mark-compact.cc 59.8 KB
Newer Older
1
// Copyright 2006-2008 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "execution.h"
#include "global-handles.h"
#include "ic-inl.h"
#include "mark-compact.h"
#include "stub-cache.h"

namespace v8 { namespace internal {

38
// -------------------------------------------------------------------------
39 40 41 42
// MarkCompactCollector

bool MarkCompactCollector::compacting_collection_ = false;

43 44 45 46
int MarkCompactCollector::previous_marked_count_ = 0;
GCTracer* MarkCompactCollector::tracer_ = NULL;


47 48 49 50 51 52 53
#ifdef DEBUG
MarkCompactCollector::CollectorState MarkCompactCollector::state_ = IDLE;

// Counters used for debugging the marking phase of mark-compact or mark-sweep
// collection.
int MarkCompactCollector::live_bytes_ = 0;
int MarkCompactCollector::live_young_objects_ = 0;
54 55 56
int MarkCompactCollector::live_old_data_objects_ = 0;
int MarkCompactCollector::live_old_pointer_objects_ = 0;
int MarkCompactCollector::live_code_objects_ = 0;
57 58 59 60
int MarkCompactCollector::live_map_objects_ = 0;
int MarkCompactCollector::live_lo_objects_ = 0;
#endif

61 62 63 64
void MarkCompactCollector::CollectGarbage(GCTracer* tracer) {
  // Rather than passing the tracer around we stash it in a static member
  // variable.
  tracer_ = tracer;
65
  Prepare();
66 67 68
  // Prepare has selected whether to compact the old generation or not.
  // Tell the tracer.
  if (IsCompacting()) tracer_->set_is_compacting();
69 70 71

  MarkLiveObjects();

72 73
  if (FLAG_collect_maps) ClearNonLiveTransitions();

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  SweepLargeObjectSpace();

  if (compacting_collection_) {
    EncodeForwardingAddresses();

    UpdatePointers();

    RelocateObjects();

    RebuildRSets();

  } else {
    SweepSpaces();
  }

  Finish();
90 91 92 93 94 95

  // Save the count of marked objects remaining after the collection and
  // null out the GC tracer.
  previous_marked_count_ = tracer_->marked_count();
  ASSERT(previous_marked_count_ == 0);
  tracer_ = NULL;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}


void MarkCompactCollector::Prepare() {
  static const int kFragmentationLimit = 50;  // Percent.
#ifdef DEBUG
  ASSERT(state_ == IDLE);
  state_ = PREPARE_GC;
#endif
  ASSERT(!FLAG_always_compact || !FLAG_never_compact);

  compacting_collection_ = FLAG_always_compact;

  // We compact the old generation if it gets too fragmented (ie, we could
  // recover an expected amount of space by reclaiming the waste and free
  // list blocks).  We always compact when the flag --gc-global is true
  // because objects do not get promoted out of new space on non-compacting
  // GCs.
  if (!compacting_collection_) {
115 116 117 118 119 120 121 122 123 124
    int old_gen_recoverable = 0;
    int old_gen_used = 0;

    OldSpaces spaces;
    while (OldSpace* space = spaces.next()) {
      old_gen_recoverable += space->Waste() + space->AvailableFree();
      old_gen_used += space->Size();
    }
    int old_gen_fragmentation =
      static_cast<int>((old_gen_recoverable * 100.0) / old_gen_used);
125 126 127 128 129 130
    if (old_gen_fragmentation > kFragmentationLimit) {
      compacting_collection_ = true;
    }
  }

  if (FLAG_never_compact) compacting_collection_ = false;
131
  if (FLAG_collect_maps) CreateBackPointers();
132 133 134 135 136 137 138 139 140

#ifdef DEBUG
  if (compacting_collection_) {
    // We will write bookkeeping information to the remembered set area
    // starting now.
    Page::set_rset_state(Page::NOT_IN_USE);
  }
#endif

141 142 143 144
  PagedSpaces spaces;
  while (PagedSpace* space = spaces.next()) {
    space->PrepareForMarkCompact(compacting_collection_);
  }
145 146 147 148

#ifdef DEBUG
  live_bytes_ = 0;
  live_young_objects_ = 0;
149 150 151
  live_old_pointer_objects_ = 0;
  live_old_data_objects_ = 0;
  live_code_objects_ = 0;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  live_map_objects_ = 0;
  live_lo_objects_ = 0;
#endif
}


void MarkCompactCollector::Finish() {
#ifdef DEBUG
  ASSERT(state_ == SWEEP_SPACES || state_ == REBUILD_RSETS);
  state_ = IDLE;
#endif
  // The stub cache is not traversed during GC; clear the cache to
  // force lazy re-initialization of it. This must be done after the
  // GC, because it relies on the new address of certain old space
  // objects (empty string, illegal builtin).
  StubCache::Clear();
}


171
// -------------------------------------------------------------------------
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
// Phase 1: tracing and marking live objects.
//   before: all objects are in normal state.
//   after: a live object's map pointer is marked as '00'.

// Marking all live objects in the heap as part of mark-sweep or mark-compact
// collection.  Before marking, all objects are in their normal state.  After
// marking, live objects' map pointers are marked indicating that the object
// has been found reachable.
//
// The marking algorithm is a (mostly) depth-first (because of possible stack
// overflow) traversal of the graph of objects reachable from the roots.  It
// uses an explicit stack of pointers rather than recursion.  The young
// generation's inactive ('from') space is used as a marking stack.  The
// objects in the marking stack are the ones that have been reached and marked
// but their children have not yet been visited.
//
// The marking stack can overflow during traversal.  In that case, we set an
// overflow flag.  When the overflow flag is set, we continue marking objects
// reachable from the objects on the marking stack, but no longer push them on
// the marking stack.  Instead, we mark them as both marked and overflowed.
// When the stack is in the overflowed state, objects marked as overflowed
// have been reached and marked but their children have not been visited yet.
// After emptying the marking stack, we clear the overflow flag and traverse
// the heap looking for objects marked as overflowed, push them on the stack,
// and continue with marking.  This process repeats until all reachable
// objects have been marked.

static MarkingStack marking_stack;

201

202
static inline HeapObject* ShortCircuitConsString(Object** p) {
203 204 205
  // Optimization: If the heap object pointed to by p is a non-symbol
  // cons string whose right substring is Heap::empty_string, update
  // it in place to its left substring.  Return the updated value.
206 207 208 209 210
  //
  // Here we assume that if we change *p, we replace it with a heap object
  // (ie, the left substring of a cons string is always a heap object).
  //
  // The check performed is:
211
  //   object->IsConsString() && !object->IsSymbol() &&
212 213 214 215 216 217 218
  //   (ConsString::cast(object)->second() == Heap::empty_string())
  // except the maps for the object and its possible substrings might be
  // marked.
  HeapObject* object = HeapObject::cast(*p);
  MapWord map_word = object->map_word();
  map_word.ClearMark();
  InstanceType type = map_word.ToMap()->instance_type();
219 220 221
  if (type >= FIRST_NONSTRING_TYPE || (type & kIsSymbolMask) != 0) {
    return object;
  }
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

  StringRepresentationTag rep =
      static_cast<StringRepresentationTag>(type & kStringRepresentationMask);
  if (rep != kConsStringTag) return object;

  Object* second = reinterpret_cast<ConsString*>(object)->second();
  if (reinterpret_cast<String*>(second) != Heap::empty_string()) return object;

  // Since we don't have the object's start, it is impossible to update the
  // remembered set.  Therefore, we only replace the string with its left
  // substring when the remembered set does not change.
  Object* first = reinterpret_cast<ConsString*>(object)->first();
  if (!Heap::InNewSpace(object) && Heap::InNewSpace(first)) return object;

  *p = first;
  return HeapObject::cast(first);
}


241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
// Helper class for marking pointers in HeapObjects.
class MarkingVisitor : public ObjectVisitor {
 public:

  void VisitPointer(Object** p) {
    MarkObjectByPointer(p);
  }

  void VisitPointers(Object** start, Object** end) {
    // Mark all objects pointed to in [start, end).
    const int kMinRangeForMarkingRecursion = 64;
    if (end - start >= kMinRangeForMarkingRecursion) {
      if (VisitUnmarkedObjects(start, end)) return;
      // We are close to a stack overflow, so just mark the objects.
    }
    for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
  }

  void BeginCodeIteration(Code* code) {
    // When iterating over a code object during marking
    // ic targets are derived pointers.
    ASSERT(code->ic_flag() == Code::IC_TARGET_IS_ADDRESS);
  }

  void EndCodeIteration(Code* code) {
    // If this is a compacting collection, set ic targets
    // are pointing to object headers.
    if (IsCompacting()) code->set_ic_flag(Code::IC_TARGET_IS_OBJECT);
  }

  void VisitCodeTarget(RelocInfo* rinfo) {
272
    ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    Code* code = CodeFromDerivedPointer(rinfo->target_address());
    if (FLAG_cleanup_ics_at_gc && code->is_inline_cache_stub()) {
      IC::Clear(rinfo->pc());
      // Please note targets for cleared inline cached do not have to be
      // marked since they are contained in Heap::non_monomorphic_cache().
    } else {
      MarkCompactCollector::MarkObject(code);
    }
    if (IsCompacting()) {
      // When compacting we convert the target to a real object pointer.
      code = CodeFromDerivedPointer(rinfo->target_address());
      rinfo->set_target_object(code);
    }
  }

  void VisitDebugTarget(RelocInfo* rinfo) {
289 290
    ASSERT(RelocInfo::IsJSReturn(rinfo->rmode()) &&
           rinfo->is_call_instruction());
291 292 293 294 295 296 297 298 299
    HeapObject* code = CodeFromDerivedPointer(rinfo->call_address());
    MarkCompactCollector::MarkObject(code);
    // When compacting we convert the call to a real object pointer.
    if (IsCompacting()) rinfo->set_call_object(code);
  }

 private:
  // Mark object pointed to by p.
  void MarkObjectByPointer(Object** p) {
300 301 302
    if (!(*p)->IsHeapObject()) return;
    HeapObject* object = ShortCircuitConsString(p);
    MarkCompactCollector::MarkObject(object);
303 304 305 306 307 308 309 310 311 312 313 314 315 316
  }

  // Tells whether the mark sweep collection will perform compaction.
  bool IsCompacting() { return MarkCompactCollector::IsCompacting(); }

  // Retrieves the Code pointer from derived code entry.
  Code* CodeFromDerivedPointer(Address addr) {
    ASSERT(addr != NULL);
    return reinterpret_cast<Code*>(
        HeapObject::FromAddress(addr - Code::kHeaderSize));
  }

  // Visit an unmarked object.
  void VisitUnmarkedObject(HeapObject* obj) {
317
#ifdef DEBUG
318 319
    ASSERT(Heap::Contains(obj));
    ASSERT(!obj->IsMarked());
320 321
#endif
    Map* map = obj->map();
322
    MarkCompactCollector::SetMark(obj);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    // Mark the map pointer and the body.
    MarkCompactCollector::MarkObject(map);
    obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), this);
  }

  // Visit all unmarked objects pointed to by [start, end).
  // Returns false if the operation fails (lack of stack space).
  inline bool VisitUnmarkedObjects(Object** start, Object** end) {
    // Return false is we are close to the stack limit.
    StackLimitCheck check;
    if (check.HasOverflowed()) return false;

    // Visit the unmarked objects.
    for (Object** p = start; p < end; p++) {
      if (!(*p)->IsHeapObject()) continue;
      HeapObject* obj = HeapObject::cast(*p);
339
      if (obj->IsMarked()) continue;
340 341 342 343 344 345 346
      VisitUnmarkedObject(obj);
    }
    return true;
  }
};


347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
// Visitor class for marking heap roots.
class RootMarkingVisitor : public ObjectVisitor {
 public:
  void VisitPointer(Object** p) {
    MarkObjectByPointer(p);
  }

  void VisitPointers(Object** start, Object** end) {
    for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
  }

  MarkingVisitor* stack_visitor() { return &stack_visitor_; }

 private:
  MarkingVisitor stack_visitor_;

  void MarkObjectByPointer(Object** p) {
    if (!(*p)->IsHeapObject()) return;

    // Replace flat cons strings in place.
    HeapObject* object = ShortCircuitConsString(p);
    if (object->IsMarked()) return;

    Map* map = object->map();
    // Mark the object.
372
    MarkCompactCollector::SetMark(object);
373 374 375 376 377 378 379 380 381 382 383 384
    // Mark the map pointer and body, and push them on the marking stack.
    MarkCompactCollector::MarkObject(map);
    object->IterateBody(map->instance_type(), object->SizeFromMap(map),
                        &stack_visitor_);

    // Mark all the objects reachable from the map and body.  May leave
    // overflowed objects in the heap.
    MarkCompactCollector::EmptyMarkingStack(&stack_visitor_);
  }
};


385 386 387 388 389 390 391
// Helper class for pruning the symbol table.
class SymbolTableCleaner : public ObjectVisitor {
 public:
  SymbolTableCleaner() : pointers_removed_(0) { }
  void VisitPointers(Object** start, Object** end) {
    // Visit all HeapObject pointers in [start, end).
    for (Object** p = start; p < end; p++) {
392
      if ((*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked()) {
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        // Set the entry to null_value (as deleted).
        *p = Heap::null_value();
        pointers_removed_++;
      }
    }
  }

  int PointersRemoved() {
    return pointers_removed_;
  }
 private:
  int pointers_removed_;
};


408 409
void MarkCompactCollector::MarkUnmarkedObject(HeapObject* object) {
  ASSERT(!object->IsMarked());
410 411 412 413 414 415
  ASSERT(Heap::Contains(object));
  if (object->IsMap()) {
    Map* map = Map::cast(object);
    if (FLAG_cleanup_caches_in_maps_at_gc) {
      map->ClearCodeCache();
    }
416
    SetMark(map);
417 418 419 420 421 422 423 424
    if (FLAG_collect_maps &&
        map->instance_type() >= FIRST_JS_OBJECT_TYPE &&
        map->instance_type() <= JS_FUNCTION_TYPE) {
      MarkMapContents(map);
    } else {
      marking_stack.Push(map);
    }
  } else {
425
    SetMark(object);
426
    marking_stack.Push(object);
427
  }
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
}


void MarkCompactCollector::MarkMapContents(Map* map) {
  MarkDescriptorArray(reinterpret_cast<DescriptorArray*>(
      *HeapObject::RawField(map, Map::kInstanceDescriptorsOffset)));

  // Mark the Object* fields of the Map.
  // Since the descriptor array has been marked already, it is fine
  // that one of these fields contains a pointer to it.
  MarkingVisitor visitor;  // Has no state or contents.
  visitor.VisitPointers(HeapObject::RawField(map, Map::kPrototypeOffset),
                        HeapObject::RawField(map, Map::kSize));
}


void MarkCompactCollector::MarkDescriptorArray(
    DescriptorArray *descriptors) {
  if (descriptors->IsMarked()) return;
  // Empty descriptor array is marked as a root before any maps are marked.
  ASSERT(descriptors != Heap::empty_descriptor_array());
449
  SetMark(descriptors);
450 451 452 453 454 455 456

  FixedArray* contents = reinterpret_cast<FixedArray*>(
      descriptors->get(DescriptorArray::kContentArrayIndex));
  ASSERT(contents->IsHeapObject());
  ASSERT(!contents->IsMarked());
  ASSERT(contents->IsFixedArray());
  ASSERT(contents->length() >= 2);
457
  SetMark(contents);
458 459 460 461 462 463 464 465 466 467 468
  // Contents contains (value, details) pairs.  If the details say
  // that the type of descriptor is MAP_TRANSITION, CONSTANT_TRANSITION,
  // or NULL_DESCRIPTOR, we don't mark the value as live.  Only for
  // type MAP_TRANSITION is the value a Object* (a Map*).
  for (int i = 0; i < contents->length(); i += 2) {
    // If the pair (value, details) at index i, i+1 is not
    // a transition or null descriptor, mark the value.
    PropertyDetails details(Smi::cast(contents->get(i + 1)));
    if (details.type() < FIRST_PHANTOM_PROPERTY_TYPE) {
      HeapObject* object = reinterpret_cast<HeapObject*>(contents->get(i));
      if (object->IsHeapObject() && !object->IsMarked()) {
469
        SetMark(object);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        marking_stack.Push(object);
      }
    }
  }
  // The DescriptorArray descriptors contains a pointer to its contents array,
  // but the contents array is already marked.
  marking_stack.Push(descriptors);
}


void MarkCompactCollector::CreateBackPointers() {
  HeapObjectIterator iterator(Heap::map_space());
  while (iterator.has_next()) {
    Object* next_object = iterator.next();
    if (next_object->IsMap()) {  // Could also be ByteArray on free list.
      Map* map = Map::cast(next_object);
      if (map->instance_type() >= FIRST_JS_OBJECT_TYPE &&
          map->instance_type() <= JS_FUNCTION_TYPE) {
        map->CreateBackPointers();
      } else {
        ASSERT(map->instance_descriptors() == Heap::empty_descriptor_array());
      }
    }
  }
494 495 496 497 498 499
}


static int OverflowObjectSize(HeapObject* obj) {
  // Recover the normal map pointer, it might be marked as live and
  // overflowed.
500 501 502 503
  MapWord map_word = obj->map_word();
  map_word.ClearMark();
  map_word.ClearOverflow();
  return obj->SizeFromMap(map_word.ToMap());
504 505 506
}


507 508 509
// Fill the marking stack with overflowed objects returned by the given
// iterator.  Stop when the marking stack is filled or the end of the space
// is reached, whichever comes first.
510 511
template<class T>
static void ScanOverflowedObjects(T* it) {
512 513 514 515
  // The caller should ensure that the marking stack is initially not full,
  // so that we don't waste effort pointlessly scanning for objects.
  ASSERT(!marking_stack.is_full());

516
  while (it->has_next()) {
517 518 519 520 521 522 523
    HeapObject* object = it->next();
    if (object->IsOverflowed()) {
      object->ClearOverflow();
      ASSERT(object->IsMarked());
      ASSERT(Heap::Contains(object));
      marking_stack.Push(object);
      if (marking_stack.is_full()) return;
524 525 526 527 528 529 530 531
    }
  }
}


bool MarkCompactCollector::MustBeMarked(Object** p) {
  // Check whether *p is a HeapObject pointer.
  if (!(*p)->IsHeapObject()) return false;
532
  return !HeapObject::cast(*p)->IsMarked();
533 534 535
}


536
void MarkCompactCollector::ProcessRoots(RootMarkingVisitor* visitor) {
537 538
  // Mark the heap roots gray, including global variables, stack variables,
  // etc.
539
  Heap::IterateStrongRoots(visitor);
540 541 542

  // Take care of the symbol table specially.
  SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table());
543
  // 1. Mark the prefix of the symbol table gray.
544
  symbol_table->IteratePrefix(visitor);
545 546
  // 2. Mark the symbol table black (ie, do not push it on the marking stack
  // or mark it overflowed).
547
  SetMark(symbol_table);
548 549 550 551 552 553

  // There may be overflowed objects in the heap.  Visit them now.
  while (marking_stack.overflowed()) {
    RefillMarkingStack();
    EmptyMarkingStack(visitor->stack_visitor());
  }
554 555 556 557
}


void MarkCompactCollector::MarkObjectGroups() {
558
  List<ObjectGroup*>* object_groups = GlobalHandles::ObjectGroups();
559

560 561
  for (int i = 0; i < object_groups->length(); i++) {
    ObjectGroup* entry = object_groups->at(i);
562 563 564 565 566 567 568 569 570 571 572
    if (entry == NULL) continue;

    List<Object**>& objects = entry->objects_;
    bool group_marked = false;
    for (int j = 0; j < objects.length(); j++) {
      Object* object = *objects[j];
      if (object->IsHeapObject() && HeapObject::cast(object)->IsMarked()) {
        group_marked = true;
        break;
      }
    }
573

574
    if (!group_marked) continue;
575

576 577 578 579 580 581 582 583 584
    // An object in the group is marked, so mark as gray all white heap
    // objects in the group.
    for (int j = 0; j < objects.length(); ++j) {
      if ((*objects[j])->IsHeapObject()) {
        MarkObject(HeapObject::cast(*objects[j]));
      }
    }
    // Once the entire group has been colored gray, set the object group
    // to NULL so it won't be processed again.
585 586
    delete object_groups->at(i);
    object_groups->at(i) = NULL;
587 588 589 590
  }
}


591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
// Mark all objects reachable from the objects on the marking stack.
// Before: the marking stack contains zero or more heap object pointers.
// After: the marking stack is empty, and all objects reachable from the
// marking stack have been marked, or are overflowed in the heap.
void MarkCompactCollector::EmptyMarkingStack(MarkingVisitor* visitor) {
  while (!marking_stack.is_empty()) {
    HeapObject* object = marking_stack.Pop();
    ASSERT(object->IsHeapObject());
    ASSERT(Heap::Contains(object));
    ASSERT(object->IsMarked());
    ASSERT(!object->IsOverflowed());

    // Because the object is marked, we have to recover the original map
    // pointer and use it to mark the object's body.
    MapWord map_word = object->map_word();
    map_word.ClearMark();
    Map* map = map_word.ToMap();
    MarkObject(map);
    object->IterateBody(map->instance_type(), object->SizeFromMap(map),
                        visitor);
  }
}

614

615 616 617 618 619 620 621
// Sweep the heap for overflowed objects, clear their overflow bits, and
// push them on the marking stack.  Stop early if the marking stack fills
// before sweeping completes.  If sweeping completes, there are no remaining
// overflowed objects in the heap so the overflow flag on the markings stack
// is cleared.
void MarkCompactCollector::RefillMarkingStack() {
  ASSERT(marking_stack.overflowed());
622

623 624 625
  SemiSpaceIterator new_it(Heap::new_space(), &OverflowObjectSize);
  ScanOverflowedObjects(&new_it);
  if (marking_stack.is_full()) return;
626

627 628 629 630 631 632 633
  HeapObjectIterator old_pointer_it(Heap::old_pointer_space(),
                                    &OverflowObjectSize);
  ScanOverflowedObjects(&old_pointer_it);
  if (marking_stack.is_full()) return;

  HeapObjectIterator old_data_it(Heap::old_data_space(), &OverflowObjectSize);
  ScanOverflowedObjects(&old_data_it);
634
  if (marking_stack.is_full()) return;
635

636 637 638
  HeapObjectIterator code_it(Heap::code_space(), &OverflowObjectSize);
  ScanOverflowedObjects(&code_it);
  if (marking_stack.is_full()) return;
639

640 641 642
  HeapObjectIterator map_it(Heap::map_space(), &OverflowObjectSize);
  ScanOverflowedObjects(&map_it);
  if (marking_stack.is_full()) return;
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  LargeObjectIterator lo_it(Heap::lo_space(), &OverflowObjectSize);
  ScanOverflowedObjects(&lo_it);
  if (marking_stack.is_full()) return;

  marking_stack.clear_overflowed();
}


// Mark all objects reachable (transitively) from objects on the marking
// stack.  Before: the marking stack contains zero or more heap object
// pointers.  After: the marking stack is empty and there are no overflowed
// objects in the heap.
void MarkCompactCollector::ProcessMarkingStack(MarkingVisitor* visitor) {
  EmptyMarkingStack(visitor);
  while (marking_stack.overflowed()) {
    RefillMarkingStack();
    EmptyMarkingStack(visitor);
661
  }
662 663 664
}


665
void MarkCompactCollector::ProcessObjectGroups(MarkingVisitor* visitor) {
666 667 668 669 670
  bool work_to_do = true;
  ASSERT(marking_stack.is_empty());
  while (work_to_do) {
    MarkObjectGroups();
    work_to_do = !marking_stack.is_empty();
671
    ProcessMarkingStack(visitor);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
  }
}


void MarkCompactCollector::MarkLiveObjects() {
#ifdef DEBUG
  ASSERT(state_ == PREPARE_GC);
  state_ = MARK_LIVE_OBJECTS;
#endif
  // The to space contains live objects, the from space is used as a marking
  // stack.
  marking_stack.Initialize(Heap::new_space()->FromSpaceLow(),
                           Heap::new_space()->FromSpaceHigh());

  ASSERT(!marking_stack.overflowed());
687

688 689
  RootMarkingVisitor root_visitor;
  ProcessRoots(&root_visitor);
690 691 692 693 694

  // The objects reachable from the roots are marked black, unreachable
  // objects are white.  Mark objects reachable from object groups with at
  // least one marked object, and continue until no new objects are
  // reachable from the object groups.
695
  ProcessObjectGroups(root_visitor.stack_visitor());
696 697 698 699 700 701 702 703

  // The objects reachable from the roots or object groups are marked black,
  // unreachable objects are white.  Process objects reachable only from
  // weak global handles.
  //
  // First we mark weak pointers not yet reachable.
  GlobalHandles::MarkWeakRoots(&MustBeMarked);
  // Then we process weak pointers and process the transitive closure.
704 705 706 707 708
  GlobalHandles::IterateWeakRoots(&root_visitor);
  while (marking_stack.overflowed()) {
    RefillMarkingStack();
    EmptyMarkingStack(root_visitor.stack_visitor());
  }
709 710 711

  // Repeat the object groups to mark unmarked groups reachable from the
  // weak roots.
712
  ProcessObjectGroups(root_visitor.stack_visitor());
713 714 715 716 717 718

  // Prune the symbol table removing all symbols only pointed to by the
  // symbol table.  Cannot use SymbolTable::cast here because the symbol
  // table is marked.
  SymbolTable* symbol_table =
      reinterpret_cast<SymbolTable*>(Heap::symbol_table());
719 720 721 722 723 724 725 726 727
  SymbolTableCleaner v;
  symbol_table->IterateElements(&v);
  symbol_table->ElementsRemoved(v.PointersRemoved());

  // Remove object groups after marking phase.
  GlobalHandles::RemoveObjectGroups();
}


728 729 730 731 732 733 734
static int CountMarkedCallback(HeapObject* obj) {
  MapWord map_word = obj->map_word();
  map_word.ClearMark();
  return obj->SizeFromMap(map_word.ToMap());
}


735 736 737 738 739 740 741 742
#ifdef DEBUG
void MarkCompactCollector::UpdateLiveObjectCount(HeapObject* obj) {
  live_bytes_ += obj->Size();
  if (Heap::new_space()->Contains(obj)) {
    live_young_objects_++;
  } else if (Heap::map_space()->Contains(obj)) {
    ASSERT(obj->IsMap());
    live_map_objects_++;
743 744 745 746
  } else if (Heap::old_pointer_space()->Contains(obj)) {
    live_old_pointer_objects_++;
  } else if (Heap::old_data_space()->Contains(obj)) {
    live_old_data_objects_++;
747
  } else if (Heap::code_space()->Contains(obj)) {
748
    live_code_objects_++;
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
  } else if (Heap::lo_space()->Contains(obj)) {
    live_lo_objects_++;
  } else {
    UNREACHABLE();
  }
}
#endif  // DEBUG


void MarkCompactCollector::SweepLargeObjectSpace() {
#ifdef DEBUG
  ASSERT(state_ == MARK_LIVE_OBJECTS);
  state_ =
      compacting_collection_ ? ENCODE_FORWARDING_ADDRESSES : SWEEP_SPACES;
#endif
  // Deallocate unmarked objects and clear marked bits for marked objects.
  Heap::lo_space()->FreeUnmarkedObjects();
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
// Safe to use during marking phase only.
bool MarkCompactCollector::SafeIsMap(HeapObject* object) {
  MapWord metamap = object->map_word();
  metamap.ClearMark();
  return metamap.ToMap()->instance_type() == MAP_TYPE;
}

void MarkCompactCollector::ClearNonLiveTransitions() {
  HeapObjectIterator map_iterator(Heap::map_space(), &CountMarkedCallback);
  // Iterate over the map space, setting map transitions that go from
  // a marked map to an unmarked map to null transitions.  At the same time,
  // set all the prototype fields of maps back to their original value,
  // dropping the back pointers temporarily stored in the prototype field.
  // Setting the prototype field requires following the linked list of
  // back pointers, reversing them all at once.  This allows us to find
  // those maps with map transitions that need to be nulled, and only
  // scan the descriptor arrays of those maps, not all maps.
  // All of these actions are carried out only on maps of JSObects
  // and related subtypes.
  while (map_iterator.has_next()) {
    Map* map = reinterpret_cast<Map*>(map_iterator.next());
    if (!map->IsMarked() && map->IsByteArray()) continue;

    ASSERT(SafeIsMap(map));
    // Only JSObject and subtypes have map transitions and back pointers.
    if (map->instance_type() < FIRST_JS_OBJECT_TYPE) continue;
    if (map->instance_type() > JS_FUNCTION_TYPE) continue;
    // Follow the chain of back pointers to find the prototype.
    Map* current = map;
    while (SafeIsMap(current)) {
      current = reinterpret_cast<Map*>(current->prototype());
      ASSERT(current->IsHeapObject());
    }
    Object* real_prototype = current;

    // Follow back pointers, setting them to prototype,
    // clearing map transitions when necessary.
    current = map;
    bool on_dead_path = !current->IsMarked();
    Object *next;
    while (SafeIsMap(current)) {
      next = current->prototype();
      // There should never be a dead map above a live map.
      ASSERT(on_dead_path || current->IsMarked());

      // A live map above a dead map indicates a dead transition.
      // This test will always be false on the first iteration.
      if (on_dead_path && current->IsMarked()) {
        on_dead_path = false;
        current->ClearNonLiveTransitions(real_prototype);
      }
      *HeapObject::RawField(current, Map::kPrototypeOffset) =
          real_prototype;
      current = reinterpret_cast<Map*>(next);
    }
  }
}
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

// -------------------------------------------------------------------------
// Phase 2: Encode forwarding addresses.
// When compacting, forwarding addresses for objects in old space and map
// space are encoded in their map pointer word (along with an encoding of
// their map pointers).
//
//  31             21 20              10 9               0
// +-----------------+------------------+-----------------+
// |forwarding offset|page offset of map|page index of map|
// +-----------------+------------------+-----------------+
//  11 bits           11 bits            10 bits
//
// An address range [start, end) can have both live and non-live objects.
// Maximal non-live regions are marked so they can be skipped on subsequent
// sweeps of the heap.  A distinguished map-pointer encoding is used to mark
// free regions of one-word size (in which case the next word is the start
// of a live object).  A second distinguished map-pointer encoding is used
// to mark free regions larger than one word, and the size of the free
// region (including the first word) is written to the second word of the
// region.
//
// Any valid map page offset must lie in the object area of the page, so map
// page offsets less than Page::kObjectStartOffset are invalid.  We use a
// pair of distinguished invalid map encodings (for single word and multiple
// words) to indicate free regions in the page found during computation of
// forwarding addresses and skipped over in subsequent sweeps.
static const uint32_t kSingleFreeEncoding = 0;
static const uint32_t kMultiFreeEncoding = 1;


// Encode a free region, defined by the given start address and size, in the
// first word or two of the region.
void EncodeFreeRegion(Address free_start, int free_size) {
  ASSERT(free_size >= kIntSize);
  if (free_size == kIntSize) {
    Memory::uint32_at(free_start) = kSingleFreeEncoding;
  } else {
    ASSERT(free_size >= 2 * kIntSize);
    Memory::uint32_at(free_start) = kMultiFreeEncoding;
    Memory::int_at(free_start + kIntSize) = free_size;
  }

#ifdef DEBUG
  // Zap the body of the free region.
  if (FLAG_enable_slow_asserts) {
    for (int offset = 2 * kIntSize;
         offset < free_size;
         offset += kPointerSize) {
      Memory::Address_at(free_start + offset) = kZapValue;
    }
  }
#endif
}


// Try to promote all objects in new space.  Heap numbers and sequential
// strings are promoted to the code space, all others to the old space.
inline Object* MCAllocateFromNewSpace(HeapObject* object, int object_size) {
884 885 886 887
  OldSpace* target_space = Heap::TargetSpace(object);
  ASSERT(target_space == Heap::old_pointer_space() ||
         target_space == Heap::old_data_space());
  Object* forwarded = target_space->MCAllocateRaw(object_size);
888 889 890 891 892 893 894 895 896

  if (forwarded->IsFailure()) {
    forwarded = Heap::new_space()->MCAllocateRaw(object_size);
  }
  return forwarded;
}


// Allocation functions for the paged spaces call the space's MCAllocateRaw.
897 898 899 900 901 902 903 904
inline Object* MCAllocateFromOldPointerSpace(HeapObject* object,
                                             int object_size) {
  return Heap::old_pointer_space()->MCAllocateRaw(object_size);
}


inline Object* MCAllocateFromOldDataSpace(HeapObject* object, int object_size) {
  return Heap::old_data_space()->MCAllocateRaw(object_size);
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
}


inline Object* MCAllocateFromCodeSpace(HeapObject* object, int object_size) {
  return Heap::code_space()->MCAllocateRaw(object_size);
}


inline Object* MCAllocateFromMapSpace(HeapObject* object, int object_size) {
  return Heap::map_space()->MCAllocateRaw(object_size);
}


// The forwarding address is encoded at the same offset as the current
// to-space object, but in from space.
inline void EncodeForwardingAddressInNewSpace(HeapObject* old_object,
                                              int object_size,
                                              Object* new_object,
                                              int* ignored) {
  int offset =
      Heap::new_space()->ToSpaceOffsetForAddress(old_object->address());
  Memory::Address_at(Heap::new_space()->FromSpaceLow() + offset) =
      HeapObject::cast(new_object)->address();
}


// The forwarding address is encoded in the map pointer of the object as an
// offset (in terms of live bytes) from the address of the first live object
// in the page.
inline void EncodeForwardingAddressInPagedSpace(HeapObject* old_object,
                                                int object_size,
                                                Object* new_object,
                                                int* offset) {
  // Record the forwarding address of the first live object if necessary.
  if (*offset == 0) {
    Page::FromAddress(old_object->address())->mc_first_forwarded =
        HeapObject::cast(new_object)->address();
  }

944 945 946
  MapWord encoding =
      MapWord::EncodeAddress(old_object->map()->address(), *offset);
  old_object->set_map_word(encoding);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
  *offset += object_size;
  ASSERT(*offset <= Page::kObjectAreaSize);
}


// Most non-live objects are ignored.
inline void IgnoreNonLiveObject(HeapObject* object) {}


// A code deletion event is logged for non-live code objects.
inline void LogNonLiveCodeObject(HeapObject* object) {
  if (object->IsCode()) LOG(CodeDeleteEvent(object->address()));
}


// Function template that, given a range of addresses (eg, a semispace or a
// paged space page), iterates through the objects in the range to clear
// mark bits and compute and encode forwarding addresses.  As a side effect,
// maximal free chunks are marked so that they can be skipped on subsequent
// sweeps.
//
// The template parameters are an allocation function, a forwarding address
// encoding function, and a function to process non-live objects.
template<MarkCompactCollector::AllocationFunction Alloc,
         MarkCompactCollector::EncodingFunction Encode,
         MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive>
inline void EncodeForwardingAddressesInRange(Address start,
                                             Address end,
                                             int* offset) {
  // The start address of the current free region while sweeping the space.
  // This address is set when a transition from live to non-live objects is
  // encountered.  A value (an encoding of the 'next free region' pointer)
  // is written to memory at this address when a transition from non-live to
  // live objects is encountered.
  Address free_start = NULL;

  // A flag giving the state of the previously swept object.  Initially true
  // to ensure that free_start is initialized to a proper address before
  // trying to write to it.
  bool is_prev_alive = true;

  int object_size;  // Will be set on each iteration of the loop.
  for (Address current = start; current < end; current += object_size) {
    HeapObject* object = HeapObject::FromAddress(current);
991 992 993
    if (object->IsMarked()) {
      object->ClearMark();
      MarkCompactCollector::tracer()->decrement_marked_count();
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
      object_size = object->Size();

      Object* forwarded = Alloc(object, object_size);
      // Allocation cannot fail, because we are compacting the space.
      ASSERT(!forwarded->IsFailure());
      Encode(object, object_size, forwarded, offset);

#ifdef DEBUG
      if (FLAG_gc_verbose) {
        PrintF("forward %p -> %p.\n", object->address(),
               HeapObject::cast(forwarded)->address());
      }
#endif
      if (!is_prev_alive) {  // Transition from non-live to live.
        EncodeFreeRegion(free_start, current - free_start);
        is_prev_alive = true;
      }
    } else {  // Non-live object.
      object_size = object->Size();
      ProcessNonLive(object);
      if (is_prev_alive) {  // Transition from live to non-live.
        free_start = current;
        is_prev_alive = false;
      }
    }
  }

  // If we ended on a free region, mark it.
  if (!is_prev_alive) EncodeFreeRegion(free_start, end - free_start);
}


// Functions to encode the forwarding pointers in each compactable space.
void MarkCompactCollector::EncodeForwardingAddressesInNewSpace() {
  int ignored;
  EncodeForwardingAddressesInRange<MCAllocateFromNewSpace,
                                   EncodeForwardingAddressInNewSpace,
                                   IgnoreNonLiveObject>(
      Heap::new_space()->bottom(),
      Heap::new_space()->top(),
      &ignored);
}


template<MarkCompactCollector::AllocationFunction Alloc,
         MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive>
void MarkCompactCollector::EncodeForwardingAddressesInPagedSpace(
    PagedSpace* space) {
  PageIterator it(space, PageIterator::PAGES_IN_USE);
  while (it.has_next()) {
    Page* p = it.next();
    // The offset of each live object in the page from the first live object
    // in the page.
    int offset = 0;
    EncodeForwardingAddressesInRange<Alloc,
                                     EncodeForwardingAddressInPagedSpace,
                                     ProcessNonLive>(
        p->ObjectAreaStart(),
        p->AllocationTop(),
        &offset);
  }
}


static void SweepSpace(NewSpace* space) {
  HeapObject* object;
  for (Address current = space->bottom();
       current < space->top();
       current += object->Size()) {
    object = HeapObject::FromAddress(current);
1064 1065 1066
    if (object->IsMarked()) {
      object->ClearMark();
      MarkCompactCollector::tracer()->decrement_marked_count();
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    } else {
      // We give non-live objects a map that will correctly give their size,
      // since their existing map might not be live after the collection.
      int size = object->Size();
      if (size >= Array::kHeaderSize) {
        object->set_map(Heap::byte_array_map());
        ByteArray::cast(object)->set_length(ByteArray::LengthFor(size));
      } else {
        ASSERT(size == kPointerSize);
        object->set_map(Heap::one_word_filler_map());
      }
      ASSERT(object->Size() == size);
    }
    // The object is now unmarked for the call to Size() at the top of the
    // loop.
  }
}


static void SweepSpace(PagedSpace* space, DeallocateFunction dealloc) {
  PageIterator it(space, PageIterator::PAGES_IN_USE);
  while (it.has_next()) {
    Page* p = it.next();

    bool is_previous_alive = true;
    Address free_start = NULL;
    HeapObject* object;

    for (Address current = p->ObjectAreaStart();
         current < p->AllocationTop();
         current += object->Size()) {
      object = HeapObject::FromAddress(current);
1099 1100 1101
      if (object->IsMarked()) {
        object->ClearMark();
        MarkCompactCollector::tracer()->decrement_marked_count();
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        if (MarkCompactCollector::IsCompacting() && object->IsCode()) {
          // If this is compacting collection marked code objects have had
          // their IC targets converted to objects.
          // They need to be converted back to addresses.
          Code::cast(object)->ConvertICTargetsFromObjectToAddress();
        }
        if (!is_previous_alive) {  // Transition from free to live.
          dealloc(free_start, current - free_start);
          is_previous_alive = true;
        }
      } else {
        if (object->IsCode()) {
          LOG(CodeDeleteEvent(Code::cast(object)->address()));
        }
        if (is_previous_alive) {  // Transition from live to free.
          free_start = current;
          is_previous_alive = false;
        }
      }
      // The object is now unmarked for the call to Size() at the top of the
      // loop.
    }

    // If the last region was not live we need to from free_start to the
    // allocation top in the page.
    if (!is_previous_alive) {
      int free_size = p->AllocationTop() - free_start;
      if (free_size > 0) {
        dealloc(free_start, free_size);
      }
    }
  }
}


1137 1138
void MarkCompactCollector::DeallocateOldPointerBlock(Address start,
                                                     int size_in_bytes) {
1139
  Heap::ClearRSetRange(start, size_in_bytes);
1140 1141 1142 1143 1144 1145 1146
  Heap::old_pointer_space()->Free(start, size_in_bytes);
}


void MarkCompactCollector::DeallocateOldDataBlock(Address start,
                                                  int size_in_bytes) {
  Heap::old_data_space()->Free(start, size_in_bytes);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
}


void MarkCompactCollector::DeallocateCodeBlock(Address start,
                                               int size_in_bytes) {
  Heap::code_space()->Free(start, size_in_bytes);
}


void MarkCompactCollector::DeallocateMapBlock(Address start,
                                              int size_in_bytes) {
  // Objects in map space are frequently assumed to have size Map::kSize and a
  // valid map in their first word.  Thus, we break the free block up into
  // chunks and free them separately.
  ASSERT(size_in_bytes % Map::kSize == 0);
  Heap::ClearRSetRange(start, size_in_bytes);
  Address end = start + size_in_bytes;
  for (Address a = start; a < end; a += Map::kSize) {
    Heap::map_space()->Free(a);
  }
}


void MarkCompactCollector::EncodeForwardingAddresses() {
  ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES);
1172 1173 1174 1175 1176
  // Objects in the active semispace of the young generation may be
  // relocated to the inactive semispace (if not promoted).  Set the
  // relocation info to the beginning of the inactive semispace.
  Heap::new_space()->MCResetRelocationInfo();

1177
  // Compute the forwarding pointers in each space.
1178 1179 1180 1181 1182
  EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldPointerSpace,
                                        IgnoreNonLiveObject>(
      Heap::old_pointer_space());

  EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldDataSpace,
1183
                                        IgnoreNonLiveObject>(
1184
      Heap::old_data_space());
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

  EncodeForwardingAddressesInPagedSpace<MCAllocateFromCodeSpace,
                                        LogNonLiveCodeObject>(
      Heap::code_space());

  // Compute new space next to last after the old and code spaces have been
  // compacted.  Objects in new space can be promoted to old or code space.
  EncodeForwardingAddressesInNewSpace();

  // Compute map space last because computing forwarding addresses
  // overwrites non-live objects.  Objects in the other spaces rely on
  // non-live map pointers to get the sizes of non-live objects.
  EncodeForwardingAddressesInPagedSpace<MCAllocateFromMapSpace,
                                        IgnoreNonLiveObject>(
      Heap::map_space());

  // Write relocation info to the top page, so we can use it later.  This is
  // done after promoting objects from the new space so we get the correct
  // allocation top.
1204 1205
  Heap::old_pointer_space()->MCWriteRelocationInfoToPage();
  Heap::old_data_space()->MCWriteRelocationInfoToPage();
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
  Heap::code_space()->MCWriteRelocationInfoToPage();
  Heap::map_space()->MCWriteRelocationInfoToPage();
}


void MarkCompactCollector::SweepSpaces() {
  ASSERT(state_ == SWEEP_SPACES);
  ASSERT(!IsCompacting());
  // Noncompacting collections simply sweep the spaces to clear the mark
  // bits and free the nonlive blocks (for old and map spaces).  We sweep
  // the map space last because freeing non-live maps overwrites them and
  // the other spaces rely on possibly non-live maps to get the sizes for
  // non-live objects.
1219 1220
  SweepSpace(Heap::old_pointer_space(), &DeallocateOldPointerBlock);
  SweepSpace(Heap::old_data_space(), &DeallocateOldDataBlock);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
  SweepSpace(Heap::code_space(), &DeallocateCodeBlock);
  SweepSpace(Heap::new_space());
  SweepSpace(Heap::map_space(), &DeallocateMapBlock);
}


// Iterate the live objects in a range of addresses (eg, a page or a
// semispace).  The live regions of the range have been linked into a list.
// The first live region is [first_live_start, first_live_end), and the last
// address in the range is top.  The callback function is used to get the
// size of each live object.
int MarkCompactCollector::IterateLiveObjectsInRange(
    Address start,
    Address end,
    HeapObjectCallback size_func) {
  int live_objects = 0;
  Address current = start;
  while (current < end) {
    uint32_t encoded_map = Memory::uint32_at(current);
    if (encoded_map == kSingleFreeEncoding) {
      current += kPointerSize;
    } else if (encoded_map == kMultiFreeEncoding) {
      current += Memory::int_at(current + kIntSize);
    } else {
      live_objects++;
      current += size_func(HeapObject::FromAddress(current));
    }
  }
  return live_objects;
}


int MarkCompactCollector::IterateLiveObjects(NewSpace* space,
                                             HeapObjectCallback size_f) {
  ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS);
  return IterateLiveObjectsInRange(space->bottom(), space->top(), size_f);
}


int MarkCompactCollector::IterateLiveObjects(PagedSpace* space,
                                             HeapObjectCallback size_f) {
  ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS);
  int total = 0;
  PageIterator it(space, PageIterator::PAGES_IN_USE);
  while (it.has_next()) {
    Page* p = it.next();
    total += IterateLiveObjectsInRange(p->ObjectAreaStart(),
                                       p->AllocationTop(),
                                       size_f);
  }
  return total;
}


1275
// -------------------------------------------------------------------------
1276 1277 1278 1279 1280 1281
// Phase 3: Update pointers

// Helper class for updating pointers in HeapObjects.
class UpdatingVisitor: public ObjectVisitor {
 public:
  void VisitPointer(Object** p) {
1282
    UpdatePointer(p);
1283 1284 1285 1286
  }

  void VisitPointers(Object** start, Object** end) {
    // Mark all HeapObject pointers in [start, end)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    for (Object** p = start; p < end; p++) UpdatePointer(p);
  }

 private:
  void UpdatePointer(Object** p) {
    if (!(*p)->IsHeapObject()) return;

    HeapObject* obj = HeapObject::cast(*p);
    Address old_addr = obj->address();
    Address new_addr;
    ASSERT(!Heap::InFromSpace(obj));

    if (Heap::new_space()->Contains(obj)) {
      Address f_addr = Heap::new_space()->FromSpaceLow() +
                       Heap::new_space()->ToSpaceOffsetForAddress(old_addr);
      new_addr = Memory::Address_at(f_addr);

#ifdef DEBUG
1305 1306
      ASSERT(Heap::old_pointer_space()->Contains(new_addr) ||
             Heap::old_data_space()->Contains(new_addr) ||
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
             Heap::code_space()->Contains(new_addr) ||
             Heap::new_space()->FromSpaceContains(new_addr));

      if (Heap::new_space()->FromSpaceContains(new_addr)) {
        ASSERT(Heap::new_space()->FromSpaceOffsetForAddress(new_addr) <=
               Heap::new_space()->ToSpaceOffsetForAddress(old_addr));
      }
#endif

    } else if (Heap::lo_space()->Contains(obj)) {
      // Don't move objects in the large object space.
      return;

    } else {
1321 1322
      ASSERT(Heap::old_pointer_space()->Contains(obj) ||
             Heap::old_data_space()->Contains(obj) ||
1323 1324 1325 1326
             Heap::code_space()->Contains(obj) ||
             Heap::map_space()->Contains(obj));

      new_addr = MarkCompactCollector::GetForwardingAddressInOldSpace(obj);
1327 1328
      ASSERT(Heap::old_pointer_space()->Contains(new_addr) ||
             Heap::old_data_space()->Contains(new_addr) ||
1329 1330 1331 1332
             Heap::code_space()->Contains(new_addr) ||
             Heap::map_space()->Contains(new_addr));

#ifdef DEBUG
1333 1334 1335 1336 1337 1338
      if (Heap::old_pointer_space()->Contains(obj)) {
        ASSERT(Heap::old_pointer_space()->MCSpaceOffsetForAddress(new_addr) <=
               Heap::old_pointer_space()->MCSpaceOffsetForAddress(old_addr));
      } else if (Heap::old_data_space()->Contains(obj)) {
        ASSERT(Heap::old_data_space()->MCSpaceOffsetForAddress(new_addr) <=
               Heap::old_data_space()->MCSpaceOffsetForAddress(old_addr));
1339 1340 1341 1342 1343 1344 1345 1346
      } else if (Heap::code_space()->Contains(obj)) {
        ASSERT(Heap::code_space()->MCSpaceOffsetForAddress(new_addr) <=
               Heap::code_space()->MCSpaceOffsetForAddress(old_addr));
      } else {
        ASSERT(Heap::map_space()->MCSpaceOffsetForAddress(new_addr) <=
               Heap::map_space()->MCSpaceOffsetForAddress(old_addr));
      }
#endif
1347
    }
1348 1349 1350 1351 1352 1353 1354 1355 1356

    *p = HeapObject::FromAddress(new_addr);

#ifdef DEBUG
    if (FLAG_gc_verbose) {
      PrintF("update %p : %p -> %p\n",
             reinterpret_cast<Address>(p), old_addr, new_addr);
    }
#endif
1357 1358 1359
  }
};

1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
void MarkCompactCollector::UpdatePointers() {
#ifdef DEBUG
  ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES);
  state_ = UPDATE_POINTERS;
#endif
  UpdatingVisitor updating_visitor;
  Heap::IterateRoots(&updating_visitor);
  GlobalHandles::IterateWeakRoots(&updating_visitor);

  int live_maps = IterateLiveObjects(Heap::map_space(),
                                     &UpdatePointersInOldObject);
1372 1373 1374 1375 1376 1377
  int live_pointer_olds = IterateLiveObjects(Heap::old_pointer_space(),
                                             &UpdatePointersInOldObject);
  int live_data_olds = IterateLiveObjects(Heap::old_data_space(),
                                          &UpdatePointersInOldObject);
  int live_codes = IterateLiveObjects(Heap::code_space(),
                                      &UpdatePointersInOldObject);
1378 1379 1380 1381 1382 1383 1384 1385
  int live_news = IterateLiveObjects(Heap::new_space(),
                                     &UpdatePointersInNewObject);

  // Large objects do not move, the map word can be updated directly.
  LargeObjectIterator it(Heap::lo_space());
  while (it.has_next()) UpdatePointersInNewObject(it.next());

  USE(live_maps);
1386 1387 1388
  USE(live_pointer_olds);
  USE(live_data_olds);
  USE(live_codes);
1389 1390 1391 1392
  USE(live_news);

#ifdef DEBUG
  ASSERT(live_maps == live_map_objects_);
1393 1394 1395
  ASSERT(live_data_olds == live_old_data_objects_);
  ASSERT(live_pointer_olds == live_old_pointer_objects_);
  ASSERT(live_codes == live_code_objects_);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
  ASSERT(live_news == live_young_objects_);
#endif
}


int MarkCompactCollector::UpdatePointersInNewObject(HeapObject* obj) {
  // Keep old map pointers
  Map* old_map = obj->map();
  ASSERT(old_map->IsHeapObject());

  Address forwarded = GetForwardingAddressInOldSpace(old_map);

  ASSERT(Heap::map_space()->Contains(old_map));
  ASSERT(Heap::map_space()->Contains(forwarded));
#ifdef DEBUG
  if (FLAG_gc_verbose) {
    PrintF("update %p : %p -> %p\n", obj->address(), old_map->address(),
           forwarded);
  }
#endif
  // Update the map pointer.
  obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(forwarded)));

  // We have to compute the object size relying on the old map because
  // map objects are not relocated yet.
  int obj_size = obj->SizeFromMap(old_map);

  // Update pointers in the object body.
  UpdatingVisitor updating_visitor;
  obj->IterateBody(old_map->instance_type(), obj_size, &updating_visitor);
  return obj_size;
}


int MarkCompactCollector::UpdatePointersInOldObject(HeapObject* obj) {
  // Decode the map pointer.
1432 1433
  MapWord encoding = obj->map_word();
  Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
  ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));

  // At this point, the first word of map_addr is also encoded, cannot
  // cast it to Map* using Map::cast.
  Map* map = reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr));
  int obj_size = obj->SizeFromMap(map);
  InstanceType type = map->instance_type();

  // Update map pointer.
  Address new_map_addr = GetForwardingAddressInOldSpace(map);
1444 1445
  int offset = encoding.DecodeOffset();
  obj->set_map_word(MapWord::EncodeAddress(new_map_addr, offset));
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

#ifdef DEBUG
  if (FLAG_gc_verbose) {
    PrintF("update %p : %p -> %p\n", obj->address(),
           map_addr, new_map_addr);
  }
#endif

  // Update pointers in the object body.
  UpdatingVisitor updating_visitor;
  obj->IterateBody(type, obj_size, &updating_visitor);
  return obj_size;
}


Address MarkCompactCollector::GetForwardingAddressInOldSpace(HeapObject* obj) {
  // Object should either in old or map space.
1463
  MapWord encoding = obj->map_word();
1464 1465

  // Offset to the first live object's forwarding address.
1466
  int offset = encoding.DecodeOffset();
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
  Address obj_addr = obj->address();

  // Find the first live object's forwarding address.
  Page* p = Page::FromAddress(obj_addr);
  Address first_forwarded = p->mc_first_forwarded;

  // Page start address of forwarded address.
  Page* forwarded_page = Page::FromAddress(first_forwarded);
  int forwarded_offset = forwarded_page->Offset(first_forwarded);

  // Find end of allocation of in the page of first_forwarded.
  Address mc_top = forwarded_page->mc_relocation_top;
  int mc_top_offset = forwarded_page->Offset(mc_top);

  // Check if current object's forward pointer is in the same page
  // as the first live object's forwarding pointer
  if (forwarded_offset + offset < mc_top_offset) {
    // In the same page.
    return first_forwarded + offset;
  }

  // Must be in the next page, NOTE: this may cross chunks.
  Page* next_page = forwarded_page->next_page();
  ASSERT(next_page->is_valid());

  offset -= (mc_top_offset - forwarded_offset);
  offset += Page::kObjectStartOffset;

  ASSERT_PAGE_OFFSET(offset);
  ASSERT(next_page->OffsetToAddress(offset) < next_page->mc_relocation_top);

  return next_page->OffsetToAddress(offset);
}


1502
// -------------------------------------------------------------------------
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
// Phase 4: Relocate objects

void MarkCompactCollector::RelocateObjects() {
#ifdef DEBUG
  ASSERT(state_ == UPDATE_POINTERS);
  state_ = RELOCATE_OBJECTS;
#endif
  // Relocates objects, always relocate map objects first. Relocating
  // objects in other space relies on map objects to get object size.
  int live_maps = IterateLiveObjects(Heap::map_space(), &RelocateMapObject);
1513 1514 1515 1516 1517
  int live_pointer_olds = IterateLiveObjects(Heap::old_pointer_space(),
                                             &RelocateOldPointerObject);
  int live_data_olds = IterateLiveObjects(Heap::old_data_space(),
                                          &RelocateOldDataObject);
  int live_codes = IterateLiveObjects(Heap::code_space(), &RelocateCodeObject);
1518 1519 1520
  int live_news = IterateLiveObjects(Heap::new_space(), &RelocateNewObject);

  USE(live_maps);
1521 1522 1523
  USE(live_data_olds);
  USE(live_pointer_olds);
  USE(live_codes);
1524 1525 1526
  USE(live_news);
#ifdef DEBUG
  ASSERT(live_maps == live_map_objects_);
1527 1528 1529
  ASSERT(live_data_olds == live_old_data_objects_);
  ASSERT(live_pointer_olds == live_old_pointer_objects_);
  ASSERT(live_codes == live_code_objects_);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
  ASSERT(live_news == live_young_objects_);
#endif

  // Notify code object in LO to convert IC target to address
  // This must happen after lo_space_->Compact
  LargeObjectIterator it(Heap::lo_space());
  while (it.has_next()) { ConvertCodeICTargetToAddress(it.next()); }

  // Flips from and to spaces
  Heap::new_space()->Flip();

  // Sets age_mark to bottom in to space
  Address mark = Heap::new_space()->bottom();
  Heap::new_space()->set_age_mark(mark);

  Heap::new_space()->MCCommitRelocationInfo();
#ifdef DEBUG
  // It is safe to write to the remembered sets as remembered sets on a
  // page-by-page basis after committing the m-c forwarding pointer.
  Page::set_rset_state(Page::IN_USE);
#endif
1551 1552
  PagedSpaces spaces;
  while (PagedSpace* space = spaces.next()) space->MCCommitRelocationInfo();
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
}


int MarkCompactCollector::ConvertCodeICTargetToAddress(HeapObject* obj) {
  if (obj->IsCode()) {
    Code::cast(obj)->ConvertICTargetsFromObjectToAddress();
  }
  return obj->Size();
}


int MarkCompactCollector::RelocateMapObject(HeapObject* obj) {
  // decode map pointer (forwarded address)
1566 1567
  MapWord encoding = obj->map_word();
  Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
  ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));

  // Get forwarding address before resetting map pointer
  Address new_addr = GetForwardingAddressInOldSpace(obj);

  // recover map pointer
  obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr)));

  // The meta map object may not be copied yet.
  Address old_addr = obj->address();

  if (new_addr != old_addr) {
    memmove(new_addr, old_addr, Map::kSize);  // copy contents
  }

#ifdef DEBUG
  if (FLAG_gc_verbose) {
    PrintF("relocate %p -> %p\n", old_addr, new_addr);
  }
#endif

  return Map::kSize;
}


1593 1594 1595 1596
static inline int RelocateOldObject(HeapObject* obj,
                                    OldSpace* space,
                                    Address new_addr,
                                    Address map_addr) {
1597 1598 1599 1600 1601 1602 1603 1604
  // recover map pointer
  obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr)));

  // This is a non-map object, it relies on the assumption that the Map space
  // is compacted before the Old space (see RelocateObjects).
  int obj_size = obj->Size();
  ASSERT_OBJECT_SIZE(obj_size);

1605 1606
  ASSERT(space->MCSpaceOffsetForAddress(new_addr) <=
         space->MCSpaceOffsetForAddress(obj->address()));
1607

1608
  space->MCAdjustRelocationEnd(new_addr, obj_size);
1609 1610 1611

#ifdef DEBUG
  if (FLAG_gc_verbose) {
1612
    PrintF("relocate %p -> %p\n", obj->address(), new_addr);
1613 1614 1615 1616 1617 1618 1619
  }
#endif

  return obj_size;
}


1620 1621
int MarkCompactCollector::RelocateOldNonCodeObject(HeapObject* obj,
                                                   OldSpace* space) {
1622
  // decode map pointer (forwarded address)
1623 1624
  MapWord encoding = obj->map_word();
  Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
1625
  ASSERT(Heap::map_space()->Contains(map_addr));
1626 1627 1628 1629

  // Get forwarding address before resetting map pointer
  Address new_addr = GetForwardingAddressInOldSpace(obj);

1630
  int obj_size = RelocateOldObject(obj, space, new_addr, map_addr);
1631 1632 1633

  Address old_addr = obj->address();

1634 1635 1636
  if (new_addr != old_addr) {
    memmove(new_addr, old_addr, obj_size);  // copy contents
  }
1637

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
  ASSERT(!HeapObject::FromAddress(new_addr)->IsCode());

  return obj_size;
}


int MarkCompactCollector::RelocateOldPointerObject(HeapObject* obj) {
  return RelocateOldNonCodeObject(obj, Heap::old_pointer_space());
}


int MarkCompactCollector::RelocateOldDataObject(HeapObject* obj) {
  return RelocateOldNonCodeObject(obj, Heap::old_data_space());
}


int MarkCompactCollector::RelocateCodeObject(HeapObject* obj) {
  // decode map pointer (forwarded address)
  MapWord encoding = obj->map_word();
  Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
  ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));

  // Get forwarding address before resetting map pointer
  Address new_addr = GetForwardingAddressInOldSpace(obj);

  int obj_size = RelocateOldObject(obj, Heap::code_space(), new_addr, map_addr);
1664 1665 1666 1667 1668 1669 1670

  // convert inline cache target to address using old address
  if (obj->IsCode()) {
    // convert target to address first related to old_address
    Code::cast(obj)->ConvertICTargetsFromObjectToAddress();
  }

1671 1672
  Address old_addr = obj->address();

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
  if (new_addr != old_addr) {
    memmove(new_addr, old_addr, obj_size);  // copy contents
  }

  HeapObject* copied_to = HeapObject::FromAddress(new_addr);
  if (copied_to->IsCode()) {
    // may also update inline cache target.
    Code::cast(copied_to)->Relocate(new_addr - old_addr);
    // Notify the logger that compile code has moved.
    LOG(CodeMoveEvent(old_addr, new_addr));
  }

  return obj_size;
}


int MarkCompactCollector::RelocateNewObject(HeapObject* obj) {
  int obj_size = obj->Size();

  // Get forwarding address
  Address old_addr = obj->address();
  int offset = Heap::new_space()->ToSpaceOffsetForAddress(old_addr);

  Address new_addr =
    Memory::Address_at(Heap::new_space()->FromSpaceLow() + offset);

  if (Heap::new_space()->FromSpaceContains(new_addr)) {
    ASSERT(Heap::new_space()->FromSpaceOffsetForAddress(new_addr) <=
           Heap::new_space()->ToSpaceOffsetForAddress(old_addr));
  } else {
1703 1704 1705 1706
    OldSpace* target_space = Heap::TargetSpace(obj);
    ASSERT(target_space == Heap::old_pointer_space() ||
           target_space == Heap::old_data_space());
    target_space->MCAdjustRelocationEnd(new_addr, obj_size);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
  }

  // New and old addresses cannot overlap.
  memcpy(reinterpret_cast<void*>(new_addr),
         reinterpret_cast<void*>(old_addr),
         obj_size);

#ifdef DEBUG
  if (FLAG_gc_verbose) {
    PrintF("relocate %p -> %p\n", old_addr, new_addr);
  }
#endif

  return obj_size;
}


1724
// -------------------------------------------------------------------------
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
// Phase 5: rebuild remembered sets

void MarkCompactCollector::RebuildRSets() {
#ifdef DEBUG
  ASSERT(state_ == RELOCATE_OBJECTS);
  state_ = REBUILD_RSETS;
#endif
  Heap::RebuildRSets();
}

} }  // namespace v8::internal