lithium-codegen-mips64.cc 205 KB
Newer Older
1 2 3 4 5 6
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

7
#include "src/code-factory.h"
8
#include "src/code-stubs.h"
9
#include "src/cpu-profiler.h"
10
#include "src/hydrogen-osr.h"
11
#include "src/ic/ic.h"
12
#include "src/ic/stub-cache.h"
13 14 15 16 17 18 19
#include "src/mips64/lithium-codegen-mips64.h"
#include "src/mips64/lithium-gap-resolver-mips64.h"

namespace v8 {
namespace internal {


20
class SafepointGenerator FINAL  : public CallWrapper {
21 22 23 24 25 26 27 28 29
 public:
  SafepointGenerator(LCodeGen* codegen,
                     LPointerMap* pointers,
                     Safepoint::DeoptMode mode)
      : codegen_(codegen),
        pointers_(pointers),
        deopt_mode_(mode) { }
  virtual ~SafepointGenerator() {}

30
  void BeforeCall(int call_size) const OVERRIDE {}
31

32
  void AfterCall() const OVERRIDE {
33 34 35 36 37 38 39 40 41 42 43 44 45 46
    codegen_->RecordSafepoint(pointers_, deopt_mode_);
  }

 private:
  LCodeGen* codegen_;
  LPointerMap* pointers_;
  Safepoint::DeoptMode deopt_mode_;
};


#define __ masm()->

bool LCodeGen::GenerateCode() {
  LPhase phase("Z_Code generation", chunk());
47
  DCHECK(is_unused());
48 49 50 51 52 53 54
  status_ = GENERATING;

  // Open a frame scope to indicate that there is a frame on the stack.  The
  // NONE indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done in GeneratePrologue).
  FrameScope frame_scope(masm_, StackFrame::NONE);

55 56
  return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
         GenerateJumpTable() && GenerateSafepointTable();
57 58 59 60
}


void LCodeGen::FinishCode(Handle<Code> code) {
61
  DCHECK(is_done());
62 63 64 65 66 67 68
  code->set_stack_slots(GetStackSlotCount());
  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
  PopulateDeoptimizationData(code);
}


void LCodeGen::SaveCallerDoubles() {
69 70
  DCHECK(info()->saves_caller_doubles());
  DCHECK(NeedsEagerFrame());
71 72 73 74 75 76 77 78 79 80 81 82 83 84
  Comment(";;; Save clobbered callee double registers");
  int count = 0;
  BitVector* doubles = chunk()->allocated_double_registers();
  BitVector::Iterator save_iterator(doubles);
  while (!save_iterator.Done()) {
    __ sdc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
            MemOperand(sp, count * kDoubleSize));
    save_iterator.Advance();
    count++;
  }
}


void LCodeGen::RestoreCallerDoubles() {
85 86
  DCHECK(info()->saves_caller_doubles());
  DCHECK(NeedsEagerFrame());
87 88 89 90 91 92 93 94 95 96 97 98 99 100
  Comment(";;; Restore clobbered callee double registers");
  BitVector* doubles = chunk()->allocated_double_registers();
  BitVector::Iterator save_iterator(doubles);
  int count = 0;
  while (!save_iterator.Done()) {
    __ ldc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
            MemOperand(sp, count * kDoubleSize));
    save_iterator.Advance();
    count++;
  }
}


bool LCodeGen::GeneratePrologue() {
101
  DCHECK(is_generating());
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

  if (info()->IsOptimizing()) {
    ProfileEntryHookStub::MaybeCallEntryHook(masm_);

#ifdef DEBUG
    if (strlen(FLAG_stop_at) > 0 &&
        info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
      __ stop("stop_at");
    }
#endif

    // a1: Callee's JS function.
    // cp: Callee's context.
    // fp: Caller's frame pointer.
    // lr: Caller's pc.

    // Sloppy mode functions and builtins need to replace the receiver with the
    // global proxy when called as functions (without an explicit receiver
    // object).
121
    if (graph()->this_has_uses() && is_sloppy(info_->language_mode()) &&
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        !info_->is_native()) {
      Label ok;
      int receiver_offset = info_->scope()->num_parameters() * kPointerSize;
      __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
      __ ld(a2, MemOperand(sp, receiver_offset));
      __ Branch(&ok, ne, a2, Operand(at));

      __ ld(a2, GlobalObjectOperand());
      __ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));

      __ sd(a2, MemOperand(sp, receiver_offset));

      __ bind(&ok);
    }
  }

  info()->set_prologue_offset(masm_->pc_offset());
  if (NeedsEagerFrame()) {
    if (info()->IsStub()) {
      __ StubPrologue();
    } else {
      __ Prologue(info()->IsCodePreAgingActive());
    }
    frame_is_built_ = true;
    info_->AddNoFrameRange(0, masm_->pc_offset());
  }

  // Reserve space for the stack slots needed by the code.
  int slots = GetStackSlotCount();
  if (slots > 0) {
    if (FLAG_debug_code) {
      __ Dsubu(sp,  sp, Operand(slots * kPointerSize));
      __ Push(a0, a1);
      __ Daddu(a0, sp, Operand(slots *  kPointerSize));
      __ li(a1, Operand(kSlotsZapValue));
      Label loop;
      __ bind(&loop);
      __ Dsubu(a0, a0, Operand(kPointerSize));
      __ sd(a1, MemOperand(a0, 2 * kPointerSize));
      __ Branch(&loop, ne, a0, Operand(sp));
      __ Pop(a0, a1);
    } else {
      __ Dsubu(sp, sp, Operand(slots * kPointerSize));
    }
  }

  if (info()->saves_caller_doubles()) {
    SaveCallerDoubles();
  }

  // Possibly allocate a local context.
  int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
  if (heap_slots > 0) {
    Comment(";;; Allocate local context");
    bool need_write_barrier = true;
    // Argument to NewContext is the function, which is in a1.
178
    DCHECK(!info()->scope()->is_script_scope());
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    if (heap_slots <= FastNewContextStub::kMaximumSlots) {
      FastNewContextStub stub(isolate(), heap_slots);
      __ CallStub(&stub);
      // Result of FastNewContextStub is always in new space.
      need_write_barrier = false;
    } else {
      __ push(a1);
      __ CallRuntime(Runtime::kNewFunctionContext, 1);
    }
    RecordSafepoint(Safepoint::kNoLazyDeopt);
    // Context is returned in both v0. It replaces the context passed to us.
    // It's saved in the stack and kept live in cp.
    __ mov(cp, v0);
    __ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
    // Copy any necessary parameters into the context.
    int num_parameters = scope()->num_parameters();
    for (int i = 0; i < num_parameters; i++) {
      Variable* var = scope()->parameter(i);
      if (var->IsContextSlot()) {
        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
            (num_parameters - 1 - i) * kPointerSize;
        // Load parameter from stack.
        __ ld(a0, MemOperand(fp, parameter_offset));
        // Store it in the context.
        MemOperand target = ContextOperand(cp, var->index());
        __ sd(a0, target);
        // Update the write barrier. This clobbers a3 and a0.
        if (need_write_barrier) {
          __ RecordWriteContextSlot(
              cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
        } else if (FLAG_debug_code) {
          Label done;
          __ JumpIfInNewSpace(cp, a0, &done);
          __ Abort(kExpectedNewSpaceObject);
          __ bind(&done);
        }
      }
    }
    Comment(";;; End allocate local context");
  }

  // Trace the call.
  if (FLAG_trace && info()->IsOptimizing()) {
    // We have not executed any compiled code yet, so cp still holds the
    // incoming context.
    __ CallRuntime(Runtime::kTraceEnter, 0);
  }
  return !is_aborted();
}


void LCodeGen::GenerateOsrPrologue() {
  // Generate the OSR entry prologue at the first unknown OSR value, or if there
  // are none, at the OSR entrypoint instruction.
  if (osr_pc_offset_ >= 0) return;

  osr_pc_offset_ = masm()->pc_offset();

  // Adjust the frame size, subsuming the unoptimized frame into the
  // optimized frame.
  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
240
  DCHECK(slots >= 0);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  __ Dsubu(sp, sp, Operand(slots * kPointerSize));
}


void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
  if (instr->IsCall()) {
    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
  }
  if (!instr->IsLazyBailout() && !instr->IsGap()) {
    safepoints_.BumpLastLazySafepointIndex();
  }
}


bool LCodeGen::GenerateDeferredCode() {
256
  DCHECK(is_generating());
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  if (deferred_.length() > 0) {
    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
      LDeferredCode* code = deferred_[i];

      HValue* value =
          instructions_->at(code->instruction_index())->hydrogen_value();
      RecordAndWritePosition(
          chunk()->graph()->SourcePositionToScriptPosition(value->position()));

      Comment(";;; <@%d,#%d> "
              "-------------------- Deferred %s --------------------",
              code->instruction_index(),
              code->instr()->hydrogen_value()->id(),
              code->instr()->Mnemonic());
      __ bind(code->entry());
      if (NeedsDeferredFrame()) {
        Comment(";;; Build frame");
274 275
        DCHECK(!frame_is_built_);
        DCHECK(info()->IsStub());
276 277 278 279 280 281 282 283 284 285 286
        frame_is_built_ = true;
        __ MultiPush(cp.bit() | fp.bit() | ra.bit());
        __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
        __ push(scratch0());
        __ Daddu(fp, sp,
            Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
        Comment(";;; Deferred code");
      }
      code->Generate();
      if (NeedsDeferredFrame()) {
        Comment(";;; Destroy frame");
287
        DCHECK(frame_is_built_);
288 289 290 291 292 293 294 295 296 297 298 299 300 301
        __ pop(at);
        __ MultiPop(cp.bit() | fp.bit() | ra.bit());
        frame_is_built_ = false;
      }
      __ jmp(code->exit());
    }
  }
  // Deferred code is the last part of the instruction sequence. Mark
  // the generated code as done unless we bailed out.
  if (!is_aborted()) status_ = DONE;
  return !is_aborted();
}


302
bool LCodeGen::GenerateJumpTable() {
303
  if (jump_table_.length() > 0) {
304
    Comment(";;; -------------------- Jump table --------------------");
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
    Label table_start, call_deopt_entry;

    __ bind(&table_start);
    Label needs_frame;
    Address base = jump_table_[0]->address;
    for (int i = 0; i < jump_table_.length(); i++) {
      Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
      __ bind(&table_entry->label);
      Address entry = table_entry->address;
      DeoptComment(table_entry->deopt_info);

      // Second-level deopt table entries are contiguous and small, so instead
      // of loading the full, absolute address of each one, load the base
      // address and add an immediate offset.
      if (is_int16(entry - base)) {
        if (table_entry->needs_frame) {
          DCHECK(!info()->saves_caller_doubles());
          Comment(";;; call deopt with frame");
          __ MultiPush(cp.bit() | fp.bit() | ra.bit());
          __ BranchAndLink(&needs_frame, USE_DELAY_SLOT);
          __ li(t9, Operand(entry - base));
        } else {
          __ BranchAndLink(&call_deopt_entry, USE_DELAY_SLOT);
          __ li(t9, Operand(entry - base));
        }
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
      } else {
        __ li(t9, Operand(entry - base));
        if (table_entry->needs_frame) {
          DCHECK(!info()->saves_caller_doubles());
          Comment(";;; call deopt with frame");
          __ MultiPush(cp.bit() | fp.bit() | ra.bit());
          __ BranchAndLink(&needs_frame);
        } else {
          __ BranchAndLink(&call_deopt_entry);
        }
      }
      info()->LogDeoptCallPosition(masm()->pc_offset(),
                                   table_entry->deopt_info.inlining_id);
    }
    if (needs_frame.is_linked()) {
      __ bind(&needs_frame);
      // This variant of deopt can only be used with stubs. Since we don't
      // have a function pointer to install in the stack frame that we're
      // building, install a special marker there instead.
      DCHECK(info()->IsStub());
      __ li(at, Operand(Smi::FromInt(StackFrame::STUB)));
      __ push(at);
      __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
    }
356

357 358
    Comment(";;; call deopt");
    __ bind(&call_deopt_entry);
359

360 361 362 363
    if (info()->saves_caller_doubles()) {
      DCHECK(info()->IsStub());
      RestoreCallerDoubles();
    }
364

365 366 367 368 369
    __ li(at,
          Operand(reinterpret_cast<int64_t>(base), RelocInfo::RUNTIME_ENTRY));
    __ Daddu(t9, t9, Operand(at));
    __ Jump(t9);
  }
370 371 372 373 374 375 376 377
  // The deoptimization jump table is the last part of the instruction
  // sequence. Mark the generated code as done unless we bailed out.
  if (!is_aborted()) status_ = DONE;
  return !is_aborted();
}


bool LCodeGen::GenerateSafepointTable() {
378
  DCHECK(is_done());
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  safepoints_.Emit(masm(), GetStackSlotCount());
  return !is_aborted();
}


Register LCodeGen::ToRegister(int index) const {
  return Register::FromAllocationIndex(index);
}


DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
  return DoubleRegister::FromAllocationIndex(index);
}


Register LCodeGen::ToRegister(LOperand* op) const {
395
  DCHECK(op->IsRegister());
396 397 398 399 400 401 402 403 404 405 406 407 408
  return ToRegister(op->index());
}


Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
  if (op->IsRegister()) {
    return ToRegister(op->index());
  } else if (op->IsConstantOperand()) {
    LConstantOperand* const_op = LConstantOperand::cast(op);
    HConstant* constant = chunk_->LookupConstant(const_op);
    Handle<Object> literal = constant->handle(isolate());
    Representation r = chunk_->LookupLiteralRepresentation(const_op);
    if (r.IsInteger32()) {
409
      DCHECK(literal->IsNumber());
410 411
      __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
    } else if (r.IsSmi()) {
412
      DCHECK(constant->HasSmiValue());
413 414 415 416
      __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
    } else if (r.IsDouble()) {
      Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
    } else {
417
      DCHECK(r.IsSmiOrTagged());
418 419 420 421 422 423 424 425 426 427 428 429 430
      __ li(scratch, literal);
    }
    return scratch;
  } else if (op->IsStackSlot()) {
    __ ld(scratch, ToMemOperand(op));
    return scratch;
  }
  UNREACHABLE();
  return scratch;
}


DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
431
  DCHECK(op->IsDoubleRegister());
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
  return ToDoubleRegister(op->index());
}


DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
                                                FloatRegister flt_scratch,
                                                DoubleRegister dbl_scratch) {
  if (op->IsDoubleRegister()) {
    return ToDoubleRegister(op->index());
  } else if (op->IsConstantOperand()) {
    LConstantOperand* const_op = LConstantOperand::cast(op);
    HConstant* constant = chunk_->LookupConstant(const_op);
    Handle<Object> literal = constant->handle(isolate());
    Representation r = chunk_->LookupLiteralRepresentation(const_op);
    if (r.IsInteger32()) {
447
      DCHECK(literal->IsNumber());
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
      __ li(at, Operand(static_cast<int32_t>(literal->Number())));
      __ mtc1(at, flt_scratch);
      __ cvt_d_w(dbl_scratch, flt_scratch);
      return dbl_scratch;
    } else if (r.IsDouble()) {
      Abort(kUnsupportedDoubleImmediate);
    } else if (r.IsTagged()) {
      Abort(kUnsupportedTaggedImmediate);
    }
  } else if (op->IsStackSlot()) {
    MemOperand mem_op = ToMemOperand(op);
    __ ldc1(dbl_scratch, mem_op);
    return dbl_scratch;
  }
  UNREACHABLE();
  return dbl_scratch;
}


Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
  HConstant* constant = chunk_->LookupConstant(op);
469
  DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  return constant->handle(isolate());
}


bool LCodeGen::IsInteger32(LConstantOperand* op) const {
  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}


bool LCodeGen::IsSmi(LConstantOperand* op) const {
  return chunk_->LookupLiteralRepresentation(op).IsSmi();
}


int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
  // return ToRepresentation(op, Representation::Integer32());
  HConstant* constant = chunk_->LookupConstant(op);
  return constant->Integer32Value();
}


int32_t LCodeGen::ToRepresentation_donotuse(LConstantOperand* op,
                                   const Representation& r) const {
  HConstant* constant = chunk_->LookupConstant(op);
  int32_t value = constant->Integer32Value();
  if (r.IsInteger32()) return value;
496
  DCHECK(r.IsSmiOrTagged());
497 498 499 500 501 502 503 504 505 506 507 508
  return reinterpret_cast<int64_t>(Smi::FromInt(value));
}


Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
  HConstant* constant = chunk_->LookupConstant(op);
  return Smi::FromInt(constant->Integer32Value());
}


double LCodeGen::ToDouble(LConstantOperand* op) const {
  HConstant* constant = chunk_->LookupConstant(op);
509
  DCHECK(constant->HasDoubleValue());
510 511 512 513 514 515 516 517 518 519
  return constant->DoubleValue();
}


Operand LCodeGen::ToOperand(LOperand* op) {
  if (op->IsConstantOperand()) {
    LConstantOperand* const_op = LConstantOperand::cast(op);
    HConstant* constant = chunk()->LookupConstant(const_op);
    Representation r = chunk_->LookupLiteralRepresentation(const_op);
    if (r.IsSmi()) {
520
      DCHECK(constant->HasSmiValue());
521 522
      return Operand(Smi::FromInt(constant->Integer32Value()));
    } else if (r.IsInteger32()) {
523
      DCHECK(constant->HasInteger32Value());
524 525 526 527
      return Operand(constant->Integer32Value());
    } else if (r.IsDouble()) {
      Abort(kToOperandUnsupportedDoubleImmediate);
    }
528
    DCHECK(r.IsTagged());
529 530 531 532 533 534 535 536 537 538 539 540 541 542
    return Operand(constant->handle(isolate()));
  } else if (op->IsRegister()) {
    return Operand(ToRegister(op));
  } else if (op->IsDoubleRegister()) {
    Abort(kToOperandIsDoubleRegisterUnimplemented);
    return Operand((int64_t)0);
  }
  // Stack slots not implemented, use ToMemOperand instead.
  UNREACHABLE();
  return Operand((int64_t)0);
}


static int ArgumentsOffsetWithoutFrame(int index) {
543
  DCHECK(index < 0);
544 545 546 547 548
  return -(index + 1) * kPointerSize;
}


MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
549 550 551
  DCHECK(!op->IsRegister());
  DCHECK(!op->IsDoubleRegister());
  DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
552 553 554 555 556 557 558 559 560 561 562
  if (NeedsEagerFrame()) {
    return MemOperand(fp, StackSlotOffset(op->index()));
  } else {
    // Retrieve parameter without eager stack-frame relative to the
    // stack-pointer.
    return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
  }
}


MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
563
  DCHECK(op->IsDoubleStackSlot());
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  if (NeedsEagerFrame()) {
    // return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
    return MemOperand(fp, StackSlotOffset(op->index()) + kIntSize);
  } else {
    // Retrieve parameter without eager stack-frame relative to the
    // stack-pointer.
    // return MemOperand(
    //    sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
    return MemOperand(
        sp, ArgumentsOffsetWithoutFrame(op->index()) + kIntSize);
  }
}


void LCodeGen::WriteTranslation(LEnvironment* environment,
                                Translation* translation) {
  if (environment == NULL) return;

  // The translation includes one command per value in the environment.
  int translation_size = environment->translation_size();
  // The output frame height does not include the parameters.
  int height = translation_size - environment->parameter_count();

  WriteTranslation(environment->outer(), translation);
  bool has_closure_id = !info()->closure().is_null() &&
      !info()->closure().is_identical_to(environment->closure());
  int closure_id = has_closure_id
      ? DefineDeoptimizationLiteral(environment->closure())
      : Translation::kSelfLiteralId;

  switch (environment->frame_type()) {
    case JS_FUNCTION:
      translation->BeginJSFrame(environment->ast_id(), closure_id, height);
      break;
    case JS_CONSTRUCT:
      translation->BeginConstructStubFrame(closure_id, translation_size);
      break;
    case JS_GETTER:
602 603
      DCHECK(translation_size == 1);
      DCHECK(height == 0);
604 605 606
      translation->BeginGetterStubFrame(closure_id);
      break;
    case JS_SETTER:
607 608
      DCHECK(translation_size == 2);
      DCHECK(height == 0);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
      translation->BeginSetterStubFrame(closure_id);
      break;
    case STUB:
      translation->BeginCompiledStubFrame();
      break;
    case ARGUMENTS_ADAPTOR:
      translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
      break;
  }

  int object_index = 0;
  int dematerialized_index = 0;
  for (int i = 0; i < translation_size; ++i) {
    LOperand* value = environment->values()->at(i);
    AddToTranslation(environment,
                     translation,
                     value,
                     environment->HasTaggedValueAt(i),
                     environment->HasUint32ValueAt(i),
                     &object_index,
                     &dematerialized_index);
  }
}


void LCodeGen::AddToTranslation(LEnvironment* environment,
                                Translation* translation,
                                LOperand* op,
                                bool is_tagged,
                                bool is_uint32,
                                int* object_index_pointer,
                                int* dematerialized_index_pointer) {
  if (op == LEnvironment::materialization_marker()) {
    int object_index = (*object_index_pointer)++;
    if (environment->ObjectIsDuplicateAt(object_index)) {
      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
      translation->DuplicateObject(dupe_of);
      return;
    }
    int object_length = environment->ObjectLengthAt(object_index);
    if (environment->ObjectIsArgumentsAt(object_index)) {
      translation->BeginArgumentsObject(object_length);
    } else {
      translation->BeginCapturedObject(object_length);
    }
    int dematerialized_index = *dematerialized_index_pointer;
    int env_offset = environment->translation_size() + dematerialized_index;
    *dematerialized_index_pointer += object_length;
    for (int i = 0; i < object_length; ++i) {
      LOperand* value = environment->values()->at(env_offset + i);
      AddToTranslation(environment,
                       translation,
                       value,
                       environment->HasTaggedValueAt(env_offset + i),
                       environment->HasUint32ValueAt(env_offset + i),
                       object_index_pointer,
                       dematerialized_index_pointer);
    }
    return;
  }

  if (op->IsStackSlot()) {
    if (is_tagged) {
      translation->StoreStackSlot(op->index());
    } else if (is_uint32) {
      translation->StoreUint32StackSlot(op->index());
    } else {
      translation->StoreInt32StackSlot(op->index());
    }
  } else if (op->IsDoubleStackSlot()) {
    translation->StoreDoubleStackSlot(op->index());
  } else if (op->IsRegister()) {
    Register reg = ToRegister(op);
    if (is_tagged) {
      translation->StoreRegister(reg);
    } else if (is_uint32) {
      translation->StoreUint32Register(reg);
    } else {
      translation->StoreInt32Register(reg);
    }
  } else if (op->IsDoubleRegister()) {
    DoubleRegister reg = ToDoubleRegister(op);
    translation->StoreDoubleRegister(reg);
  } else if (op->IsConstantOperand()) {
    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    translation->StoreLiteral(src_index);
  } else {
    UNREACHABLE();
  }
}


void LCodeGen::CallCode(Handle<Code> code,
                        RelocInfo::Mode mode,
                        LInstruction* instr) {
  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}


void LCodeGen::CallCodeGeneric(Handle<Code> code,
                               RelocInfo::Mode mode,
                               LInstruction* instr,
                               SafepointMode safepoint_mode) {
713
  DCHECK(instr != NULL);
714 715 716 717 718 719 720 721 722
  __ Call(code, mode);
  RecordSafepointWithLazyDeopt(instr, safepoint_mode);
}


void LCodeGen::CallRuntime(const Runtime::Function* function,
                           int num_arguments,
                           LInstruction* instr,
                           SaveFPRegsMode save_doubles) {
723
  DCHECK(instr != NULL);
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

  __ CallRuntime(function, num_arguments, save_doubles);

  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}


void LCodeGen::LoadContextFromDeferred(LOperand* context) {
  if (context->IsRegister()) {
    __ Move(cp, ToRegister(context));
  } else if (context->IsStackSlot()) {
    __ ld(cp, ToMemOperand(context));
  } else if (context->IsConstantOperand()) {
    HConstant* constant =
        chunk_->LookupConstant(LConstantOperand::cast(context));
    __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
  } else {
    UNREACHABLE();
  }
}


void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
                                       int argc,
                                       LInstruction* instr,
                                       LOperand* context) {
  LoadContextFromDeferred(context);
  __ CallRuntimeSaveDoubles(id);
  RecordSafepointWithRegisters(
      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
}


void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
                                                    Safepoint::DeoptMode mode) {
  environment->set_has_been_used();
  if (!environment->HasBeenRegistered()) {
    // Physical stack frame layout:
    // -x ............. -4  0 ..................................... y
    // [incoming arguments] [spill slots] [pushed outgoing arguments]

    // Layout of the environment:
    // 0 ..................................................... size-1
    // [parameters] [locals] [expression stack including arguments]

    // Layout of the translation:
    // 0 ........................................................ size - 1 + 4
    // [expression stack including arguments] [locals] [4 words] [parameters]
    // |>------------  translation_size ------------<|

    int frame_count = 0;
    int jsframe_count = 0;
    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
      ++frame_count;
      if (e->frame_type() == JS_FUNCTION) {
        ++jsframe_count;
      }
    }
    Translation translation(&translations_, frame_count, jsframe_count, zone());
    WriteTranslation(environment, &translation);
    int deoptimization_index = deoptimizations_.length();
    int pc_offset = masm()->pc_offset();
    environment->Register(deoptimization_index,
                          translation.index(),
                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    deoptimizations_.Add(environment, zone());
  }
}


794
void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
795
                            Deoptimizer::DeoptReason deopt_reason,
796
                            Deoptimizer::BailoutType bailout_type,
797
                            Register src1, const Operand& src2) {
798
  LEnvironment* environment = instr->environment();
799
  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
800
  DCHECK(environment->HasBeenRegistered());
801
  int id = environment->deoptimization_index();
802
  DCHECK(info()->IsOptimizing() || info()->IsStub());
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
  Address entry =
      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
  if (entry == NULL) {
    Abort(kBailoutWasNotPrepared);
    return;
  }

  if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
    Register scratch = scratch0();
    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
    Label no_deopt;
    __ Push(a1, scratch);
    __ li(scratch, Operand(count));
    __ lw(a1, MemOperand(scratch));
    __ Subu(a1, a1, Operand(1));
    __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
    __ li(a1, Operand(FLAG_deopt_every_n_times));
    __ sw(a1, MemOperand(scratch));
    __ Pop(a1, scratch);

    __ Call(entry, RelocInfo::RUNTIME_ENTRY);
    __ bind(&no_deopt);
    __ sw(a1, MemOperand(scratch));
    __ Pop(a1, scratch);
  }

  if (info()->ShouldTrapOnDeopt()) {
    Label skip;
    if (condition != al) {
      __ Branch(&skip, NegateCondition(condition), src1, src2);
    }
    __ stop("trap_on_deopt");
    __ bind(&skip);
  }

838 839
  Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);

840
  DCHECK(info()->IsStub() || frame_is_built_);
841 842 843 844
  // Go through jump table if we need to handle condition, build frame, or
  // restore caller doubles.
  if (condition == al && frame_is_built_ &&
      !info()->saves_caller_doubles()) {
845
    DeoptComment(deopt_info);
846
    __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
847
    info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
848
  } else {
849 850 851
    Deoptimizer::JumpTableEntry* table_entry =
        new (zone()) Deoptimizer::JumpTableEntry(
            entry, deopt_info, bailout_type, !frame_is_built_);
852 853
    // We often have several deopts to the same entry, reuse the last
    // jump entry if this is the case.
854 855
    if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
        jump_table_.is_empty() ||
856
        !table_entry->IsEquivalentTo(*jump_table_.last())) {
857
      jump_table_.Add(table_entry, zone());
858
    }
859
    __ Branch(&jump_table_.last()->label, condition, src1, src2);
860 861 862 863
  }
}


864
void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
865 866
                            Deoptimizer::DeoptReason deopt_reason,
                            Register src1, const Operand& src2) {
867 868 869
  Deoptimizer::BailoutType bailout_type = info()->IsStub()
      ? Deoptimizer::LAZY
      : Deoptimizer::EAGER;
870
  DeoptimizeIf(condition, instr, deopt_reason, bailout_type, src1, src2);
871 872 873 874 875 876 877
}


void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
  int length = deoptimizations_.length();
  if (length == 0) return;
  Handle<DeoptimizationInputData> data =
878
      DeoptimizationInputData::New(isolate(), length, TENURED);
879 880 881 882 883 884 885 886 887 888 889 890 891

  Handle<ByteArray> translations =
      translations_.CreateByteArray(isolate()->factory());
  data->SetTranslationByteArray(*translations);
  data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
  data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
  if (info_->IsOptimizing()) {
    // Reference to shared function info does not change between phases.
    AllowDeferredHandleDereference allow_handle_dereference;
    data->SetSharedFunctionInfo(*info_->shared_info());
  } else {
    data->SetSharedFunctionInfo(Smi::FromInt(0));
  }
892
  data->SetWeakCellCache(Smi::FromInt(0));
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929

  Handle<FixedArray> literals =
      factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
  { AllowDeferredHandleDereference copy_handles;
    for (int i = 0; i < deoptimization_literals_.length(); i++) {
      literals->set(i, *deoptimization_literals_[i]);
    }
    data->SetLiteralArray(*literals);
  }

  data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
  data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));

  // Populate the deoptimization entries.
  for (int i = 0; i < length; i++) {
    LEnvironment* env = deoptimizations_[i];
    data->SetAstId(i, env->ast_id());
    data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
    data->SetArgumentsStackHeight(i,
                                  Smi::FromInt(env->arguments_stack_height()));
    data->SetPc(i, Smi::FromInt(env->pc_offset()));
  }
  code->set_deoptimization_data(*data);
}


int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
  int result = deoptimization_literals_.length();
  for (int i = 0; i < deoptimization_literals_.length(); ++i) {
    if (deoptimization_literals_[i].is_identical_to(literal)) return i;
  }
  deoptimization_literals_.Add(literal, zone());
  return result;
}


void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
930
  DCHECK(deoptimization_literals_.length() == 0);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949

  const ZoneList<Handle<JSFunction> >* inlined_closures =
      chunk()->inlined_closures();

  for (int i = 0, length = inlined_closures->length();
       i < length;
       i++) {
    DefineDeoptimizationLiteral(inlined_closures->at(i));
  }

  inlined_function_count_ = deoptimization_literals_.length();
}


void LCodeGen::RecordSafepointWithLazyDeopt(
    LInstruction* instr, SafepointMode safepoint_mode) {
  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
  } else {
950
    DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
951 952 953 954 955 956 957 958 959 960 961
    RecordSafepointWithRegisters(
        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
  }
}


void LCodeGen::RecordSafepoint(
    LPointerMap* pointers,
    Safepoint::Kind kind,
    int arguments,
    Safepoint::DeoptMode deopt_mode) {
962
  DCHECK(expected_safepoint_kind_ == kind);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
  Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
      kind, arguments, deopt_mode);
  for (int i = 0; i < operands->length(); i++) {
    LOperand* pointer = operands->at(i);
    if (pointer->IsStackSlot()) {
      safepoint.DefinePointerSlot(pointer->index(), zone());
    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
    }
  }
}


void LCodeGen::RecordSafepoint(LPointerMap* pointers,
                               Safepoint::DeoptMode deopt_mode) {
  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}


void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
  LPointerMap empty_pointers(zone());
  RecordSafepoint(&empty_pointers, deopt_mode);
}


void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
                                            int arguments,
                                            Safepoint::DeoptMode deopt_mode) {
  RecordSafepoint(
      pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}


void LCodeGen::RecordAndWritePosition(int position) {
  if (position == RelocInfo::kNoPosition) return;
  masm()->positions_recorder()->RecordPosition(position);
  masm()->positions_recorder()->WriteRecordedPositions();
}


static const char* LabelType(LLabel* label) {
  if (label->is_loop_header()) return " (loop header)";
  if (label->is_osr_entry()) return " (OSR entry)";
  return "";
}


void LCodeGen::DoLabel(LLabel* label) {
  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
          current_instruction_,
          label->hydrogen_value()->id(),
          label->block_id(),
          LabelType(label));
  __ bind(label->label());
  current_block_ = label->block_id();
  DoGap(label);
}


void LCodeGen::DoParallelMove(LParallelMove* move) {
  resolver_.Resolve(move);
}


void LCodeGen::DoGap(LGap* gap) {
  for (int i = LGap::FIRST_INNER_POSITION;
       i <= LGap::LAST_INNER_POSITION;
       i++) {
    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
    LParallelMove* move = gap->GetParallelMove(inner_pos);
    if (move != NULL) DoParallelMove(move);
  }
}


void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
  DoGap(instr);
}


void LCodeGen::DoParameter(LParameter* instr) {
  // Nothing to do.
}


void LCodeGen::DoCallStub(LCallStub* instr) {
1051 1052
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->result()).is(v0));
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
  switch (instr->hydrogen()->major_key()) {
    case CodeStub::RegExpExec: {
      RegExpExecStub stub(isolate());
      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
      break;
    }
    case CodeStub::SubString: {
      SubStringStub stub(isolate());
      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
      break;
    }
    case CodeStub::StringCompare: {
      StringCompareStub stub(isolate());
      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
      break;
    }
    default:
      UNREACHABLE();
  }
}


void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
  GenerateOsrPrologue();
}


void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
1083
  DCHECK(dividend.is(ToRegister(instr->result())));
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

  // Theoretically, a variation of the branch-free code for integer division by
  // a power of 2 (calculating the remainder via an additional multiplication
  // (which gets simplified to an 'and') and subtraction) should be faster, and
  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
  // indicate that positive dividends are heavily favored, so the branching
  // version performs better.
  HMod* hmod = instr->hydrogen();
  int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
  Label dividend_is_not_negative, done;

  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
    __ Branch(&dividend_is_not_negative, ge, dividend, Operand(zero_reg));
    // Note: The code below even works when right contains kMinInt.
    __ dsubu(dividend, zero_reg, dividend);
    __ And(dividend, dividend, Operand(mask));
    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1101 1102
      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
                   Operand(zero_reg));
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    }
    __ Branch(USE_DELAY_SLOT, &done);
    __ dsubu(dividend, zero_reg, dividend);
  }

  __ bind(&dividend_is_not_negative);
  __ And(dividend, dividend, Operand(mask));
  __ bind(&done);
}


void LCodeGen::DoModByConstI(LModByConstI* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  Register result = ToRegister(instr->result());
1118
  DCHECK(!dividend.is(result));
1119 1120

  if (divisor == 0) {
1121
    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    return;
  }

  __ TruncatingDiv(result, dividend, Abs(divisor));
  __ Dmul(result, result, Operand(Abs(divisor)));
  __ Dsubu(result, dividend, Operand(result));

  // Check for negative zero.
  HMod* hmod = instr->hydrogen();
  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
    Label remainder_not_zero;
    __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
1134 1135
    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, dividend,
                 Operand(zero_reg));
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    __ bind(&remainder_not_zero);
  }
}


void LCodeGen::DoModI(LModI* instr) {
  HMod* hmod = instr->hydrogen();
  const Register left_reg = ToRegister(instr->left());
  const Register right_reg = ToRegister(instr->right());
  const Register result_reg = ToRegister(instr->result());

  // div runs in the background while we check for special cases.
1148
  __ Dmod(result_reg, left_reg, right_reg);
1149 1150 1151 1152 1153

  Label done;
  // Check for x % 0, we have to deopt in this case because we can't return a
  // NaN.
  if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1154 1155
    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, right_reg,
                 Operand(zero_reg));
1156 1157 1158 1159 1160 1161 1162 1163
  }

  // Check for kMinInt % -1, div will return kMinInt, which is not what we
  // want. We have to deopt if we care about -0, because we can't return that.
  if (hmod->CheckFlag(HValue::kCanOverflow)) {
    Label no_overflow_possible;
    __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1164
      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, right_reg, Operand(-1));
1165 1166 1167 1168 1169 1170 1171 1172 1173
    } else {
      __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
      __ Branch(USE_DELAY_SLOT, &done);
      __ mov(result_reg, zero_reg);
    }
    __ bind(&no_overflow_possible);
  }

  // If we care about -0, test if the dividend is <0 and the result is 0.
1174
  __ Branch(&done, ge, left_reg, Operand(zero_reg));
1175 1176

  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1177 1178
    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result_reg,
                 Operand(zero_reg));
1179 1180 1181 1182 1183 1184 1185 1186 1187
  }
  __ bind(&done);
}


void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  Register result = ToRegister(instr->result());
1188
  DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1189
  DCHECK(!result.is(dividend));
1190 1191 1192 1193

  // Check for (0 / -x) that will produce negative zero.
  HDiv* hdiv = instr->hydrogen();
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1194 1195
    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
                 Operand(zero_reg));
1196 1197 1198
  }
  // Check for (kMinInt / -1).
  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1199
    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, dividend, Operand(kMinInt));
1200 1201 1202 1203 1204 1205
  }
  // Deoptimize if remainder will not be 0.
  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
      divisor != 1 && divisor != -1) {
    int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
    __ And(at, dividend, Operand(mask));
1206
    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, at, Operand(zero_reg));
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
  }

  if (divisor == -1) {  // Nice shortcut, not needed for correctness.
    __ Dsubu(result, zero_reg, dividend);
    return;
  }
  uint16_t shift = WhichPowerOf2Abs(divisor);
  if (shift == 0) {
    __ Move(result, dividend);
  } else if (shift == 1) {
    __ dsrl32(result, dividend, 31);
    __ Daddu(result, dividend, Operand(result));
  } else {
    __ dsra32(result, dividend, 31);
    __ dsrl32(result, result, 32 - shift);
    __ Daddu(result, dividend, Operand(result));
  }
  if (shift > 0) __ dsra(result, result, shift);
  if (divisor < 0) __ Dsubu(result, zero_reg, result);
}


void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  Register result = ToRegister(instr->result());
1233
  DCHECK(!dividend.is(result));
1234 1235

  if (divisor == 0) {
1236
    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1237 1238 1239 1240 1241 1242
    return;
  }

  // Check for (0 / -x) that will produce negative zero.
  HDiv* hdiv = instr->hydrogen();
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1243 1244
    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
                 Operand(zero_reg));
1245 1246 1247 1248 1249 1250 1251 1252
  }

  __ TruncatingDiv(result, dividend, Abs(divisor));
  if (divisor < 0) __ Subu(result, zero_reg, result);

  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
    __ Dmul(scratch0(), result, Operand(divisor));
    __ Dsubu(scratch0(), scratch0(), dividend);
1253 1254
    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, scratch0(),
                 Operand(zero_reg));
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
  }
}


// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
  HBinaryOperation* hdiv = instr->hydrogen();
  Register dividend = ToRegister(instr->dividend());
  Register divisor = ToRegister(instr->divisor());
  const Register result = ToRegister(instr->result());

  // On MIPS div is asynchronous - it will run in the background while we
  // check for special cases.
1268
  __ Ddiv(result, dividend, divisor);
1269 1270 1271

  // Check for x / 0.
  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1272 1273
    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, divisor,
                 Operand(zero_reg));
1274 1275 1276 1277 1278 1279
  }

  // Check for (0 / -x) that will produce negative zero.
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
    Label left_not_zero;
    __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1280 1281
    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, divisor,
                 Operand(zero_reg));
1282 1283 1284 1285 1286 1287 1288 1289
    __ bind(&left_not_zero);
  }

  // Check for (kMinInt / -1).
  if (hdiv->CheckFlag(HValue::kCanOverflow) &&
      !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
    Label left_not_min_int;
    __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1290
    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, divisor, Operand(-1));
1291 1292 1293 1294
    __ bind(&left_not_min_int);
  }

  if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1295 1296 1297 1298 1299 1300 1301
    // Calculate remainder.
    Register remainder = ToRegister(instr->temp());
    if (kArchVariant != kMips64r6) {
      __ mfhi(remainder);
    } else {
      __ dmod(remainder, dividend, divisor);
    }
1302 1303
    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, remainder,
                 Operand(zero_reg));
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
  }
}


void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
  DoubleRegister addend = ToDoubleRegister(instr->addend());
  DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
  DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());

  // This is computed in-place.
1314
  DCHECK(addend.is(ToDoubleRegister(instr->result())));
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

  __ Madd_d(addend, addend, multiplier, multiplicand, double_scratch0());
}


void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
  Register dividend = ToRegister(instr->dividend());
  Register result = ToRegister(instr->result());
  int32_t divisor = instr->divisor();
  Register scratch = result.is(dividend) ? scratch0() : dividend;
1325
  DCHECK(!result.is(dividend) || !scratch.is(dividend));
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

  // If the divisor is 1, return the dividend.
  if (divisor == 1) {
    __ Move(result, dividend);
    return;
  }

  // If the divisor is positive, things are easy: There can be no deopts and we
  // can simply do an arithmetic right shift.
  uint16_t shift = WhichPowerOf2Abs(divisor);
  if (divisor > 1) {
    __ dsra(result, dividend, shift);
    return;
  }

  // If the divisor is negative, we have to negate and handle edge cases.
  // Dividend can be the same register as result so save the value of it
  // for checking overflow.
  __ Move(scratch, dividend);

  __ Dsubu(result, zero_reg, dividend);
  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1348
    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result, Operand(zero_reg));
1349 1350 1351 1352 1353 1354
  }

  __ Xor(scratch, scratch, result);
  // Dividing by -1 is basically negation, unless we overflow.
  if (divisor == -1) {
    if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1355
      DeoptimizeIf(gt, instr, Deoptimizer::kOverflow, result, Operand(kMaxInt));
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    }
    return;
  }

  // If the negation could not overflow, simply shifting is OK.
  if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
    __ dsra(result, result, shift);
    return;
  }

  Label no_overflow, done;
  __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
  __ li(result, Operand(kMinInt / divisor), CONSTANT_SIZE);
  __ Branch(&done);
  __ bind(&no_overflow);
  __ dsra(result, result, shift);
  __ bind(&done);
}


void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  Register result = ToRegister(instr->result());
1380
  DCHECK(!dividend.is(result));
1381 1382

  if (divisor == 0) {
1383
    DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1384 1385 1386 1387 1388 1389
    return;
  }

  // Check for (0 / -x) that will produce negative zero.
  HMathFloorOfDiv* hdiv = instr->hydrogen();
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1390 1391
    DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
                 Operand(zero_reg));
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
  }

  // Easy case: We need no dynamic check for the dividend and the flooring
  // division is the same as the truncating division.
  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
    __ TruncatingDiv(result, dividend, Abs(divisor));
    if (divisor < 0) __ Dsubu(result, zero_reg, result);
    return;
  }

  // In the general case we may need to adjust before and after the truncating
  // division to get a flooring division.
  Register temp = ToRegister(instr->temp());
1406
  DCHECK(!temp.is(dividend) && !temp.is(result));
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
  Label needs_adjustment, done;
  __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
            dividend, Operand(zero_reg));
  __ TruncatingDiv(result, dividend, Abs(divisor));
  if (divisor < 0) __ Dsubu(result, zero_reg, result);
  __ jmp(&done);
  __ bind(&needs_adjustment);
  __ Daddu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
  __ TruncatingDiv(result, temp, Abs(divisor));
  if (divisor < 0) __ Dsubu(result, zero_reg, result);
  __ Dsubu(result, result, Operand(1));
  __ bind(&done);
}


// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
  HBinaryOperation* hdiv = instr->hydrogen();
  Register dividend = ToRegister(instr->dividend());
  Register divisor = ToRegister(instr->divisor());
  const Register result = ToRegister(instr->result());

  // On MIPS div is asynchronous - it will run in the background while we
  // check for special cases.
1431
  __ Ddiv(result, dividend, divisor);
1432 1433 1434

  // Check for x / 0.
  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1435 1436
    DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, divisor,
                 Operand(zero_reg));
1437 1438 1439 1440 1441 1442
  }

  // Check for (0 / -x) that will produce negative zero.
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
    Label left_not_zero;
    __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1443 1444
    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, divisor,
                 Operand(zero_reg));
1445 1446 1447 1448 1449 1450 1451 1452
    __ bind(&left_not_zero);
  }

  // Check for (kMinInt / -1).
  if (hdiv->CheckFlag(HValue::kCanOverflow) &&
      !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
    Label left_not_min_int;
    __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1453
    DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, divisor, Operand(-1));
1454 1455 1456 1457 1458 1459
    __ bind(&left_not_min_int);
  }

  // We performed a truncating division. Correct the result if necessary.
  Label done;
  Register remainder = scratch0();
1460 1461 1462 1463 1464
  if (kArchVariant != kMips64r6) {
    __ mfhi(remainder);
  } else {
    __ dmod(remainder, dividend, divisor);
  }
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
  __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
  __ Xor(remainder, remainder, Operand(divisor));
  __ Branch(&done, ge, remainder, Operand(zero_reg));
  __ Dsubu(result, result, Operand(1));
  __ bind(&done);
}


void LCodeGen::DoMulI(LMulI* instr) {
  Register scratch = scratch0();
  Register result = ToRegister(instr->result());
  // Note that result may alias left.
  Register left = ToRegister(instr->left());
  LOperand* right_op = instr->right();

  bool bailout_on_minus_zero =
    instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
  bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);

  if (right_op->IsConstantOperand()) {
    int32_t constant = ToInteger32(LConstantOperand::cast(right_op));

    if (bailout_on_minus_zero && (constant < 0)) {
      // The case of a null constant will be handled separately.
      // If constant is negative and left is null, the result should be -0.
1490
      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, left, Operand(zero_reg));
1491 1492 1493 1494 1495 1496
    }

    switch (constant) {
      case -1:
        if (overflow) {
          __ SubuAndCheckForOverflow(result, zero_reg, left, scratch);
1497 1498
          DeoptimizeIf(gt, instr, Deoptimizer::kOverflow, scratch,
                       Operand(kMaxInt));
1499 1500 1501 1502 1503 1504 1505 1506
        } else {
          __ Dsubu(result, zero_reg, left);
        }
        break;
      case 0:
        if (bailout_on_minus_zero) {
          // If left is strictly negative and the constant is null, the
          // result is -0. Deoptimize if required, otherwise return 0.
1507 1508
          DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, left,
                       Operand(zero_reg));
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        }
        __ mov(result, zero_reg);
        break;
      case 1:
        // Nothing to do.
        __ Move(result, left);
        break;
      default:
        // Multiplying by powers of two and powers of two plus or minus
        // one can be done faster with shifted operands.
        // For other constants we emit standard code.
        int32_t mask = constant >> 31;
        uint32_t constant_abs = (constant + mask) ^ mask;

1523
        if (base::bits::IsPowerOfTwo32(constant_abs)) {
1524 1525 1526 1527
          int32_t shift = WhichPowerOf2(constant_abs);
          __ dsll(result, left, shift);
          // Correct the sign of the result if the constant is negative.
          if (constant < 0)  __ Dsubu(result, zero_reg, result);
1528
        } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1529 1530 1531 1532 1533
          int32_t shift = WhichPowerOf2(constant_abs - 1);
          __ dsll(scratch, left, shift);
          __ Daddu(result, scratch, left);
          // Correct the sign of the result if the constant is negative.
          if (constant < 0)  __ Dsubu(result, zero_reg, result);
1534
        } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
          int32_t shift = WhichPowerOf2(constant_abs + 1);
          __ dsll(scratch, left, shift);
          __ Dsubu(result, scratch, left);
          // Correct the sign of the result if the constant is negative.
          if (constant < 0)  __ Dsubu(result, zero_reg, result);
        } else {
          // Generate standard code.
          __ li(at, constant);
          __ Dmul(result, left, at);
        }
    }

  } else {
1548
    DCHECK(right_op->IsRegister());
1549 1550 1551 1552 1553
    Register right = ToRegister(right_op);

    if (overflow) {
      // hi:lo = left * right.
      if (instr->hydrogen()->representation().IsSmi()) {
1554
        __ Dmulh(result, left, right);
1555
      } else {
1556
        __ Dmul(result, left, right);
1557
      }
1558 1559 1560 1561
      __ dsra32(scratch, result, 0);
      __ sra(at, result, 31);
      if (instr->hydrogen()->representation().IsSmi()) {
        __ SmiTag(result);
1562
      }
1563
      DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, scratch, Operand(at));
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
    } else {
      if (instr->hydrogen()->representation().IsSmi()) {
        __ SmiUntag(result, left);
        __ Dmul(result, result, right);
      } else {
        __ Dmul(result, left, right);
      }
    }

    if (bailout_on_minus_zero) {
      Label done;
      __ Xor(at, left, right);
      __ Branch(&done, ge, at, Operand(zero_reg));
      // Bail out if the result is minus zero.
1578 1579
      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result,
                   Operand(zero_reg));
1580 1581 1582 1583 1584 1585 1586 1587 1588
      __ bind(&done);
    }
  }
}


void LCodeGen::DoBitI(LBitI* instr) {
  LOperand* left_op = instr->left();
  LOperand* right_op = instr->right();
1589
  DCHECK(left_op->IsRegister());
1590 1591 1592 1593 1594 1595 1596
  Register left = ToRegister(left_op);
  Register result = ToRegister(instr->result());
  Operand right(no_reg);

  if (right_op->IsStackSlot()) {
    right = Operand(EmitLoadRegister(right_op, at));
  } else {
1597
    DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
    right = ToOperand(right_op);
  }

  switch (instr->op()) {
    case Token::BIT_AND:
      __ And(result, left, right);
      break;
    case Token::BIT_OR:
      __ Or(result, left, right);
      break;
    case Token::BIT_XOR:
      if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
        __ Nor(result, zero_reg, left);
      } else {
        __ Xor(result, left, right);
      }
      break;
    default:
      UNREACHABLE();
      break;
  }
}


void LCodeGen::DoShiftI(LShiftI* instr) {
  // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
  // result may alias either of them.
  LOperand* right_op = instr->right();
  Register left = ToRegister(instr->left());
  Register result = ToRegister(instr->result());

  if (right_op->IsRegister()) {
    // No need to mask the right operand on MIPS, it is built into the variable
    // shift instructions.
    switch (instr->op()) {
      case Token::ROR:
        __ Ror(result, left, Operand(ToRegister(right_op)));
        break;
      case Token::SAR:
        __ srav(result, left, ToRegister(right_op));
        break;
      case Token::SHR:
        __ srlv(result, left, ToRegister(right_op));
        if (instr->can_deopt()) {
           // TODO(yy): (-1) >>> 0. anything else?
1643 1644 1645 1646
          DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue, result,
                       Operand(zero_reg));
          DeoptimizeIf(gt, instr, Deoptimizer::kNegativeValue, result,
                       Operand(kMaxInt));
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
        }
        break;
      case Token::SHL:
        __ sllv(result, left, ToRegister(right_op));
        break;
      default:
        UNREACHABLE();
        break;
    }
  } else {
    // Mask the right_op operand.
    int value = ToInteger32(LConstantOperand::cast(right_op));
    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
    switch (instr->op()) {
      case Token::ROR:
        if (shift_count != 0) {
          __ Ror(result, left, Operand(shift_count));
        } else {
          __ Move(result, left);
        }
        break;
      case Token::SAR:
        if (shift_count != 0) {
          __ sra(result, left, shift_count);
        } else {
          __ Move(result, left);
        }
        break;
      case Token::SHR:
        if (shift_count != 0) {
          __ srl(result, left, shift_count);
        } else {
          if (instr->can_deopt()) {
            __ And(at, left, Operand(0x80000000));
1681 1682
            DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue, at,
                         Operand(zero_reg));
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
          }
          __ Move(result, left);
        }
        break;
      case Token::SHL:
        if (shift_count != 0) {
          if (instr->hydrogen_value()->representation().IsSmi()) {
            __ dsll(result, left, shift_count);
          } else {
            __ sll(result, left, shift_count);
          }
        } else {
          __ Move(result, left);
        }
        break;
      default:
        UNREACHABLE();
        break;
    }
  }
}


void LCodeGen::DoSubI(LSubI* instr) {
  LOperand* left = instr->left();
  LOperand* right = instr->right();
  LOperand* result = instr->result();
  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);

  if (!can_overflow) {
    if (right->IsStackSlot()) {
      Register right_reg = EmitLoadRegister(right, at);
      __ Dsubu(ToRegister(result), ToRegister(left), Operand(right_reg));
    } else {
1717
      DCHECK(right->IsRegister() || right->IsConstantOperand());
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
      __ Dsubu(ToRegister(result), ToRegister(left), ToOperand(right));
    }
  } else {  // can_overflow.
    Register overflow = scratch0();
    Register scratch = scratch1();
    if (right->IsStackSlot() || right->IsConstantOperand()) {
      Register right_reg = EmitLoadRegister(right, scratch);
      __ SubuAndCheckForOverflow(ToRegister(result),
                                 ToRegister(left),
                                 right_reg,
                                 overflow);  // Reg at also used as scratch.
    } else {
1730
      DCHECK(right->IsRegister());
1731 1732 1733 1734 1735 1736 1737
      // Due to overflow check macros not supporting constant operands,
      // handling the IsConstantOperand case was moved to prev if clause.
      __ SubuAndCheckForOverflow(ToRegister(result),
                                 ToRegister(left),
                                 ToRegister(right),
                                 overflow);  // Reg at also used as scratch.
    }
1738 1739
    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
                 Operand(zero_reg));
1740
    if (!instr->hydrogen()->representation().IsSmi()) {
1741 1742 1743 1744
      DeoptimizeIf(gt, instr, Deoptimizer::kOverflow, ToRegister(result),
                   Operand(kMaxInt));
      DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, ToRegister(result),
                   Operand(kMinInt));
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    }
  }
}


void LCodeGen::DoConstantI(LConstantI* instr) {
  __ li(ToRegister(instr->result()), Operand(instr->value()));
}


void LCodeGen::DoConstantS(LConstantS* instr) {
  __ li(ToRegister(instr->result()), Operand(instr->value()));
}


void LCodeGen::DoConstantD(LConstantD* instr) {
1761
  DCHECK(instr->result()->IsDoubleRegister());
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
  DoubleRegister result = ToDoubleRegister(instr->result());
  double v = instr->value();
  __ Move(result, v);
}


void LCodeGen::DoConstantE(LConstantE* instr) {
  __ li(ToRegister(instr->result()), Operand(instr->value()));
}


void LCodeGen::DoConstantT(LConstantT* instr) {
  Handle<Object> object = instr->value(isolate());
  AllowDeferredHandleDereference smi_check;
  __ li(ToRegister(instr->result()), object);
}


void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
  Register result = ToRegister(instr->result());
  Register map = ToRegister(instr->value());
  __ EnumLength(result, map);
}


void LCodeGen::DoDateField(LDateField* instr) {
  Register object = ToRegister(instr->date());
  Register result = ToRegister(instr->result());
  Register scratch = ToRegister(instr->temp());
  Smi* index = instr->index();
  Label runtime, done;
1793 1794 1795 1796
  DCHECK(object.is(a0));
  DCHECK(result.is(v0));
  DCHECK(!scratch.is(scratch0()));
  DCHECK(!scratch.is(object));
1797 1798

  __ SmiTst(object, at);
1799
  DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
1800
  __ GetObjectType(object, scratch, scratch);
1801 1802
  DeoptimizeIf(ne, instr, Deoptimizer::kNotADateObject, scratch,
               Operand(JS_DATE_TYPE));
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

  if (index->value() == 0) {
    __ ld(result, FieldMemOperand(object, JSDate::kValueOffset));
  } else {
    if (index->value() < JSDate::kFirstUncachedField) {
      ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
      __ li(scratch, Operand(stamp));
      __ ld(scratch, MemOperand(scratch));
      __ ld(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
      __ Branch(&runtime, ne, scratch, Operand(scratch0()));
      __ ld(result, FieldMemOperand(object, JSDate::kValueOffset +
                                            kPointerSize * index->value()));
      __ jmp(&done);
    }
    __ bind(&runtime);
    __ PrepareCallCFunction(2, scratch);
    __ li(a1, Operand(index));
    __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
    __ bind(&done);
  }
}


MemOperand LCodeGen::BuildSeqStringOperand(Register string,
                                           LOperand* index,
                                           String::Encoding encoding) {
  if (index->IsConstantOperand()) {
    int offset = ToInteger32(LConstantOperand::cast(index));
    if (encoding == String::TWO_BYTE_ENCODING) {
      offset *= kUC16Size;
    }
    STATIC_ASSERT(kCharSize == 1);
    return FieldMemOperand(string, SeqString::kHeaderSize + offset);
  }
  Register scratch = scratch0();
1838 1839
  DCHECK(!scratch.is(string));
  DCHECK(!scratch.is(ToRegister(index)));
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
  if (encoding == String::ONE_BYTE_ENCODING) {
    __ Daddu(scratch, string, ToRegister(index));
  } else {
    STATIC_ASSERT(kUC16Size == 2);
    __ dsll(scratch, ToRegister(index), 1);
    __ Daddu(scratch, string, scratch);
  }
  return FieldMemOperand(scratch, SeqString::kHeaderSize);
}


void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
  String::Encoding encoding = instr->hydrogen()->encoding();
  Register string = ToRegister(instr->string());
  Register result = ToRegister(instr->result());

  if (FLAG_debug_code) {
    Register scratch = scratch0();
    __ ld(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
    __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));

    __ And(scratch, scratch,
           Operand(kStringRepresentationMask | kStringEncodingMask));
    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
    __ Dsubu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
                                ? one_byte_seq_type : two_byte_seq_type));
    __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
  }

  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
  if (encoding == String::ONE_BYTE_ENCODING) {
    __ lbu(result, operand);
  } else {
    __ lhu(result, operand);
  }
}


void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
  String::Encoding encoding = instr->hydrogen()->encoding();
  Register string = ToRegister(instr->string());
  Register value = ToRegister(instr->value());

  if (FLAG_debug_code) {
    Register scratch = scratch0();
    Register index = ToRegister(instr->index());
    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
    int encoding_mask =
        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
        ? one_byte_seq_type : two_byte_seq_type;
    __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
  }

  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
  if (encoding == String::ONE_BYTE_ENCODING) {
    __ sb(value, operand);
  } else {
    __ sh(value, operand);
  }
}


void LCodeGen::DoAddI(LAddI* instr) {
  LOperand* left = instr->left();
  LOperand* right = instr->right();
  LOperand* result = instr->result();
  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);

  if (!can_overflow) {
    if (right->IsStackSlot()) {
      Register right_reg = EmitLoadRegister(right, at);
      __ Daddu(ToRegister(result), ToRegister(left), Operand(right_reg));
    } else {
1915
      DCHECK(right->IsRegister() || right->IsConstantOperand());
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
      __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
    }
  } else {  // can_overflow.
    Register overflow = scratch0();
    Register scratch = scratch1();
    if (right->IsStackSlot() ||
        right->IsConstantOperand()) {
      Register right_reg = EmitLoadRegister(right, scratch);
      __ AdduAndCheckForOverflow(ToRegister(result),
                                 ToRegister(left),
                                 right_reg,
                                 overflow);  // Reg at also used as scratch.
    } else {
1929
      DCHECK(right->IsRegister());
1930 1931 1932 1933 1934 1935 1936
      // Due to overflow check macros not supporting constant operands,
      // handling the IsConstantOperand case was moved to prev if clause.
      __ AdduAndCheckForOverflow(ToRegister(result),
                                 ToRegister(left),
                                 ToRegister(right),
                                 overflow);  // Reg at also used as scratch.
    }
1937 1938
    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, overflow,
                 Operand(zero_reg));
1939 1940
    // if not smi, it must int32.
    if (!instr->hydrogen()->representation().IsSmi()) {
1941 1942 1943 1944
      DeoptimizeIf(gt, instr, Deoptimizer::kOverflow, ToRegister(result),
                   Operand(kMaxInt));
      DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, ToRegister(result),
                   Operand(kMinInt));
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    }
  }
}


void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
  LOperand* left = instr->left();
  LOperand* right = instr->right();
  HMathMinMax::Operation operation = instr->hydrogen()->operation();
  Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
  if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
    Register left_reg = ToRegister(left);
    Register right_reg = EmitLoadRegister(right, scratch0());
    Register result_reg = ToRegister(instr->result());
    Label return_right, done;
    Register scratch = scratch1();
    __ Slt(scratch, left_reg, Operand(right_reg));
    if (condition == ge) {
     __  Movz(result_reg, left_reg, scratch);
     __  Movn(result_reg, right_reg, scratch);
    } else {
1966
     DCHECK(condition == le);
1967 1968 1969 1970
     __  Movn(result_reg, left_reg, scratch);
     __  Movz(result_reg, right_reg, scratch);
    }
  } else {
1971
    DCHECK(instr->hydrogen()->representation().IsDouble());
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    FPURegister left_reg = ToDoubleRegister(left);
    FPURegister right_reg = ToDoubleRegister(right);
    FPURegister result_reg = ToDoubleRegister(instr->result());
    Label check_nan_left, check_zero, return_left, return_right, done;
    __ BranchF(&check_zero, &check_nan_left, eq, left_reg, right_reg);
    __ BranchF(&return_left, NULL, condition, left_reg, right_reg);
    __ Branch(&return_right);

    __ bind(&check_zero);
    // left == right != 0.
    __ BranchF(&return_left, NULL, ne, left_reg, kDoubleRegZero);
    // At this point, both left and right are either 0 or -0.
    if (operation == HMathMinMax::kMathMin) {
      __ neg_d(left_reg, left_reg);
      __ sub_d(result_reg, left_reg, right_reg);
      __ neg_d(result_reg, result_reg);
    } else {
      __ add_d(result_reg, left_reg, right_reg);
    }
    __ Branch(&done);

    __ bind(&check_nan_left);
    // left == NaN.
    __ BranchF(NULL, &return_left, eq, left_reg, left_reg);
    __ bind(&return_right);
    if (!right_reg.is(result_reg)) {
      __ mov_d(result_reg, right_reg);
    }
    __ Branch(&done);

    __ bind(&return_left);
    if (!left_reg.is(result_reg)) {
      __ mov_d(result_reg, left_reg);
    }
    __ bind(&done);
  }
}


void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
  DoubleRegister left = ToDoubleRegister(instr->left());
  DoubleRegister right = ToDoubleRegister(instr->right());
  DoubleRegister result = ToDoubleRegister(instr->result());
  switch (instr->op()) {
    case Token::ADD:
      __ add_d(result, left, right);
      break;
    case Token::SUB:
      __ sub_d(result, left, right);
      break;
    case Token::MUL:
      __ mul_d(result, left, right);
      break;
    case Token::DIV:
      __ div_d(result, left, right);
      break;
    case Token::MOD: {
      // Save a0-a3 on the stack.
      RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
      __ MultiPush(saved_regs);

      __ PrepareCallCFunction(0, 2, scratch0());
      __ MovToFloatParameters(left, right);
      __ CallCFunction(
          ExternalReference::mod_two_doubles_operation(isolate()),
          0, 2);
      // Move the result in the double result register.
      __ MovFromFloatResult(result);

      // Restore saved register.
      __ MultiPop(saved_regs);
      break;
    }
    default:
      UNREACHABLE();
      break;
  }
}


void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2053 2054 2055 2056
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->left()).is(a1));
  DCHECK(ToRegister(instr->right()).is(a0));
  DCHECK(ToRegister(instr->result()).is(v0));
2057

2058
  Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
2059
  CallCode(code, RelocInfo::CODE_TARGET, instr);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
  // Other arch use a nop here, to signal that there is no inlined
  // patchable code. Mips does not need the nop, since our marker
  // instruction (andi zero_reg) will never be used in normal code.
}


template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr,
                          Condition condition,
                          Register src1,
                          const Operand& src2) {
  int left_block = instr->TrueDestination(chunk_);
  int right_block = instr->FalseDestination(chunk_);

  int next_block = GetNextEmittedBlock();
  if (right_block == left_block || condition == al) {
    EmitGoto(left_block);
  } else if (left_block == next_block) {
    __ Branch(chunk_->GetAssemblyLabel(right_block),
              NegateCondition(condition), src1, src2);
  } else if (right_block == next_block) {
    __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
  } else {
    __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
    __ Branch(chunk_->GetAssemblyLabel(right_block));
  }
}


template<class InstrType>
void LCodeGen::EmitBranchF(InstrType instr,
                           Condition condition,
                           FPURegister src1,
                           FPURegister src2) {
  int right_block = instr->FalseDestination(chunk_);
  int left_block = instr->TrueDestination(chunk_);

  int next_block = GetNextEmittedBlock();
  if (right_block == left_block) {
    EmitGoto(left_block);
  } else if (left_block == next_block) {
    __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
               NegateCondition(condition), src1, src2);
  } else if (right_block == next_block) {
    __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
               condition, src1, src2);
  } else {
    __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
               condition, src1, src2);
    __ Branch(chunk_->GetAssemblyLabel(right_block));
  }
}


template<class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr,
                               Condition condition,
                               Register src1,
                               const Operand& src2) {
  int false_block = instr->FalseDestination(chunk_);
  __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
}


template<class InstrType>
void LCodeGen::EmitFalseBranchF(InstrType instr,
                                Condition condition,
                                FPURegister src1,
                                FPURegister src2) {
  int false_block = instr->FalseDestination(chunk_);
  __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
             condition, src1, src2);
}


void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
  __ stop("LDebugBreak");
}


void LCodeGen::DoBranch(LBranch* instr) {
  Representation r = instr->hydrogen()->value()->representation();
  if (r.IsInteger32() || r.IsSmi()) {
2143
    DCHECK(!info()->IsStub());
2144 2145 2146
    Register reg = ToRegister(instr->value());
    EmitBranch(instr, ne, reg, Operand(zero_reg));
  } else if (r.IsDouble()) {
2147
    DCHECK(!info()->IsStub());
2148 2149 2150 2151
    DoubleRegister reg = ToDoubleRegister(instr->value());
    // Test the double value. Zero and NaN are false.
    EmitBranchF(instr, nue, reg, kDoubleRegZero);
  } else {
2152
    DCHECK(r.IsTagged());
2153 2154 2155
    Register reg = ToRegister(instr->value());
    HType type = instr->hydrogen()->value()->type();
    if (type.IsBoolean()) {
2156
      DCHECK(!info()->IsStub());
2157 2158 2159
      __ LoadRoot(at, Heap::kTrueValueRootIndex);
      EmitBranch(instr, eq, reg, Operand(at));
    } else if (type.IsSmi()) {
2160
      DCHECK(!info()->IsStub());
2161 2162
      EmitBranch(instr, ne, reg, Operand(zero_reg));
    } else if (type.IsJSArray()) {
2163
      DCHECK(!info()->IsStub());
2164 2165
      EmitBranch(instr, al, zero_reg, Operand(zero_reg));
    } else if (type.IsHeapNumber()) {
2166
      DCHECK(!info()->IsStub());
2167 2168 2169 2170 2171
      DoubleRegister dbl_scratch = double_scratch0();
      __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
      // Test the double value. Zero and NaN are false.
      EmitBranchF(instr, nue, dbl_scratch, kDoubleRegZero);
    } else if (type.IsString()) {
2172
      DCHECK(!info()->IsStub());
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
      __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
      EmitBranch(instr, ne, at, Operand(zero_reg));
    } else {
      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
      // Avoid deopts in the case where we've never executed this path before.
      if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();

      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
        // undefined -> false.
        __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
        __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
      }
      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
        // Boolean -> its value.
        __ LoadRoot(at, Heap::kTrueValueRootIndex);
        __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
        __ LoadRoot(at, Heap::kFalseValueRootIndex);
        __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
      }
      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
        // 'null' -> false.
        __ LoadRoot(at, Heap::kNullValueRootIndex);
        __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
      }

      if (expected.Contains(ToBooleanStub::SMI)) {
        // Smis: 0 -> false, all other -> true.
        __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
        __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
      } else if (expected.NeedsMap()) {
        // If we need a map later and have a Smi -> deopt.
        __ SmiTst(reg, at);
2205
        DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
      }

      const Register map = scratch0();
      if (expected.NeedsMap()) {
        __ ld(map, FieldMemOperand(reg, HeapObject::kMapOffset));
        if (expected.CanBeUndetectable()) {
          // Undetectable -> false.
          __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
          __ And(at, at, Operand(1 << Map::kIsUndetectable));
          __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
        }
      }

      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
        // spec object -> true.
        __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
        __ Branch(instr->TrueLabel(chunk_),
                  ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
      }

      if (expected.Contains(ToBooleanStub::STRING)) {
        // String value -> false iff empty.
        Label not_string;
        __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
        __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
        __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
        __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
        __ Branch(instr->FalseLabel(chunk_));
        __ bind(&not_string);
      }

      if (expected.Contains(ToBooleanStub::SYMBOL)) {
        // Symbol value -> true.
        const Register scratch = scratch1();
        __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
        __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
      }

      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
        // heap number -> false iff +0, -0, or NaN.
        DoubleRegister dbl_scratch = double_scratch0();
        Label not_heap_number;
        __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
        __ Branch(&not_heap_number, ne, map, Operand(at));
        __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
        __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
                   ne, dbl_scratch, kDoubleRegZero);
        // Falls through if dbl_scratch == 0.
        __ Branch(instr->FalseLabel(chunk_));
        __ bind(&not_heap_number);
      }

      if (!expected.IsGeneric()) {
        // We've seen something for the first time -> deopt.
        // This can only happen if we are not generic already.
2261
        DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject, zero_reg,
2262
                     Operand(zero_reg));
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
      }
    }
  }
}


void LCodeGen::EmitGoto(int block) {
  if (!IsNextEmittedBlock(block)) {
    __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
  }
}


void LCodeGen::DoGoto(LGoto* instr) {
  EmitGoto(instr->block_id());
}


Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
  Condition cond = kNoCondition;
  switch (op) {
    case Token::EQ:
    case Token::EQ_STRICT:
      cond = eq;
      break;
    case Token::NE:
    case Token::NE_STRICT:
      cond = ne;
      break;
    case Token::LT:
      cond = is_unsigned ? lo : lt;
      break;
    case Token::GT:
      cond = is_unsigned ? hi : gt;
      break;
    case Token::LTE:
      cond = is_unsigned ? ls : le;
      break;
    case Token::GTE:
      cond = is_unsigned ? hs : ge;
      break;
    case Token::IN:
    case Token::INSTANCEOF:
    default:
      UNREACHABLE();
  }
  return cond;
}


void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
  LOperand* left = instr->left();
  LOperand* right = instr->right();
  bool is_unsigned =
      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
  Condition cond = TokenToCondition(instr->op(), is_unsigned);

  if (left->IsConstantOperand() && right->IsConstantOperand()) {
    // We can statically evaluate the comparison.
    double left_val = ToDouble(LConstantOperand::cast(left));
    double right_val = ToDouble(LConstantOperand::cast(right));
    int next_block = EvalComparison(instr->op(), left_val, right_val) ?
        instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
    EmitGoto(next_block);
  } else {
    if (instr->is_double()) {
      // Compare left and right as doubles and load the
      // resulting flags into the normal status register.
      FPURegister left_reg = ToDoubleRegister(left);
      FPURegister right_reg = ToDoubleRegister(right);

      // If a NaN is involved, i.e. the result is unordered,
      // jump to false block label.
      __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
                 left_reg, right_reg);

      EmitBranchF(instr, cond, left_reg, right_reg);
    } else {
      Register cmp_left;
      Operand cmp_right = Operand((int64_t)0);
      if (right->IsConstantOperand()) {
        int32_t value = ToInteger32(LConstantOperand::cast(right));
        if (instr->hydrogen_value()->representation().IsSmi()) {
          cmp_left = ToRegister(left);
          cmp_right = Operand(Smi::FromInt(value));
        } else {
          cmp_left = ToRegister(left);
          cmp_right = Operand(value);
        }
      } else if (left->IsConstantOperand()) {
        int32_t value = ToInteger32(LConstantOperand::cast(left));
        if (instr->hydrogen_value()->representation().IsSmi()) {
          cmp_left = ToRegister(right);
          cmp_right = Operand(Smi::FromInt(value));
        } else {
          cmp_left = ToRegister(right);
          cmp_right = Operand(value);
        }
        // We commuted the operands, so commute the condition.
        cond = CommuteCondition(cond);
      } else {
        cmp_left = ToRegister(left);
        cmp_right = Operand(ToRegister(right));
      }

      EmitBranch(instr, cond, cmp_left, cmp_right);
    }
  }
}


void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
  Register left = ToRegister(instr->left());
  Register right = ToRegister(instr->right());

  EmitBranch(instr, eq, left, Operand(right));
}


void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
  if (instr->hydrogen()->representation().IsTagged()) {
    Register input_reg = ToRegister(instr->object());
    __ li(at, Operand(factory()->the_hole_value()));
    EmitBranch(instr, eq, input_reg, Operand(at));
    return;
  }

  DoubleRegister input_reg = ToDoubleRegister(instr->object());
  EmitFalseBranchF(instr, eq, input_reg, input_reg);

  Register scratch = scratch0();
  __ FmoveHigh(scratch, input_reg);
2396 2397
  EmitBranch(instr, eq, scratch,
             Operand(static_cast<int32_t>(kHoleNanUpper32)));
2398 2399 2400 2401 2402
}


void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
  Representation rep = instr->hydrogen()->value()->representation();
2403
  DCHECK(!rep.IsInteger32());
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
  Register scratch = ToRegister(instr->temp());

  if (rep.IsDouble()) {
    DoubleRegister value = ToDoubleRegister(instr->value());
    EmitFalseBranchF(instr, ne, value, kDoubleRegZero);
    __ FmoveHigh(scratch, value);
    // Only use low 32-bits of value.
    __ dsll32(scratch, scratch, 0);
    __ dsrl32(scratch, scratch, 0);
    __ li(at, 0x80000000);
  } else {
    Register value = ToRegister(instr->value());
    __ CheckMap(value,
                scratch,
                Heap::kHeapNumberMapRootIndex,
                instr->FalseLabel(chunk()),
                DO_SMI_CHECK);
    __ lwu(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
    EmitFalseBranch(instr, ne, scratch, Operand(0x80000000));
    __ lwu(scratch, FieldMemOperand(value, HeapNumber::kMantissaOffset));
    __ mov(at, zero_reg);
  }
  EmitBranch(instr, eq, scratch, Operand(at));
}


Condition LCodeGen::EmitIsObject(Register input,
                                 Register temp1,
                                 Register temp2,
                                 Label* is_not_object,
                                 Label* is_object) {
  __ JumpIfSmi(input, is_not_object);

  __ LoadRoot(temp2, Heap::kNullValueRootIndex);
  __ Branch(is_object, eq, input, Operand(temp2));

  // Load map.
  __ ld(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
  // Undetectable objects behave like undefined.
  __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
  __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable));
  __ Branch(is_not_object, ne, temp2, Operand(zero_reg));

  // Load instance type and check that it is in object type range.
  __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
  __ Branch(is_not_object,
            lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));

  return le;
}


void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
  Register reg = ToRegister(instr->value());
  Register temp1 = ToRegister(instr->temp());
  Register temp2 = scratch0();

  Condition true_cond =
      EmitIsObject(reg, temp1, temp2,
          instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));

  EmitBranch(instr, true_cond, temp2,
             Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
}


Condition LCodeGen::EmitIsString(Register input,
                                 Register temp1,
                                 Label* is_not_string,
                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
  if (check_needed == INLINE_SMI_CHECK) {
    __ JumpIfSmi(input, is_not_string);
  }
  __ GetObjectType(input, temp1, temp1);

  return lt;
}


void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
  Register reg = ToRegister(instr->value());
  Register temp1 = ToRegister(instr->temp());

  SmiCheck check_needed =
      instr->hydrogen()->value()->type().IsHeapObject()
          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
  Condition true_cond =
      EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);

  EmitBranch(instr, true_cond, temp1,
             Operand(FIRST_NONSTRING_TYPE));
}


void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
  Register input_reg = EmitLoadRegister(instr->value(), at);
  __ And(at, input_reg, kSmiTagMask);
  EmitBranch(instr, eq, at, Operand(zero_reg));
}


void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
  Register input = ToRegister(instr->value());
  Register temp = ToRegister(instr->temp());

  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
  }
  __ ld(temp, FieldMemOperand(input, HeapObject::kMapOffset));
  __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
  __ And(at, temp, Operand(1 << Map::kIsUndetectable));
  EmitBranch(instr, ne, at, Operand(zero_reg));
}


static Condition ComputeCompareCondition(Token::Value op) {
  switch (op) {
    case Token::EQ_STRICT:
    case Token::EQ:
      return eq;
    case Token::LT:
      return lt;
    case Token::GT:
      return gt;
    case Token::LTE:
      return le;
    case Token::GTE:
      return ge;
    default:
      UNREACHABLE();
      return kNoCondition;
  }
}


void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2540
  DCHECK(ToRegister(instr->context()).is(cp));
2541 2542
  Token::Value op = instr->op();

2543
  Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
  CallCode(ic, RelocInfo::CODE_TARGET, instr);

  Condition condition = ComputeCompareCondition(op);

  EmitBranch(instr, condition, v0, Operand(zero_reg));
}


static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
  InstanceType from = instr->from();
  InstanceType to = instr->to();
  if (from == FIRST_TYPE) return to;
2556
  DCHECK(from == to || to == LAST_TYPE);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
  return from;
}


static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
  InstanceType from = instr->from();
  InstanceType to = instr->to();
  if (from == to) return eq;
  if (to == LAST_TYPE) return hs;
  if (from == FIRST_TYPE) return ls;
  UNREACHABLE();
  return eq;
}


void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
  Register scratch = scratch0();
  Register input = ToRegister(instr->value());

  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
  }

  __ GetObjectType(input, scratch, scratch);
  EmitBranch(instr,
             BranchCondition(instr->hydrogen()),
             scratch,
             Operand(TestType(instr->hydrogen())));
}


void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());

  __ AssertString(input);

  __ lwu(result, FieldMemOperand(input, String::kHashFieldOffset));
  __ IndexFromHash(result, result);
}


void LCodeGen::DoHasCachedArrayIndexAndBranch(
    LHasCachedArrayIndexAndBranch* instr) {
  Register input = ToRegister(instr->value());
  Register scratch = scratch0();

  __ lwu(scratch,
         FieldMemOperand(input, String::kHashFieldOffset));
  __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
  EmitBranch(instr, eq, at, Operand(zero_reg));
}


// Branches to a label or falls through with the answer in flags.  Trashes
// the temp registers, but not the input.
void LCodeGen::EmitClassOfTest(Label* is_true,
                               Label* is_false,
                               Handle<String>class_name,
                               Register input,
                               Register temp,
                               Register temp2) {
2619 2620 2621
  DCHECK(!input.is(temp));
  DCHECK(!input.is(temp2));
  DCHECK(!temp.is(temp2));
2622 2623 2624

  __ JumpIfSmi(input, is_false);

2625
  if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
    // Assuming the following assertions, we can use the same compares to test
    // for both being a function type and being in the object type range.
    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
    STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
                  FIRST_SPEC_OBJECT_TYPE + 1);
    STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
                  LAST_SPEC_OBJECT_TYPE - 1);
    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);

    __ GetObjectType(input, temp, temp2);
    __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
    __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
    __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
  } else {
    // Faster code path to avoid two compares: subtract lower bound from the
    // actual type and do a signed compare with the width of the type range.
    __ GetObjectType(input, temp, temp2);
    __ Dsubu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
    __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
                                           FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
  }

  // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
  // Check if the constructor in the map is a function.
2650 2651 2652
  Register instance_type = scratch1();
  DCHECK(!instance_type.is(temp));
  __ GetMapConstructor(temp, temp, temp2, instance_type);
2653 2654

  // Objects with a non-function constructor have class 'Object'.
2655
  if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2656
    __ Branch(is_true, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2657
  } else {
2658
    __ Branch(is_false, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
  }

  // temp now contains the constructor function. Grab the
  // instance class name from there.
  __ ld(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
  __ ld(temp, FieldMemOperand(temp,
                               SharedFunctionInfo::kInstanceClassNameOffset));
  // The class name we are testing against is internalized since it's a literal.
  // The name in the constructor is internalized because of the way the context
  // is booted.  This routine isn't expected to work for random API-created
  // classes and it doesn't have to because you can't access it with natives
  // syntax.  Since both sides are internalized it is sufficient to use an
  // identity comparison.

  // End with the address of this class_name instance in temp register.
  // On MIPS, the caller must do the comparison with Handle<String>class_name.
}


void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
  Register input = ToRegister(instr->value());
  Register temp = scratch0();
  Register temp2 = ToRegister(instr->temp());
  Handle<String> class_name = instr->hydrogen()->class_name();

  EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
                  class_name, input, temp, temp2);

  EmitBranch(instr, eq, temp, Operand(class_name));
}


void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
  Register reg = ToRegister(instr->value());
  Register temp = ToRegister(instr->temp());

  __ ld(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
  EmitBranch(instr, eq, temp, Operand(instr->map()));
}


void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2701
  DCHECK(ToRegister(instr->context()).is(cp));
2702
  Label true_label, done;
2703 2704
  DCHECK(ToRegister(instr->left()).is(a0));  // Object is in a0.
  DCHECK(ToRegister(instr->right()).is(a1));  // Function is in a1.
2705
  Register result = ToRegister(instr->result());
2706
  DCHECK(result.is(v0));
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

  InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);

  __ Branch(&true_label, eq, result, Operand(zero_reg));
  __ li(result, Operand(factory()->false_value()));
  __ Branch(&done);
  __ bind(&true_label);
  __ li(result, Operand(factory()->true_value()));
  __ bind(&done);
}


void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2721
  class DeferredInstanceOfKnownGlobal FINAL : public LDeferredCode {
2722 2723 2724 2725
   public:
    DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
                                  LInstanceOfKnownGlobal* instr)
        : LDeferredCode(codegen), instr_(instr) { }
2726
    void Generate() OVERRIDE {
2727 2728
      codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
    }
2729
    LInstruction* instr() OVERRIDE { return instr_; }
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
    Label* map_check() { return &map_check_; }

   private:
    LInstanceOfKnownGlobal* instr_;
    Label map_check_;
  };

  DeferredInstanceOfKnownGlobal* deferred;
  deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr);

  Label done, false_result;
  Register object = ToRegister(instr->value());
  Register temp = ToRegister(instr->temp());
  Register result = ToRegister(instr->result());

2745 2746
  DCHECK(object.is(a0));
  DCHECK(result.is(v0));
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763

  // A Smi is not instance of anything.
  __ JumpIfSmi(object, &false_result);

  // This is the inlined call site instanceof cache. The two occurences of the
  // hole value will be patched to the last map/result pair generated by the
  // instanceof stub.
  Label cache_miss;
  Register map = temp;
  __ ld(map, FieldMemOperand(object, HeapObject::kMapOffset));

  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
  __ bind(deferred->map_check());  // Label for calculating code patching.
  // We use Factory::the_hole_value() on purpose instead of loading from the
  // root array to force relocation to be able to later patch with
  // the cached map.
  Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
2764 2765
  __ li(at, Operand(cell));
  __ ld(at, FieldMemOperand(at, Cell::kValueOffset));
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
  __ BranchShort(&cache_miss, ne, map, Operand(at));
  // We use Factory::the_hole_value() on purpose instead of loading from the
  // root array to force relocation to be able to later patch
  // with true or false. The distance from map check has to be constant.
  __ li(result, Operand(factory()->the_hole_value()));
  __ Branch(&done);

  // The inlined call site cache did not match. Check null and string before
  // calling the deferred code.
  __ bind(&cache_miss);
  // Null is not instance of anything.
  __ LoadRoot(temp, Heap::kNullValueRootIndex);
  __ Branch(&false_result, eq, object, Operand(temp));

  // String values is not instance of anything.
  Condition cc = __ IsObjectStringType(object, temp, temp);
  __ Branch(&false_result, cc, temp, Operand(zero_reg));

  // Go to the deferred code.
  __ Branch(deferred->entry());

  __ bind(&false_result);
  __ LoadRoot(result, Heap::kFalseValueRootIndex);

  // Here result has either true or false. Deferred code also produces true or
  // false object.
  __ bind(deferred->exit());
  __ bind(&done);
}


void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
                                               Label* map_check) {
  Register result = ToRegister(instr->result());
2800
  DCHECK(result.is(v0));
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

  InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
  flags = static_cast<InstanceofStub::Flags>(
      flags | InstanceofStub::kArgsInRegisters);
  flags = static_cast<InstanceofStub::Flags>(
      flags | InstanceofStub::kCallSiteInlineCheck);
  flags = static_cast<InstanceofStub::Flags>(
      flags | InstanceofStub::kReturnTrueFalseObject);
  InstanceofStub stub(isolate(), flags);

2811
  PushSafepointRegistersScope scope(this);
2812 2813 2814 2815 2816 2817
  LoadContextFromDeferred(instr->context());

  // Get the temp register reserved by the instruction. This needs to be a4 as
  // its slot of the pushing of safepoint registers is used to communicate the
  // offset to the location of the map check.
  Register temp = ToRegister(instr->temp());
2818
  DCHECK(temp.is(a4));
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
  __ li(InstanceofStub::right(), instr->function());
  static const int kAdditionalDelta = 13;
  int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
  Label before_push_delta;
  __ bind(&before_push_delta);
  {
    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
    __ li(temp, Operand(delta * kIntSize), CONSTANT_SIZE);
    __ StoreToSafepointRegisterSlot(temp, temp);
  }
  CallCodeGeneric(stub.GetCode(),
                  RelocInfo::CODE_TARGET,
                  instr,
                  RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
  LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
  // Put the result value into the result register slot and
  // restore all registers.
  __ StoreToSafepointRegisterSlot(result, result);
}


void LCodeGen::DoCmpT(LCmpT* instr) {
2842
  DCHECK(ToRegister(instr->context()).is(cp));
2843 2844
  Token::Value op = instr->op();

2845
  Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
  CallCode(ic, RelocInfo::CODE_TARGET, instr);
  // On MIPS there is no need for a "no inlined smi code" marker (nop).

  Condition condition = ComputeCompareCondition(op);
  // A minor optimization that relies on LoadRoot always emitting one
  // instruction.
  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
  Label done, check;
  __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
  __ bind(&check);
  __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2857
  DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
  __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
  __ bind(&done);
}


void LCodeGen::DoReturn(LReturn* instr) {
  if (FLAG_trace && info()->IsOptimizing()) {
    // Push the return value on the stack as the parameter.
    // Runtime::TraceExit returns its parameter in v0. We're leaving the code
    // managed by the register allocator and tearing down the frame, it's
    // safe to write to the context register.
    __ push(v0);
    __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
    __ CallRuntime(Runtime::kTraceExit, 1);
  }
  if (info()->saves_caller_doubles()) {
    RestoreCallerDoubles();
  }
  int no_frame_start = -1;
  if (NeedsEagerFrame()) {
    __ mov(sp, fp);
    no_frame_start = masm_->pc_offset();
    __ Pop(ra, fp);
  }
  if (instr->has_constant_parameter_count()) {
    int parameter_count = ToInteger32(instr->constant_parameter_count());
    int32_t sp_delta = (parameter_count + 1) * kPointerSize;
    if (sp_delta != 0) {
      __ Daddu(sp, sp, Operand(sp_delta));
    }
  } else {
2889
    DCHECK(info()->IsStub());  // Functions would need to drop one more value.
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
    Register reg = ToRegister(instr->parameter_count());
    // The argument count parameter is a smi
    __ SmiUntag(reg);
    __ dsll(at, reg, kPointerSizeLog2);
    __ Daddu(sp, sp, at);
  }

  __ Jump(ra);

  if (no_frame_start != -1) {
    info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
  }
}


2905 2906 2907
template <class T>
void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
  DCHECK(FLAG_vector_ics);
2908
  Register vector_register = ToRegister(instr->temp_vector());
2909
  Register slot_register = VectorLoadICDescriptor::SlotRegister();
2910
  DCHECK(vector_register.is(VectorLoadICDescriptor::VectorRegister()));
2911 2912 2913
  DCHECK(slot_register.is(a0));

  AllowDeferredHandleDereference vector_structure_check;
2914 2915
  Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
  __ li(vector_register, vector);
2916
  // No need to allocate this register.
2917 2918 2919
  FeedbackVectorICSlot slot = instr->hydrogen()->slot();
  int index = vector->GetIndex(slot);
  __ li(slot_register, Operand(Smi::FromInt(index)));
2920 2921 2922
}


2923
void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2924
  DCHECK(ToRegister(instr->context()).is(cp));
2925
  DCHECK(ToRegister(instr->global_object())
2926
            .is(LoadDescriptor::ReceiverRegister()));
2927
  DCHECK(ToRegister(instr->result()).is(v0));
2928

2929
  __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
2930
  if (FLAG_vector_ics) {
2931
    EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
2932
  }
2933
  ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
2934 2935
  Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate(), mode,
                                                       PREMONOMORPHIC).code();
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
  CallCode(ic, RelocInfo::CODE_TARGET, instr);
}


void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
  Register context = ToRegister(instr->context());
  Register result = ToRegister(instr->result());

  __ ld(result, ContextOperand(context, instr->slot_index()));
  if (instr->hydrogen()->RequiresHoleCheck()) {
    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);

    if (instr->hydrogen()->DeoptimizesOnHole()) {
2949
      DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(at));
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
    } else {
      Label is_not_hole;
      __ Branch(&is_not_hole, ne, result, Operand(at));
      __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
      __ bind(&is_not_hole);
    }
  }
}


void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
  Register context = ToRegister(instr->context());
  Register value = ToRegister(instr->value());
  Register scratch = scratch0();
  MemOperand target = ContextOperand(context, instr->slot_index());

  Label skip_assignment;

  if (instr->hydrogen()->RequiresHoleCheck()) {
    __ ld(scratch, target);
    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);

    if (instr->hydrogen()->DeoptimizesOnHole()) {
2973
      DeoptimizeIf(eq, instr, Deoptimizer::kHole, scratch, Operand(at));
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
    } else {
      __ Branch(&skip_assignment, ne, scratch, Operand(at));
    }
  }

  __ sd(value, target);
  if (instr->hydrogen()->NeedsWriteBarrier()) {
    SmiCheck check_needed =
        instr->hydrogen()->value()->type().IsHeapObject()
            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
    __ RecordWriteContextSlot(context,
                              target.offset(),
                              value,
                              scratch0(),
                              GetRAState(),
                              kSaveFPRegs,
                              EMIT_REMEMBERED_SET,
                              check_needed);
  }

  __ bind(&skip_assignment);
}


void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
  HObjectAccess access = instr->hydrogen()->access();
  int offset = access.offset();
  Register object = ToRegister(instr->object());
  if (access.IsExternalMemory()) {
    Register result = ToRegister(instr->result());
    MemOperand operand = MemOperand(object, offset);
    __ Load(result, operand, access.representation());
    return;
  }

  if (instr->hydrogen()->representation().IsDouble()) {
    DoubleRegister result = ToDoubleRegister(instr->result());
    __ ldc1(result, FieldMemOperand(object, offset));
    return;
  }

  Register result = ToRegister(instr->result());
  if (!access.IsInobject()) {
    __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
    object = result;
  }

  Representation representation = access.representation();
  if (representation.IsSmi() && SmiValuesAre32Bits() &&
      instr->hydrogen()->representation().IsInteger32()) {
    if (FLAG_debug_code) {
      // Verify this is really an Smi.
      Register scratch = scratch0();
      __ Load(scratch, FieldMemOperand(object, offset), representation);
      __ AssertSmi(scratch);
    }

    // Read int value directly from upper half of the smi.
    STATIC_ASSERT(kSmiTag == 0);
    STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
    offset += kPointerSize / 2;
    representation = Representation::Integer32();
  }
  __ Load(result, FieldMemOperand(object, offset), representation);
}


void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3042
  DCHECK(ToRegister(instr->context()).is(cp));
3043
  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3044
  DCHECK(ToRegister(instr->result()).is(v0));
3045 3046

  // Name is always in a2.
3047
  __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
3048
  if (FLAG_vector_ics) {
3049
    EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
3050
  }
3051 3052 3053
  Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
                        isolate(), NOT_CONTEXTUAL,
                        instr->hydrogen()->initialization_state()).code();
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
  CallCode(ic, RelocInfo::CODE_TARGET, instr);
}


void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
  Register scratch = scratch0();
  Register function = ToRegister(instr->function());
  Register result = ToRegister(instr->result());

  // Get the prototype or initial map from the function.
  __ ld(result,
         FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));

  // Check that the function has a prototype or an initial map.
  __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
3069
  DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(at));
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213

  // If the function does not have an initial map, we're done.
  Label done;
  __ GetObjectType(result, scratch, scratch);
  __ Branch(&done, ne, scratch, Operand(MAP_TYPE));

  // Get the prototype from the initial map.
  __ ld(result, FieldMemOperand(result, Map::kPrototypeOffset));

  // All done.
  __ bind(&done);
}


void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
  Register result = ToRegister(instr->result());
  __ LoadRoot(result, instr->index());
}


void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
  Register arguments = ToRegister(instr->arguments());
  Register result = ToRegister(instr->result());
  // There are two words between the frame pointer and the last argument.
  // Subtracting from length accounts for one of them add one more.
  if (instr->length()->IsConstantOperand()) {
    int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
    if (instr->index()->IsConstantOperand()) {
      int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
      int index = (const_length - const_index) + 1;
      __ ld(result, MemOperand(arguments, index * kPointerSize));
    } else {
      Register index = ToRegister(instr->index());
      __ li(at, Operand(const_length + 1));
      __ Dsubu(result, at, index);
      __ dsll(at, result, kPointerSizeLog2);
      __ Daddu(at, arguments, at);
      __ ld(result, MemOperand(at));
    }
  } else if (instr->index()->IsConstantOperand()) {
    Register length = ToRegister(instr->length());
    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
    int loc = const_index - 1;
    if (loc != 0) {
      __ Dsubu(result, length, Operand(loc));
      __ dsll(at, result, kPointerSizeLog2);
      __ Daddu(at, arguments, at);
      __ ld(result, MemOperand(at));
    } else {
      __ dsll(at, length, kPointerSizeLog2);
      __ Daddu(at, arguments, at);
      __ ld(result, MemOperand(at));
    }
  } else {
    Register length = ToRegister(instr->length());
    Register index = ToRegister(instr->index());
    __ Dsubu(result, length, index);
    __ Daddu(result, result, 1);
    __ dsll(at, result, kPointerSizeLog2);
    __ Daddu(at, arguments, at);
    __ ld(result, MemOperand(at));
  }
}


void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
  Register external_pointer = ToRegister(instr->elements());
  Register key = no_reg;
  ElementsKind elements_kind = instr->elements_kind();
  bool key_is_constant = instr->key()->IsConstantOperand();
  int constant_key = 0;
  if (key_is_constant) {
    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
    if (constant_key & 0xF0000000) {
      Abort(kArrayIndexConstantValueTooBig);
    }
  } else {
    key = ToRegister(instr->key());
  }
  int element_size_shift = ElementsKindToShiftSize(elements_kind);
  int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
      ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
      : element_size_shift;
  int base_offset = instr->base_offset();

  if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
      elements_kind == FLOAT32_ELEMENTS ||
      elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
      elements_kind == FLOAT64_ELEMENTS) {
    FPURegister result = ToDoubleRegister(instr->result());
    if (key_is_constant) {
      __ Daddu(scratch0(), external_pointer,
          constant_key << element_size_shift);
    } else {
      if (shift_size < 0) {
         if (shift_size == -32) {
           __ dsra32(scratch0(), key, 0);
         } else {
           __ dsra(scratch0(), key, -shift_size);
         }
      } else {
        __ dsll(scratch0(), key, shift_size);
      }
      __ Daddu(scratch0(), scratch0(), external_pointer);
    }
    if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
        elements_kind == FLOAT32_ELEMENTS) {
      __ lwc1(result, MemOperand(scratch0(), base_offset));
      __ cvt_d_s(result, result);
    } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
      __ ldc1(result, MemOperand(scratch0(), base_offset));
    }
  } else {
    Register result = ToRegister(instr->result());
    MemOperand mem_operand = PrepareKeyedOperand(
        key, external_pointer, key_is_constant, constant_key,
        element_size_shift, shift_size, base_offset);
    switch (elements_kind) {
      case EXTERNAL_INT8_ELEMENTS:
      case INT8_ELEMENTS:
        __ lb(result, mem_operand);
        break;
      case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
      case EXTERNAL_UINT8_ELEMENTS:
      case UINT8_ELEMENTS:
      case UINT8_CLAMPED_ELEMENTS:
        __ lbu(result, mem_operand);
        break;
      case EXTERNAL_INT16_ELEMENTS:
      case INT16_ELEMENTS:
        __ lh(result, mem_operand);
        break;
      case EXTERNAL_UINT16_ELEMENTS:
      case UINT16_ELEMENTS:
        __ lhu(result, mem_operand);
        break;
      case EXTERNAL_INT32_ELEMENTS:
      case INT32_ELEMENTS:
        __ lw(result, mem_operand);
        break;
      case EXTERNAL_UINT32_ELEMENTS:
      case UINT32_ELEMENTS:
        __ lw(result, mem_operand);
        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3214 3215
          DeoptimizeIf(Ugreater_equal, instr, Deoptimizer::kNegativeValue,
                       result, Operand(0x80000000));
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
        }
        break;
      case FLOAT32_ELEMENTS:
      case FLOAT64_ELEMENTS:
      case EXTERNAL_FLOAT32_ELEMENTS:
      case EXTERNAL_FLOAT64_ELEMENTS:
      case FAST_DOUBLE_ELEMENTS:
      case FAST_ELEMENTS:
      case FAST_SMI_ELEMENTS:
      case FAST_HOLEY_DOUBLE_ELEMENTS:
      case FAST_HOLEY_ELEMENTS:
      case FAST_HOLEY_SMI_ELEMENTS:
      case DICTIONARY_ELEMENTS:
      case SLOPPY_ARGUMENTS_ELEMENTS:
        UNREACHABLE();
        break;
    }
  }
}


void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
  Register elements = ToRegister(instr->elements());
  bool key_is_constant = instr->key()->IsConstantOperand();
  Register key = no_reg;
  DoubleRegister result = ToDoubleRegister(instr->result());
  Register scratch = scratch0();

  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);

  int base_offset = instr->base_offset();
  if (key_is_constant) {
    int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
    if (constant_key & 0xF0000000) {
      Abort(kArrayIndexConstantValueTooBig);
    }
    base_offset += constant_key * kDoubleSize;
  }
  __ Daddu(scratch, elements, Operand(base_offset));

  if (!key_is_constant) {
    key = ToRegister(instr->key());
    int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
        ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
        : element_size_shift;
    if (shift_size > 0) {
      __ dsll(at, key, shift_size);
    } else if (shift_size == -32) {
      __ dsra32(at, key, 0);
    } else {
      __ dsra(at, key, -shift_size);
    }
    __ Daddu(scratch, scratch, at);
  }

  __ ldc1(result, MemOperand(scratch));

  if (instr->hydrogen()->RequiresHoleCheck()) {
3274
    __ FmoveHigh(scratch, result);
3275
    DeoptimizeIf(eq, instr, Deoptimizer::kHole, scratch,
3276
                 Operand(static_cast<int32_t>(kHoleNanUpper32)));
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
  }
}


void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
  HLoadKeyed* hinstr = instr->hydrogen();
  Register elements = ToRegister(instr->elements());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();
  Register store_base = scratch;
  int offset = instr->base_offset();

  if (instr->key()->IsConstantOperand()) {
    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
    offset += ToInteger32(const_operand) * kPointerSize;
    store_base = elements;
  } else {
    Register key = ToRegister(instr->key());
    // Even though the HLoadKeyed instruction forces the input
    // representation for the key to be an integer, the input gets replaced
    // during bound check elimination with the index argument to the bounds
    // check, which can be tagged, so that case must be handled here, too.
    if (instr->hydrogen()->key()->representation().IsSmi()) {
    __ SmiScale(scratch, key, kPointerSizeLog2);
    __ daddu(scratch, elements, scratch);
    } else {
      __ dsll(scratch, key, kPointerSizeLog2);
      __ daddu(scratch, elements, scratch);
    }
  }

  Representation representation = hinstr->representation();
  if (representation.IsInteger32() && SmiValuesAre32Bits() &&
      hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
3311
    DCHECK(!hinstr->RequiresHoleCheck());
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
    if (FLAG_debug_code) {
      Register temp = scratch1();
      __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
      __ AssertSmi(temp);
    }

    // Read int value directly from upper half of the smi.
    STATIC_ASSERT(kSmiTag == 0);
    STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
    offset += kPointerSize / 2;
  }

  __ Load(result, MemOperand(store_base, offset), representation);

  // Check for the hole value.
  if (hinstr->RequiresHoleCheck()) {
    if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
      __ SmiTst(result, scratch);
3330 3331
      DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, scratch,
                   Operand(zero_reg));
3332 3333
    } else {
      __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3334
      DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(scratch));
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
    }
  }
}


void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
  if (instr->is_typed_elements()) {
    DoLoadKeyedExternalArray(instr);
  } else if (instr->hydrogen()->representation().IsDouble()) {
    DoLoadKeyedFixedDoubleArray(instr);
  } else {
    DoLoadKeyedFixedArray(instr);
  }
}


MemOperand LCodeGen::PrepareKeyedOperand(Register key,
                                         Register base,
                                         bool key_is_constant,
                                         int constant_key,
                                         int element_size,
                                         int shift_size,
                                         int base_offset) {
  if (key_is_constant) {
    return MemOperand(base, (constant_key << element_size) + base_offset);
  }

  if (base_offset == 0) {
    if (shift_size >= 0) {
      __ dsll(scratch0(), key, shift_size);
      __ Daddu(scratch0(), base, scratch0());
      return MemOperand(scratch0());
    } else {
      if (shift_size == -32) {
        __ dsra32(scratch0(), key, 0);
      } else {
        __ dsra(scratch0(), key, -shift_size);
      }
      __ Daddu(scratch0(), base, scratch0());
      return MemOperand(scratch0());
    }
  }

  if (shift_size >= 0) {
    __ dsll(scratch0(), key, shift_size);
    __ Daddu(scratch0(), base, scratch0());
    return MemOperand(scratch0(), base_offset);
  } else {
    if (shift_size == -32) {
       __ dsra32(scratch0(), key, 0);
    } else {
      __ dsra(scratch0(), key, -shift_size);
    }
    __ Daddu(scratch0(), base, scratch0());
    return MemOperand(scratch0(), base_offset);
  }
}


void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3395
  DCHECK(ToRegister(instr->context()).is(cp));
3396 3397
  DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
  DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3398

3399
  if (instr->hydrogen()->HasVectorAndSlot()) {
3400
    EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3401 3402
  }

3403 3404 3405
  Handle<Code> ic =
      CodeFactory::KeyedLoadICInOptimizedCode(
          isolate(), instr->hydrogen()->initialization_state()).code();
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
  CallCode(ic, RelocInfo::CODE_TARGET, instr);
}


void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
  Register scratch = scratch0();
  Register temp = scratch1();
  Register result = ToRegister(instr->result());

  if (instr->hydrogen()->from_inlined()) {
    __ Dsubu(result, sp, 2 * kPointerSize);
  } else {
    // Check if the calling frame is an arguments adaptor frame.
    Label done, adapted;
    __ ld(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
    __ ld(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
    __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));

    // Result is the frame pointer for the frame if not adapted and for the real
    // frame below the adaptor frame if adapted.
    __ Movn(result, fp, temp);  // Move only if temp is not equal to zero (ne).
    __ Movz(result, scratch, temp);  // Move only if temp is equal to zero (eq).
  }
}


void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
  Register elem = ToRegister(instr->elements());
  Register result = ToRegister(instr->result());

  Label done;

  // If no arguments adaptor frame the number of arguments is fixed.
  __ Daddu(result, zero_reg, Operand(scope()->num_parameters()));
  __ Branch(&done, eq, fp, Operand(elem));

  // Arguments adaptor frame present. Get argument length from there.
  __ ld(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ ld(result,
        MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ SmiUntag(result);

  // Argument length is in result register.
  __ bind(&done);
}


void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
  Register receiver = ToRegister(instr->receiver());
  Register function = ToRegister(instr->function());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();

  // If the receiver is null or undefined, we have to pass the global
  // object as a receiver to normal functions. Values have to be
  // passed unchanged to builtins and strict-mode functions.
  Label global_object, result_in_receiver;

  if (!instr->hydrogen()->known_function()) {
    // Do not transform the receiver to object for strict mode functions.
    __ ld(scratch,
           FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));

    // Do not transform the receiver to object for builtins.
    int32_t strict_mode_function_mask =
        1 <<  SharedFunctionInfo::kStrictModeBitWithinByte;
    int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;

    __ lbu(at,
           FieldMemOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset));
    __ And(at, at, Operand(strict_mode_function_mask));
    __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
    __ lbu(at,
           FieldMemOperand(scratch, SharedFunctionInfo::kNativeByteOffset));
    __ And(at, at, Operand(native_mask));
    __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
  }

  // Normal function. Replace undefined or null with global receiver.
  __ LoadRoot(scratch, Heap::kNullValueRootIndex);
  __ Branch(&global_object, eq, receiver, Operand(scratch));
  __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
  __ Branch(&global_object, eq, receiver, Operand(scratch));

  // Deoptimize if the receiver is not a JS object.
  __ SmiTst(receiver, scratch);
3492
  DeoptimizeIf(eq, instr, Deoptimizer::kSmi, scratch, Operand(zero_reg));
3493 3494

  __ GetObjectType(receiver, scratch, scratch);
3495
  DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject, scratch,
3496
               Operand(FIRST_SPEC_OBJECT_TYPE));
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
  __ Branch(&result_in_receiver);

  __ bind(&global_object);
  __ ld(result, FieldMemOperand(function, JSFunction::kContextOffset));
  __ ld(result,
        ContextOperand(result, Context::GLOBAL_OBJECT_INDEX));
  __ ld(result,
        FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));

  if (result.is(receiver)) {
    __ bind(&result_in_receiver);
  } else {
    Label result_ok;
    __ Branch(&result_ok);
    __ bind(&result_in_receiver);
    __ mov(result, receiver);
    __ bind(&result_ok);
  }
}


void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
  Register receiver = ToRegister(instr->receiver());
  Register function = ToRegister(instr->function());
  Register length = ToRegister(instr->length());
  Register elements = ToRegister(instr->elements());
  Register scratch = scratch0();
3524 3525 3526
  DCHECK(receiver.is(a0));  // Used for parameter count.
  DCHECK(function.is(a1));  // Required by InvokeFunction.
  DCHECK(ToRegister(instr->result()).is(v0));
3527 3528 3529 3530

  // Copy the arguments to this function possibly from the
  // adaptor frame below it.
  const uint32_t kArgumentsLimit = 1 * KB;
3531
  DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments, length,
3532
               Operand(kArgumentsLimit));
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555

  // Push the receiver and use the register to keep the original
  // number of arguments.
  __ push(receiver);
  __ Move(receiver, length);
  // The arguments are at a one pointer size offset from elements.
  __ Daddu(elements, elements, Operand(1 * kPointerSize));

  // Loop through the arguments pushing them onto the execution
  // stack.
  Label invoke, loop;
  // length is a small non-negative integer, due to the test above.
  __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
  __ dsll(scratch, length, kPointerSizeLog2);
  __ bind(&loop);
  __ Daddu(scratch, elements, scratch);
  __ ld(scratch, MemOperand(scratch));
  __ push(scratch);
  __ Dsubu(length, length, Operand(1));
  __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
  __ dsll(scratch, length, kPointerSizeLog2);

  __ bind(&invoke);
3556
  DCHECK(instr->HasPointerMap());
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
  LPointerMap* pointers = instr->pointer_map();
  SafepointGenerator safepoint_generator(
      this, pointers, Safepoint::kLazyDeopt);
  // The number of arguments is stored in receiver which is a0, as expected
  // by InvokeFunction.
  ParameterCount actual(receiver);
  __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
}


void LCodeGen::DoPushArgument(LPushArgument* instr) {
  LOperand* argument = instr->value();
  if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
    Abort(kDoPushArgumentNotImplementedForDoubleType);
  } else {
    Register argument_reg = EmitLoadRegister(argument, at);
    __ push(argument_reg);
  }
}


void LCodeGen::DoDrop(LDrop* instr) {
  __ Drop(instr->count());
}


void LCodeGen::DoThisFunction(LThisFunction* instr) {
  Register result = ToRegister(instr->result());
  __ ld(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}


void LCodeGen::DoContext(LContext* instr) {
  // If there is a non-return use, the context must be moved to a register.
  Register result = ToRegister(instr->result());
  if (info()->IsOptimizing()) {
    __ ld(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
  } else {
    // If there is no frame, the context must be in cp.
3596
    DCHECK(result.is(cp));
3597 3598 3599 3600 3601
  }
}


void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3602
  DCHECK(ToRegister(instr->context()).is(cp));
3603 3604 3605 3606 3607 3608 3609 3610 3611
  __ li(scratch0(), instr->hydrogen()->pairs());
  __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
  // The context is the first argument.
  __ Push(cp, scratch0(), scratch1());
  CallRuntime(Runtime::kDeclareGlobals, 3, instr);
}


void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3612 3613
                                 int formal_parameter_count, int arity,
                                 LInstruction* instr) {
3614 3615 3616 3617 3618
  bool dont_adapt_arguments =
      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
  bool can_invoke_directly =
      dont_adapt_arguments || formal_parameter_count == arity;

3619
  Register function_reg = a1;
3620 3621 3622 3623
  LPointerMap* pointers = instr->pointer_map();

  if (can_invoke_directly) {
    // Change context.
3624
    __ ld(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3625 3626 3627 3628 3629 3630 3631 3632

    // Set r0 to arguments count if adaption is not needed. Assumes that r0
    // is available to write to at this point.
    if (dont_adapt_arguments) {
      __ li(a0, Operand(arity));
    }

    // Invoke function.
3633
    __ ld(at, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3634 3635 3636 3637 3638 3639 3640 3641
    __ Call(at);

    // Set up deoptimization.
    RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
  } else {
    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
    ParameterCount count(arity);
    ParameterCount expected(formal_parameter_count);
3642
    __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
3643 3644 3645 3646 3647
  }
}


void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3648 3649
  DCHECK(instr->context() != NULL);
  DCHECK(ToRegister(instr->context()).is(cp));
3650 3651 3652 3653 3654 3655 3656
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();

  // Deoptimize if not a heap number.
  __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
  __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3657
  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch, Operand(at));
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671

  Label done;
  Register exponent = scratch0();
  scratch = no_reg;
  __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
  // Check the sign of the argument. If the argument is positive, just
  // return it.
  __ Move(result, input);
  __ And(at, exponent, Operand(HeapNumber::kSignMask));
  __ Branch(&done, eq, at, Operand(zero_reg));

  // Input is negative. Reverse its sign.
  // Preserve the value of all registers.
  {
3672
    PushSafepointRegistersScope scope(this);
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723

    // Registers were saved at the safepoint, so we can use
    // many scratch registers.
    Register tmp1 = input.is(a1) ? a0 : a1;
    Register tmp2 = input.is(a2) ? a0 : a2;
    Register tmp3 = input.is(a3) ? a0 : a3;
    Register tmp4 = input.is(a4) ? a0 : a4;

    // exponent: floating point exponent value.

    Label allocated, slow;
    __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
    __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
    __ Branch(&allocated);

    // Slow case: Call the runtime system to do the number allocation.
    __ bind(&slow);

    CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
                            instr->context());
    // Set the pointer to the new heap number in tmp.
    if (!tmp1.is(v0))
      __ mov(tmp1, v0);
    // Restore input_reg after call to runtime.
    __ LoadFromSafepointRegisterSlot(input, input);
    __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));

    __ bind(&allocated);
    // exponent: floating point exponent value.
    // tmp1: allocated heap number.
    __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
    __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
    __ lwu(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
    __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));

    __ StoreToSafepointRegisterSlot(tmp1, result);
  }

  __ bind(&done);
}


void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
  Label done;
  __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
  __ mov(result, input);
  __ dsubu(result, zero_reg, input);
  // Overflow if result is still negative, i.e. 0x80000000.
3724
  DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, result, Operand(zero_reg));
3725 3726 3727 3728 3729 3730
  __ bind(&done);
}


void LCodeGen::DoMathAbs(LMathAbs* instr) {
  // Class for deferred case.
3731
  class DeferredMathAbsTaggedHeapNumber FINAL : public LDeferredCode {
3732 3733 3734
   public:
    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
        : LDeferredCode(codegen), instr_(instr) { }
3735
    void Generate() OVERRIDE {
3736 3737
      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
    }
3738 3739
    LInstruction* instr() OVERRIDE { return instr_; }

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
   private:
    LMathAbs* instr_;
  };

  Representation r = instr->hydrogen()->value()->representation();
  if (r.IsDouble()) {
    FPURegister input = ToDoubleRegister(instr->value());
    FPURegister result = ToDoubleRegister(instr->result());
    __ abs_d(result, input);
  } else if (r.IsSmiOrInteger32()) {
    EmitIntegerMathAbs(instr);
  } else {
    // Representation is tagged.
    DeferredMathAbsTaggedHeapNumber* deferred =
        new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
    Register input = ToRegister(instr->value());
    // Smi check.
    __ JumpIfNotSmi(input, deferred->entry());
    // If smi, handle it directly.
    EmitIntegerMathAbs(instr);
    __ bind(deferred->exit());
  }
}


void LCodeGen::DoMathFloor(LMathFloor* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  Register result = ToRegister(instr->result());
  Register scratch1 = scratch0();
  Register except_flag = ToRegister(instr->temp());

  __ EmitFPUTruncate(kRoundToMinusInf,
                     result,
                     input,
                     scratch1,
                     double_scratch0(),
                     except_flag);

  // Deopt if the operation did not succeed.
3779
  DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
3780
               Operand(zero_reg));
3781 3782 3783 3784 3785 3786 3787

  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
    // Test for -0.
    Label done;
    __ Branch(&done, ne, result, Operand(zero_reg));
    __ mfhc1(scratch1, input);  // Get exponent/sign bits.
    __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
3788 3789
    DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
                 Operand(zero_reg));
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
    __ bind(&done);
  }
}


void LCodeGen::DoMathRound(LMathRound* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  Register result = ToRegister(instr->result());
  DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
  Register scratch = scratch0();
  Label done, check_sign_on_zero;

  // Extract exponent bits.
  __ mfhc1(result, input);
  __ Ext(scratch,
         result,
         HeapNumber::kExponentShift,
         HeapNumber::kExponentBits);

  // If the number is in ]-0.5, +0.5[, the result is +/- 0.
  Label skip1;
  __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
  __ mov(result, zero_reg);
  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
    __ Branch(&check_sign_on_zero);
  } else {
    __ Branch(&done);
  }
  __ bind(&skip1);

  // The following conversion will not work with numbers
  // outside of ]-2^32, 2^32[.
3822
  DeoptimizeIf(ge, instr, Deoptimizer::kOverflow, scratch,
3823
               Operand(HeapNumber::kExponentBias + 32));
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

  // Save the original sign for later comparison.
  __ And(scratch, result, Operand(HeapNumber::kSignMask));

  __ Move(double_scratch0(), 0.5);
  __ add_d(double_scratch0(), input, double_scratch0());

  // Check sign of the result: if the sign changed, the input
  // value was in ]0.5, 0[ and the result should be -0.
  __ mfhc1(result, double_scratch0());
  // mfhc1 sign-extends, clear the upper bits.
  __ dsll32(result, result, 0);
  __ dsrl32(result, result, 0);
  __ Xor(result, result, Operand(scratch));
  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
    // ARM uses 'mi' here, which is 'lt'
3840
    DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, result, Operand(zero_reg));
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
  } else {
    Label skip2;
    // ARM uses 'mi' here, which is 'lt'
    // Negating it results in 'ge'
    __ Branch(&skip2, ge, result, Operand(zero_reg));
    __ mov(result, zero_reg);
    __ Branch(&done);
    __ bind(&skip2);
  }

  Register except_flag = scratch;
  __ EmitFPUTruncate(kRoundToMinusInf,
                     result,
                     double_scratch0(),
                     at,
                     double_scratch1,
                     except_flag);

3859
  DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
3860
               Operand(zero_reg));
3861 3862 3863 3864 3865 3866 3867

  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
    // Test for -0.
    __ Branch(&done, ne, result, Operand(zero_reg));
    __ bind(&check_sign_on_zero);
    __ mfhc1(scratch, input);  // Get exponent/sign bits.
    __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
3868 3869
    DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch,
                 Operand(zero_reg));
3870 3871 3872 3873 3874
  }
  __ bind(&done);
}


3875 3876 3877 3878 3879 3880 3881 3882
void LCodeGen::DoMathFround(LMathFround* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  DoubleRegister result = ToDoubleRegister(instr->result());
  __ cvt_s_d(result, input);
  __ cvt_d_s(result, result);
}


3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  DoubleRegister result = ToDoubleRegister(instr->result());
  __ sqrt_d(result, input);
}


void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  DoubleRegister result = ToDoubleRegister(instr->result());
  DoubleRegister temp = ToDoubleRegister(instr->temp());

3895
  DCHECK(!input.is(result));
3896 3897 3898 3899 3900

  // Note that according to ECMA-262 15.8.2.13:
  // Math.pow(-Infinity, 0.5) == Infinity
  // Math.sqrt(-Infinity) == NaN
  Label done;
3901
  __ Move(temp, static_cast<double>(-V8_INFINITY));
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
  __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
  // Set up Infinity in the delay slot.
  // result is overwritten if the branch is not taken.
  __ neg_d(result, temp);

  // Add +0 to convert -0 to +0.
  __ add_d(result, input, kDoubleRegZero);
  __ sqrt_d(result, result);
  __ bind(&done);
}


void LCodeGen::DoPower(LPower* instr) {
  Representation exponent_type = instr->hydrogen()->right()->representation();
  // Having marked this as a call, we can use any registers.
  // Just make sure that the input/output registers are the expected ones.
3918
  Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3919
  DCHECK(!instr->right()->IsDoubleRegister() ||
3920
         ToDoubleRegister(instr->right()).is(f4));
3921
  DCHECK(!instr->right()->IsRegister() ||
3922
         ToRegister(instr->right()).is(tagged_exponent));
3923 3924
  DCHECK(ToDoubleRegister(instr->left()).is(f2));
  DCHECK(ToDoubleRegister(instr->result()).is(f0));
3925 3926 3927 3928 3929 3930

  if (exponent_type.IsSmi()) {
    MathPowStub stub(isolate(), MathPowStub::TAGGED);
    __ CallStub(&stub);
  } else if (exponent_type.IsTagged()) {
    Label no_deopt;
3931 3932 3933
    __ JumpIfSmi(tagged_exponent, &no_deopt);
    DCHECK(!a7.is(tagged_exponent));
    __ lw(a7, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3934
    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3935
    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, a7, Operand(at));
3936 3937 3938 3939 3940 3941 3942
    __ bind(&no_deopt);
    MathPowStub stub(isolate(), MathPowStub::TAGGED);
    __ CallStub(&stub);
  } else if (exponent_type.IsInteger32()) {
    MathPowStub stub(isolate(), MathPowStub::INTEGER);
    __ CallStub(&stub);
  } else {
3943
    DCHECK(exponent_type.IsDouble());
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
    MathPowStub stub(isolate(), MathPowStub::DOUBLE);
    __ CallStub(&stub);
  }
}


void LCodeGen::DoMathExp(LMathExp* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  DoubleRegister result = ToDoubleRegister(instr->result());
  DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
  DoubleRegister double_scratch2 = double_scratch0();
  Register temp1 = ToRegister(instr->temp1());
  Register temp2 = ToRegister(instr->temp2());

  MathExpGenerator::EmitMathExp(
      masm(), input, result, double_scratch1, double_scratch2,
      temp1, temp2, scratch0());
}


void LCodeGen::DoMathLog(LMathLog* instr) {
  __ PrepareCallCFunction(0, 1, scratch0());
  __ MovToFloatParameter(ToDoubleRegister(instr->value()));
  __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
                   0, 1);
  __ MovFromFloatResult(ToDoubleRegister(instr->result()));
}


void LCodeGen::DoMathClz32(LMathClz32* instr) {
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  __ Clz(result, input);
}


void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3981 3982 3983
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->function()).is(a1));
  DCHECK(instr->HasPointerMap());
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993

  Handle<JSFunction> known_function = instr->hydrogen()->known_function();
  if (known_function.is_null()) {
    LPointerMap* pointers = instr->pointer_map();
    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
    ParameterCount count(instr->arity());
    __ InvokeFunction(a1, count, CALL_FUNCTION, generator);
  } else {
    CallKnownFunction(known_function,
                      instr->hydrogen()->formal_parameter_count(),
3994
                      instr->arity(), instr);
3995 3996 3997 3998
  }
}


3999 4000 4001 4002 4003 4004 4005 4006 4007
void LCodeGen::DoTailCallThroughMegamorphicCache(
    LTailCallThroughMegamorphicCache* instr) {
  Register receiver = ToRegister(instr->receiver());
  Register name = ToRegister(instr->name());
  DCHECK(receiver.is(LoadDescriptor::ReceiverRegister()));
  DCHECK(name.is(LoadDescriptor::NameRegister()));
  DCHECK(receiver.is(a1));
  DCHECK(name.is(a2));

4008 4009 4010 4011
  Register scratch = a4;
  Register extra = a5;
  Register extra2 = a6;
  Register extra3 = t1;
4012

4013 4014 4015 4016
  // The probe will tail call to a handler if found.
  isolate()->stub_cache()->GenerateProbe(
      masm(), Code::LOAD_IC, instr->hydrogen()->flags(), false, receiver, name,
      scratch, extra, extra2, extra3);
4017 4018

  // Tail call to miss if we ended up here.
4019
  LoadIC::GenerateMiss(masm());
4020 4021 4022
}


4023
void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
4024
  DCHECK(ToRegister(instr->result()).is(v0));
4025

4026 4027
  if (instr->hydrogen()->IsTailCall()) {
    if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
4028

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    if (instr->target()->IsConstantOperand()) {
      LConstantOperand* target = LConstantOperand::cast(instr->target());
      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
      __ Jump(code, RelocInfo::CODE_TARGET);
    } else {
      DCHECK(instr->target()->IsRegister());
      Register target = ToRegister(instr->target());
      __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
      __ Jump(target);
    }
4039
  } else {
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
    LPointerMap* pointers = instr->pointer_map();
    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);

    if (instr->target()->IsConstantOperand()) {
      LConstantOperand* target = LConstantOperand::cast(instr->target());
      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
      generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
      __ Call(code, RelocInfo::CODE_TARGET);
    } else {
      DCHECK(instr->target()->IsRegister());
      Register target = ToRegister(instr->target());
      generator.BeforeCall(__ CallSize(target));
      __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
      __ Call(target);
    }
    generator.AfterCall();
4056 4057 4058 4059 4060
  }
}


void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
4061 4062
  DCHECK(ToRegister(instr->function()).is(a1));
  DCHECK(ToRegister(instr->result()).is(v0));
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

  if (instr->hydrogen()->pass_argument_count()) {
    __ li(a0, Operand(instr->arity()));
  }

  // Change context.
  __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));

  // Load the code entry address
  __ ld(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
  __ Call(at);

  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}


void LCodeGen::DoCallFunction(LCallFunction* instr) {
4080 4081 4082
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->function()).is(a1));
  DCHECK(ToRegister(instr->result()).is(v0));
4083 4084

  int arity = instr->arity();
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
  CallFunctionFlags flags = instr->hydrogen()->function_flags();
  if (instr->hydrogen()->HasVectorAndSlot()) {
    Register slot_register = ToRegister(instr->temp_slot());
    Register vector_register = ToRegister(instr->temp_vector());
    DCHECK(slot_register.is(a3));
    DCHECK(vector_register.is(a2));

    AllowDeferredHandleDereference vector_structure_check;
    Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
    int index = vector->GetIndex(instr->hydrogen()->slot());

    __ li(vector_register, vector);
    __ li(slot_register, Operand(Smi::FromInt(index)));

    CallICState::CallType call_type =
        (flags & CALL_AS_METHOD) ? CallICState::METHOD : CallICState::FUNCTION;

    Handle<Code> ic =
        CodeFactory::CallICInOptimizedCode(isolate(), arity, call_type).code();
    CallCode(ic, RelocInfo::CODE_TARGET, instr);
  } else {
    CallFunctionStub stub(isolate(), arity, flags);
    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
  }
4109 4110 4111 4112
}


void LCodeGen::DoCallNew(LCallNew* instr) {
4113 4114 4115
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->constructor()).is(a1));
  DCHECK(ToRegister(instr->result()).is(v0));
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

  __ li(a0, Operand(instr->arity()));
  // No cell in a2 for construct type feedback in optimized code
  __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
  CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
  CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
}


void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
4126 4127 4128
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->constructor()).is(a1));
  DCHECK(ToRegister(instr->result()).is(v0));
4129 4130

  __ li(a0, Operand(instr->arity()));
4131 4132 4133 4134 4135 4136 4137 4138
  if (instr->arity() == 1) {
    // We only need the allocation site for the case we have a length argument.
    // The case may bail out to the runtime, which will determine the correct
    // elements kind with the site.
    __ li(a2, instr->hydrogen()->site());
  } else {
    __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
  }
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
  ElementsKind kind = instr->hydrogen()->elements_kind();
  AllocationSiteOverrideMode override_mode =
      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
          ? DISABLE_ALLOCATION_SITES
          : DONT_OVERRIDE;

  if (instr->arity() == 0) {
    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
  } else if (instr->arity() == 1) {
    Label done;
    if (IsFastPackedElementsKind(kind)) {
      Label packed_case;
      // We might need a change here,
      // look at the first argument.
      __ ld(a5, MemOperand(sp, 0));
      __ Branch(&packed_case, eq, a5, Operand(zero_reg));

      ElementsKind holey_kind = GetHoleyElementsKind(kind);
      ArraySingleArgumentConstructorStub stub(isolate(),
                                              holey_kind,
                                              override_mode);
      CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
      __ jmp(&done);
      __ bind(&packed_case);
    }

    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    __ bind(&done);
  } else {
    ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
  }
}


void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
  CallRuntime(instr->function(), instr->arity(), instr);
}


void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
  Register function = ToRegister(instr->function());
  Register code_object = ToRegister(instr->code_object());
  __ Daddu(code_object, code_object,
          Operand(Code::kHeaderSize - kHeapObjectTag));
  __ sd(code_object,
        FieldMemOperand(function, JSFunction::kCodeEntryOffset));
}


void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
  Register result = ToRegister(instr->result());
  Register base = ToRegister(instr->base_object());
  if (instr->offset()->IsConstantOperand()) {
    LConstantOperand* offset = LConstantOperand::cast(instr->offset());
    __ Daddu(result, base, Operand(ToInteger32(offset)));
  } else {
    Register offset = ToRegister(instr->offset());
    __ Daddu(result, base, offset);
  }
}


void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
  Representation representation = instr->representation();

  Register object = ToRegister(instr->object());
  Register scratch2 = scratch1();
  Register scratch1 = scratch0();
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
  HObjectAccess access = instr->hydrogen()->access();
  int offset = access.offset();
  if (access.IsExternalMemory()) {
    Register value = ToRegister(instr->value());
    MemOperand operand = MemOperand(object, offset);
    __ Store(value, operand, representation);
    return;
  }

  __ AssertNotSmi(object);

4222
  DCHECK(!representation.IsSmi() ||
4223 4224
         !instr->value()->IsConstantOperand() ||
         IsSmi(LConstantOperand::cast(instr->value())));
4225
  if (!FLAG_unbox_double_fields && representation.IsDouble()) {
4226 4227 4228
    DCHECK(access.IsInobject());
    DCHECK(!instr->hydrogen()->has_transition());
    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
    DoubleRegister value = ToDoubleRegister(instr->value());
    __ sdc1(value, FieldMemOperand(object, offset));
    return;
  }

  if (instr->hydrogen()->has_transition()) {
    Handle<Map> transition = instr->hydrogen()->transition_map();
    AddDeprecationDependency(transition);
    __ li(scratch1, Operand(transition));
    __ sd(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
    if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
      Register temp = ToRegister(instr->temp());
      // Update the write barrier for the map field.
      __ RecordWriteForMap(object,
                           scratch1,
                           temp,
                           GetRAState(),
                           kSaveFPRegs);
    }
  }

  // Do the store.
  Register destination = object;
  if (!access.IsInobject()) {
       destination = scratch1;
    __ ld(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
  }
4256

4257 4258
  if (representation.IsSmi() && SmiValuesAre32Bits() &&
      instr->hydrogen()->value()->representation().IsInteger32()) {
4259
    DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4260 4261 4262 4263 4264 4265 4266 4267 4268
    if (FLAG_debug_code) {
      __ Load(scratch2, FieldMemOperand(destination, offset), representation);
      __ AssertSmi(scratch2);
    }
    // Store int value directly to upper half of the smi.
    offset += kPointerSize / 2;
    representation = Representation::Integer32();
  }
  MemOperand operand = FieldMemOperand(destination, offset);
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279

  if (FLAG_unbox_double_fields && representation.IsDouble()) {
    DCHECK(access.IsInobject());
    DoubleRegister value = ToDoubleRegister(instr->value());
    __ sdc1(value, operand);
  } else {
    DCHECK(instr->value()->IsRegister());
    Register value = ToRegister(instr->value());
    __ Store(value, operand, representation);
  }

4280 4281
  if (instr->hydrogen()->NeedsWriteBarrier()) {
    // Update the write barrier for the object for in-object properties.
4282
    Register value = ToRegister(instr->value());
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
    __ RecordWriteField(destination,
                        offset,
                        value,
                        scratch2,
                        GetRAState(),
                        kSaveFPRegs,
                        EMIT_REMEMBERED_SET,
                        instr->hydrogen()->SmiCheckForWriteBarrier(),
                        instr->hydrogen()->PointersToHereCheckForValue());
  }
}


void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
4297
  DCHECK(ToRegister(instr->context()).is(cp));
4298 4299
  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4300

4301
  __ li(StoreDescriptor::NameRegister(), Operand(instr->name()));
4302 4303 4304
  Handle<Code> ic =
      StoreIC::initialize_stub(isolate(), instr->language_mode(),
                               instr->hydrogen()->initialization_state());
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
  CallCode(ic, RelocInfo::CODE_TARGET, instr);
}


void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
  Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
  Operand operand((int64_t)0);
  Register reg;
  if (instr->index()->IsConstantOperand()) {
    operand = ToOperand(instr->index());
    reg = ToRegister(instr->length());
    cc = CommuteCondition(cc);
  } else {
    reg = ToRegister(instr->index());
    operand = ToOperand(instr->length());
  }
  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
    Label done;
    __ Branch(&done, NegateCondition(cc), reg, operand);
    __ stop("eliminated bounds check failed");
    __ bind(&done);
  } else {
4327
    DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds, reg, operand);
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
  }
}


void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
  Register external_pointer = ToRegister(instr->elements());
  Register key = no_reg;
  ElementsKind elements_kind = instr->elements_kind();
  bool key_is_constant = instr->key()->IsConstantOperand();
  int constant_key = 0;
  if (key_is_constant) {
    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
    if (constant_key & 0xF0000000) {
      Abort(kArrayIndexConstantValueTooBig);
    }
  } else {
    key = ToRegister(instr->key());
  }
  int element_size_shift = ElementsKindToShiftSize(elements_kind);
  int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
      ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
      : element_size_shift;
  int base_offset = instr->base_offset();

  if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
      elements_kind == FLOAT32_ELEMENTS ||
      elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
      elements_kind == FLOAT64_ELEMENTS) {
    Register address = scratch0();
    FPURegister value(ToDoubleRegister(instr->value()));
    if (key_is_constant) {
      if (constant_key != 0) {
        __ Daddu(address, external_pointer,
                Operand(constant_key << element_size_shift));
      } else {
        address = external_pointer;
      }
    } else {
      if (shift_size < 0) {
        if (shift_size == -32) {
          __ dsra32(address, key, 0);
        } else {
          __ dsra(address, key, -shift_size);
        }
      } else {
        __ dsll(address, key, shift_size);
      }
      __ Daddu(address, external_pointer, address);
    }

    if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
        elements_kind == FLOAT32_ELEMENTS) {
      __ cvt_s_d(double_scratch0(), value);
      __ swc1(double_scratch0(), MemOperand(address, base_offset));
    } else {  // Storing doubles, not floats.
      __ sdc1(value, MemOperand(address, base_offset));
    }
  } else {
    Register value(ToRegister(instr->value()));
    MemOperand mem_operand = PrepareKeyedOperand(
        key, external_pointer, key_is_constant, constant_key,
        element_size_shift, shift_size,
        base_offset);
    switch (elements_kind) {
      case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
      case EXTERNAL_INT8_ELEMENTS:
      case EXTERNAL_UINT8_ELEMENTS:
      case UINT8_ELEMENTS:
      case UINT8_CLAMPED_ELEMENTS:
      case INT8_ELEMENTS:
        __ sb(value, mem_operand);
        break;
      case EXTERNAL_INT16_ELEMENTS:
      case EXTERNAL_UINT16_ELEMENTS:
      case INT16_ELEMENTS:
      case UINT16_ELEMENTS:
        __ sh(value, mem_operand);
        break;
      case EXTERNAL_INT32_ELEMENTS:
      case EXTERNAL_UINT32_ELEMENTS:
      case INT32_ELEMENTS:
      case UINT32_ELEMENTS:
        __ sw(value, mem_operand);
        break;
      case FLOAT32_ELEMENTS:
      case FLOAT64_ELEMENTS:
      case EXTERNAL_FLOAT32_ELEMENTS:
      case EXTERNAL_FLOAT64_ELEMENTS:
      case FAST_DOUBLE_ELEMENTS:
      case FAST_ELEMENTS:
      case FAST_SMI_ELEMENTS:
      case FAST_HOLEY_DOUBLE_ELEMENTS:
      case FAST_HOLEY_ELEMENTS:
      case FAST_HOLEY_SMI_ELEMENTS:
      case DICTIONARY_ELEMENTS:
      case SLOPPY_ARGUMENTS_ELEMENTS:
        UNREACHABLE();
        break;
    }
  }
}


void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
  DoubleRegister value = ToDoubleRegister(instr->value());
  Register elements = ToRegister(instr->elements());
  Register scratch = scratch0();
  DoubleRegister double_scratch = double_scratch0();
  bool key_is_constant = instr->key()->IsConstantOperand();
  int base_offset = instr->base_offset();
  Label not_nan, done;

  // Calculate the effective address of the slot in the array to store the
  // double value.
  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
  if (key_is_constant) {
    int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
    if (constant_key & 0xF0000000) {
      Abort(kArrayIndexConstantValueTooBig);
    }
    __ Daddu(scratch, elements,
             Operand((constant_key << element_size_shift) + base_offset));
  } else {
    int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
        ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
        : element_size_shift;
    __ Daddu(scratch, elements, Operand(base_offset));
4455
    DCHECK((shift_size == 3) || (shift_size == -29));
4456 4457 4458 4459 4460 4461 4462 4463 4464
    if (shift_size == 3) {
      __ dsll(at, ToRegister(instr->key()), 3);
    } else if (shift_size == -29) {
      __ dsra(at, ToRegister(instr->key()), 29);
    }
    __ Daddu(scratch, scratch, at);
  }

  if (instr->NeedsCanonicalization()) {
4465
    __ FPUCanonicalizeNaN(double_scratch, value);
4466
    __ sdc1(double_scratch, MemOperand(scratch, 0));
4467 4468
  } else {
    __ sdc1(value, MemOperand(scratch, 0));
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
  }
}


void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
  Register value = ToRegister(instr->value());
  Register elements = ToRegister(instr->elements());
  Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
      : no_reg;
  Register scratch = scratch0();
  Register store_base = scratch;
  int offset = instr->base_offset();

  // Do the store.
  if (instr->key()->IsConstantOperand()) {
4484
    DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
    offset += ToInteger32(const_operand) * kPointerSize;
    store_base = elements;
  } else {
    // Even though the HLoadKeyed instruction forces the input
    // representation for the key to be an integer, the input gets replaced
    // during bound check elimination with the index argument to the bounds
    // check, which can be tagged, so that case must be handled here, too.
    if (instr->hydrogen()->key()->representation().IsSmi()) {
      __ SmiScale(scratch, key, kPointerSizeLog2);
      __ daddu(store_base, elements, scratch);
    } else {
      __ dsll(scratch, key, kPointerSizeLog2);
      __ daddu(store_base, elements, scratch);
    }
  }

  Representation representation = instr->hydrogen()->value()->representation();
  if (representation.IsInteger32() && SmiValuesAre32Bits()) {
4504 4505
    DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
    DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
    if (FLAG_debug_code) {
      Register temp = scratch1();
      __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
      __ AssertSmi(temp);
    }

    // Store int value directly to upper half of the smi.
    STATIC_ASSERT(kSmiTag == 0);
    STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
    offset += kPointerSize / 2;
    representation = Representation::Integer32();
  }

  __ Store(value, MemOperand(store_base, offset), representation);

  if (instr->hydrogen()->NeedsWriteBarrier()) {
    SmiCheck check_needed =
        instr->hydrogen()->value()->type().IsHeapObject()
            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
    // Compute address of modified element and store it into key register.
    __ Daddu(key, store_base, Operand(offset));
    __ RecordWrite(elements,
                   key,
                   value,
                   GetRAState(),
                   kSaveFPRegs,
                   EMIT_REMEMBERED_SET,
                   check_needed,
                   instr->hydrogen()->PointersToHereCheckForValue());
  }
}


void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
  // By cases: external, fast double
  if (instr->is_typed_elements()) {
    DoStoreKeyedExternalArray(instr);
  } else if (instr->hydrogen()->value()->representation().IsDouble()) {
    DoStoreKeyedFixedDoubleArray(instr);
  } else {
    DoStoreKeyedFixedArray(instr);
  }
}


void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4552
  DCHECK(ToRegister(instr->context()).is(cp));
4553 4554 4555
  DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
  DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
  DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4556

4557 4558 4559
  Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
                        isolate(), instr->language_mode(),
                        instr->hydrogen()->initialization_state()).code();
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
  CallCode(ic, RelocInfo::CODE_TARGET, instr);
}


void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
  Register object_reg = ToRegister(instr->object());
  Register scratch = scratch0();

  Handle<Map> from_map = instr->original_map();
  Handle<Map> to_map = instr->transitioned_map();
  ElementsKind from_kind = instr->from_kind();
  ElementsKind to_kind = instr->to_kind();

  Label not_applicable;
  __ ld(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
  __ Branch(&not_applicable, ne, scratch, Operand(from_map));

  if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
    Register new_map_reg = ToRegister(instr->new_map_temp());
    __ li(new_map_reg, Operand(to_map));
    __ sd(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
    // Write barrier.
    __ RecordWriteForMap(object_reg,
                         new_map_reg,
                         scratch,
                         GetRAState(),
                         kDontSaveFPRegs);
  } else {
4588 4589
    DCHECK(object_reg.is(a0));
    DCHECK(ToRegister(instr->context()).is(cp));
4590
    PushSafepointRegistersScope scope(this);
4591 4592 4593 4594
    __ li(a1, Operand(to_map));
    bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
    TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
    __ CallStub(&stub);
4595
    RecordSafepointWithRegisters(
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
  }
  __ bind(&not_applicable);
}


void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
  Register object = ToRegister(instr->object());
  Register temp = ToRegister(instr->temp());
  Label no_memento_found;
  __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found,
                                     ne, &no_memento_found);
4608
  DeoptimizeIf(al, instr, Deoptimizer::kMementoFound);
4609 4610 4611 4612 4613
  __ bind(&no_memento_found);
}


void LCodeGen::DoStringAdd(LStringAdd* instr) {
4614 4615 4616
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->left()).is(a1));
  DCHECK(ToRegister(instr->right()).is(a0));
4617 4618 4619 4620 4621 4622 4623 4624
  StringAddStub stub(isolate(),
                     instr->hydrogen()->flags(),
                     instr->hydrogen()->pretenure_flag());
  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}


void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4625
  class DeferredStringCharCodeAt FINAL : public LDeferredCode {
4626 4627 4628
   public:
    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
        : LDeferredCode(codegen), instr_(instr) { }
4629 4630 4631
    void Generate() OVERRIDE { codegen()->DoDeferredStringCharCodeAt(instr_); }
    LInstruction* instr() OVERRIDE { return instr_; }

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
   private:
    LStringCharCodeAt* instr_;
  };

  DeferredStringCharCodeAt* deferred =
      new(zone()) DeferredStringCharCodeAt(this, instr);
  StringCharLoadGenerator::Generate(masm(),
                                    ToRegister(instr->string()),
                                    ToRegister(instr->index()),
                                    ToRegister(instr->result()),
                                    deferred->entry());
  __ bind(deferred->exit());
}


void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
  Register string = ToRegister(instr->string());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();

  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
  __ mov(result, zero_reg);

4657
  PushSafepointRegistersScope scope(this);
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
  __ push(string);
  // Push the index as a smi. This is safe because of the checks in
  // DoStringCharCodeAt above.
  if (instr->index()->IsConstantOperand()) {
    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
    __ Daddu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
    __ push(scratch);
  } else {
    Register index = ToRegister(instr->index());
    __ SmiTag(index);
    __ push(index);
  }
  CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
                          instr->context());
  __ AssertSmi(v0);
  __ SmiUntag(v0);
  __ StoreToSafepointRegisterSlot(v0, result);
}


void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4679
  class DeferredStringCharFromCode FINAL : public LDeferredCode {
4680 4681 4682
   public:
    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
        : LDeferredCode(codegen), instr_(instr) { }
4683
    void Generate() OVERRIDE {
4684 4685
      codegen()->DoDeferredStringCharFromCode(instr_);
    }
4686 4687
    LInstruction* instr() OVERRIDE { return instr_; }

4688 4689 4690 4691 4692 4693 4694
   private:
    LStringCharFromCode* instr_;
  };

  DeferredStringCharFromCode* deferred =
      new(zone()) DeferredStringCharFromCode(this, instr);

4695
  DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4696 4697 4698
  Register char_code = ToRegister(instr->char_code());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();
4699
  DCHECK(!char_code.is(result));
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721

  __ Branch(deferred->entry(), hi,
            char_code, Operand(String::kMaxOneByteCharCode));
  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
  __ dsll(scratch, char_code, kPointerSizeLog2);
  __ Daddu(result, result, scratch);
  __ ld(result, FieldMemOperand(result, FixedArray::kHeaderSize));
  __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
  __ Branch(deferred->entry(), eq, result, Operand(scratch));
  __ bind(deferred->exit());
}


void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
  Register char_code = ToRegister(instr->char_code());
  Register result = ToRegister(instr->result());

  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
  __ mov(result, zero_reg);

4722
  PushSafepointRegistersScope scope(this);
4723 4724 4725 4726 4727 4728 4729 4730 4731
  __ SmiTag(char_code);
  __ push(char_code);
  CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
  __ StoreToSafepointRegisterSlot(v0, result);
}


void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
  LOperand* input = instr->value();
4732
  DCHECK(input->IsRegister() || input->IsStackSlot());
4733
  LOperand* output = instr->result();
4734
  DCHECK(output->IsDoubleRegister());
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
  FPURegister single_scratch = double_scratch0().low();
  if (input->IsStackSlot()) {
    Register scratch = scratch0();
    __ ld(scratch, ToMemOperand(input));
    __ mtc1(scratch, single_scratch);
  } else {
    __ mtc1(ToRegister(input), single_scratch);
  }
  __ cvt_d_w(ToDoubleRegister(output), single_scratch);
}


void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
  LOperand* input = instr->value();
  LOperand* output = instr->result();

  FPURegister dbl_scratch = double_scratch0();
  __ mtc1(ToRegister(input), dbl_scratch);
  __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch, f22);  // TODO(plind): f22?
}


void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4758
  class DeferredNumberTagU FINAL : public LDeferredCode {
4759 4760 4761
   public:
    DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
        : LDeferredCode(codegen), instr_(instr) { }
4762
    void Generate() OVERRIDE {
4763 4764 4765 4766 4767 4768
      codegen()->DoDeferredNumberTagIU(instr_,
                                       instr_->value(),
                                       instr_->temp1(),
                                       instr_->temp2(),
                                       UNSIGNED_INT32);
    }
4769 4770
    LInstruction* instr() OVERRIDE { return instr_; }

4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
   private:
    LNumberTagU* instr_;
  };

  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());

  DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
  __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
  __ SmiTag(result, input);
  __ bind(deferred->exit());
}


void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
                                     LOperand* value,
                                     LOperand* temp1,
                                     LOperand* temp2,
                                     IntegerSignedness signedness) {
  Label done, slow;
  Register src = ToRegister(value);
  Register dst = ToRegister(instr->result());
  Register tmp1 = scratch0();
  Register tmp2 = ToRegister(temp1);
  Register tmp3 = ToRegister(temp2);
  DoubleRegister dbl_scratch = double_scratch0();

  if (signedness == SIGNED_INT32) {
    // There was overflow, so bits 30 and 31 of the original integer
    // disagree. Try to allocate a heap number in new space and store
    // the value in there. If that fails, call the runtime system.
    if (dst.is(src)) {
      __ SmiUntag(src, dst);
      __ Xor(src, src, Operand(0x80000000));
    }
    __ mtc1(src, dbl_scratch);
    __ cvt_d_w(dbl_scratch, dbl_scratch);
  } else {
    __ mtc1(src, dbl_scratch);
    __ Cvt_d_uw(dbl_scratch, dbl_scratch, f22);
  }

  if (FLAG_inline_new) {
    __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
    __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, TAG_RESULT);
    __ Branch(&done);
  }

  // Slow case: Call the runtime system to do the number allocation.
  __ bind(&slow);
  {
    // TODO(3095996): Put a valid pointer value in the stack slot where the
    // result register is stored, as this register is in the pointer map, but
    // contains an integer value.
    __ mov(dst, zero_reg);
    // Preserve the value of all registers.
4827
    PushSafepointRegistersScope scope(this);
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

    // NumberTagI and NumberTagD use the context from the frame, rather than
    // the environment's HContext or HInlinedContext value.
    // They only call Runtime::kAllocateHeapNumber.
    // The corresponding HChange instructions are added in a phase that does
    // not have easy access to the local context.
    __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
    RecordSafepointWithRegisters(
        instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
    __ StoreToSafepointRegisterSlot(v0, dst);
  }

  // Done. Put the value in dbl_scratch into the value of the allocated heap
  // number.
  __ bind(&done);
  __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
}


void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4849
  class DeferredNumberTagD FINAL : public LDeferredCode {
4850 4851 4852
   public:
    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
        : LDeferredCode(codegen), instr_(instr) { }
4853 4854 4855
    void Generate() OVERRIDE { codegen()->DoDeferredNumberTagD(instr_); }
    LInstruction* instr() OVERRIDE { return instr_; }

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
   private:
    LNumberTagD* instr_;
  };

  DoubleRegister input_reg = ToDoubleRegister(instr->value());
  Register scratch = scratch0();
  Register reg = ToRegister(instr->result());
  Register temp1 = ToRegister(instr->temp());
  Register temp2 = ToRegister(instr->temp2());

  DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
  if (FLAG_inline_new) {
    __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
    // We want the untagged address first for performance
    __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
                          DONT_TAG_RESULT);
  } else {
    __ Branch(deferred->entry());
  }
  __ bind(deferred->exit());
  __ sdc1(input_reg, MemOperand(reg, HeapNumber::kValueOffset));
  // Now that we have finished with the object's real address tag it
  __ Daddu(reg, reg, kHeapObjectTag);
}


void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
  Register reg = ToRegister(instr->result());
  __ mov(reg, zero_reg);

4889
  PushSafepointRegistersScope scope(this);
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
  // NumberTagI and NumberTagD use the context from the frame, rather than
  // the environment's HContext or HInlinedContext value.
  // They only call Runtime::kAllocateHeapNumber.
  // The corresponding HChange instructions are added in a phase that does
  // not have easy access to the local context.
  __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
  RecordSafepointWithRegisters(
      instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
  __ Dsubu(v0, v0, kHeapObjectTag);
  __ StoreToSafepointRegisterSlot(v0, reg);
}


void LCodeGen::DoSmiTag(LSmiTag* instr) {
  HChange* hchange = instr->hydrogen();
  Register input = ToRegister(instr->value());
  Register output = ToRegister(instr->result());
  if (hchange->CheckFlag(HValue::kCanOverflow) &&
      hchange->value()->CheckFlag(HValue::kUint32)) {
    __ And(at, input, Operand(0x80000000));
4911
    DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, at, Operand(zero_reg));
4912 4913 4914 4915
  }
  if (hchange->CheckFlag(HValue::kCanOverflow) &&
      !hchange->value()->CheckFlag(HValue::kUint32)) {
    __ SmiTagCheckOverflow(output, input, at);
4916
    DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, at, Operand(zero_reg));
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
  } else {
    __ SmiTag(output, input);
  }
}


void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
  Register scratch = scratch0();
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  if (instr->needs_check()) {
    STATIC_ASSERT(kHeapObjectTag == 1);
    // If the input is a HeapObject, value of scratch won't be zero.
    __ And(scratch, input, Operand(kHeapObjectTag));
    __ SmiUntag(result, input);
4932
    DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, scratch, Operand(zero_reg));
4933 4934 4935 4936 4937 4938
  } else {
    __ SmiUntag(result, input);
  }
}


4939
void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4940 4941
                                DoubleRegister result_reg,
                                NumberUntagDMode mode) {
4942 4943 4944 4945
  bool can_convert_undefined_to_nan =
      instr->hydrogen()->can_convert_undefined_to_nan();
  bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
  Register scratch = scratch0();
  Label convert, load_smi, done;
  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
    // Smi check.
    __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
    // Heap number map check.
    __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
    if (can_convert_undefined_to_nan) {
      __ Branch(&convert, ne, scratch, Operand(at));
    } else {
4957 4958
      DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch,
                   Operand(at));
4959 4960 4961 4962 4963 4964 4965
    }
    // Load heap number.
    __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
    if (deoptimize_on_minus_zero) {
      __ mfc1(at, result_reg);
      __ Branch(&done, ne, at, Operand(zero_reg));
      __ mfhc1(scratch, result_reg);  // Get exponent/sign bits.
4966
      DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, scratch,
4967
                   Operand(HeapNumber::kSignMask));
4968 4969 4970 4971 4972 4973
    }
    __ Branch(&done);
    if (can_convert_undefined_to_nan) {
      __ bind(&convert);
      // Convert undefined (and hole) to NaN.
      __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4974
      DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined, input_reg,
4975
                   Operand(at));
4976 4977 4978 4979 4980 4981
      __ LoadRoot(scratch, Heap::kNanValueRootIndex);
      __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
      __ Branch(&done);
    }
  } else {
    __ SmiUntag(scratch, input_reg);
4982
    DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
  }
  // Smi to double register conversion
  __ bind(&load_smi);
  // scratch: untagged value of input_reg
  __ mtc1(scratch, result_reg);
  __ cvt_d_w(result_reg, result_reg);
  __ bind(&done);
}


void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
  Register input_reg = ToRegister(instr->value());
  Register scratch1 = scratch0();
  Register scratch2 = ToRegister(instr->temp());
  DoubleRegister double_scratch = double_scratch0();
  DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());

5000 5001
  DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
  DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026

  Label done;

  // The input is a tagged HeapObject.
  // Heap number map check.
  __ ld(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
  __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
  // This 'at' value and scratch1 map value are used for tests in both clauses
  // of the if.

  if (instr->truncating()) {
    // Performs a truncating conversion of a floating point number as used by
    // the JS bitwise operations.
    Label no_heap_number, check_bools, check_false;
    // Check HeapNumber map.
    __ Branch(USE_DELAY_SLOT, &no_heap_number, ne, scratch1, Operand(at));
    __ mov(scratch2, input_reg);  // In delay slot.
    __ TruncateHeapNumberToI(input_reg, scratch2);
    __ Branch(&done);

    // Check for Oddballs. Undefined/False is converted to zero and True to one
    // for truncating conversions.
    __ bind(&no_heap_number);
    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
    __ Branch(&check_bools, ne, input_reg, Operand(at));
5027
    DCHECK(ToRegister(instr->result()).is(input_reg));
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
    __ Branch(USE_DELAY_SLOT, &done);
    __ mov(input_reg, zero_reg);  // In delay slot.

    __ bind(&check_bools);
    __ LoadRoot(at, Heap::kTrueValueRootIndex);
    __ Branch(&check_false, ne, scratch2, Operand(at));
    __ Branch(USE_DELAY_SLOT, &done);
    __ li(input_reg, Operand(1));  // In delay slot.

    __ bind(&check_false);
    __ LoadRoot(at, Heap::kFalseValueRootIndex);
5039
    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean,
5040
                 scratch2, Operand(at));
5041 5042 5043
    __ Branch(USE_DELAY_SLOT, &done);
    __ mov(input_reg, zero_reg);  // In delay slot.
  } else {
5044 5045
    DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch1,
                 Operand(at));
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059

    // Load the double value.
    __ ldc1(double_scratch,
            FieldMemOperand(input_reg, HeapNumber::kValueOffset));

    Register except_flag = scratch2;
    __ EmitFPUTruncate(kRoundToZero,
                       input_reg,
                       double_scratch,
                       scratch1,
                       double_scratch2,
                       except_flag,
                       kCheckForInexactConversion);

5060
    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
5061
                 Operand(zero_reg));
5062 5063 5064 5065 5066 5067

    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
      __ Branch(&done, ne, input_reg, Operand(zero_reg));

      __ mfhc1(scratch1, double_scratch);  // Get exponent/sign bits.
      __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
5068 5069
      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
                   Operand(zero_reg));
5070 5071 5072 5073 5074 5075 5076
    }
  }
  __ bind(&done);
}


void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5077
  class DeferredTaggedToI FINAL : public LDeferredCode {
5078 5079 5080
   public:
    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
        : LDeferredCode(codegen), instr_(instr) { }
5081 5082 5083
    void Generate() OVERRIDE { codegen()->DoDeferredTaggedToI(instr_); }
    LInstruction* instr() OVERRIDE { return instr_; }

5084 5085 5086 5087 5088
   private:
    LTaggedToI* instr_;
  };

  LOperand* input = instr->value();
5089 5090
  DCHECK(input->IsRegister());
  DCHECK(input->Equals(instr->result()));
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110

  Register input_reg = ToRegister(input);

  if (instr->hydrogen()->value()->representation().IsSmi()) {
    __ SmiUntag(input_reg);
  } else {
    DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);

    // Let the deferred code handle the HeapObject case.
    __ JumpIfNotSmi(input_reg, deferred->entry());

    // Smi to int32 conversion.
    __ SmiUntag(input_reg);
    __ bind(deferred->exit());
  }
}


void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
  LOperand* input = instr->value();
5111
  DCHECK(input->IsRegister());
5112
  LOperand* result = instr->result();
5113
  DCHECK(result->IsDoubleRegister());
5114 5115 5116 5117 5118 5119 5120 5121

  Register input_reg = ToRegister(input);
  DoubleRegister result_reg = ToDoubleRegister(result);

  HValue* value = instr->hydrogen()->value();
  NumberUntagDMode mode = value->representation().IsSmi()
      ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;

5122
  EmitNumberUntagD(instr, input_reg, result_reg, mode);
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
}


void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
  Register result_reg = ToRegister(instr->result());
  Register scratch1 = scratch0();
  DoubleRegister double_input = ToDoubleRegister(instr->value());

  if (instr->truncating()) {
    __ TruncateDoubleToI(result_reg, double_input);
  } else {
    Register except_flag = LCodeGen::scratch1();

    __ EmitFPUTruncate(kRoundToMinusInf,
                       result_reg,
                       double_input,
                       scratch1,
                       double_scratch0(),
                       except_flag,
                       kCheckForInexactConversion);

    // Deopt if the operation did not succeed (except_flag != 0).
5145
    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
5146
                 Operand(zero_reg));
5147 5148 5149 5150 5151 5152

    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
      Label done;
      __ Branch(&done, ne, result_reg, Operand(zero_reg));
      __ mfhc1(scratch1, double_input);  // Get exponent/sign bits.
      __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
5153 5154
      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
                   Operand(zero_reg));
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
      __ bind(&done);
    }
  }
}


void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
  Register result_reg = ToRegister(instr->result());
  Register scratch1 = LCodeGen::scratch0();
  DoubleRegister double_input = ToDoubleRegister(instr->value());

  if (instr->truncating()) {
    __ TruncateDoubleToI(result_reg, double_input);
  } else {
    Register except_flag = LCodeGen::scratch1();

    __ EmitFPUTruncate(kRoundToMinusInf,
                       result_reg,
                       double_input,
                       scratch1,
                       double_scratch0(),
                       except_flag,
                       kCheckForInexactConversion);

    // Deopt if the operation did not succeed (except_flag != 0).
5180
    DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
5181
                 Operand(zero_reg));
5182 5183 5184 5185 5186 5187

    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
      Label done;
      __ Branch(&done, ne, result_reg, Operand(zero_reg));
      __ mfhc1(scratch1, double_input);  // Get exponent/sign bits.
      __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
5188 5189
      DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
                   Operand(zero_reg));
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
      __ bind(&done);
    }
  }
  __ SmiTag(result_reg, result_reg);
}


void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
  LOperand* input = instr->value();
  __ SmiTst(ToRegister(input), at);
5200
  DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, at, Operand(zero_reg));
5201 5202 5203 5204 5205 5206 5207
}


void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
    LOperand* input = instr->value();
    __ SmiTst(ToRegister(input), at);
5208
    DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
  }
}


void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
  Register input = ToRegister(instr->value());
  Register scratch = scratch0();

  __ GetObjectType(input, scratch, scratch);

  if (instr->hydrogen()->is_interval_check()) {
    InstanceType first;
    InstanceType last;
    instr->hydrogen()->GetCheckInterval(&first, &last);

    // If there is only one type in the interval check for equality.
    if (first == last) {
5226 5227
      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType, scratch,
                   Operand(first));
5228
    } else {
5229 5230
      DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType, scratch,
                   Operand(first));
5231 5232
      // Omit check for the last type.
      if (last != LAST_TYPE) {
5233 5234
        DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType, scratch,
                     Operand(last));
5235 5236 5237 5238 5239 5240 5241
      }
    }
  } else {
    uint8_t mask;
    uint8_t tag;
    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);

5242 5243
    if (base::bits::IsPowerOfTwo32(mask)) {
      DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
5244
      __ And(at, scratch, mask);
5245 5246
      DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType,
                   at, Operand(zero_reg));
5247 5248
    } else {
      __ And(scratch, scratch, Operand(mask));
5249 5250
      DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType, scratch,
                   Operand(tag));
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
    }
  }
}


void LCodeGen::DoCheckValue(LCheckValue* instr) {
  Register reg = ToRegister(instr->value());
  Handle<HeapObject> object = instr->hydrogen()->object().handle();
  AllowDeferredHandleDereference smi_check;
  if (isolate()->heap()->InNewSpace(*object)) {
    Register reg = ToRegister(instr->value());
    Handle<Cell> cell = isolate()->factory()->NewCell(object);
5263
    __ li(at, Operand(cell));
5264
    __ ld(at, FieldMemOperand(at, Cell::kValueOffset));
5265
    DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch, reg, Operand(at));
5266
  } else {
5267
    DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch, reg, Operand(object));
5268 5269 5270 5271 5272 5273
  }
}


void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
  {
5274
    PushSafepointRegistersScope scope(this);
5275 5276 5277 5278 5279 5280 5281 5282
    __ push(object);
    __ mov(cp, zero_reg);
    __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
    RecordSafepointWithRegisters(
        instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
    __ StoreToSafepointRegisterSlot(v0, scratch0());
  }
  __ SmiTst(scratch0(), at);
5283 5284
  DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed, at,
               Operand(zero_reg));
5285 5286 5287 5288
}


void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
5289
  class DeferredCheckMaps FINAL : public LDeferredCode {
5290 5291 5292 5293 5294
   public:
    DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
        : LDeferredCode(codegen), instr_(instr), object_(object) {
      SetExit(check_maps());
    }
5295
    void Generate() OVERRIDE {
5296 5297 5298
      codegen()->DoDeferredInstanceMigration(instr_, object_);
    }
    Label* check_maps() { return &check_maps_; }
5299 5300
    LInstruction* instr() OVERRIDE { return instr_; }

5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
   private:
    LCheckMaps* instr_;
    Label check_maps_;
    Register object_;
  };

  if (instr->hydrogen()->IsStabilityCheck()) {
    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
    for (int i = 0; i < maps->size(); ++i) {
      AddStabilityDependency(maps->at(i).handle());
    }
    return;
  }

  Register map_reg = scratch0();
  LOperand* input = instr->value();
5317
  DCHECK(input->IsRegister());
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
  Register reg = ToRegister(input);
  __ ld(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));

  DeferredCheckMaps* deferred = NULL;
  if (instr->hydrogen()->HasMigrationTarget()) {
    deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
    __ bind(deferred->check_maps());
  }

  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
  Label success;
  for (int i = 0; i < maps->size() - 1; i++) {
    Handle<Map> map = maps->at(i).handle();
    __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
  }
  Handle<Map> map = maps->at(maps->size() - 1).handle();
  // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
  if (instr->hydrogen()->HasMigrationTarget()) {
    __ Branch(deferred->entry(), ne, map_reg, Operand(map));
  } else {
5338
    DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, map_reg, Operand(map));
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
  }

  __ bind(&success);
}


void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
  DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
  Register result_reg = ToRegister(instr->result());
  DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
  __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
}


void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
  Register unclamped_reg = ToRegister(instr->unclamped());
  Register result_reg = ToRegister(instr->result());
  __ ClampUint8(result_reg, unclamped_reg);
}


void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
  Register scratch = scratch0();
  Register input_reg = ToRegister(instr->unclamped());
  Register result_reg = ToRegister(instr->result());
  DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
  Label is_smi, done, heap_number;

  // Both smi and heap number cases are handled.
  __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);

  // Check for heap number
  __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
  __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));

  // Check for undefined. Undefined is converted to zero for clamping
  // conversions.
5376
  DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined, input_reg,
5377
               Operand(factory()->undefined_value()));
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
  __ mov(result_reg, zero_reg);
  __ jmp(&done);

  // Heap number
  __ bind(&heap_number);
  __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
                                             HeapNumber::kValueOffset));
  __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
  __ jmp(&done);

  __ bind(&is_smi);
  __ ClampUint8(result_reg, scratch);

  __ bind(&done);
}


void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
  DoubleRegister value_reg = ToDoubleRegister(instr->value());
  Register result_reg = ToRegister(instr->result());
  if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
    __ FmoveHigh(result_reg, value_reg);
  } else {
    __ FmoveLow(result_reg, value_reg);
  }
}


void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
  Register hi_reg = ToRegister(instr->hi());
  Register lo_reg = ToRegister(instr->lo());
  DoubleRegister result_reg = ToDoubleRegister(instr->result());
  __ Move(result_reg, lo_reg, hi_reg);
}


void LCodeGen::DoAllocate(LAllocate* instr) {
5415
  class DeferredAllocate FINAL : public LDeferredCode {
5416 5417 5418
   public:
    DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
        : LDeferredCode(codegen), instr_(instr) { }
5419 5420 5421
    void Generate() OVERRIDE { codegen()->DoDeferredAllocate(instr_); }
    LInstruction* instr() OVERRIDE { return instr_; }

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
   private:
    LAllocate* instr_;
  };

  DeferredAllocate* deferred =
      new(zone()) DeferredAllocate(this, instr);

  Register result = ToRegister(instr->result());
  Register scratch = ToRegister(instr->temp1());
  Register scratch2 = ToRegister(instr->temp2());

  // Allocate memory for the object.
  AllocationFlags flags = TAG_OBJECT;
  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
  }
5438
  if (instr->hydrogen()->IsOldSpaceAllocation()) {
5439
    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5440
    flags = static_cast<AllocationFlags>(flags | PRETENURE);
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
  }
  if (instr->size()->IsConstantOperand()) {
    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
    if (size <= Page::kMaxRegularHeapObjectSize) {
      __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
    } else {
      __ jmp(deferred->entry());
    }
  } else {
    Register size = ToRegister(instr->size());
    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
  }

  __ bind(deferred->exit());

  if (instr->hydrogen()->MustPrefillWithFiller()) {
    STATIC_ASSERT(kHeapObjectTag == 1);
    if (instr->size()->IsConstantOperand()) {
      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
      __ li(scratch, Operand(size - kHeapObjectTag));
    } else {
      __ Dsubu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
    }
    __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
    Label loop;
    __ bind(&loop);
    __ Dsubu(scratch, scratch, Operand(kPointerSize));
    __ Daddu(at, result, Operand(scratch));
    __ sd(scratch2, MemOperand(at));
    __ Branch(&loop, ge, scratch, Operand(zero_reg));
  }
}


void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
  Register result = ToRegister(instr->result());

  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
  __ mov(result, zero_reg);

5483
  PushSafepointRegistersScope scope(this);
5484 5485
  if (instr->size()->IsRegister()) {
    Register size = ToRegister(instr->size());
5486
    DCHECK(!size.is(result));
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
    __ SmiTag(size);
    __ push(size);
  } else {
    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
    if (size >= 0 && size <= Smi::kMaxValue) {
      __ li(v0, Operand(Smi::FromInt(size)));
      __ Push(v0);
    } else {
      // We should never get here at runtime => abort
      __ stop("invalid allocation size");
      return;
    }
  }

  int flags = AllocateDoubleAlignFlag::encode(
      instr->hydrogen()->MustAllocateDoubleAligned());
5503
  if (instr->hydrogen()->IsOldSpaceAllocation()) {
5504
    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5505
    flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
  } else {
    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
  }
  __ li(v0, Operand(Smi::FromInt(flags)));
  __ Push(v0);

  CallRuntimeFromDeferred(
      Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
  __ StoreToSafepointRegisterSlot(v0, result);
}


void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5519 5520
  DCHECK(ToRegister(instr->value()).is(a0));
  DCHECK(ToRegister(instr->result()).is(v0));
5521 5522 5523 5524 5525 5526
  __ push(a0);
  CallRuntime(Runtime::kToFastProperties, 1, instr);
}


void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5527
  DCHECK(ToRegister(instr->context()).is(cp));
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
  Label materialized;
  // Registers will be used as follows:
  // a7 = literals array.
  // a1 = regexp literal.
  // a0 = regexp literal clone.
  // a2 and a4-a6 are used as temporaries.
  int literal_offset =
      FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
  __ li(a7, instr->hydrogen()->literals());
  __ ld(a1, FieldMemOperand(a7, literal_offset));
  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
  __ Branch(&materialized, ne, a1, Operand(at));

  // Create regexp literal using runtime function
  // Result will be in v0.
  __ li(a6, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
  __ li(a5, Operand(instr->hydrogen()->pattern()));
  __ li(a4, Operand(instr->hydrogen()->flags()));
  __ Push(a7, a6, a5, a4);
  CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
  __ mov(a1, v0);

  __ bind(&materialized);
  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
  Label allocated, runtime_allocate;

  __ Allocate(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
  __ jmp(&allocated);

  __ bind(&runtime_allocate);
  __ li(a0, Operand(Smi::FromInt(size)));
  __ Push(a1, a0);
  CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
  __ pop(a1);

  __ bind(&allocated);
  // Copy the content into the newly allocated memory.
  // (Unroll copy loop once for better throughput).
  for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
    __ ld(a3, FieldMemOperand(a1, i));
    __ ld(a2, FieldMemOperand(a1, i + kPointerSize));
    __ sd(a3, FieldMemOperand(v0, i));
    __ sd(a2, FieldMemOperand(v0, i + kPointerSize));
  }
  if ((size % (2 * kPointerSize)) != 0) {
    __ ld(a3, FieldMemOperand(a1, size - kPointerSize));
    __ sd(a3, FieldMemOperand(v0, size - kPointerSize));
  }
}


void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
5580
  DCHECK(ToRegister(instr->context()).is(cp));
5581 5582 5583 5584
  // Use the fast case closure allocation code that allocates in new
  // space for nested functions that don't need literals cloning.
  bool pretenure = instr->hydrogen()->pretenure();
  if (!pretenure && instr->hydrogen()->has_no_literals()) {
5585
    FastNewClosureStub stub(isolate(), instr->hydrogen()->language_mode(),
5586
                            instr->hydrogen()->kind());
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
    __ li(a2, Operand(instr->hydrogen()->shared_info()));
    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
  } else {
    __ li(a2, Operand(instr->hydrogen()->shared_info()));
    __ li(a1, Operand(pretenure ? factory()->true_value()
                                : factory()->false_value()));
    __ Push(cp, a2, a1);
    CallRuntime(Runtime::kNewClosure, 3, instr);
  }
}


void LCodeGen::DoTypeof(LTypeof* instr) {
5600
  DCHECK(ToRegister(instr->result()).is(v0));
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
  Register input = ToRegister(instr->value());
  __ push(input);
  CallRuntime(Runtime::kTypeof, 1, instr);
}


void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
  Register input = ToRegister(instr->value());

  Register cmp1 = no_reg;
  Operand cmp2 = Operand(no_reg);

  Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
                                                  instr->FalseLabel(chunk_),
                                                  input,
                                                  instr->type_literal(),
                                                  &cmp1,
                                                  &cmp2);

5620 5621
  DCHECK(cmp1.is_valid());
  DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701

  if (final_branch_condition != kNoCondition) {
    EmitBranch(instr, final_branch_condition, cmp1, cmp2);
  }
}


Condition LCodeGen::EmitTypeofIs(Label* true_label,
                                 Label* false_label,
                                 Register input,
                                 Handle<String> type_name,
                                 Register* cmp1,
                                 Operand* cmp2) {
  // This function utilizes the delay slot heavily. This is used to load
  // values that are always usable without depending on the type of the input
  // register.
  Condition final_branch_condition = kNoCondition;
  Register scratch = scratch0();
  Factory* factory = isolate()->factory();
  if (String::Equals(type_name, factory->number_string())) {
    __ JumpIfSmi(input, true_label);
    __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
    *cmp1 = input;
    *cmp2 = Operand(at);
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->string_string())) {
    __ JumpIfSmi(input, false_label);
    __ GetObjectType(input, input, scratch);
    __ Branch(USE_DELAY_SLOT, false_label,
              ge, scratch, Operand(FIRST_NONSTRING_TYPE));
    // input is an object so we can load the BitFieldOffset even if we take the
    // other branch.
    __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
    __ And(at, at, 1 << Map::kIsUndetectable);
    *cmp1 = at;
    *cmp2 = Operand(zero_reg);
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->symbol_string())) {
    __ JumpIfSmi(input, false_label);
    __ GetObjectType(input, input, scratch);
    *cmp1 = scratch;
    *cmp2 = Operand(SYMBOL_TYPE);
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->boolean_string())) {
    __ LoadRoot(at, Heap::kTrueValueRootIndex);
    __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
    __ LoadRoot(at, Heap::kFalseValueRootIndex);
    *cmp1 = at;
    *cmp2 = Operand(input);
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->undefined_string())) {
    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
    __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
    // The first instruction of JumpIfSmi is an And - it is safe in the delay
    // slot.
    __ JumpIfSmi(input, false_label);
    // Check for undetectable objects => true.
    __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
    __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
    __ And(at, at, 1 << Map::kIsUndetectable);
    *cmp1 = at;
    *cmp2 = Operand(zero_reg);
    final_branch_condition = ne;

  } else if (String::Equals(type_name, factory->function_string())) {
    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
    __ JumpIfSmi(input, false_label);
    __ GetObjectType(input, scratch, input);
    __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE));
    *cmp1 = input;
    *cmp2 = Operand(JS_FUNCTION_PROXY_TYPE);
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->object_string())) {
    __ JumpIfSmi(input, false_label);
5702 5703
    __ LoadRoot(at, Heap::kNullValueRootIndex);
    __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
    Register map = input;
    __ GetObjectType(input, map, scratch);
    __ Branch(false_label,
              lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
    __ Branch(USE_DELAY_SLOT, false_label,
              gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
    // map is still valid, so the BitField can be loaded in delay slot.
    // Check for undetectable objects => false.
    __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
    __ And(at, at, 1 << Map::kIsUndetectable);
    *cmp1 = at;
    *cmp2 = Operand(zero_reg);
    final_branch_condition = eq;

  } else {
    *cmp1 = at;
    *cmp2 = Operand(zero_reg);  // Set to valid regs, to avoid caller assertion.
    __ Branch(false_label);
  }

  return final_branch_condition;
}


void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
  Register temp1 = ToRegister(instr->temp());

  EmitIsConstructCall(temp1, scratch0());

  EmitBranch(instr, eq, temp1,
             Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
}


void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
5739
  DCHECK(!temp1.is(temp2));
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
  // Get the frame pointer for the calling frame.
  __ ld(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));

  // Skip the arguments adaptor frame if it exists.
  Label check_frame_marker;
  __ ld(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
  __ Branch(&check_frame_marker, ne, temp2,
            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
  __ ld(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));

  // Check the marker in the calling frame.
  __ bind(&check_frame_marker);
  __ ld(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
}


void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
  if (!info()->IsStub()) {
    // Ensure that we have enough space after the previous lazy-bailout
    // instruction for patching the code here.
    int current_pc = masm()->pc_offset();
    if (current_pc < last_lazy_deopt_pc_ + space_needed) {
      int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5763
      DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
      while (padding_size > 0) {
        __ nop();
        padding_size -= Assembler::kInstrSize;
      }
    }
  }
  last_lazy_deopt_pc_ = masm()->pc_offset();
}


void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
  last_lazy_deopt_pc_ = masm()->pc_offset();
5776
  DCHECK(instr->HasEnvironment());
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
  LEnvironment* env = instr->environment();
  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}


void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
  Deoptimizer::BailoutType type = instr->hydrogen()->type();
  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
  // needed return address), even though the implementation of LAZY and EAGER is
  // now identical. When LAZY is eventually completely folded into EAGER, remove
  // the special case below.
  if (info()->IsStub() && type == Deoptimizer::EAGER) {
    type = Deoptimizer::LAZY;
  }

5793
  DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type, zero_reg,
5794
               Operand(zero_reg));
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
}


void LCodeGen::DoDummy(LDummy* instr) {
  // Nothing to see here, move on!
}


void LCodeGen::DoDummyUse(LDummyUse* instr) {
  // Nothing to see here, move on!
}


void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5809
  PushSafepointRegistersScope scope(this);
5810 5811 5812 5813
  LoadContextFromDeferred(instr->context());
  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
  RecordSafepointWithLazyDeopt(
      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5814
  DCHECK(instr->HasEnvironment());
5815 5816 5817 5818 5819 5820
  LEnvironment* env = instr->environment();
  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}


void LCodeGen::DoStackCheck(LStackCheck* instr) {
5821
  class DeferredStackCheck FINAL : public LDeferredCode {
5822 5823 5824
   public:
    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
        : LDeferredCode(codegen), instr_(instr) { }
5825 5826 5827
    void Generate() OVERRIDE { codegen()->DoDeferredStackCheck(instr_); }
    LInstruction* instr() OVERRIDE { return instr_; }

5828 5829 5830 5831
   private:
    LStackCheck* instr_;
  };

5832
  DCHECK(instr->HasEnvironment());
5833 5834 5835 5836 5837 5838 5839 5840
  LEnvironment* env = instr->environment();
  // There is no LLazyBailout instruction for stack-checks. We have to
  // prepare for lazy deoptimization explicitly here.
  if (instr->hydrogen()->is_function_entry()) {
    // Perform stack overflow check.
    Label done;
    __ LoadRoot(at, Heap::kStackLimitRootIndex);
    __ Branch(&done, hs, sp, Operand(at));
5841 5842
    DCHECK(instr->context()->IsRegister());
    DCHECK(ToRegister(instr->context()).is(cp));
5843 5844 5845 5846 5847
    CallCode(isolate()->builtins()->StackCheck(),
             RelocInfo::CODE_TARGET,
             instr);
    __ bind(&done);
  } else {
5848
    DCHECK(instr->hydrogen()->is_backwards_branch());
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
    // Perform stack overflow check if this goto needs it before jumping.
    DeferredStackCheck* deferred_stack_check =
        new(zone()) DeferredStackCheck(this, instr);
    __ LoadRoot(at, Heap::kStackLimitRootIndex);
    __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    __ bind(instr->done_label());
    deferred_stack_check->SetExit(instr->done_label());
    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
    // Don't record a deoptimization index for the safepoint here.
    // This will be done explicitly when emitting call and the safepoint in
    // the deferred code.
  }
}


void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
  // This is a pseudo-instruction that ensures that the environment here is
  // properly registered for deoptimization and records the assembler's PC
  // offset.
  LEnvironment* environment = instr->environment();

  // If the environment were already registered, we would have no way of
  // backpatching it with the spill slot operands.
5873
  DCHECK(!environment->HasBeenRegistered());
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);

  GenerateOsrPrologue();
}


void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
  Register result = ToRegister(instr->result());
  Register object = ToRegister(instr->object());
  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5884
  DeoptimizeIf(eq, instr, Deoptimizer::kUndefined, object, Operand(at));
5885 5886 5887

  Register null_value = a5;
  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
5888
  DeoptimizeIf(eq, instr, Deoptimizer::kNull, object, Operand(null_value));
5889 5890

  __ And(at, object, kSmiTagMask);
5891
  DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
5892 5893 5894

  STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
  __ GetObjectType(object, a1, a1);
5895
  DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject, a1,
5896
               Operand(LAST_JS_PROXY_TYPE));
5897 5898

  Label use_cache, call_runtime;
5899
  DCHECK(object.is(a0));
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
  __ CheckEnumCache(null_value, &call_runtime);

  __ ld(result, FieldMemOperand(object, HeapObject::kMapOffset));
  __ Branch(&use_cache);

  // Get the set of properties to enumerate.
  __ bind(&call_runtime);
  __ push(object);
  CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);

  __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
5911
  DCHECK(result.is(v0));
5912
  __ LoadRoot(at, Heap::kMetaMapRootIndex);
5913
  DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, a1, Operand(at));
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
  __ bind(&use_cache);
}


void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
  Register map = ToRegister(instr->map());
  Register result = ToRegister(instr->result());
  Label load_cache, done;
  __ EnumLength(result, map);
  __ Branch(&load_cache, ne, result, Operand(Smi::FromInt(0)));
  __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
  __ jmp(&done);

  __ bind(&load_cache);
  __ LoadInstanceDescriptors(map, result);
  __ ld(result,
        FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
  __ ld(result,
        FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5933
  DeoptimizeIf(eq, instr, Deoptimizer::kNoCache, result, Operand(zero_reg));
5934 5935 5936 5937 5938 5939 5940 5941 5942

  __ bind(&done);
}


void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
  Register object = ToRegister(instr->value());
  Register map = ToRegister(instr->map());
  __ ld(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5943
  DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, map, Operand(scratch0()));
5944 5945 5946 5947 5948 5949 5950
}


void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
                                           Register result,
                                           Register object,
                                           Register index) {
5951
  PushSafepointRegistersScope scope(this);
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
  __ Push(object, index);
  __ mov(cp, zero_reg);
  __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
  RecordSafepointWithRegisters(
     instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
  __ StoreToSafepointRegisterSlot(v0, result);
}


void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5962
  class DeferredLoadMutableDouble FINAL : public LDeferredCode {
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
   public:
    DeferredLoadMutableDouble(LCodeGen* codegen,
                              LLoadFieldByIndex* instr,
                              Register result,
                              Register object,
                              Register index)
        : LDeferredCode(codegen),
          instr_(instr),
          result_(result),
          object_(object),
          index_(index) {
    }
5975
    void Generate() OVERRIDE {
5976 5977
      codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
    }
5978 5979
    LInstruction* instr() OVERRIDE { return instr_; }

5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
   private:
    LLoadFieldByIndex* instr_;
    Register result_;
    Register object_;
    Register index_;
  };

  Register object = ToRegister(instr->object());
  Register index = ToRegister(instr->index());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();

  DeferredLoadMutableDouble* deferred;
  deferred = new(zone()) DeferredLoadMutableDouble(
      this, instr, result, object, index);

  Label out_of_object, done;

  __ And(scratch, index, Operand(Smi::FromInt(1)));
  __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
  __ dsra(index, index, 1);

  __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
  __ SmiScale(scratch, index, kPointerSizeLog2);  // In delay slot.
  __ Daddu(scratch, object, scratch);
  __ ld(result, FieldMemOperand(scratch, JSObject::kHeaderSize));

  __ Branch(&done);

  __ bind(&out_of_object);
  __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
  // Index is equal to negated out of object property index plus 1.
  __ Dsubu(scratch, result, scratch);
  __ ld(result, FieldMemOperand(scratch,
                                FixedArray::kHeaderSize - kPointerSize));
  __ bind(deferred->exit());
  __ bind(&done);
}


void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
  Register context = ToRegister(instr->context());
  __ sd(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
}


void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
  Handle<ScopeInfo> scope_info = instr->scope_info();
  __ li(at, scope_info);
  __ Push(at, ToRegister(instr->function()));
  CallRuntime(Runtime::kPushBlockContext, 2, instr);
  RecordSafepoint(Safepoint::kNoLazyDeopt);
}


#undef __

} }  // namespace v8::internal