map-updater.cc 27.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/map-updater.h"

#include "src/field-type.h"
#include "src/handles.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects.h"
#include "src/transitions.h"

namespace v8 {
namespace internal {

namespace {

inline bool EqualImmutableValues(Object* obj1, Object* obj2) {
  if (obj1 == obj2) return true;  // Valid for both kData and kAccessor kinds.
  // TODO(ishell): compare AccessorPairs.
  return false;
}

}  // namespace

27 28 29 30 31 32 33 34 35 36 37 38 39 40
MapUpdater::MapUpdater(Isolate* isolate, Handle<Map> old_map)
    : isolate_(isolate),
      old_map_(old_map),
      old_descriptors_(old_map->instance_descriptors(), isolate_),
      old_nof_(old_map_->NumberOfOwnDescriptors()),
      new_elements_kind_(old_map_->elements_kind()),
      is_transitionable_fast_elements_kind_(
          IsTransitionableFastElementsKind(new_elements_kind_)) {
  // We shouldn't try to update remote objects.
  DCHECK(!old_map->FindRootMap(isolate)
              ->GetConstructor()
              ->IsFunctionTemplateInfo());
}

41 42 43 44 45 46 47 48
Name* MapUpdater::GetKey(int descriptor) const {
  return old_descriptors_->GetKey(descriptor);
}

PropertyDetails MapUpdater::GetDetails(int descriptor) const {
  DCHECK_LE(0, descriptor);
  if (descriptor == modified_descriptor_) {
    return PropertyDetails(new_kind_, new_attributes_, new_location_,
49
                           new_constness_, new_representation_);
50 51 52 53 54 55 56 57 58 59 60
  }
  return old_descriptors_->GetDetails(descriptor);
}

Object* MapUpdater::GetValue(int descriptor) const {
  DCHECK_LE(0, descriptor);
  if (descriptor == modified_descriptor_) {
    DCHECK_EQ(kDescriptor, new_location_);
    return *new_value_;
  }
  DCHECK_EQ(kDescriptor, GetDetails(descriptor).location());
61
  return old_descriptors_->GetStrongValue(descriptor);
62 63
}

64
FieldType MapUpdater::GetFieldType(int descriptor) const {
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  DCHECK_LE(0, descriptor);
  if (descriptor == modified_descriptor_) {
    DCHECK_EQ(kField, new_location_);
    return *new_field_type_;
  }
  DCHECK_EQ(kField, GetDetails(descriptor).location());
  return old_descriptors_->GetFieldType(descriptor);
}

Handle<FieldType> MapUpdater::GetOrComputeFieldType(
    int descriptor, PropertyLocation location,
    Representation representation) const {
  DCHECK_LE(0, descriptor);
  // |location| is just a pre-fetched GetDetails(descriptor).location().
  DCHECK_EQ(location, GetDetails(descriptor).location());
  if (location == kField) {
    return handle(GetFieldType(descriptor), isolate_);
  } else {
    return GetValue(descriptor)->OptimalType(isolate_, representation);
  }
}

Handle<FieldType> MapUpdater::GetOrComputeFieldType(
    Handle<DescriptorArray> descriptors, int descriptor,
    PropertyLocation location, Representation representation) {
  // |location| is just a pre-fetched GetDetails(descriptor).location().
  DCHECK_EQ(descriptors->GetDetails(descriptor).location(), location);
  if (location == kField) {
    return handle(descriptors->GetFieldType(descriptor), isolate_);
  } else {
95
    return descriptors->GetStrongValue(descriptor)
96 97 98 99 100 101
        ->OptimalType(isolate_, representation);
  }
}

Handle<Map> MapUpdater::ReconfigureToDataField(int descriptor,
                                               PropertyAttributes attributes,
102
                                               PropertyConstness constness,
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                                               Representation representation,
                                               Handle<FieldType> field_type) {
  DCHECK_EQ(kInitialized, state_);
  DCHECK_LE(0, descriptor);
  DCHECK(!old_map_->is_dictionary_map());
  modified_descriptor_ = descriptor;
  new_kind_ = kData;
  new_attributes_ = attributes;
  new_location_ = kField;

  PropertyDetails old_details =
      old_descriptors_->GetDetails(modified_descriptor_);

  // If property kind is not reconfigured merge the result with
  // representation/field type from the old descriptor.
  if (old_details.kind() == new_kind_) {
119
    new_constness_ = GeneralizeConstness(constness, old_details.constness());
120

121
    Representation old_representation = old_details.representation();
122
    new_representation_ = representation.generalize(old_representation);
123 124 125 126 127

    Handle<FieldType> old_field_type =
        GetOrComputeFieldType(old_descriptors_, modified_descriptor_,
                              old_details.location(), new_representation_);

128 129 130 131 132 133 134
    new_field_type_ =
        Map::GeneralizeFieldType(old_representation, old_field_type,
                                 new_representation_, field_type, isolate_);
  } else {
    // We don't know if this is a first property kind reconfiguration
    // and we don't know which value was in this property previously
    // therefore we can't treat such a property as constant.
135
    new_constness_ = PropertyConstness::kMutable;
136 137
    new_representation_ = representation;
    new_field_type_ = field_type;
138 139
  }

140 141 142
  Map::GeneralizeIfCanHaveTransitionableFastElementsKind(
      isolate_, old_map_->instance_type(), &new_constness_,
      &new_representation_, &new_field_type_);
143

144 145 146 147 148 149 150 151 152 153 154
  if (TryRecofigureToDataFieldInplace() == kEnd) return result_map_;
  if (FindRootMap() == kEnd) return result_map_;
  if (FindTargetMap() == kEnd) return result_map_;
  ConstructNewMap();
  DCHECK_EQ(kEnd, state_);
  return result_map_;
}

Handle<Map> MapUpdater::ReconfigureElementsKind(ElementsKind elements_kind) {
  DCHECK_EQ(kInitialized, state_);
  new_elements_kind_ = elements_kind;
155 156
  is_transitionable_fast_elements_kind_ =
      IsTransitionableFastElementsKind(new_elements_kind_);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

  if (FindRootMap() == kEnd) return result_map_;
  if (FindTargetMap() == kEnd) return result_map_;
  ConstructNewMap();
  DCHECK_EQ(kEnd, state_);
  return result_map_;
}

Handle<Map> MapUpdater::Update() {
  DCHECK_EQ(kInitialized, state_);
  DCHECK(old_map_->is_deprecated());

  if (FindRootMap() == kEnd) return result_map_;
  if (FindTargetMap() == kEnd) return result_map_;
  ConstructNewMap();
  DCHECK_EQ(kEnd, state_);
  return result_map_;
}

176 177 178 179
void MapUpdater::GeneralizeField(Handle<Map> map, int modify_index,
                                 PropertyConstness new_constness,
                                 Representation new_representation,
                                 Handle<FieldType> new_field_type) {
180 181
  Map::GeneralizeField(isolate_, map, modify_index, new_constness,
                       new_representation, new_field_type);
182 183 184 185

  DCHECK_EQ(*old_descriptors_, old_map_->instance_descriptors());
}

186
MapUpdater::State MapUpdater::CopyGeneralizeAllFields(const char* reason) {
187 188 189
  result_map_ = Map::CopyGeneralizeAllFields(
      isolate_, old_map_, new_elements_kind_, modified_descriptor_, new_kind_,
      new_attributes_, reason);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  state_ = kEnd;
  return state_;  // Done.
}

MapUpdater::State MapUpdater::TryRecofigureToDataFieldInplace() {
  // If it's just a representation generalization case (i.e. property kind and
  // attributes stays unchanged) it's fine to transition from None to anything
  // but double without any modification to the object, because the default
  // uninitialized value for representation None can be overwritten by both
  // smi and tagged values. Doubles, however, would require a box allocation.
  if (new_representation_.IsNone() || new_representation_.IsDouble()) {
    return state_;  // Not done yet.
  }

  PropertyDetails old_details =
      old_descriptors_->GetDetails(modified_descriptor_);
  Representation old_representation = old_details.representation();
  if (!old_representation.IsNone()) {
    return state_;  // Not done yet.
  }

  DCHECK_EQ(new_kind_, old_details.kind());
  DCHECK_EQ(new_attributes_, old_details.attributes());
  DCHECK_EQ(kField, old_details.location());
  if (FLAG_trace_generalization) {
    old_map_->PrintGeneralization(
216 217
        isolate_, stdout, "uninitialized field", modified_descriptor_, old_nof_,
        old_nof_, false, old_representation, new_representation_,
218 219 220
        handle(old_descriptors_->GetFieldType(modified_descriptor_), isolate_),
        MaybeHandle<Object>(), new_field_type_, MaybeHandle<Object>());
  }
221 222
  Handle<Map> field_owner(
      old_map_->FindFieldOwner(isolate_, modified_descriptor_), isolate_);
223

224 225
  GeneralizeField(field_owner, modified_descriptor_, new_constness_,
                  new_representation_, new_field_type_);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  // Check that the descriptor array was updated.
  DCHECK(old_descriptors_->GetDetails(modified_descriptor_)
             .representation()
             .Equals(new_representation_));
  DCHECK(old_descriptors_->GetFieldType(modified_descriptor_)
             ->NowIs(new_field_type_));

  result_map_ = old_map_;
  state_ = kEnd;
  return state_;  // Done.
}

MapUpdater::State MapUpdater::FindRootMap() {
  DCHECK_EQ(kInitialized, state_);
  // Check the state of the root map.
241
  root_map_ = handle(old_map_->FindRootMap(isolate_), isolate_);
242 243 244 245 246 247
  ElementsKind from_kind = root_map_->elements_kind();
  ElementsKind to_kind = new_elements_kind_;
  if (root_map_->is_deprecated()) {
    state_ = kEnd;
    result_map_ = handle(
        JSFunction::cast(root_map_->GetConstructor())->initial_map(), isolate_);
248
    result_map_ = Map::AsElementsKind(isolate_, result_map_, to_kind);
249 250 251
    DCHECK(result_map_->is_dictionary_map());
    return state_;
  }
252 253
  int root_nof = root_map_->NumberOfOwnDescriptors();
  if (!old_map_->EquivalentToForTransition(*root_map_)) {
254
    return CopyGeneralizeAllFields("GenAll_NotEquivalent");
255 256 257 258 259 260 261 262
  }

  // TODO(ishell): Add a test for SLOW_SLOPPY_ARGUMENTS_ELEMENTS.
  if (from_kind != to_kind && to_kind != DICTIONARY_ELEMENTS &&
      to_kind != SLOW_STRING_WRAPPER_ELEMENTS &&
      to_kind != SLOW_SLOPPY_ARGUMENTS_ELEMENTS &&
      !(IsTransitionableFastElementsKind(from_kind) &&
        IsMoreGeneralElementsKindTransition(from_kind, to_kind))) {
263
    return CopyGeneralizeAllFields("GenAll_InvalidElementsTransition");
264 265 266 267 268 269 270
  }

  if (modified_descriptor_ >= 0 && modified_descriptor_ < root_nof) {
    PropertyDetails old_details =
        old_descriptors_->GetDetails(modified_descriptor_);
    if (old_details.kind() != new_kind_ ||
        old_details.attributes() != new_attributes_) {
271
      return CopyGeneralizeAllFields("GenAll_RootModification1");
272
    }
273
    if (old_details.location() != kField) {
274
      return CopyGeneralizeAllFields("GenAll_RootModification2");
275
    }
276 277
    if (new_constness_ != old_details.constness() &&
        (!FLAG_modify_map_inplace || !old_map_->is_prototype_map())) {
278
      return CopyGeneralizeAllFields("GenAll_RootModification3");
279
    }
280 281 282 283
    if (!new_representation_.fits_into(old_details.representation())) {
      return CopyGeneralizeAllFields("GenAll_RootModification4");
    }

284 285 286
    DCHECK_EQ(kData, old_details.kind());
    DCHECK_EQ(kData, new_kind_);
    DCHECK_EQ(kField, new_location_);
287
    FieldType old_field_type =
288 289
        old_descriptors_->GetFieldType(modified_descriptor_);
    if (!new_field_type_->NowIs(old_field_type)) {
290
      return CopyGeneralizeAllFields("GenAll_RootModification5");
291
    }
292 293 294 295 296 297 298 299 300 301 302 303 304

    // Modify root map in-place.
    if (FLAG_modify_map_inplace && new_constness_ != old_details.constness()) {
      // Only prototype root maps are allowed to be updated in-place.
      // TODO(ishell): fix all the stubs that use prototype map check to
      // ensure that the prototype was not modified.
      DCHECK(old_map_->is_prototype_map());
      DCHECK(old_map_->is_stable());
      DCHECK(IsGeneralizableTo(old_details.constness(), new_constness_));
      GeneralizeField(old_map_, modified_descriptor_, new_constness_,
                      old_details.representation(),
                      handle(old_field_type, isolate_));
    }
305 306 307
  }

  // From here on, use the map with correct elements kind as root map.
308
  root_map_ = Map::AsElementsKind(isolate_, root_map_, to_kind);
309 310 311 312 313 314 315 316 317 318 319
  state_ = kAtRootMap;
  return state_;  // Not done yet.
}

MapUpdater::State MapUpdater::FindTargetMap() {
  DCHECK_EQ(kAtRootMap, state_);
  target_map_ = root_map_;

  int root_nof = root_map_->NumberOfOwnDescriptors();
  for (int i = root_nof; i < old_nof_; ++i) {
    PropertyDetails old_details = GetDetails(i);
320
    Map* transition = TransitionsAccessor(isolate_, target_map_)
321 322
                          .SearchTransition(GetKey(i), old_details.kind(),
                                            old_details.attributes());
323
    if (transition == nullptr) break;
324 325 326 327 328 329 330 331 332 333
    Handle<Map> tmp_map(transition, isolate_);

    Handle<DescriptorArray> tmp_descriptors(tmp_map->instance_descriptors(),
                                            isolate_);

    // Check if target map is incompatible.
    PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
    DCHECK_EQ(old_details.kind(), tmp_details.kind());
    DCHECK_EQ(old_details.attributes(), tmp_details.attributes());
    if (old_details.kind() == kAccessor &&
334 335
        !EqualImmutableValues(GetValue(i),
                              tmp_descriptors->GetStrongValue(i))) {
336
      // TODO(ishell): mutable accessors are not implemented yet.
337
      return CopyGeneralizeAllFields("GenAll_Incompatible");
338
    }
339
    PropertyConstness tmp_constness = tmp_details.constness();
340 341
    if (!FLAG_modify_map_inplace &&
        !IsGeneralizableTo(old_details.constness(), tmp_constness)) {
342 343 344
      break;
    }
    if (!IsGeneralizableTo(old_details.location(), tmp_details.location())) {
345 346 347 348 349 350 351 352 353 354
      break;
    }
    Representation tmp_representation = tmp_details.representation();
    if (!old_details.representation().fits_into(tmp_representation)) {
      break;
    }

    if (tmp_details.location() == kField) {
      Handle<FieldType> old_field_type =
          GetOrComputeFieldType(i, old_details.location(), tmp_representation);
355 356 357
      PropertyConstness constness =
          FLAG_modify_map_inplace ? old_details.constness() : tmp_constness;
      GeneralizeField(tmp_map, i, constness, tmp_representation,
358
                      old_field_type);
359 360
    } else {
      // kDescriptor: Check that the value matches.
361 362
      if (!EqualImmutableValues(GetValue(i),
                                tmp_descriptors->GetStrongValue(i))) {
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        break;
      }
    }
    DCHECK(!tmp_map->is_deprecated());
    target_map_ = tmp_map;
  }

  // Directly change the map if the target map is more general.
  int target_nof = target_map_->NumberOfOwnDescriptors();
  if (target_nof == old_nof_) {
#ifdef DEBUG
    if (modified_descriptor_ >= 0) {
      DescriptorArray* target_descriptors = target_map_->instance_descriptors();
      PropertyDetails details =
          target_descriptors->GetDetails(modified_descriptor_);
      DCHECK_EQ(new_kind_, details.kind());
      DCHECK_EQ(new_attributes_, details.attributes());
380
      DCHECK(IsGeneralizableTo(new_constness_, details.constness()));
381 382 383 384 385 386 387 388
      DCHECK_EQ(new_location_, details.location());
      DCHECK(new_representation_.fits_into(details.representation()));
      if (new_location_ == kField) {
        DCHECK_EQ(kField, details.location());
        DCHECK(new_field_type_->NowIs(
            target_descriptors->GetFieldType(modified_descriptor_)));
      } else {
        DCHECK(details.location() == kField ||
389 390 391
               EqualImmutableValues(
                   *new_value_,
                   target_descriptors->GetStrongValue(modified_descriptor_)));
392 393 394 395
      }
    }
#endif
    if (*target_map_ != *old_map_) {
396
      old_map_->NotifyLeafMapLayoutChange(isolate_);
397 398 399 400 401 402 403 404 405
    }
    result_map_ = target_map_;
    state_ = kEnd;
    return state_;  // Done.
  }

  // Find the last compatible target map in the transition tree.
  for (int i = target_nof; i < old_nof_; ++i) {
    PropertyDetails old_details = GetDetails(i);
406
    Map* transition = TransitionsAccessor(isolate_, target_map_)
407 408
                          .SearchTransition(GetKey(i), old_details.kind(),
                                            old_details.attributes());
409
    if (transition == nullptr) break;
410 411 412 413 414 415 416 417 418 419
    Handle<Map> tmp_map(transition, isolate_);
    Handle<DescriptorArray> tmp_descriptors(tmp_map->instance_descriptors(),
                                            isolate_);
#ifdef DEBUG
    // Check that target map is compatible.
    PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
    DCHECK_EQ(old_details.kind(), tmp_details.kind());
    DCHECK_EQ(old_details.attributes(), tmp_details.attributes());
#endif
    if (old_details.kind() == kAccessor &&
420 421
        !EqualImmutableValues(GetValue(i),
                              tmp_descriptors->GetStrongValue(i))) {
422
      return CopyGeneralizeAllFields("GenAll_Incompatible");
423 424 425 426 427 428 429 430 431 432
    }
    DCHECK(!tmp_map->is_deprecated());
    target_map_ = tmp_map;
  }

  state_ = kAtTargetMap;
  return state_;  // Not done yet.
}

Handle<DescriptorArray> MapUpdater::BuildDescriptorArray() {
433
  InstanceType instance_type = old_map_->instance_type();
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  int target_nof = target_map_->NumberOfOwnDescriptors();
  Handle<DescriptorArray> target_descriptors(
      target_map_->instance_descriptors(), isolate_);

  // Allocate a new descriptor array large enough to hold the required
  // descriptors, with minimally the exact same size as the old descriptor
  // array.
  int new_slack =
      Max(old_nof_, old_descriptors_->number_of_descriptors()) - old_nof_;
  Handle<DescriptorArray> new_descriptors =
      DescriptorArray::Allocate(isolate_, old_nof_, new_slack);
  DCHECK(new_descriptors->length() > target_descriptors->length() ||
         new_descriptors->NumberOfSlackDescriptors() > 0 ||
         new_descriptors->number_of_descriptors() ==
             old_descriptors_->number_of_descriptors());
  DCHECK(new_descriptors->number_of_descriptors() == old_nof_);

  int root_nof = root_map_->NumberOfOwnDescriptors();

  // Given that we passed root modification check in FindRootMap() so
  // the root descriptors are either not modified at all or already more
  // general than we requested. Take |root_nof| entries as is.
  // 0 -> |root_nof|
  int current_offset = 0;
  for (int i = 0; i < root_nof; ++i) {
    PropertyDetails old_details = old_descriptors_->GetDetails(i);
    if (old_details.location() == kField) {
      current_offset += old_details.field_width_in_words();
    }
    Descriptor d(handle(GetKey(i), isolate_),
464 465
                 MaybeObjectHandle(old_descriptors_->GetValue(i), isolate_),
                 old_details);
466 467 468 469 470 471 472 473 474 475 476 477
    new_descriptors->Set(i, &d);
  }

  // Merge "updated" old_descriptor entries with target_descriptor entries.
  // |root_nof| -> |target_nof|
  for (int i = root_nof; i < target_nof; ++i) {
    Handle<Name> key(GetKey(i), isolate_);
    PropertyDetails old_details = GetDetails(i);
    PropertyDetails target_details = target_descriptors->GetDetails(i);

    PropertyKind next_kind = old_details.kind();
    PropertyAttributes next_attributes = old_details.attributes();
478 479 480 481 482 483 484 485
    DCHECK_EQ(next_kind, target_details.kind());
    DCHECK_EQ(next_attributes, target_details.attributes());

    PropertyConstness next_constness = GeneralizeConstness(
        old_details.constness(), target_details.constness());

    // Note: failed values equality check does not invalidate per-object
    // property constness.
486 487 488
    PropertyLocation next_location =
        old_details.location() == kField ||
                target_details.location() == kField ||
489
                !EqualImmutableValues(target_descriptors->GetStrongValue(i),
490 491 492 493
                                      GetValue(i))
            ? kField
            : kDescriptor;

494
    if (!FLAG_track_constant_fields && next_location == kField) {
495
      next_constness = PropertyConstness::kMutable;
496
    }
497
    // Ensure that mutable values are stored in fields.
498 499
    DCHECK_IMPLIES(next_constness == PropertyConstness::kMutable,
                   next_location == kField);
500

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    Representation next_representation =
        old_details.representation().generalize(
            target_details.representation());

    if (next_location == kField) {
      Handle<FieldType> old_field_type =
          GetOrComputeFieldType(i, old_details.location(), next_representation);

      Handle<FieldType> target_field_type =
          GetOrComputeFieldType(target_descriptors, i,
                                target_details.location(), next_representation);

      Handle<FieldType> next_field_type = Map::GeneralizeFieldType(
          old_details.representation(), old_field_type, next_representation,
          target_field_type, isolate_);

517 518
      Map::GeneralizeIfCanHaveTransitionableFastElementsKind(
          isolate_, instance_type, &next_constness, &next_representation,
519
          &next_field_type);
520

521 522
      MaybeObjectHandle wrapped_type(
          Map::WrapFieldType(isolate_, next_field_type));
523 524
      Descriptor d;
      if (next_kind == kData) {
525 526 527
        d = Descriptor::DataField(key, current_offset, next_attributes,
                                  next_constness, next_representation,
                                  wrapped_type);
528 529 530 531 532 533 534 535
      } else {
        // TODO(ishell): mutable accessors are not implemented yet.
        UNIMPLEMENTED();
      }
      current_offset += d.GetDetails().field_width_in_words();
      new_descriptors->Set(i, &d);
    } else {
      DCHECK_EQ(kDescriptor, next_location);
536
      DCHECK_EQ(PropertyConstness::kConst, next_constness);
537 538 539 540

      Handle<Object> value(GetValue(i), isolate_);
      Descriptor d;
      if (next_kind == kData) {
541
        DCHECK(!FLAG_track_constant_fields);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        d = Descriptor::DataConstant(key, value, next_attributes);
      } else {
        DCHECK_EQ(kAccessor, next_kind);
        d = Descriptor::AccessorConstant(key, value, next_attributes);
      }
      new_descriptors->Set(i, &d);
    }
  }

  // Take "updated" old_descriptor entries.
  // |target_nof| -> |old_nof|
  for (int i = target_nof; i < old_nof_; ++i) {
    PropertyDetails old_details = GetDetails(i);
    Handle<Name> key(GetKey(i), isolate_);

    PropertyKind next_kind = old_details.kind();
    PropertyAttributes next_attributes = old_details.attributes();
559
    PropertyConstness next_constness = old_details.constness();
560 561 562 563 564
    PropertyLocation next_location = old_details.location();
    Representation next_representation = old_details.representation();

    Descriptor d;
    if (next_location == kField) {
565
      Handle<FieldType> next_field_type =
566 567
          GetOrComputeFieldType(i, old_details.location(), next_representation);

568 569 570 571 572 573 574
      // If the |new_elements_kind_| is still transitionable then the old map's
      // elements kind is also transitionable and therefore the old descriptors
      // array must already have non in-place generalizable fields.
      CHECK_IMPLIES(is_transitionable_fast_elements_kind_,
                    !Map::IsInplaceGeneralizableField(
                        next_constness, next_representation, *next_field_type));

575 576
      MaybeObjectHandle wrapped_type(
          Map::WrapFieldType(isolate_, next_field_type));
577 578
      Descriptor d;
      if (next_kind == kData) {
579 580
        DCHECK_IMPLIES(!FLAG_track_constant_fields,
                       next_constness == PropertyConstness::kMutable);
581 582 583
        d = Descriptor::DataField(key, current_offset, next_attributes,
                                  next_constness, next_representation,
                                  wrapped_type);
584 585 586 587 588 589 590 591
      } else {
        // TODO(ishell): mutable accessors are not implemented yet.
        UNIMPLEMENTED();
      }
      current_offset += d.GetDetails().field_width_in_words();
      new_descriptors->Set(i, &d);
    } else {
      DCHECK_EQ(kDescriptor, next_location);
592
      DCHECK_EQ(PropertyConstness::kConst, next_constness);
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

      Handle<Object> value(GetValue(i), isolate_);
      if (next_kind == kData) {
        d = Descriptor::DataConstant(key, value, next_attributes);
      } else {
        DCHECK_EQ(kAccessor, next_kind);
        d = Descriptor::AccessorConstant(key, value, next_attributes);
      }
      new_descriptors->Set(i, &d);
    }
  }

  new_descriptors->Sort();
  return new_descriptors;
}

Handle<Map> MapUpdater::FindSplitMap(Handle<DescriptorArray> descriptors) {
  DisallowHeapAllocation no_allocation;

  int root_nof = root_map_->NumberOfOwnDescriptors();
  Map* current = *root_map_;
  for (int i = root_nof; i < old_nof_; i++) {
    Name* name = descriptors->GetKey(i);
    PropertyDetails details = descriptors->GetDetails(i);
617
    Map* next =
618
        TransitionsAccessor(isolate_, current, &no_allocation)
619
            .SearchTransition(name, details.kind(), details.attributes());
620
    if (next == nullptr) break;
621 622 623 624 625
    DescriptorArray* next_descriptors = next->instance_descriptors();

    PropertyDetails next_details = next_descriptors->GetDetails(i);
    DCHECK_EQ(details.kind(), next_details.kind());
    DCHECK_EQ(details.attributes(), next_details.attributes());
626
    if (details.constness() != next_details.constness()) break;
627 628 629 630
    if (details.location() != next_details.location()) break;
    if (!details.representation().Equals(next_details.representation())) break;

    if (next_details.location() == kField) {
631
      FieldType next_field_type = next_descriptors->GetFieldType(i);
632 633 634 635
      if (!descriptors->GetFieldType(i)->NowIs(next_field_type)) {
        break;
      }
    } else {
636 637
      if (!EqualImmutableValues(descriptors->GetStrongValue(i),
                                next_descriptors->GetStrongValue(i))) {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
        break;
      }
    }
    current = next;
  }
  return handle(current, isolate_);
}

MapUpdater::State MapUpdater::ConstructNewMap() {
  Handle<DescriptorArray> new_descriptors = BuildDescriptorArray();

  Handle<Map> split_map = FindSplitMap(new_descriptors);
  int split_nof = split_map->NumberOfOwnDescriptors();
  DCHECK_NE(old_nof_, split_nof);

  PropertyDetails split_details = GetDetails(split_nof);
654
  TransitionsAccessor transitions(isolate_, split_map);
655 656

  // Invalidate a transition target at |key|.
657 658
  Map* maybe_transition = transitions.SearchTransition(
      GetKey(split_nof), split_details.kind(), split_details.attributes());
659
  if (maybe_transition != nullptr) {
660
    maybe_transition->DeprecateTransitionTree(isolate_);
661 662
  }

663
  // If |maybe_transition| is not nullptr then the transition array already
664 665
  // contains entry for given descriptor. This means that the transition
  // could be inserted regardless of whether transitions array is full or not.
666
  if (maybe_transition == nullptr && !transitions.CanHaveMoreTransitions()) {
667
    return CopyGeneralizeAllFields("GenAll_CantHaveMoreTransitions");
668 669
  }

670
  old_map_->NotifyLeafMapLayoutChange(isolate_);
671 672 673 674 675 676 677 678 679 680

  if (FLAG_trace_generalization && modified_descriptor_ >= 0) {
    PropertyDetails old_details =
        old_descriptors_->GetDetails(modified_descriptor_);
    PropertyDetails new_details =
        new_descriptors->GetDetails(modified_descriptor_);
    MaybeHandle<FieldType> old_field_type;
    MaybeHandle<FieldType> new_field_type;
    MaybeHandle<Object> old_value;
    MaybeHandle<Object> new_value;
681
    if (old_details.location() == kField) {
682 683 684
      old_field_type = handle(
          old_descriptors_->GetFieldType(modified_descriptor_), isolate_);
    } else {
685 686
      old_value = handle(old_descriptors_->GetStrongValue(modified_descriptor_),
                         isolate_);
687
    }
688
    if (new_details.location() == kField) {
689 690 691
      new_field_type =
          handle(new_descriptors->GetFieldType(modified_descriptor_), isolate_);
    } else {
692 693
      new_value = handle(new_descriptors->GetStrongValue(modified_descriptor_),
                         isolate_);
694 695 696
    }

    old_map_->PrintGeneralization(
697
        isolate_, stdout, "", modified_descriptor_, split_nof, old_nof_,
698 699 700 701 702 703
        old_details.location() == kDescriptor && new_location_ == kField,
        old_details.representation(), new_details.representation(),
        old_field_type, old_value, new_field_type, new_value);
  }

  Handle<LayoutDescriptor> new_layout_descriptor =
704
      LayoutDescriptor::New(isolate_, split_map, new_descriptors, old_nof_);
705

706 707
  Handle<Map> new_map = Map::AddMissingTransitions(
      isolate_, split_map, new_descriptors, new_layout_descriptor);
708 709 710 711

  // Deprecated part of the transition tree is no longer reachable, so replace
  // current instance descriptors in the "survived" part of the tree with
  // the new descriptors to maintain descriptors sharing invariant.
712 713
  split_map->ReplaceDescriptors(isolate_, *new_descriptors,
                                *new_layout_descriptor);
714 715 716 717 718 719 720 721

  result_map_ = new_map;
  state_ = kEnd;
  return state_;  // Done.
}

}  // namespace internal
}  // namespace v8