test-assembler-arm.cc 27.1 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "disassembler.h"
#include "factory.h"
32 33
#include "arm/simulator-arm.h"
#include "arm/assembler-arm-inl.h"
34 35 36 37 38 39
#include "cctest.h"

using namespace v8::internal;


// Define these function prototypes to match JSEntryFunction in execution.cc.
40 41
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
42 43
typedef Object* (*F3)(void* p0, int p1, int p2, int p3, int p4);
typedef Object* (*F4)(void* p0, void* p1, int p2, int p3, int p4);
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


static v8::Persistent<v8::Context> env;


static void InitializeVM() {
  if (env.IsEmpty()) {
    env = v8::Context::New();
  }
}


#define __ assm.

TEST(0) {
  InitializeVM();
  v8::HandleScope scope;

62
  Assembler assm(Isolate::Current(), NULL, 0);
63 64 65 66 67 68

  __ add(r0, r0, Operand(r1));
  __ mov(pc, Operand(lr));

  CodeDesc desc;
  assm.GetCode(&desc);
69
  Object* code = HEAP->CreateCode(
70 71
      desc,
      Code::ComputeFlags(Code::STUB),
72
      Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  CHECK(code->IsCode());
#ifdef DEBUG
  Code::cast(code)->Print();
#endif
  F2 f = FUNCTION_CAST<F2>(Code::cast(code)->entry());
  int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 3, 4, 0, 0, 0));
  ::printf("f() = %d\n", res);
  CHECK_EQ(7, res);
}


TEST(1) {
  InitializeVM();
  v8::HandleScope scope;

88
  Assembler assm(Isolate::Current(), NULL, 0);
89 90 91
  Label L, C;

  __ mov(r1, Operand(r0));
92
  __ mov(r0, Operand(0, RelocInfo::NONE));
93 94 95 96 97 98 99
  __ b(&C);

  __ bind(&L);
  __ add(r0, r0, Operand(r1));
  __ sub(r1, r1, Operand(1));

  __ bind(&C);
100
  __ teq(r1, Operand(0, RelocInfo::NONE));
101 102 103 104 105
  __ b(ne, &L);
  __ mov(pc, Operand(lr));

  CodeDesc desc;
  assm.GetCode(&desc);
106
  Object* code = HEAP->CreateCode(
107 108
      desc,
      Code::ComputeFlags(Code::STUB),
109
      Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  CHECK(code->IsCode());
#ifdef DEBUG
  Code::cast(code)->Print();
#endif
  F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
  int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 100, 0, 0, 0, 0));
  ::printf("f() = %d\n", res);
  CHECK_EQ(5050, res);
}


TEST(2) {
  InitializeVM();
  v8::HandleScope scope;

125
  Assembler assm(Isolate::Current(), NULL, 0);
126 127 128 129 130 131 132 133 134 135 136
  Label L, C;

  __ mov(r1, Operand(r0));
  __ mov(r0, Operand(1));
  __ b(&C);

  __ bind(&L);
  __ mul(r0, r1, r0);
  __ sub(r1, r1, Operand(1));

  __ bind(&C);
137
  __ teq(r1, Operand(0, RelocInfo::NONE));
138 139 140 141 142
  __ b(ne, &L);
  __ mov(pc, Operand(lr));

  // some relocated stuff here, not executed
  __ RecordComment("dead code, just testing relocations");
143
  __ mov(r0, Operand(FACTORY->true_value()));
144 145 146 147 148 149 150 151
  __ RecordComment("dead code, just testing immediate operands");
  __ mov(r0, Operand(-1));
  __ mov(r0, Operand(0xFF000000));
  __ mov(r0, Operand(0xF0F0F0F0));
  __ mov(r0, Operand(0xFFF0FFFF));

  CodeDesc desc;
  assm.GetCode(&desc);
152
  Object* code = HEAP->CreateCode(
153 154
      desc,
      Code::ComputeFlags(Code::STUB),
155
      Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  CHECK(code->IsCode());
#ifdef DEBUG
  Code::cast(code)->Print();
#endif
  F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
  int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 10, 0, 0, 0, 0));
  ::printf("f() = %d\n", res);
  CHECK_EQ(3628800, res);
}


TEST(3) {
  InitializeVM();
  v8::HandleScope scope;

  typedef struct {
    int i;
    char c;
    int16_t s;
  } T;
  T t;

178
  Assembler assm(Isolate::Current(), NULL, 0);
179 180 181
  Label L, C;

  __ mov(ip, Operand(sp));
lrn@chromium.org's avatar
lrn@chromium.org committed
182
  __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
183 184 185 186 187 188 189 190 191 192 193 194 195
  __ sub(fp, ip, Operand(4));
  __ mov(r4, Operand(r0));
  __ ldr(r0, MemOperand(r4, OFFSET_OF(T, i)));
  __ mov(r2, Operand(r0, ASR, 1));
  __ str(r2, MemOperand(r4, OFFSET_OF(T, i)));
  __ ldrsb(r2, MemOperand(r4, OFFSET_OF(T, c)));
  __ add(r0, r2, Operand(r0));
  __ mov(r2, Operand(r2, LSL, 2));
  __ strb(r2, MemOperand(r4, OFFSET_OF(T, c)));
  __ ldrsh(r2, MemOperand(r4, OFFSET_OF(T, s)));
  __ add(r0, r2, Operand(r0));
  __ mov(r2, Operand(r2, ASR, 3));
  __ strh(r2, MemOperand(r4, OFFSET_OF(T, s)));
lrn@chromium.org's avatar
lrn@chromium.org committed
196
  __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
197 198 199

  CodeDesc desc;
  assm.GetCode(&desc);
200
  Object* code = HEAP->CreateCode(
201 202
      desc,
      Code::ComputeFlags(Code::STUB),
203
      Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  CHECK(code->IsCode());
#ifdef DEBUG
  Code::cast(code)->Print();
#endif
  F3 f = FUNCTION_CAST<F3>(Code::cast(code)->entry());
  t.i = 100000;
  t.c = 10;
  t.s = 1000;
  int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0));
  ::printf("f() = %d\n", res);
  CHECK_EQ(101010, res);
  CHECK_EQ(100000/2, t.i);
  CHECK_EQ(10*4, t.c);
  CHECK_EQ(1000/8, t.s);
}


221 222 223 224 225 226 227 228 229
TEST(4) {
  // Test the VFP floating point instructions.
  InitializeVM();
  v8::HandleScope scope;

  typedef struct {
    double a;
    double b;
    double c;
230 231 232
    double d;
    double e;
    double f;
233 234
    double g;
    double h;
235
    int i;
236 237
    double m;
    double n;
238 239
    float x;
    float y;
240 241 242 243
  } T;
  T t;

  // Create a function that accepts &t, and loads, manipulates, and stores
244
  // the doubles and floats.
245
  Assembler assm(Isolate::Current(), NULL, 0);
246 247 248
  Label L, C;


249
  if (CpuFeatures::IsSupported(VFP3)) {
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    CpuFeatures::Scope scope(VFP3);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

    __ mov(r4, Operand(r0));
    __ vldr(d6, r4, OFFSET_OF(T, a));
    __ vldr(d7, r4, OFFSET_OF(T, b));
    __ vadd(d5, d6, d7);
    __ vstr(d5, r4, OFFSET_OF(T, c));

    __ vmov(r2, r3, d5);
    __ vmov(d4, r2, r3);
    __ vstr(d4, r4, OFFSET_OF(T, b));

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    // Load t.x and t.y, switch values, and store back to the struct.
    __ vldr(s0, r4, OFFSET_OF(T, x));
    __ vldr(s31, r4, OFFSET_OF(T, y));
    __ vmov(s16, s0);
    __ vmov(s0, s31);
    __ vmov(s31, s16);
    __ vstr(s0, r4, OFFSET_OF(T, x));
    __ vstr(s31, r4, OFFSET_OF(T, y));

    // Move a literal into a register that can be encoded in the instruction.
    __ vmov(d4, 1.0);
    __ vstr(d4, r4, OFFSET_OF(T, e));

    // Move a literal into a register that requires 64 bits to encode.
    // 0x3ff0000010000000 = 1.000000059604644775390625
    __ vmov(d4, 1.000000059604644775390625);
    __ vstr(d4, r4, OFFSET_OF(T, d));

    // Convert from floating point to integer.
    __ vmov(d4, 2.0);
    __ vcvt_s32_f64(s31, d4);
    __ vstr(s31, r4, OFFSET_OF(T, i));

    // Convert from integer to floating point.
    __ mov(lr, Operand(42));
    __ vmov(s31, lr);
    __ vcvt_f64_s32(d4, s31);
    __ vstr(d4, r4, OFFSET_OF(T, f));
294 295 296 297 298 299 300 301 302

    // Test vabs.
    __ vldr(d1, r4, OFFSET_OF(T, g));
    __ vabs(d0, d1);
    __ vstr(d0, r4, OFFSET_OF(T, g));
    __ vldr(d2, r4, OFFSET_OF(T, h));
    __ vabs(d0, d2);
    __ vstr(d0, r4, OFFSET_OF(T, h));

303 304 305 306 307 308 309 310
    // Test vneg.
    __ vldr(d1, r4, OFFSET_OF(T, m));
    __ vneg(d0, d1);
    __ vstr(d0, r4, OFFSET_OF(T, m));
    __ vldr(d1, r4, OFFSET_OF(T, n));
    __ vneg(d0, d1);
    __ vstr(d0, r4, OFFSET_OF(T, n));

311
    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
312 313 314

    CodeDesc desc;
    assm.GetCode(&desc);
315
    Object* code = HEAP->CreateCode(
316 317
        desc,
        Code::ComputeFlags(Code::STUB),
318
        Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
319
    CHECK(code->IsCode());
320
#ifdef DEBUG
321
    Code::cast(code)->Print();
322
#endif
323 324 325 326
    F3 f = FUNCTION_CAST<F3>(Code::cast(code)->entry());
    t.a = 1.5;
    t.b = 2.75;
    t.c = 17.17;
327 328 329
    t.d = 0.0;
    t.e = 0.0;
    t.f = 0.0;
330 331
    t.g = -2718.2818;
    t.h = 31415926.5;
332
    t.i = 0;
333 334
    t.m = -2718.2818;
    t.n = 123.456;
335 336
    t.x = 4.5;
    t.y = 9.0;
337 338
    Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
    USE(dummy);
339 340
    CHECK_EQ(4.5, t.y);
    CHECK_EQ(9.0, t.x);
341 342
    CHECK_EQ(-123.456, t.n);
    CHECK_EQ(2718.2818, t.m);
343
    CHECK_EQ(2, t.i);
344 345
    CHECK_EQ(2718.2818, t.g);
    CHECK_EQ(31415926.5, t.h);
346 347 348
    CHECK_EQ(42.0, t.f);
    CHECK_EQ(1.0, t.e);
    CHECK_EQ(1.000000059604644775390625, t.d);
349 350 351 352
    CHECK_EQ(4.25, t.c);
    CHECK_EQ(4.25, t.b);
    CHECK_EQ(1.5, t.a);
  }
353 354
}

355 356 357 358 359 360

TEST(5) {
  // Test the ARMv7 bitfield instructions.
  InitializeVM();
  v8::HandleScope scope;

361
  Assembler assm(Isolate::Current(), NULL, 0);
362

363
  if (CpuFeatures::IsSupported(ARMv7)) {
364 365 366 367 368 369 370 371 372 373 374
    CpuFeatures::Scope scope(ARMv7);
    // On entry, r0 = 0xAAAAAAAA = 0b10..10101010.
    __ ubfx(r0, r0, 1, 12);  // 0b00..010101010101 = 0x555
    __ sbfx(r0, r0, 0, 5);   // 0b11..111111110101 = -11
    __ bfc(r0, 1, 3);        // 0b11..111111110001 = -15
    __ mov(r1, Operand(7));
    __ bfi(r0, r1, 3, 3);    // 0b11..111111111001 = -7
    __ mov(pc, Operand(lr));

    CodeDesc desc;
    assm.GetCode(&desc);
375
    Object* code = HEAP->CreateCode(
376 377
        desc,
        Code::ComputeFlags(Code::STUB),
378
        Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
379 380 381 382 383 384 385 386 387 388 389 390
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
    int res = reinterpret_cast<int>(
                CALL_GENERATED_CODE(f, 0xAAAAAAAA, 0, 0, 0, 0));
    ::printf("f() = %d\n", res);
    CHECK_EQ(-7, res);
  }
}

391 392 393 394 395 396

TEST(6) {
  // Test saturating instructions.
  InitializeVM();
  v8::HandleScope scope;

397
  Assembler assm(Isolate::Current(), NULL, 0);
398

399
  if (CpuFeatures::IsSupported(ARMv7)) {
400 401 402 403 404 405 406 407 408 409
    CpuFeatures::Scope scope(ARMv7);
    __ usat(r1, 8, Operand(r0));           // Sat 0xFFFF to 0-255 = 0xFF.
    __ usat(r2, 12, Operand(r0, ASR, 9));  // Sat (0xFFFF>>9) to 0-4095 = 0x7F.
    __ usat(r3, 1, Operand(r0, LSL, 16));  // Sat (0xFFFF<<16) to 0-1 = 0x0.
    __ add(r0, r1, Operand(r2));
    __ add(r0, r0, Operand(r3));
    __ mov(pc, Operand(lr));

    CodeDesc desc;
    assm.GetCode(&desc);
410
    Object* code = HEAP->CreateCode(
411 412
        desc,
        Code::ComputeFlags(Code::STUB),
413
        Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
414 415 416 417 418 419 420 421 422 423 424 425
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
    int res = reinterpret_cast<int>(
                CALL_GENERATED_CODE(f, 0xFFFF, 0, 0, 0, 0));
    ::printf("f() = %d\n", res);
    CHECK_EQ(382, res);
  }
}

426

427 428 429 430 431 432 433 434 435 436
enum VCVTTypes {
  s32_f64,
  u32_f64
};

static void TestRoundingMode(VCVTTypes types,
                             VFPRoundingMode mode,
                             double value,
                             int expected,
                             bool expected_exception = false) {
437 438 439
  InitializeVM();
  v8::HandleScope scope;

440
  Assembler assm(Isolate::Current(), NULL, 0);
441

442
  if (CpuFeatures::IsSupported(VFP3)) {
443
    CpuFeatures::Scope scope(VFP3);
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    Label wrong_exception;

    __ vmrs(r1);
    // Set custom FPSCR.
    __ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask));
    __ orr(r2, r2, Operand(mode));
    __ vmsr(r2);

    // Load value, convert, and move back result to r0 if everything went well.
    __ vmov(d1, value);
    switch (types) {
      case s32_f64:
        __ vcvt_s32_f64(s0, d1, kFPSCRRounding);
        break;

      case u32_f64:
        __ vcvt_u32_f64(s0, d1, kFPSCRRounding);
        break;

      default:
        UNREACHABLE();
        break;
    }
    // Check for vfp exceptions
    __ vmrs(r2);
    __ tst(r2, Operand(kVFPExceptionMask));
    // Check that we behaved as expected.
    __ b(&wrong_exception,
         expected_exception ? eq : ne);
    // There was no exception. Retrieve the result and return.
    __ vmov(r0, s0);
    __ mov(pc, Operand(lr));
477

478 479 480 481 482
    // The exception behaviour is not what we expected.
    // Load a special value and return.
    __ bind(&wrong_exception);
    __ mov(r0, Operand(11223344));
    __ mov(pc, Operand(lr));
483

484 485
    CodeDesc desc;
    assm.GetCode(&desc);
486
    Object* code = HEAP->CreateCode(
487 488
        desc,
        Code::ComputeFlags(Code::STUB),
489
        Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
490
    CHECK(code->IsCode());
491
#ifdef DEBUG
492
    Code::cast(code)->Print();
493
#endif
494 495 496 497 498 499
    F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
    int res = reinterpret_cast<int>(
                CALL_GENERATED_CODE(f, 0, 0, 0, 0, 0));
    ::printf("res = %d\n", res);
    CHECK_EQ(expected, res);
  }
500 501 502 503 504 505
}


TEST(7) {
  // Test vfp rounding modes.

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
  // s32_f64 (double to integer).

  TestRoundingMode(s32_f64, RN,  0, 0);
  TestRoundingMode(s32_f64, RN,  0.5, 0);
  TestRoundingMode(s32_f64, RN, -0.5, 0);
  TestRoundingMode(s32_f64, RN,  1.5, 2);
  TestRoundingMode(s32_f64, RN, -1.5, -2);
  TestRoundingMode(s32_f64, RN,  123.7, 124);
  TestRoundingMode(s32_f64, RN, -123.7, -124);
  TestRoundingMode(s32_f64, RN,  123456.2,  123456);
  TestRoundingMode(s32_f64, RN, -123456.2, -123456);
  TestRoundingMode(s32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true);
  TestRoundingMode(s32_f64, RN, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt);
  TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true);
  TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true);

  TestRoundingMode(s32_f64, RM,  0, 0);
  TestRoundingMode(s32_f64, RM,  0.5, 0);
  TestRoundingMode(s32_f64, RM, -0.5, -1);
  TestRoundingMode(s32_f64, RM,  123.7, 123);
  TestRoundingMode(s32_f64, RM, -123.7, -124);
  TestRoundingMode(s32_f64, RM,  123456.2,  123456);
  TestRoundingMode(s32_f64, RM, -123456.2, -123457);
  TestRoundingMode(s32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RM, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true);
  TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt);

  TestRoundingMode(s32_f64, RZ,  0, 0);
  TestRoundingMode(s32_f64, RZ,  0.5, 0);
  TestRoundingMode(s32_f64, RZ, -0.5, 0);
  TestRoundingMode(s32_f64, RZ,  123.7,  123);
  TestRoundingMode(s32_f64, RZ, -123.7, -123);
  TestRoundingMode(s32_f64, RZ,  123456.2,  123456);
  TestRoundingMode(s32_f64, RZ, -123456.2, -123456);
  TestRoundingMode(s32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RZ, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt);
  TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true);


  // u32_f64 (double to integer).

  // Negative values.
  TestRoundingMode(u32_f64, RN, -0.5, 0);
  TestRoundingMode(u32_f64, RN, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RN, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true);

  TestRoundingMode(u32_f64, RM, -0.5, 0, true);
  TestRoundingMode(u32_f64, RM, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RM, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true);

  TestRoundingMode(u32_f64, RZ, -0.5, 0);
  TestRoundingMode(u32_f64, RZ, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RZ, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true);

  // Positive values.
  // kMaxInt is the maximum *signed* integer: 0x7fffffff.
  static const uint32_t kMaxUInt = 0xffffffffu;
  TestRoundingMode(u32_f64, RZ,  0, 0);
  TestRoundingMode(u32_f64, RZ,  0.5, 0);
  TestRoundingMode(u32_f64, RZ,  123.7,  123);
  TestRoundingMode(u32_f64, RZ,  123456.2,  123456);
  TestRoundingMode(u32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt);
  TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true);

  TestRoundingMode(u32_f64, RM,  0, 0);
  TestRoundingMode(u32_f64, RM,  0.5, 0);
  TestRoundingMode(u32_f64, RM,  123.7, 123);
  TestRoundingMode(u32_f64, RM,  123456.2,  123456);
  TestRoundingMode(u32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt);
  TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true);

  TestRoundingMode(u32_f64, RN,  0, 0);
  TestRoundingMode(u32_f64, RN,  0.5, 0);
  TestRoundingMode(u32_f64, RN,  1.5, 2);
  TestRoundingMode(u32_f64, RN,  123.7, 124);
  TestRoundingMode(u32_f64, RN,  123456.2,  123456);
  TestRoundingMode(u32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt);
  TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true);
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
TEST(8) {
  // Test VFP multi load/store with ia_w.
  InitializeVM();
  v8::HandleScope scope;

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
  Assembler assm(Isolate::Current(), NULL, 0);

  if (CpuFeatures::IsSupported(VFP3)) {
    CpuFeatures::Scope scope(VFP3);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

    __ add(r4, r0, Operand(OFFSET_OF(D, a)));
    __ vldm(ia_w, r4, d0, d3);
    __ vldm(ia_w, r4, d4, d7);

    __ add(r4, r0, Operand(OFFSET_OF(D, a)));
    __ vstm(ia_w, r4, d6, d7);
    __ vstm(ia_w, r4, d0, d5);

    __ add(r4, r1, Operand(OFFSET_OF(F, a)));
    __ vldm(ia_w, r4, s0, s3);
    __ vldm(ia_w, r4, s4, s7);

    __ add(r4, r1, Operand(OFFSET_OF(F, a)));
    __ vstm(ia_w, r4, s6, s7);
    __ vstm(ia_w, r4, s0, s5);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = HEAP->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F4 fn = FUNCTION_CAST<F4>(Code::cast(code)->entry());
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

    Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0);
    USE(dummy);

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}


TEST(9) {
  // Test VFP multi load/store with ia.
  InitializeVM();
  v8::HandleScope scope;

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
  Assembler assm(Isolate::Current(), NULL, 0);

  if (CpuFeatures::IsSupported(VFP3)) {
    CpuFeatures::Scope scope(VFP3);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

    __ add(r4, r0, Operand(OFFSET_OF(D, a)));
    __ vldm(ia, r4, d0, d3);
    __ add(r4, r4, Operand(4 * 8));
    __ vldm(ia, r4, d4, d7);

    __ add(r4, r0, Operand(OFFSET_OF(D, a)));
    __ vstm(ia, r4, d6, d7);
    __ add(r4, r4, Operand(2 * 8));
    __ vstm(ia, r4, d0, d5);

    __ add(r4, r1, Operand(OFFSET_OF(F, a)));
    __ vldm(ia, r4, s0, s3);
    __ add(r4, r4, Operand(4 * 4));
    __ vldm(ia, r4, s4, s7);

    __ add(r4, r1, Operand(OFFSET_OF(F, a)));
    __ vstm(ia, r4, s6, s7);
    __ add(r4, r4, Operand(2 * 4));
    __ vstm(ia, r4, s0, s5);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = HEAP->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F4 fn = FUNCTION_CAST<F4>(Code::cast(code)->entry());
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

    Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0);
    USE(dummy);

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}


TEST(10) {
  // Test VFP multi load/store with db_w.
  InitializeVM();
  v8::HandleScope scope;

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
  Assembler assm(Isolate::Current(), NULL, 0);

  if (CpuFeatures::IsSupported(VFP3)) {
    CpuFeatures::Scope scope(VFP3);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

    __ add(r4, r0, Operand(OFFSET_OF(D, h) + 8));
    __ vldm(db_w, r4, d4, d7);
    __ vldm(db_w, r4, d0, d3);

    __ add(r4, r0, Operand(OFFSET_OF(D, h) + 8));
    __ vstm(db_w, r4, d0, d5);
    __ vstm(db_w, r4, d6, d7);

    __ add(r4, r1, Operand(OFFSET_OF(F, h) + 4));
    __ vldm(db_w, r4, s4, s7);
    __ vldm(db_w, r4, s0, s3);

    __ add(r4, r1, Operand(OFFSET_OF(F, h) + 4));
    __ vstm(db_w, r4, s0, s5);
    __ vstm(db_w, r4, s6, s7);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = HEAP->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F4 fn = FUNCTION_CAST<F4>(Code::cast(code)->entry());
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

    Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0);
    USE(dummy);

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

TEST(11) {
  // Test instructions using the carry flag.
  InitializeVM();
  v8::HandleScope scope;

  typedef struct {
    int32_t a;
    int32_t b;
    int32_t c;
    int32_t d;
  } I;
  I i;

  i.a = 0xabcd0001;
  i.b = 0xabcd0000;

  Assembler assm(Isolate::Current(), NULL, 0);

  // Test HeapObject untagging.
  __ ldr(r1, MemOperand(r0, OFFSET_OF(I, a)));
  __ mov(r1, Operand(r1, ASR, 1), SetCC);
  __ adc(r1, r1, Operand(r1), LeaveCC, cs);
  __ str(r1, MemOperand(r0, OFFSET_OF(I, a)));

  __ ldr(r2, MemOperand(r0, OFFSET_OF(I, b)));
  __ mov(r2, Operand(r2, ASR, 1), SetCC);
  __ adc(r2, r2, Operand(r2), LeaveCC, cs);
  __ str(r2, MemOperand(r0, OFFSET_OF(I, b)));

  // Test corner cases.
  __ mov(r1, Operand(0xffffffff));
  __ mov(r2, Operand(0));
  __ mov(r3, Operand(r1, ASR, 1), SetCC);  // Set the carry.
  __ adc(r3, r1, Operand(r2));
  __ str(r3, MemOperand(r0, OFFSET_OF(I, c)));

  __ mov(r1, Operand(0xffffffff));
  __ mov(r2, Operand(0));
  __ mov(r3, Operand(r2, ASR, 1), SetCC);  // Unset the carry.
  __ adc(r3, r1, Operand(r2));
  __ str(r3, MemOperand(r0, OFFSET_OF(I, d)));

  __ mov(pc, Operand(lr));

  CodeDesc desc;
  assm.GetCode(&desc);
  Object* code = HEAP->CreateCode(
      desc,
      Code::ComputeFlags(Code::STUB),
      Handle<Object>(HEAP->undefined_value()))->ToObjectChecked();
  CHECK(code->IsCode());
#ifdef DEBUG
  Code::cast(code)->Print();
#endif
  F3 f = FUNCTION_CAST<F3>(Code::cast(code)->entry());
  Object* dummy = CALL_GENERATED_CODE(f, &i, 0, 0, 0, 0);
  USE(dummy);

  CHECK_EQ(0xabcd0001, i.a);
  CHECK_EQ(static_cast<int32_t>(0xabcd0000) >> 1, i.b);
  CHECK_EQ(0x00000000, i.c);
  CHECK_EQ(0xffffffff, i.d);
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

TEST(12) {
  // Test chaining of label usages within instructions (issue 1644).
  InitializeVM();
  v8::HandleScope scope;
  Assembler assm(Isolate::Current(), NULL, 0);

  Label target;
  __ b(eq, &target);
  __ b(ne, &target);
  __ bind(&target);
  __ nop();
}

1027
#undef __