assembler-arm-inl.h 21.2 KB
Newer Older
1 2 3
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
4
// Redistribution and use in source and binary forms, with or without
5 6 7 8 9 10 11 12 13 14
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
15
//
16 17 18
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
19 20 21
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 23 24 25 26 27 28 29 30 31 32 33 34
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been modified
// significantly by Google Inc.
35
// Copyright 2012 the V8 project authors. All rights reserved.
36

37 38
#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
#define V8_ARM_ASSEMBLER_ARM_INL_H_
39

40
#include "src/arm/assembler-arm.h"
41

42
#include "src/assembler.h"
43
#include "src/debug/debug.h"
44 45


46 47
namespace v8 {
namespace internal {
48

49 50
bool CpuFeatures::SupportsCrankshaft() { return IsSupported(VFP3); }

51
bool CpuFeatures::SupportsSimd128() { return false; }
52

53
int DoubleRegister::NumRegisters() {
54
  return CpuFeatures::IsSupported(VFP32DREGS) ? 32 : 16;
55 56 57
}


58
void RelocInfo::apply(intptr_t delta) {
59
  if (RelocInfo::IsInternalReference(rmode_)) {
60 61 62 63 64 65
    // absolute code pointer inside code object moves with the code object.
    int32_t* p = reinterpret_cast<int32_t*>(pc_);
    *p += delta;  // relocate entry
  }
  // We do not use pc relative addressing on ARM, so there is
  // nothing else to do.
66 67 68 69
}


Address RelocInfo::target_address() {
70
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
71
  return Assembler::target_address_at(pc_, host_);
72 73
}

74
Address RelocInfo::target_address_address() {
75
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
76 77
                              || rmode_ == EMBEDDED_OBJECT
                              || rmode_ == EXTERNAL_REFERENCE);
78
  if (FLAG_enable_embedded_constant_pool ||
79
      Assembler::IsMovW(Memory::int32_at(pc_))) {
80 81 82
    // We return the PC for embedded constant pool since this function is used
    // by the serializer and expects the address to reside within the code
    // object.
83 84
    return reinterpret_cast<Address>(pc_);
  } else {
85
    DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_)));
86
    return constant_pool_entry_address();
87
  }
88 89 90
}


91
Address RelocInfo::constant_pool_entry_address() {
92
  DCHECK(IsInConstantPool());
93
  return Assembler::constant_pool_entry_address(pc_, host_->constant_pool());
94 95 96
}


97
int RelocInfo::target_address_size() {
98
  return kPointerSize;
99 100 101
}


102
Object* RelocInfo::target_object() {
103
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
104
  return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
105 106 107
}


108
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
109
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
110
  return Handle<Object>(reinterpret_cast<Object**>(
111
      Assembler::target_address_at(pc_, host_)));
112 113 114
}


115 116 117
void RelocInfo::set_target_object(Object* target,
                                  WriteBarrierMode write_barrier_mode,
                                  ICacheFlushMode icache_flush_mode) {
118
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
119
  Assembler::set_target_address_at(isolate_, pc_, host_,
120 121 122
                                   reinterpret_cast<Address>(target),
                                   icache_flush_mode);
  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
123 124
      host() != NULL &&
      target->IsHeapObject()) {
125 126
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target));
127
    host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
128
  }
129 130 131
}


132
Address RelocInfo::target_external_reference() {
133
  DCHECK(rmode_ == EXTERNAL_REFERENCE);
134
  return Assembler::target_address_at(pc_, host_);
135 136 137
}


138 139 140 141 142 143
Address RelocInfo::target_internal_reference() {
  DCHECK(rmode_ == INTERNAL_REFERENCE);
  return Memory::Address_at(pc_);
}


144
Address RelocInfo::target_internal_reference_address() {
145
  DCHECK(rmode_ == INTERNAL_REFERENCE);
146
  return reinterpret_cast<Address>(pc_);
147 148 149
}


150
Address RelocInfo::target_runtime_entry(Assembler* origin) {
151
  DCHECK(IsRuntimeEntry(rmode_));
152 153 154 155 156
  return target_address();
}


void RelocInfo::set_target_runtime_entry(Address target,
157 158
                                         WriteBarrierMode write_barrier_mode,
                                         ICacheFlushMode icache_flush_mode) {
159
  DCHECK(IsRuntimeEntry(rmode_));
160 161
  if (target_address() != target)
    set_target_address(target, write_barrier_mode, icache_flush_mode);
162 163 164
}


165
Handle<Cell> RelocInfo::target_cell_handle() {
166
  DCHECK(rmode_ == RelocInfo::CELL);
167
  Address address = Memory::Address_at(pc_);
168
  return Handle<Cell>(reinterpret_cast<Cell**>(address));
169 170 171
}


172
Cell* RelocInfo::target_cell() {
173
  DCHECK(rmode_ == RelocInfo::CELL);
174
  return Cell::FromValueAddress(Memory::Address_at(pc_));
175 176 177
}


178 179 180
void RelocInfo::set_target_cell(Cell* cell,
                                WriteBarrierMode write_barrier_mode,
                                ICacheFlushMode icache_flush_mode) {
181
  DCHECK(rmode_ == RelocInfo::CELL);
182
  Address address = cell->address() + Cell::kValueOffset;
183
  Memory::Address_at(pc_) = address;
184
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
185 186
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
                                                                  cell);
187
  }
188 189 190
}


191
static const int kNoCodeAgeSequenceLength = 3 * Assembler::kInstrSize;
192

193 194 195 196 197 198 199

Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
  UNREACHABLE();  // This should never be reached on Arm.
  return Handle<Object>();
}


200
Code* RelocInfo::code_age_stub() {
201
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
202
  return Code::GetCodeFromTargetAddress(
203 204
      Memory::Address_at(pc_ +
                         (kNoCodeAgeSequenceLength - Assembler::kInstrSize)));
205 206 207
}


208 209
void RelocInfo::set_code_age_stub(Code* stub,
                                  ICacheFlushMode icache_flush_mode) {
210
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
211 212
  Memory::Address_at(pc_ +
                     (kNoCodeAgeSequenceLength - Assembler::kInstrSize)) =
213 214 215 216
      stub->instruction_start();
}


217
Address RelocInfo::debug_call_address() {
218 219
  // The 2 instructions offset assumes patched debug break slot or return
  // sequence.
220 221
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
  return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
222 223 224
}


225 226 227 228
void RelocInfo::set_debug_call_address(Address target) {
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
  Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) =
      target;
229 230 231 232 233
  if (host() != NULL) {
    Object* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target_code));
  }
234 235 236
}


237
void RelocInfo::WipeOut() {
238 239 240 241 242 243
  DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
         IsInternalReference(rmode_));
  if (IsInternalReference(rmode_)) {
    Memory::Address_at(pc_) = NULL;
  } else {
244
    Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
245
  }
246 247
}

248
template <typename ObjectVisitor>
249
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
250 251
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
252
    visitor->VisitEmbeddedPointer(this);
253 254
  } else if (RelocInfo::IsCodeTarget(mode)) {
    visitor->VisitCodeTarget(this);
255 256
  } else if (mode == RelocInfo::CELL) {
    visitor->VisitCell(this);
257
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
258
    visitor->VisitExternalReference(this);
259 260
  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    visitor->VisitInternalReference(this);
261 262
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    visitor->VisitCodeAgeSequence(this);
263
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
264
             IsPatchedDebugBreakSlotSequence()) {
265
    visitor->VisitDebugTarget(this);
266
  } else if (RelocInfo::IsRuntimeEntry(mode)) {
267 268 269 270 271
    visitor->VisitRuntimeEntry(this);
  }
}


272
template<typename StaticVisitor>
273
void RelocInfo::Visit(Heap* heap) {
274 275
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
276
    StaticVisitor::VisitEmbeddedPointer(heap, this);
277
  } else if (RelocInfo::IsCodeTarget(mode)) {
278
    StaticVisitor::VisitCodeTarget(heap, this);
279 280
  } else if (mode == RelocInfo::CELL) {
    StaticVisitor::VisitCell(heap, this);
281
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
282
    StaticVisitor::VisitExternalReference(this);
283 284
  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    StaticVisitor::VisitInternalReference(this);
285 286
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    StaticVisitor::VisitCodeAgeSequence(heap, this);
287
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
288
             IsPatchedDebugBreakSlotSequence()) {
289
    StaticVisitor::VisitDebugTarget(heap, this);
290
  } else if (RelocInfo::IsRuntimeEntry(mode)) {
291 292 293 294 295
    StaticVisitor::VisitRuntimeEntry(this);
  }
}


296
Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
297 298 299 300 301 302 303 304 305
  rm_ = no_reg;
  imm32_ = immediate;
  rmode_ = rmode;
}


Operand::Operand(const ExternalReference& f)  {
  rm_ = no_reg;
  imm32_ = reinterpret_cast<int32_t>(f.address());
306
  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
307 308 309 310 311 312
}


Operand::Operand(Smi* value) {
  rm_ = no_reg;
  imm32_ =  reinterpret_cast<intptr_t>(value);
313
  rmode_ = RelocInfo::NONE32;
314 315 316 317 318 319 320 321 322 323 324
}


Operand::Operand(Register rm) {
  rm_ = rm;
  rs_ = no_reg;
  shift_op_ = LSL;
  shift_imm_ = 0;
}


325 326 327 328 329 330 331 332
bool Operand::is_reg() const {
  return rm_.is_valid() &&
         rs_.is(no_reg) &&
         shift_op_ == LSL &&
         shift_imm_ == 0;
}


333 334 335 336
void Assembler::CheckBuffer() {
  if (buffer_space() <= kGap) {
    GrowBuffer();
  }
337
  MaybeCheckConstPool();
338 339 340 341 342 343 344 345 346 347
}


void Assembler::emit(Instr x) {
  CheckBuffer();
  *reinterpret_cast<Instr*>(pc_) = x;
  pc_ += kInstrSize;
}


348 349 350
Address Assembler::target_address_from_return_address(Address pc) {
  // Returns the address of the call target from the return address that will
  // be returned to after a call.
351
  // Call sequence on V7 or later is:
352 353 354 355
  //  movw  ip, #... @ call address low 16
  //  movt  ip, #... @ call address high 16
  //  blx   ip
  //                      @ return address
356 357 358 359 360 361 362 363
  // For V6 when the constant pool is unavailable, it is:
  //  mov  ip, #...     @ call address low 8
  //  orr  ip, ip, #... @ call address 2nd 8
  //  orr  ip, ip, #... @ call address 3rd 8
  //  orr  ip, ip, #... @ call address high 8
  //  blx   ip
  //                      @ return address
  // In cases that need frequent patching, the address is in the
364 365 366 367
  // constant pool.  It could be a small constant pool load:
  //  ldr   ip, [pc / pp, #...] @ call address
  //  blx   ip
  //                      @ return address
368
  // Or an extended constant pool load (ARMv7):
369 370 371
  //  movw  ip, #...
  //  movt  ip, #...
  //  ldr   ip, [pc, ip]  @ call address
372 373
  //  blx   ip
  //                      @ return address
374 375 376 377 378 379 380 381
  // Or an extended constant pool load (ARMv6):
  //  mov  ip, #...
  //  orr  ip, ip, #...
  //  orr  ip, ip, #...
  //  orr  ip, ip, #...
  //  ldr   ip, [pc, ip]  @ call address
  //  blx   ip
  //                      @ return address
382 383
  Address candidate = pc - 2 * Assembler::kInstrSize;
  Instr candidate_instr(Memory::int32_at(candidate));
384 385
  if (IsLdrPcImmediateOffset(candidate_instr) |
      IsLdrPpImmediateOffset(candidate_instr)) {
386
    return candidate;
387
  } else {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    if (IsLdrPpRegOffset(candidate_instr)) {
      candidate -= Assembler::kInstrSize;
    }
    if (CpuFeatures::IsSupported(ARMv7)) {
      candidate -= 1 * Assembler::kInstrSize;
      DCHECK(IsMovW(Memory::int32_at(candidate)) &&
             IsMovT(Memory::int32_at(candidate + Assembler::kInstrSize)));
    } else {
      candidate -= 3 * Assembler::kInstrSize;
      DCHECK(
          IsMovImmed(Memory::int32_at(candidate)) &&
          IsOrrImmed(Memory::int32_at(candidate + Assembler::kInstrSize)) &&
          IsOrrImmed(Memory::int32_at(candidate + 2 * Assembler::kInstrSize)) &&
          IsOrrImmed(Memory::int32_at(candidate + 3 * Assembler::kInstrSize)));
    }
403
    return candidate;
404 405 406 407 408
  }
}


Address Assembler::return_address_from_call_start(Address pc) {
409 410
  if (IsLdrPcImmediateOffset(Memory::int32_at(pc)) |
      IsLdrPpImmediateOffset(Memory::int32_at(pc))) {
411
    // Load from constant pool, small section.
412 413
    return pc + kInstrSize * 2;
  } else {
414 415 416 417 418 419 420 421 422 423
    if (CpuFeatures::IsSupported(ARMv7)) {
      DCHECK(IsMovW(Memory::int32_at(pc)));
      DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
      if (IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize))) {
        // Load from constant pool, extended section.
        return pc + kInstrSize * 4;
      } else {
        // A movw / movt load immediate.
        return pc + kInstrSize * 3;
      }
424
    } else {
425 426 427 428 429 430 431 432 433 434 435
      DCHECK(IsMovImmed(Memory::int32_at(pc)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
      if (IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize))) {
        // Load from constant pool, extended section.
        return pc + kInstrSize * 6;
      } else {
        // A mov / orr load immediate.
        return pc + kInstrSize * 5;
      }
436
    }
437
  }
438 439 440
}


441
void Assembler::deserialization_set_special_target_at(
442
    Isolate* isolate, Address constant_pool_entry, Code* code, Address target) {
443
  if (FLAG_enable_embedded_constant_pool) {
444
    set_target_address_at(isolate, constant_pool_entry, code, target);
445 446 447
  } else {
    Memory::Address_at(constant_pool_entry) = target;
  }
448 449 450
}


451
void Assembler::deserialization_set_target_internal_reference_at(
452
    Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
453 454 455 456
  Memory::Address_at(pc) = target;
}


457
bool Assembler::is_constant_pool_load(Address pc) {
458 459
  if (CpuFeatures::IsSupported(ARMv7)) {
    return !Assembler::IsMovW(Memory::int32_at(pc)) ||
460
           (FLAG_enable_embedded_constant_pool &&
461 462 463 464
            Assembler::IsLdrPpRegOffset(
                Memory::int32_at(pc + 2 * Assembler::kInstrSize)));
  } else {
    return !Assembler::IsMovImmed(Memory::int32_at(pc)) ||
465
           (FLAG_enable_embedded_constant_pool &&
466 467 468
            Assembler::IsLdrPpRegOffset(
                Memory::int32_at(pc + 4 * Assembler::kInstrSize)));
  }
469 470 471
}


472 473 474
Address Assembler::constant_pool_entry_address(Address pc,
                                               Address constant_pool) {
  if (FLAG_enable_embedded_constant_pool) {
475
    DCHECK(constant_pool != NULL);
476
    int cp_offset;
477 478 479 480 481 482 483 484 485 486 487 488 489
    if (!CpuFeatures::IsSupported(ARMv7) && IsMovImmed(Memory::int32_at(pc))) {
      DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
             IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
             IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)) &&
             IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize)));
      // This is an extended constant pool lookup (ARMv6).
      Instr mov_instr = instr_at(pc);
      Instr orr_instr_1 = instr_at(pc + kInstrSize);
      Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize);
      Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize);
      cp_offset = DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) |
                  DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3);
    } else if (IsMovW(Memory::int32_at(pc))) {
490
      DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)) &&
491
             IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize)));
492
      // This is an extended constant pool lookup (ARMv7).
493 494 495 496 497 498
      Instruction* movw_instr = Instruction::At(pc);
      Instruction* movt_instr = Instruction::At(pc + kInstrSize);
      cp_offset = (movt_instr->ImmedMovwMovtValue() << 16) |
                  movw_instr->ImmedMovwMovtValue();
    } else {
      // This is a small constant pool lookup.
499
      DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(pc)));
500 501
      cp_offset = GetLdrRegisterImmediateOffset(Memory::int32_at(pc));
    }
502
    return constant_pool + cp_offset;
503
  } else {
504
    DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc)));
505 506 507 508 509 510
    Instr instr = Memory::int32_at(pc);
    return pc + GetLdrRegisterImmediateOffset(instr) + kPcLoadDelta;
  }
}


511
Address Assembler::target_address_at(Address pc, Address constant_pool) {
512
  if (is_constant_pool_load(pc)) {
513 514
    // This is a constant pool lookup. Return the value in the constant pool.
    return Memory::Address_at(constant_pool_entry_address(pc, constant_pool));
515 516
  } else if (CpuFeatures::IsSupported(ARMv7)) {
    // This is an movw / movt immediate load. Return the immediate.
517
    DCHECK(IsMovW(Memory::int32_at(pc)) &&
518 519 520 521 522 523
           IsMovT(Memory::int32_at(pc + kInstrSize)));
    Instruction* movw_instr = Instruction::At(pc);
    Instruction* movt_instr = Instruction::At(pc + kInstrSize);
    return reinterpret_cast<Address>(
        (movt_instr->ImmedMovwMovtValue() << 16) |
         movw_instr->ImmedMovwMovtValue());
524 525 526 527 528 529 530 531 532 533 534 535 536 537
  } else {
    // This is an mov / orr immediate load. Return the immediate.
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    Instr mov_instr = instr_at(pc);
    Instr orr_instr_1 = instr_at(pc + kInstrSize);
    Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize);
    Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize);
    Address ret = reinterpret_cast<Address>(
        DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) |
        DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3));
    return ret;
538 539 540 541
  }
}


542 543
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
                                      Address constant_pool, Address target,
544
                                      ICacheFlushMode icache_flush_mode) {
545
  if (is_constant_pool_load(pc)) {
546 547 548 549
    // This is a constant pool lookup. Update the entry in the constant pool.
    Memory::Address_at(constant_pool_entry_address(pc, constant_pool)) = target;
    // Intuitively, we would think it is necessary to always flush the
    // instruction cache after patching a target address in the code as follows:
550
    //   Assembler::FlushICache(isolate, pc, sizeof(target));
551 552 553 554 555
    // However, on ARM, no instruction is actually patched in the case
    // of embedded constants of the form:
    // ldr   ip, [pp, #...]
    // since the instruction accessing this address in the constant pool remains
    // unchanged.
556 557 558
  } else if (CpuFeatures::IsSupported(ARMv7)) {
    // This is an movw / movt immediate load. Patch the immediate embedded in
    // the instructions.
559 560
    DCHECK(IsMovW(Memory::int32_at(pc)));
    DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
561 562
    uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
    uint32_t immediate = reinterpret_cast<uint32_t>(target);
563 564
    instr_ptr[0] = PatchMovwImmediate(instr_ptr[0], immediate & 0xFFFF);
    instr_ptr[1] = PatchMovwImmediate(instr_ptr[1], immediate >> 16);
565 566
    DCHECK(IsMovW(Memory::int32_at(pc)));
    DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
567
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
568
      Assembler::FlushICache(isolate, pc, 2 * kInstrSize);
569
    }
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
  } else {
    // This is an mov / orr immediate load. Patch the immediate embedded in
    // the instructions.
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
    uint32_t immediate = reinterpret_cast<uint32_t>(target);
    instr_ptr[0] = PatchShiftImm(instr_ptr[0], immediate & kImm8Mask);
    instr_ptr[1] = PatchShiftImm(instr_ptr[1], immediate & (kImm8Mask << 8));
    instr_ptr[2] = PatchShiftImm(instr_ptr[2], immediate & (kImm8Mask << 16));
    instr_ptr[3] = PatchShiftImm(instr_ptr[3], immediate & (kImm8Mask << 24));
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
588
      Assembler::FlushICache(isolate, pc, 4 * kInstrSize);
589
    }
590 591 592 593
  }
}


594 595
}  // namespace internal
}  // namespace v8
596

597
#endif  // V8_ARM_ASSEMBLER_ARM_INL_H_