.begin());
3708 3709 3710 3711 3712 3713
}


// Executes the current instruction.
void Simulator::ExecuteInstruction(Instruction* instr) {
  if (v8::internal::FLAG_check_icache) {
3714
    CheckICache(i_cache(), instr);
3715 3716 3717 3718 3719
  }
  pc_modified_ = false;
  if (::v8::internal::FLAG_trace_sim) {
    Trace(instr);
  }
sampsong's avatar
sampsong committed
3720
  uint32_t opcode = instr->OpcodeField();
3721 3722 3723 3724 3725 3726
  if (opcode == TWI) {
    SoftwareInterrupt(instr);
  } else {
    ExecuteGeneric(instr);
  }
  if (!pc_modified_) {
3727
    set_pc(reinterpret_cast<intptr_t>(instr) + kInstrSize);
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
  }
}

void Simulator::Execute() {
  // Get the PC to simulate. Cannot use the accessor here as we need the
  // raw PC value and not the one used as input to arithmetic instructions.
  intptr_t program_counter = get_pc();

  if (::v8::internal::FLAG_stop_sim_at == 0) {
    // Fast version of the dispatch loop without checking whether the simulator
    // should be stopping at a particular executed instruction.
    while (program_counter != end_sim_pc) {
      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
      icount_++;
      ExecuteInstruction(instr);
      program_counter = get_pc();
    }
  } else {
    // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3747
    // we reach the particular instruction count.
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
    while (program_counter != end_sim_pc) {
      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
      icount_++;
      if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
        PPCDebugger dbg(this);
        dbg.Debug();
      } else {
        ExecuteInstruction(instr);
      }
      program_counter = get_pc();
    }
  }
}

3762
void Simulator::CallInternal(Address entry) {
3763 3764 3765
  // Adjust JS-based stack limit to C-based stack limit.
  isolate_->stack_guard()->AdjustStackLimitForSimulator();

3766 3767 3768 3769 3770 3771
  // Prepare to execute the code at entry
  if (ABI_USES_FUNCTION_DESCRIPTORS) {
    // entry is the function descriptor
    set_pc(*(reinterpret_cast<intptr_t*>(entry)));
  } else {
    // entry is the instruction address
3772
    set_pc(static_cast<intptr_t>(entry));
3773
  }
3774

3775 3776 3777 3778
  if (ABI_CALL_VIA_IP) {
    // Put target address in ip (for JS prologue).
    set_register(r12, get_pc());
  }
3779

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
  // Put down marker for end of simulation. The simulator will stop simulation
  // when the PC reaches this value. By saving the "end simulation" value into
  // the LR the simulation stops when returning to this call point.
  special_reg_lr_ = end_sim_pc;

  // Remember the values of non-volatile registers.
  intptr_t r2_val = get_register(r2);
  intptr_t r13_val = get_register(r13);
  intptr_t r14_val = get_register(r14);
  intptr_t r15_val = get_register(r15);
  intptr_t r16_val = get_register(r16);
  intptr_t r17_val = get_register(r17);
  intptr_t r18_val = get_register(r18);
  intptr_t r19_val = get_register(r19);
  intptr_t r20_val = get_register(r20);
  intptr_t r21_val = get_register(r21);
  intptr_t r22_val = get_register(r22);
  intptr_t r23_val = get_register(r23);
  intptr_t r24_val = get_register(r24);
  intptr_t r25_val = get_register(r25);
  intptr_t r26_val = get_register(r26);
  intptr_t r27_val = get_register(r27);
  intptr_t r28_val = get_register(r28);
  intptr_t r29_val = get_register(r29);
  intptr_t r30_val = get_register(r30);
  intptr_t r31_val = get_register(fp);

  // Set up the non-volatile registers with a known value. To be able to check
  // that they are preserved properly across JS execution.
  intptr_t callee_saved_value = icount_;
  set_register(r2, callee_saved_value);
  set_register(r13, callee_saved_value);
  set_register(r14, callee_saved_value);
  set_register(r15, callee_saved_value);
  set_register(r16, callee_saved_value);
  set_register(r17, callee_saved_value);
  set_register(r18, callee_saved_value);
  set_register(r19, callee_saved_value);
  set_register(r20, callee_saved_value);
  set_register(r21, callee_saved_value);
  set_register(r22, callee_saved_value);
  set_register(r23, callee_saved_value);
  set_register(r24, callee_saved_value);
  set_register(r25, callee_saved_value);
  set_register(r26, callee_saved_value);
  set_register(r27, callee_saved_value);
  set_register(r28, callee_saved_value);
  set_register(r29, callee_saved_value);
  set_register(r30, callee_saved_value);
  set_register(fp, callee_saved_value);

  // Start the simulation
  Execute();

  // Check that the non-volatile registers have been preserved.
3835 3836 3837 3838 3839 3840
  if (ABI_TOC_REGISTER != 2) {
    CHECK_EQ(callee_saved_value, get_register(r2));
  }
  if (ABI_TOC_REGISTER != 13) {
    CHECK_EQ(callee_saved_value, get_register(r13));
  }
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
  CHECK_EQ(callee_saved_value, get_register(r14));
  CHECK_EQ(callee_saved_value, get_register(r15));
  CHECK_EQ(callee_saved_value, get_register(r16));
  CHECK_EQ(callee_saved_value, get_register(r17));
  CHECK_EQ(callee_saved_value, get_register(r18));
  CHECK_EQ(callee_saved_value, get_register(r19));
  CHECK_EQ(callee_saved_value, get_register(r20));
  CHECK_EQ(callee_saved_value, get_register(r21));
  CHECK_EQ(callee_saved_value, get_register(r22));
  CHECK_EQ(callee_saved_value, get_register(r23));
  CHECK_EQ(callee_saved_value, get_register(r24));
  CHECK_EQ(callee_saved_value, get_register(r25));
  CHECK_EQ(callee_saved_value, get_register(r26));
  CHECK_EQ(callee_saved_value, get_register(r27));
  CHECK_EQ(callee_saved_value, get_register(r28));
  CHECK_EQ(callee_saved_value, get_register(r29));
  CHECK_EQ(callee_saved_value, get_register(r30));
  CHECK_EQ(callee_saved_value, get_register(fp));

  // Restore non-volatile registers with the original value.
  set_register(r2, r2_val);
  set_register(r13, r13_val);
  set_register(r14, r14_val);
  set_register(r15, r15_val);
  set_register(r16, r16_val);
  set_register(r17, r17_val);
  set_register(r18, r18_val);
  set_register(r19, r19_val);
  set_register(r20, r20_val);
  set_register(r21, r21_val);
  set_register(r22, r22_val);
  set_register(r23, r23_val);
  set_register(r24, r24_val);
  set_register(r25, r25_val);
  set_register(r26, r26_val);
  set_register(r27, r27_val);
  set_register(r28, r28_val);
  set_register(r29, r29_val);
  set_register(r30, r30_val);
  set_register(fp, r31_val);
}

3883
intptr_t Simulator::CallImpl(Address entry, int argument_count,
3884
                             const intptr_t* arguments) {
3885 3886 3887
  // Set up arguments

  // First eight arguments passed in registers r3-r10.
3888
  int reg_arg_count = std::min(8, argument_count);
3889 3890
  int stack_arg_count = argument_count - reg_arg_count;
  for (int i = 0; i < reg_arg_count; i++) {
3891
    set_register(i + 3, arguments[i]);
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
  }

  // Remaining arguments passed on stack.
  intptr_t original_stack = get_register(sp);
  // Compute position of stack on entry to generated code.
  intptr_t entry_stack =
      (original_stack -
       (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
  if (base::OS::ActivationFrameAlignment() != 0) {
    entry_stack &= -base::OS::ActivationFrameAlignment();
  }
  // Store remaining arguments on stack, from low to high memory.
  // +2 is a hack for the LR slot + old SP on PPC
  intptr_t* stack_argument =
      reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
3907 3908
  memcpy(stack_argument, arguments + reg_arg_count,
         stack_arg_count * sizeof(*arguments));
3909 3910 3911 3912 3913 3914 3915 3916
  set_register(sp, entry_stack);

  CallInternal(entry);

  // Pop stack passed arguments.
  CHECK_EQ(entry_stack, get_register(sp));
  set_register(sp, original_stack);

3917
  return get_register(r3);
3918 3919
}

3920
void Simulator::CallFP(Address entry, double d0, double d1) {
3921 3922 3923 3924 3925
  set_d_register_from_double(1, d0);
  set_d_register_from_double(2, d1);
  CallInternal(entry);
}

3926
int32_t Simulator::CallFPReturnsInt(Address entry, double d0, double d1) {
3927 3928 3929 3930 3931
  CallFP(entry, d0, d1);
  int32_t result = get_register(r3);
  return result;
}

3932
double Simulator::CallFPReturnsDouble(Address entry, double d0, double d1) {
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
  CallFP(entry, d0, d1);
  return get_double_from_d_register(1);
}


uintptr_t Simulator::PushAddress(uintptr_t address) {
  uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
  *stack_slot = address;
  set_register(sp, new_sp);
  return new_sp;
}


uintptr_t Simulator::PopAddress() {
  uintptr_t current_sp = get_register(sp);
  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
  uintptr_t address = *stack_slot;
  set_register(sp, current_sp + sizeof(uintptr_t));
  return address;
}
3954

3955
void Simulator::GlobalMonitor::Clear() {
3956 3957 3958
  access_state_ = MonitorAccess::Open;
  tagged_addr_ = 0;
  size_ = TransactionSize::None;
3959
  thread_id_ = ThreadId::Invalid();
3960 3961
}

3962 3963 3964 3965 3966 3967 3968 3969
void Simulator::GlobalMonitor::NotifyLoadExcl(uintptr_t addr,
                                              TransactionSize size,
                                              ThreadId thread_id) {
  // TODO(s390): By using Global Monitors, we are effectively limiting one
  // active reservation across all processors. This would potentially serialize
  // parallel threads executing load&reserve + store conditional on unrelated
  // memory. Technically, this implementation would still make the simulator
  // adhere to the spec, but seems overly heavy-handed.
3970 3971 3972
  access_state_ = MonitorAccess::Exclusive;
  tagged_addr_ = addr;
  size_ = size;
3973
  thread_id_ = thread_id;
3974 3975
}

3976 3977
void Simulator::GlobalMonitor::NotifyStore(uintptr_t addr, TransactionSize size,
                                           ThreadId thread_id) {
3978
  if (access_state_ == MonitorAccess::Exclusive) {
3979 3980 3981 3982 3983 3984 3985 3986
    // Calculate if the transaction has been overlapped
    uintptr_t transaction_start = addr;
    uintptr_t transaction_end = addr + static_cast<uintptr_t>(size);
    uintptr_t exclusive_transaction_start = tagged_addr_;
    uintptr_t exclusive_transaction_end =
        tagged_addr_ + static_cast<uintptr_t>(size_);
    bool is_not_overlapped = transaction_end < exclusive_transaction_start ||
                             exclusive_transaction_end < transaction_start;
3987
    if (!is_not_overlapped && thread_id_ != thread_id) {
3988 3989 3990 3991 3992
      Clear();
    }
  }
}

3993 3994 3995 3996 3997
bool Simulator::GlobalMonitor::NotifyStoreExcl(uintptr_t addr,
                                               TransactionSize size,
                                               ThreadId thread_id) {
  bool permission = access_state_ == MonitorAccess::Exclusive &&
                    addr == tagged_addr_ && size_ == size &&
3998
                    thread_id_ == thread_id;
3999 4000 4001 4002
  // The reservation is cleared if the processor holding the reservation
  // executes a store conditional instruction to any address.
  Clear();
  return permission;
4003 4004
}

4005 4006
}  // namespace internal
}  // namespace v8
4007

4008
#undef SScanF
4009
#endif  // USE_SIMULATOR