gdb-jit.cc 62.5 KB
Newer Older
1
// Copyright 2010 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include "src/gdb-jit.h"
6

7
#include <memory>
8
#include <vector>
9

10
#include "src/api.h"
11
#include "src/base/bits.h"
12
#include "src/base/platform/platform.h"
13 14
#include "src/bootstrapper.h"
#include "src/frames-inl.h"
15
#include "src/frames.h"
16 17
#include "src/global-handles.h"
#include "src/messages.h"
18
#include "src/objects.h"
19
#include "src/ostreams.h"
20
#include "src/snapshot/natives.h"
21
#include "src/splay-tree-inl.h"
22 23 24

namespace v8 {
namespace internal {
25 26 27
namespace GDBJITInterface {

#ifdef ENABLE_GDB_JIT_INTERFACE
28

29
#ifdef __APPLE__
30 31 32 33 34 35 36
#define __MACH_O
class MachO;
class MachOSection;
typedef MachO DebugObject;
typedef MachOSection DebugSection;
#else
#define __ELF
37
class ELF;
38 39 40 41
class ELFSection;
typedef ELF DebugObject;
typedef ELFSection DebugSection;
#endif
42 43 44

class Writer BASE_EMBEDDED {
 public:
45 46
  explicit Writer(DebugObject* debug_object)
      : debug_object_(debug_object),
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        position_(0),
        capacity_(1024),
        buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
  }

  ~Writer() {
    free(buffer_);
  }

  uintptr_t position() const {
    return position_;
  }

  template<typename T>
  class Slot {
   public:
    Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }

    T* operator-> () {
      return w_->RawSlotAt<T>(offset_);
    }

    void set(const T& value) {
      *w_->RawSlotAt<T>(offset_) = value;
    }

    Slot<T> at(int i) {
      return Slot<T>(w_, offset_ + sizeof(T) * i);
    }

   private:
    Writer* w_;
    uintptr_t offset_;
  };

  template<typename T>
  void Write(const T& val) {
    Ensure(position_ + sizeof(T));
    *RawSlotAt<T>(position_) = val;
    position_ += sizeof(T);
  }

  template<typename T>
  Slot<T> SlotAt(uintptr_t offset) {
    Ensure(offset + sizeof(T));
    return Slot<T>(this, offset);
  }

  template<typename T>
  Slot<T> CreateSlotHere() {
    return CreateSlotsHere<T>(1);
  }

  template<typename T>
  Slot<T> CreateSlotsHere(uint32_t count) {
    uintptr_t slot_position = position_;
    position_ += sizeof(T) * count;
    Ensure(position_);
    return SlotAt<T>(slot_position);
  }

  void Ensure(uintptr_t pos) {
    if (capacity_ < pos) {
      while (capacity_ < pos) capacity_ *= 2;
      buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
    }
  }

115
  DebugObject* debug_object() { return debug_object_; }
116 117 118 119 120 121 122 123

  byte* buffer() { return buffer_; }

  void Align(uintptr_t align) {
    uintptr_t delta = position_ % align;
    if (delta == 0) return;
    uintptr_t padding = align - delta;
    Ensure(position_ += padding);
124
    DCHECK_EQ(position_ % align, 0);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  }

  void WriteULEB128(uintptr_t value) {
    do {
      uint8_t byte = value & 0x7F;
      value >>= 7;
      if (value != 0) byte |= 0x80;
      Write<uint8_t>(byte);
    } while (value != 0);
  }

  void WriteSLEB128(intptr_t value) {
    bool more = true;
    while (more) {
      int8_t byte = value & 0x7F;
      bool byte_sign = byte & 0x40;
      value >>= 7;

      if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
        more = false;
      } else {
        byte |= 0x80;
      }

      Write<int8_t>(byte);
    }
  }

  void WriteString(const char* str) {
    do {
      Write<char>(*str);
    } while (*str++);
  }

 private:
  template<typename T> friend class Slot;

  template<typename T>
  T* RawSlotAt(uintptr_t offset) {
164
    DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
165 166 167
    return reinterpret_cast<T*>(&buffer_[offset]);
  }

168
  DebugObject* debug_object_;
169 170 171 172 173
  uintptr_t position_;
  uintptr_t capacity_;
  byte* buffer_;
};

174
class ELFStringTable;
175

176 177
template<typename THeader>
class DebugSectionBase : public ZoneObject {
178
 public:
179 180 181 182
  virtual ~DebugSectionBase() { }

  virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
    uintptr_t start = writer->position();
183
    if (WriteBodyInternal(writer)) {
184
      uintptr_t end = writer->position();
185
      header->offset = static_cast<uint32_t>(start);
186 187 188 189 190 191 192
#if defined(__MACH_O)
      header->addr = 0;
#endif
      header->size = end - start;
    }
  }

193
  virtual bool WriteBodyInternal(Writer* writer) {
194 195 196 197 198 199 200 201 202 203
    return false;
  }

  typedef THeader Header;
};


struct MachOSectionHeader {
  char sectname[16];
  char segname[16];
Jakob Kummerow's avatar
Jakob Kummerow committed
204
#if V8_TARGET_ARCH_IA32
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  uint32_t addr;
  uint32_t size;
#else
  uint64_t addr;
  uint64_t size;
#endif
  uint32_t offset;
  uint32_t align;
  uint32_t reloff;
  uint32_t nreloc;
  uint32_t flags;
  uint32_t reserved1;
  uint32_t reserved2;
};


class MachOSection : public DebugSectionBase<MachOSectionHeader> {
 public:
  enum Type {
    S_REGULAR = 0x0u,
225
    S_ATTR_COALESCED = 0xBu,
226 227 228
    S_ATTR_SOME_INSTRUCTIONS = 0x400u,
    S_ATTR_DEBUG = 0x02000000u,
    S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
229 230
  };

231
  MachOSection(const char* name, const char* segment, uint32_t align,
232
               uint32_t flags)
233
      : name_(name), segment_(segment), align_(align), flags_(flags) {
234
    if (align_ != 0) {
235
      DCHECK(base::bits::IsPowerOfTwo(align));
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      align_ = WhichPowerOf2(align_);
    }
  }

  virtual ~MachOSection() { }

  virtual void PopulateHeader(Writer::Slot<Header> header) {
    header->addr = 0;
    header->size = 0;
    header->offset = 0;
    header->align = align_;
    header->reloff = 0;
    header->nreloc = 0;
    header->flags = flags_;
    header->reserved1 = 0;
    header->reserved2 = 0;
252 253
    memset(header->sectname, 0, sizeof(header->sectname));
    memset(header->segname, 0, sizeof(header->segname));
254 255
    DCHECK(strlen(name_) < sizeof(header->sectname));
    DCHECK(strlen(segment_) < sizeof(header->segname));
256 257
    strncpy(header->sectname, name_, sizeof(header->sectname));
    strncpy(header->segname, segment_, sizeof(header->segname));
258 259 260 261 262
  }

 private:
  const char* name_;
  const char* segment_;
263
  uint32_t align_;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  uint32_t flags_;
};


struct ELFSectionHeader {
  uint32_t name;
  uint32_t type;
  uintptr_t flags;
  uintptr_t address;
  uintptr_t offset;
  uintptr_t size;
  uint32_t link;
  uint32_t info;
  uintptr_t alignment;
  uintptr_t entry_size;
};
280

281 282 283 284

#if defined(__ELF)
class ELFSection : public DebugSectionBase<ELFSectionHeader> {
 public:
285 286 287 288 289 290 291 292 293 294 295 296 297 298
  enum Type {
    TYPE_NULL = 0,
    TYPE_PROGBITS = 1,
    TYPE_SYMTAB = 2,
    TYPE_STRTAB = 3,
    TYPE_RELA = 4,
    TYPE_HASH = 5,
    TYPE_DYNAMIC = 6,
    TYPE_NOTE = 7,
    TYPE_NOBITS = 8,
    TYPE_REL = 9,
    TYPE_SHLIB = 10,
    TYPE_DYNSYM = 11,
    TYPE_LOPROC = 0x70000000,
299
    TYPE_X86_64_UNWIND = 0x70000001,
300
    TYPE_HIPROC = 0x7FFFFFFF,
301
    TYPE_LOUSER = 0x80000000,
302
    TYPE_HIUSER = 0xFFFFFFFF
303 304 305 306 307 308 309 310
  };

  enum Flags {
    FLAG_WRITE = 1,
    FLAG_ALLOC = 2,
    FLAG_EXEC = 4
  };

311
  enum SpecialIndexes { INDEX_ABSOLUTE = 0xFFF1 };
312 313 314 315 316 317

  ELFSection(const char* name, Type type, uintptr_t align)
      : name_(name), type_(type), align_(align) { }

  virtual ~ELFSection() { }

318
  void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
319 320 321

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    uintptr_t start = w->position();
322
    if (WriteBodyInternal(w)) {
323 324 325 326 327 328
      uintptr_t end = w->position();
      header->offset = start;
      header->size = end - start;
    }
  }

329
  virtual bool WriteBodyInternal(Writer* w) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    return false;
  }

  uint16_t index() const { return index_; }
  void set_index(uint16_t index) { index_ = index; }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    header->flags = 0;
    header->address = 0;
    header->offset = 0;
    header->size = 0;
    header->link = 0;
    header->info = 0;
    header->entry_size = 0;
  }

 private:
  const char* name_;
  Type type_;
  uintptr_t align_;
  uint16_t index_;
};
353
#endif  // defined(__ELF)
354 355


356 357 358
#if defined(__MACH_O)
class MachOTextSection : public MachOSection {
 public:
359 360
  MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
      : MachOSection("__text", "__TEXT", align,
361 362 363 364
                     MachOSection::S_REGULAR |
                         MachOSection::S_ATTR_SOME_INSTRUCTIONS |
                         MachOSection::S_ATTR_PURE_INSTRUCTIONS),
        addr_(addr),
365
        size_(size) {}
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    MachOSection::PopulateHeader(header);
    header->addr = addr_;
    header->size = size_;
  }

 private:
  uintptr_t addr_;
  uintptr_t size_;
};
#endif  // defined(__MACH_O)


#if defined(__ELF)
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
class FullHeaderELFSection : public ELFSection {
 public:
  FullHeaderELFSection(const char* name,
                       Type type,
                       uintptr_t align,
                       uintptr_t addr,
                       uintptr_t offset,
                       uintptr_t size,
                       uintptr_t flags)
      : ELFSection(name, type, align),
        addr_(addr),
        offset_(offset),
        size_(size),
        flags_(flags) { }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    ELFSection::PopulateHeader(header);
    header->address = addr_;
    header->offset = offset_;
    header->size = size_;
    header->flags = flags_;
  }

 private:
  uintptr_t addr_;
  uintptr_t offset_;
  uintptr_t size_;
  uintptr_t flags_;
};


414
class ELFStringTable : public ELFSection {
415
 public:
416
  explicit ELFStringTable(const char* name)
417 418 419 420
      : ELFSection(name, TYPE_STRTAB, 1),
        writer_(nullptr),
        offset_(0),
        size_(0) {}
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

  uintptr_t Add(const char* str) {
    if (*str == '\0') return 0;

    uintptr_t offset = size_;
    WriteString(str);
    return offset;
  }

  void AttachWriter(Writer* w) {
    writer_ = w;
    offset_ = writer_->position();

    // First entry in the string table should be an empty string.
    WriteString("");
  }

438
  void DetachWriter() { writer_ = nullptr; }
439 440

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
441
    DCHECK_NULL(writer_);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    header->offset = offset_;
    header->size = size_;
  }

 private:
  void WriteString(const char* str) {
    uintptr_t written = 0;
    do {
      writer_->Write(*str);
      written++;
    } while (*str++);
    size_ += written;
  }

  Writer* writer_;

  uintptr_t offset_;
  uintptr_t size_;
};


void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
464
                                ELFStringTable* strtab) {
465
  header->name = static_cast<uint32_t>(strtab->Add(name_));
466 467 468 469
  header->type = type_;
  header->alignment = align_;
  PopulateHeader(header);
}
470 471 472 473 474 475
#endif  // defined(__ELF)


#if defined(__MACH_O)
class MachO BASE_EMBEDDED {
 public:
476
  explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
477 478

  uint32_t AddSection(MachOSection* section) {
479
    sections_.Add(section, zone_);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    return sections_.length() - 1;
  }

  void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
    Writer::Slot<MachOHeader> header = WriteHeader(w);
    uintptr_t load_command_start = w->position();
    Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
                                                                code_start,
                                                                code_size);
    WriteSections(w, cmd, header, load_command_start);
  }

 private:
  struct MachOHeader {
    uint32_t magic;
    uint32_t cputype;
    uint32_t cpusubtype;
    uint32_t filetype;
    uint32_t ncmds;
    uint32_t sizeofcmds;
    uint32_t flags;
501
#if V8_TARGET_ARCH_X64
502 503 504 505 506 507 508 509
    uint32_t reserved;
#endif
  };

  struct MachOSegmentCommand {
    uint32_t cmd;
    uint32_t cmdsize;
    char segname[16];
Jakob Kummerow's avatar
Jakob Kummerow committed
510
#if V8_TARGET_ARCH_IA32
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    uint32_t vmaddr;
    uint32_t vmsize;
    uint32_t fileoff;
    uint32_t filesize;
#else
    uint64_t vmaddr;
    uint64_t vmsize;
    uint64_t fileoff;
    uint64_t filesize;
#endif
    uint32_t maxprot;
    uint32_t initprot;
    uint32_t nsects;
    uint32_t flags;
  };

  enum MachOLoadCommandCmd {
    LC_SEGMENT_32 = 0x00000001u,
    LC_SEGMENT_64 = 0x00000019u
  };


  Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
534
    DCHECK_EQ(w->position(), 0);
535
    Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
Jakob Kummerow's avatar
Jakob Kummerow committed
536
#if V8_TARGET_ARCH_IA32
537 538 539
    header->magic = 0xFEEDFACEu;
    header->cputype = 7;  // i386
    header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
540
#elif V8_TARGET_ARCH_X64
541 542 543 544 545 546 547 548 549 550 551 552 553
    header->magic = 0xFEEDFACFu;
    header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
    header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    header->reserved = 0;
#else
#error Unsupported target architecture.
#endif
    header->filetype = 0x1;  // MH_OBJECT
    header->ncmds = 1;
    header->sizeofcmds = 0;
    header->flags = 0;
    return header;
  }
554 555


556 557 558 559 560
  Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
                                                        uintptr_t code_start,
                                                        uintptr_t code_size) {
    Writer::Slot<MachOSegmentCommand> cmd =
        w->CreateSlotHere<MachOSegmentCommand>();
Jakob Kummerow's avatar
Jakob Kummerow committed
561
#if V8_TARGET_ARCH_IA32
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    cmd->cmd = LC_SEGMENT_32;
#else
    cmd->cmd = LC_SEGMENT_64;
#endif
    cmd->vmaddr = code_start;
    cmd->vmsize = code_size;
    cmd->fileoff = 0;
    cmd->filesize = 0;
    cmd->maxprot = 7;
    cmd->initprot = 7;
    cmd->flags = 0;
    cmd->nsects = sections_.length();
    memset(cmd->segname, 0, 16);
    cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
        cmd->nsects;
    return cmd;
  }


  void WriteSections(Writer* w,
                     Writer::Slot<MachOSegmentCommand> cmd,
                     Writer::Slot<MachOHeader> header,
                     uintptr_t load_command_start) {
    Writer::Slot<MachOSection::Header> headers =
        w->CreateSlotsHere<MachOSection::Header>(sections_.length());
    cmd->fileoff = w->position();
588 589
    header->sizeofcmds =
        static_cast<uint32_t>(w->position() - load_command_start);
590 591 592 593 594 595 596
    for (int section = 0; section < sections_.length(); ++section) {
      sections_[section]->PopulateHeader(headers.at(section));
      sections_[section]->WriteBody(headers.at(section), w);
    }
    cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
  }

597
  Zone* zone_;
598 599 600 601 602 603
  ZoneList<MachOSection*> sections_;
};
#endif  // defined(__MACH_O)


#if defined(__ELF)
604 605
class ELF BASE_EMBEDDED {
 public:
606
  explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
607
    sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
608
    sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
609 610 611 612 613 614 615 616 617 618 619 620
  }

  void Write(Writer* w) {
    WriteHeader(w);
    WriteSectionTable(w);
    WriteSections(w);
  }

  ELFSection* SectionAt(uint32_t index) {
    return sections_[index];
  }

621 622
  uint32_t AddSection(ELFSection* section) {
    sections_.Add(section, zone_);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    section->set_index(sections_.length() - 1);
    return sections_.length() - 1;
  }

 private:
  struct ELFHeader {
    uint8_t ident[16];
    uint16_t type;
    uint16_t machine;
    uint32_t version;
    uintptr_t entry;
    uintptr_t pht_offset;
    uintptr_t sht_offset;
    uint32_t flags;
    uint16_t header_size;
    uint16_t pht_entry_size;
    uint16_t pht_entry_num;
    uint16_t sht_entry_size;
    uint16_t sht_entry_num;
    uint16_t sht_strtab_index;
  };


  void WriteHeader(Writer* w) {
647
    DCHECK_EQ(w->position(), 0);
648
    Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
Jakob Kummerow's avatar
Jakob Kummerow committed
649
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \
650
     (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
651 652
    const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 1, 1, 0,
                               0,    0,   0,   0,   0, 0, 0, 0};
653 654
#elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
    (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
655 656
    const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 1, 1, 0,
                               0,    0,   0,   0,   0, 0, 0, 0};
657
#elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
658
    const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 0,
659
                               0,    0,   0,   0,   0, 0, 0, 0};
660
#elif V8_TARGET_ARCH_S390X
661
    const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 3,
662 663
                               0,    0,   0,   0,   0, 0, 0, 0};
#elif V8_TARGET_ARCH_S390
664
    const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 2, 1, 3,
665
                               0,    0,   0,   0,   0, 0, 0, 0};
666 667 668
#else
#error Unsupported target architecture.
#endif
669
    memcpy(header->ident, ident, 16);
670
    header->type = 1;
Jakob Kummerow's avatar
Jakob Kummerow committed
671
#if V8_TARGET_ARCH_IA32
672
    header->machine = 3;
673
#elif V8_TARGET_ARCH_X64
674 675 676 677
    // Processor identification value for x64 is 62 as defined in
    //    System V ABI, AMD64 Supplement
    //    http://www.x86-64.org/documentation/abi.pdf
    header->machine = 62;
678
#elif V8_TARGET_ARCH_ARM
679 680 681
    // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
    // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
    header->machine = 40;
682 683 684 685 686 687 688 689
#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
    // Set to EM_PPC64, defined as 21, in Power ABI,
    // Join the next 4 lines, omitting the spaces and double-slashes.
    // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
    // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
    // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
    // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
    header->machine = 21;
690 691 692 693 694
#elif V8_TARGET_ARCH_S390
    // Processor identification value is 22 (EM_S390) as defined in the ABI:
    // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691
    // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599
    header->machine = 22;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
#else
#error Unsupported target architecture.
#endif
    header->version = 1;
    header->entry = 0;
    header->pht_offset = 0;
    header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
    header->flags = 0;
    header->header_size = sizeof(ELFHeader);
    header->pht_entry_size = 0;
    header->pht_entry_num = 0;
    header->sht_entry_size = sizeof(ELFSection::Header);
    header->sht_entry_num = sections_.length();
    header->sht_strtab_index = 1;
  }

  void WriteSectionTable(Writer* w) {
    // Section headers table immediately follows file header.
713
    DCHECK(w->position() == sizeof(ELFHeader));
714 715 716 717 718

    Writer::Slot<ELFSection::Header> headers =
        w->CreateSlotsHere<ELFSection::Header>(sections_.length());

    // String table for section table is the first section.
719
    ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    strtab->AttachWriter(w);
    for (int i = 0, length = sections_.length();
         i < length;
         i++) {
      sections_[i]->PopulateHeader(headers.at(i), strtab);
    }
    strtab->DetachWriter();
  }

  int SectionHeaderPosition(uint32_t section_index) {
    return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
  }

  void WriteSections(Writer* w) {
    Writer::Slot<ELFSection::Header> headers =
        w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));

    for (int i = 0, length = sections_.length();
         i < length;
         i++) {
      sections_[i]->WriteBody(headers.at(i), w);
    }
  }

744
  Zone* zone_;
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
  ZoneList<ELFSection*> sections_;
};


class ELFSymbol BASE_EMBEDDED {
 public:
  enum Type {
    TYPE_NOTYPE = 0,
    TYPE_OBJECT = 1,
    TYPE_FUNC = 2,
    TYPE_SECTION = 3,
    TYPE_FILE = 4,
    TYPE_LOPROC = 13,
    TYPE_HIPROC = 15
  };

  enum Binding {
    BIND_LOCAL = 0,
    BIND_GLOBAL = 1,
    BIND_WEAK = 2,
    BIND_LOPROC = 13,
    BIND_HIPROC = 15
  };

  ELFSymbol(const char* name,
            uintptr_t value,
            uintptr_t size,
            Binding binding,
            Type type,
            uint16_t section)
      : name(name),
        value(value),
        size(size),
        info((binding << 4) | type),
        other(0),
        section(section) {
  }

  Binding binding() const {
    return static_cast<Binding>(info >> 4);
  }
Jakob Kummerow's avatar
Jakob Kummerow committed
786 787
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM ||     \
     (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) || \
788
     (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT))
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
  struct SerializedLayout {
    SerializedLayout(uint32_t name,
                     uintptr_t value,
                     uintptr_t size,
                     Binding binding,
                     Type type,
                     uint16_t section)
        : name(name),
          value(value),
          size(size),
          info((binding << 4) | type),
          other(0),
          section(section) {
    }

    uint32_t name;
    uintptr_t value;
    uintptr_t size;
    uint8_t info;
    uint8_t other;
    uint16_t section;
  };
811
#elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
812
    (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) || V8_TARGET_ARCH_S390X
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
  struct SerializedLayout {
    SerializedLayout(uint32_t name,
                     uintptr_t value,
                     uintptr_t size,
                     Binding binding,
                     Type type,
                     uint16_t section)
        : name(name),
          info((binding << 4) | type),
          other(0),
          section(section),
          value(value),
          size(size) {
    }

    uint32_t name;
    uint8_t info;
    uint8_t other;
    uint16_t section;
    uintptr_t value;
    uintptr_t size;
  };
#endif

837
  void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
838
    // Convert symbol names from strings to indexes in the string table.
839
    s->name = static_cast<uint32_t>(t->Add(name));
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    s->value = value;
    s->size = size;
    s->info = info;
    s->other = other;
    s->section = section;
  }

 private:
  const char* name;
  uintptr_t value;
  uintptr_t size;
  uint8_t info;
  uint8_t other;
  uint16_t section;
};


class ELFSymbolTable : public ELFSection {
 public:
859
  ELFSymbolTable(const char* name, Zone* zone)
860
      : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
861 862
        locals_(1, zone),
        globals_(1, zone) {
863 864 865 866 867 868 869 870 871 872 873 874 875
  }

  virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    w->Align(header->alignment);
    int total_symbols = locals_.length() + globals_.length() + 1;
    header->offset = w->position();

    Writer::Slot<ELFSymbol::SerializedLayout> symbols =
        w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);

    header->size = w->position() - header->offset;

    // String table for this symbol table should follow it in the section table.
876 877
    ELFStringTable* strtab =
        static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
878 879 880 881 882 883 884 885 886 887 888 889
    strtab->AttachWriter(w);
    symbols.at(0).set(ELFSymbol::SerializedLayout(0,
                                                  0,
                                                  0,
                                                  ELFSymbol::BIND_LOCAL,
                                                  ELFSymbol::TYPE_NOTYPE,
                                                  0));
    WriteSymbolsList(&locals_, symbols.at(1), strtab);
    WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
    strtab->DetachWriter();
  }

890
  void Add(const ELFSymbol& symbol, Zone* zone) {
891
    if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
892
      locals_.Add(symbol, zone);
893
    } else {
894
      globals_.Add(symbol, zone);
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    }
  }

 protected:
  virtual void PopulateHeader(Writer::Slot<Header> header) {
    ELFSection::PopulateHeader(header);
    // We are assuming that string table will follow symbol table.
    header->link = index() + 1;
    header->info = locals_.length() + 1;
    header->entry_size = sizeof(ELFSymbol::SerializedLayout);
  }

 private:
  void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
                        Writer::Slot<ELFSymbol::SerializedLayout> dst,
910
                        ELFStringTable* strtab) {
911 912 913 914 915 916 917 918 919 920
    for (int i = 0, len = src->length();
         i < len;
         i++) {
      src->at(i).Write(dst.at(i), strtab);
    }
  }

  ZoneList<ELFSymbol> locals_;
  ZoneList<ELFSymbol> globals_;
};
921
#endif  // defined(__ELF)
922 923


924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
class LineInfo : public Malloced {
 public:
  void SetPosition(intptr_t pc, int pos, bool is_statement) {
    AddPCInfo(PCInfo(pc, pos, is_statement));
  }

  struct PCInfo {
    PCInfo(intptr_t pc, int pos, bool is_statement)
        : pc_(pc), pos_(pos), is_statement_(is_statement) {}

    intptr_t pc_;
    int pos_;
    bool is_statement_;
  };

939
  std::vector<PCInfo>* pc_info() { return &pc_info_; }
940 941

 private:
942
  void AddPCInfo(const PCInfo& pc_info) { pc_info_.push_back(pc_info); }
943

944
  std::vector<PCInfo> pc_info_;
945 946 947
};


948 949
class CodeDescription BASE_EMBEDDED {
 public:
950
#if V8_TARGET_ARCH_X64
951 952 953 954 955 956 957 958
  enum StackState {
    POST_RBP_PUSH,
    POST_RBP_SET,
    POST_RBP_POP,
    STACK_STATE_MAX
  };
#endif

959 960 961
  CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
                  LineInfo* lineinfo)
      : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
962

963
  const char* name() const {
964 965 966
    return name_;
  }

967
  LineInfo* lineinfo() const { return lineinfo_; }
968

969 970
  bool is_function() const {
    Code::Kind kind = code_->kind();
971
    return kind == Code::OPTIMIZED_FUNCTION;
972 973
  }

974
  bool has_scope_info() const { return shared_info_ != nullptr; }
975

976 977 978
  ScopeInfo* scope_info() const {
    DCHECK(has_scope_info());
    return shared_info_->scope_info();
979 980
  }

981
  uintptr_t CodeStart() const {
982
    return static_cast<uintptr_t>(code_->InstructionStart());
983 984
  }

985
  uintptr_t CodeEnd() const {
986
    return static_cast<uintptr_t>(code_->InstructionEnd());
987 988
  }

989 990 991 992
  uintptr_t CodeSize() const {
    return CodeEnd() - CodeStart();
  }

993
  bool has_script() {
994
    return shared_info_ != nullptr && shared_info_->script()->IsScript();
995 996 997 998
  }

  Script* script() { return Script::cast(shared_info_->script()); }

999
  bool IsLineInfoAvailable() { return lineinfo_ != nullptr; }
1000

1001
#if V8_TARGET_ARCH_X64
1002
  uintptr_t GetStackStateStartAddress(StackState state) const {
1003
    DCHECK(state < STACK_STATE_MAX);
1004 1005
    return stack_state_start_addresses_[state];
  }
1006

1007
  void SetStackStateStartAddress(StackState state, uintptr_t addr) {
1008
    DCHECK(state < STACK_STATE_MAX);
1009 1010 1011 1012
    stack_state_start_addresses_[state] = addr;
  }
#endif

1013
  std::unique_ptr<char[]> GetFilename() {
1014 1015 1016 1017 1018 1019 1020
    if (shared_info_ != nullptr) {
      return String::cast(script()->name())->ToCString();
    } else {
      std::unique_ptr<char[]> result(new char[1]);
      result[0] = 0;
      return result;
    }
1021 1022
  }

1023 1024 1025 1026 1027 1028 1029
  int GetScriptLineNumber(int pos) {
    if (shared_info_ != nullptr) {
      return script()->GetLineNumber(pos) + 1;
    } else {
      return 0;
    }
  }
1030

1031 1032 1033
 private:
  const char* name_;
  Code* code_;
1034
  SharedFunctionInfo* shared_info_;
1035
  LineInfo* lineinfo_;
1036
#if V8_TARGET_ARCH_X64
1037 1038
  uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
#endif
1039 1040
};

1041
#if defined(__ELF)
1042
static void CreateSymbolsTable(CodeDescription* desc,
1043
                               Zone* zone,
1044 1045
                               ELF* elf,
                               int text_section_index) {
1046
  ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
1047
  ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
1048 1049

  // Symbol table should be followed by the linked string table.
1050 1051
  elf->AddSection(symtab);
  elf->AddSection(strtab);
1052 1053 1054 1055 1056 1057

  symtab->Add(ELFSymbol("V8 Code",
                        0,
                        0,
                        ELFSymbol::BIND_LOCAL,
                        ELFSymbol::TYPE_FILE,
1058 1059
                        ELFSection::INDEX_ABSOLUTE),
              zone);
1060

1061
  symtab->Add(ELFSymbol(desc->name(),
1062
                        0,
1063
                        desc->CodeSize(),
1064 1065
                        ELFSymbol::BIND_GLOBAL,
                        ELFSymbol::TYPE_FUNC,
1066 1067
                        text_section_index),
              zone);
1068
}
1069
#endif  // defined(__ELF)
1070 1071


1072
class DebugInfoSection : public DebugSection {
1073 1074
 public:
  explicit DebugInfoSection(CodeDescription* desc)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
#if defined(__ELF)
      : ELFSection(".debug_info", TYPE_PROGBITS, 1),
#else
      : MachOSection("__debug_info",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
        desc_(desc) { }

  // DWARF2 standard
  enum DWARF2LocationOp {
    DW_OP_reg0 = 0x50,
    DW_OP_reg1 = 0x51,
    DW_OP_reg2 = 0x52,
    DW_OP_reg3 = 0x53,
    DW_OP_reg4 = 0x54,
    DW_OP_reg5 = 0x55,
    DW_OP_reg6 = 0x56,
    DW_OP_reg7 = 0x57,
1095 1096
    DW_OP_reg8 = 0x58,
    DW_OP_reg9 = 0x59,
1097 1098 1099 1100 1101 1102
    DW_OP_reg10 = 0x5A,
    DW_OP_reg11 = 0x5B,
    DW_OP_reg12 = 0x5C,
    DW_OP_reg13 = 0x5D,
    DW_OP_reg14 = 0x5E,
    DW_OP_reg15 = 0x5F,
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    DW_OP_reg16 = 0x60,
    DW_OP_reg17 = 0x61,
    DW_OP_reg18 = 0x62,
    DW_OP_reg19 = 0x63,
    DW_OP_reg20 = 0x64,
    DW_OP_reg21 = 0x65,
    DW_OP_reg22 = 0x66,
    DW_OP_reg23 = 0x67,
    DW_OP_reg24 = 0x68,
    DW_OP_reg25 = 0x69,
1113 1114 1115 1116 1117 1118
    DW_OP_reg26 = 0x6A,
    DW_OP_reg27 = 0x6B,
    DW_OP_reg28 = 0x6C,
    DW_OP_reg29 = 0x6D,
    DW_OP_reg30 = 0x6E,
    DW_OP_reg31 = 0x6F,
1119 1120 1121 1122 1123 1124 1125
    DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
  };

  enum DWARF2Encoding {
    DW_ATE_ADDRESS = 0x1,
    DW_ATE_SIGNED = 0x5
  };
1126

1127
  bool WriteBodyInternal(Writer* w) {
1128
    uintptr_t cu_start = w->position();
1129 1130 1131 1132 1133 1134 1135
    Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
    uintptr_t start = w->position();
    w->Write<uint16_t>(2);  // DWARF version.
    w->Write<uint32_t>(0);  // Abbreviation table offset.
    w->Write<uint8_t>(sizeof(intptr_t));

    w->WriteULEB128(1);  // Abbreviation code.
1136
    w->WriteString(desc_->GetFilename().get());
1137 1138
    w->Write<intptr_t>(desc_->CodeStart());
    w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1139
    w->Write<uint32_t>(0);
1140 1141 1142 1143 1144 1145

    uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
    w->WriteULEB128(3);
    w->Write<uint8_t>(kPointerSize);
    w->WriteString("v8value");

1146 1147
    if (desc_->has_scope_info()) {
      ScopeInfo* scope = desc_->scope_info();
1148 1149 1150 1151 1152 1153
      w->WriteULEB128(2);
      w->WriteString(desc_->name());
      w->Write<intptr_t>(desc_->CodeStart());
      w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
      Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
      uintptr_t fb_block_start = w->position();
Jakob Kummerow's avatar
Jakob Kummerow committed
1154
#if V8_TARGET_ARCH_IA32
1155
      w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
1156
#elif V8_TARGET_ARCH_X64
1157
      w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
1158
#elif V8_TARGET_ARCH_ARM
1159
      UNIMPLEMENTED();
1160
#elif V8_TARGET_ARCH_MIPS
1161
      UNIMPLEMENTED();
1162 1163
#elif V8_TARGET_ARCH_MIPS64
      UNIMPLEMENTED();
1164 1165
#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
      w->Write<uint8_t>(DW_OP_reg31);  // The frame pointer is here on PPC64.
1166 1167
#elif V8_TARGET_ARCH_S390
      w->Write<uint8_t>(DW_OP_reg11);  // The frame pointer's here on S390.
1168 1169 1170 1171 1172
#else
#error Unsupported target architecture.
#endif
      fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));

1173
      int params = scope->ParameterCount();
1174
      int context_slots = scope->ContextLocalCount();
1175 1176 1177 1178
      // The real slot ID is internal_slots + context_slot_id.
      int internal_slots = Context::MIN_CONTEXT_SLOTS;
      int current_abbreviation = 4;

1179 1180 1181
      EmbeddedVector<char, 256> buffer;
      StringBuilder builder(buffer.start(), buffer.length());

1182 1183
      for (int param = 0; param < params; ++param) {
        w->WriteULEB128(current_abbreviation++);
1184 1185 1186
        builder.Reset();
        builder.AddFormatted("param%d", param);
        w->WriteString(builder.Finalize());
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(
          JavaScriptFrameConstants::kLastParameterOffset +
              kPointerSize * (params - param - 1));
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }

      // See contexts.h for more information.
1198
      DCHECK_EQ(Context::MIN_CONTEXT_SLOTS, 4);
1199
      DCHECK_EQ(Context::SCOPE_INFO_INDEX, 0);
1200 1201 1202
      DCHECK_EQ(Context::PREVIOUS_INDEX, 1);
      DCHECK_EQ(Context::EXTENSION_INDEX, 2);
      DCHECK_EQ(Context::NATIVE_CONTEXT_INDEX, 3);
1203
      w->WriteULEB128(current_abbreviation++);
1204
      w->WriteString(".scope_info");
1205 1206 1207 1208 1209
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".previous");
      w->WriteULEB128(current_abbreviation++);
      w->WriteString(".extension");
      w->WriteULEB128(current_abbreviation++);
1210
      w->WriteString(".native_context");
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

      for (int context_slot = 0;
           context_slot < context_slots;
           ++context_slot) {
        w->WriteULEB128(current_abbreviation++);
        builder.Reset();
        builder.AddFormatted("context_slot%d", context_slot + internal_slots);
        w->WriteString(builder.Finalize());
      }

      {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString("__function");
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }

      {
        w->WriteULEB128(current_abbreviation++);
        w->WriteString("__context");
        w->Write<uint32_t>(ty_offset);
        Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
        uintptr_t block_start = w->position();
        w->Write<uint8_t>(DW_OP_fbreg);
        w->WriteSLEB128(StandardFrameConstants::kContextOffset);
        block_size.set(static_cast<uint32_t>(w->position() - block_start));
      }
1242 1243

      w->WriteULEB128(0);  // Terminate the sub program.
1244 1245
    }

1246
    w->WriteULEB128(0);  // Terminate the compile unit.
1247 1248 1249 1250 1251 1252 1253 1254 1255
    size.set(static_cast<uint32_t>(w->position() - start));
    return true;
  }

 private:
  CodeDescription* desc_;
};


1256
class DebugAbbrevSection : public DebugSection {
1257
 public:
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
  explicit DebugAbbrevSection(CodeDescription* desc)
#ifdef __ELF
      : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
#else
      : MachOSection("__debug_abbrev",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
        desc_(desc) { }
1268 1269 1270

  // DWARF2 standard, figure 14.
  enum DWARF2Tags {
1271
    DW_TAG_FORMAL_PARAMETER = 0x05,
1272
    DW_TAG_POINTER_TYPE = 0xF,
1273 1274 1275
    DW_TAG_COMPILE_UNIT = 0x11,
    DW_TAG_STRUCTURE_TYPE = 0x13,
    DW_TAG_BASE_TYPE = 0x24,
1276
    DW_TAG_SUBPROGRAM = 0x2E,
1277
    DW_TAG_VARIABLE = 0x34
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
  };

  // DWARF2 standard, figure 16.
  enum DWARF2ChildrenDetermination {
    DW_CHILDREN_NO = 0,
    DW_CHILDREN_YES = 1
  };

  // DWARF standard, figure 17.
  enum DWARF2Attribute {
1288
    DW_AT_LOCATION = 0x2,
1289
    DW_AT_NAME = 0x3,
1290
    DW_AT_BYTE_SIZE = 0xB,
1291 1292
    DW_AT_STMT_LIST = 0x10,
    DW_AT_LOW_PC = 0x11,
1293
    DW_AT_HIGH_PC = 0x12,
1294
    DW_AT_ENCODING = 0x3E,
1295 1296
    DW_AT_FRAME_BASE = 0x40,
    DW_AT_TYPE = 0x49
1297 1298 1299 1300 1301
  };

  // DWARF2 standard, figure 19.
  enum DWARF2AttributeForm {
    DW_FORM_ADDR = 0x1,
1302
    DW_FORM_BLOCK4 = 0x4,
1303
    DW_FORM_STRING = 0x8,
1304 1305
    DW_FORM_DATA4 = 0x6,
    DW_FORM_BLOCK = 0x9,
1306 1307
    DW_FORM_DATA1 = 0xB,
    DW_FORM_FLAG = 0xC,
1308
    DW_FORM_REF4 = 0x13
1309 1310
  };

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
  void WriteVariableAbbreviation(Writer* w,
                                 int abbreviation_code,
                                 bool has_value,
                                 bool is_parameter) {
    w->WriteULEB128(abbreviation_code);
    w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
    w->Write<uint8_t>(DW_CHILDREN_NO);
    w->WriteULEB128(DW_AT_NAME);
    w->WriteULEB128(DW_FORM_STRING);
    if (has_value) {
      w->WriteULEB128(DW_AT_TYPE);
      w->WriteULEB128(DW_FORM_REF4);
      w->WriteULEB128(DW_AT_LOCATION);
      w->WriteULEB128(DW_FORM_BLOCK4);
    }
    w->WriteULEB128(0);
    w->WriteULEB128(0);
  }

1330
  bool WriteBodyInternal(Writer* w) {
1331
    int current_abbreviation = 1;
1332
    bool extra_info = desc_->has_scope_info();
1333
    DCHECK(desc_->IsLineInfoAvailable());
1334
    w->WriteULEB128(current_abbreviation++);
1335
    w->WriteULEB128(DW_TAG_COMPILE_UNIT);
1336
    w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    w->WriteULEB128(DW_AT_NAME);
    w->WriteULEB128(DW_FORM_STRING);
    w->WriteULEB128(DW_AT_LOW_PC);
    w->WriteULEB128(DW_FORM_ADDR);
    w->WriteULEB128(DW_AT_HIGH_PC);
    w->WriteULEB128(DW_FORM_ADDR);
    w->WriteULEB128(DW_AT_STMT_LIST);
    w->WriteULEB128(DW_FORM_DATA4);
    w->WriteULEB128(0);
    w->WriteULEB128(0);
1347 1348

    if (extra_info) {
1349 1350
      ScopeInfo* scope = desc_->scope_info();
      int params = scope->ParameterCount();
1351
      int context_slots = scope->ContextLocalCount();
1352 1353
      // The real slot ID is internal_slots + context_slot_id.
      int internal_slots = Context::MIN_CONTEXT_SLOTS;
1354 1355
      // Total children is params + context_slots + internal_slots + 2
      // (__function and __context).
1356 1357 1358 1359 1360

      // The extra duplication below seems to be necessary to keep
      // gdb from getting upset on OSX.
      w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
      w->WriteULEB128(DW_TAG_SUBPROGRAM);
1361
      w->Write<uint8_t>(DW_CHILDREN_YES);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
      w->WriteULEB128(DW_AT_NAME);
      w->WriteULEB128(DW_FORM_STRING);
      w->WriteULEB128(DW_AT_LOW_PC);
      w->WriteULEB128(DW_FORM_ADDR);
      w->WriteULEB128(DW_AT_HIGH_PC);
      w->WriteULEB128(DW_FORM_ADDR);
      w->WriteULEB128(DW_AT_FRAME_BASE);
      w->WriteULEB128(DW_FORM_BLOCK4);
      w->WriteULEB128(0);
      w->WriteULEB128(0);

      w->WriteULEB128(current_abbreviation++);
      w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
      w->Write<uint8_t>(DW_CHILDREN_NO);
      w->WriteULEB128(DW_AT_BYTE_SIZE);
      w->WriteULEB128(DW_FORM_DATA1);
      w->WriteULEB128(DW_AT_NAME);
      w->WriteULEB128(DW_FORM_STRING);
      w->WriteULEB128(0);
      w->WriteULEB128(0);

      for (int param = 0; param < params; ++param) {
        WriteVariableAbbreviation(w, current_abbreviation++, true, true);
      }

      for (int internal_slot = 0;
           internal_slot < internal_slots;
           ++internal_slot) {
        WriteVariableAbbreviation(w, current_abbreviation++, false, false);
      }

      for (int context_slot = 0;
           context_slot < context_slots;
           ++context_slot) {
        WriteVariableAbbreviation(w, current_abbreviation++, false, false);
      }

      // The function.
      WriteVariableAbbreviation(w, current_abbreviation++, true, false);

      // The context.
      WriteVariableAbbreviation(w, current_abbreviation++, true, false);

1405
      w->WriteULEB128(0);  // Terminate the sibling list.
1406 1407 1408
    }

    w->WriteULEB128(0);  // Terminate the table.
1409 1410
    return true;
  }
1411 1412 1413

 private:
  CodeDescription* desc_;
1414 1415 1416
};


1417
class DebugLineSection : public DebugSection {
1418 1419
 public:
  explicit DebugLineSection(CodeDescription* desc)
1420
#ifdef __ELF
1421
      : ELFSection(".debug_line", TYPE_PROGBITS, 1),
1422 1423 1424 1425 1426 1427
#else
      : MachOSection("__debug_line",
                     "__DWARF",
                     1,
                     MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        desc_(desc) { }

  // DWARF2 standard, figure 34.
  enum DWARF2Opcodes {
    DW_LNS_COPY = 1,
    DW_LNS_ADVANCE_PC = 2,
    DW_LNS_ADVANCE_LINE = 3,
    DW_LNS_SET_FILE = 4,
    DW_LNS_SET_COLUMN = 5,
    DW_LNS_NEGATE_STMT = 6
  };

  // DWARF2 standard, figure 35.
  enum DWARF2ExtendedOpcode {
    DW_LNE_END_SEQUENCE = 1,
    DW_LNE_SET_ADDRESS = 2,
    DW_LNE_DEFINE_FILE = 3
  };

1447
  bool WriteBodyInternal(Writer* w) {
1448 1449 1450 1451
    // Write prologue.
    Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
    uintptr_t start = w->position();

1452 1453 1454 1455 1456 1457
    // Used for special opcodes
    const int8_t line_base = 1;
    const uint8_t line_range = 7;
    const int8_t max_line_incr = (line_base + line_range - 1);
    const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;

1458 1459 1460 1461 1462
    w->Write<uint16_t>(2);  // Field version.
    Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
    uintptr_t prologue_start = w->position();
    w->Write<uint8_t>(1);  // Field minimum_instruction_length.
    w->Write<uint8_t>(1);  // Field default_is_stmt.
1463 1464 1465
    w->Write<int8_t>(line_base);  // Field line_base.
    w->Write<uint8_t>(line_range);  // Field line_range.
    w->Write<uint8_t>(opcode_base);  // Field opcode_base.
1466 1467 1468 1469 1470 1471 1472
    w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
    w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
    w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
    w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
    w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
    w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
    w->Write<uint8_t>(0);  // Empty include_directories sequence.
1473
    w->WriteString(desc_->GetFilename().get());  // File name.
1474 1475 1476 1477 1478 1479 1480
    w->WriteULEB128(0);  // Current directory.
    w->WriteULEB128(0);  // Unknown modification time.
    w->WriteULEB128(0);  // Unknown file size.
    w->Write<uint8_t>(0);
    prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));

    WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
1481
    w->Write<intptr_t>(desc_->CodeStart());
1482
    w->Write<uint8_t>(DW_LNS_COPY);
1483 1484 1485 1486 1487

    intptr_t pc = 0;
    intptr_t line = 1;
    bool is_statement = true;

1488 1489
    std::vector<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
    std::sort(pc_info->begin(), pc_info->end(), &ComparePCInfo);
1490

1491
    for (size_t i = 0; i < pc_info->size(); i++) {
1492
      LineInfo::PCInfo* info = &pc_info->at(i);
1493
      DCHECK(info->pc_ >= pc);
1494 1495 1496 1497 1498 1499

      // Reduce bloating in the debug line table by removing duplicate line
      // entries (per DWARF2 standard).
      intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
      if (new_line == line) {
        continue;
1500
      }
1501 1502 1503 1504 1505

      // Mark statement boundaries.  For a better debugging experience, mark
      // the last pc address in the function as a statement (e.g. "}"), so that
      // a user can see the result of the last line executed in the function,
      // should control reach the end.
1506
      if ((i + 1) == pc_info->size()) {
1507 1508 1509 1510
        if (!is_statement) {
          w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
        }
      } else if (is_statement != info->is_statement_) {
1511 1512 1513
        w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
        is_statement = !is_statement;
      }
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

      // Generate special opcodes, if possible.  This results in more compact
      // debug line tables.  See the DWARF 2.0 standard to learn more about
      // special opcodes.
      uintptr_t pc_diff = info->pc_ - pc;
      intptr_t line_diff = new_line - line;

      // Compute special opcode (see DWARF 2.0 standard)
      intptr_t special_opcode = (line_diff - line_base) +
                                (line_range * pc_diff) + opcode_base;

      // If special_opcode is less than or equal to 255, it can be used as a
      // special opcode.  If line_diff is larger than the max line increment
      // allowed for a special opcode, or if line_diff is less than the minimum
      // line that can be added to the line register (i.e. line_base), then
      // special_opcode can't be used.
      if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
          (line_diff <= max_line_incr) && (line_diff >= line_base)) {
        w->Write<uint8_t>(special_opcode);
      } else {
        w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
        w->WriteSLEB128(pc_diff);
        w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
        w->WriteSLEB128(line_diff);
1538 1539
        w->Write<uint8_t>(DW_LNS_COPY);
      }
1540 1541 1542 1543

      // Increment the pc and line operands.
      pc += pc_diff;
      line += line_diff;
1544
    }
1545 1546 1547 1548
    // Advance the pc to the end of the routine, since the end sequence opcode
    // requires this.
    w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
    w->WriteSLEB128(desc_->CodeSize() - pc);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
    WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
    total_length.set(static_cast<uint32_t>(w->position() - start));
    return true;
  }

 private:
  void WriteExtendedOpcode(Writer* w,
                           DWARF2ExtendedOpcode op,
                           size_t operands_size) {
    w->Write<uint8_t>(0);
    w->WriteULEB128(operands_size + 1);
    w->Write<uint8_t>(op);
  }

1563 1564 1565 1566 1567
  static bool ComparePCInfo(const LineInfo::PCInfo& a,
                            const LineInfo::PCInfo& b) {
    if (a.pc_ == b.pc_) {
      if (a.is_statement_ != b.is_statement_) {
        return !b.is_statement_;
1568
      }
1569
      return false;
1570
    }
1571
    return a.pc_ < b.pc_;
1572 1573 1574 1575 1576 1577
  }

  CodeDescription* desc_;
};


1578
#if V8_TARGET_ARCH_X64
1579

1580
class UnwindInfoSection : public DebugSection {
1581
 public:
1582
  explicit UnwindInfoSection(CodeDescription* desc);
1583
  virtual bool WriteBodyInternal(Writer* w);
1584

1585 1586
  int WriteCIE(Writer* w);
  void WriteFDE(Writer* w, int);
1587

1588 1589 1590 1591
  void WriteFDEStateOnEntry(Writer* w);
  void WriteFDEStateAfterRBPPush(Writer* w);
  void WriteFDEStateAfterRBPSet(Writer* w);
  void WriteFDEStateAfterRBPPop(Writer* w);
1592

1593
  void WriteLength(Writer* w,
1594 1595 1596 1597
                   Writer::Slot<uint32_t>* length_slot,
                   int initial_position);

 private:
1598
  CodeDescription* desc_;
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

  // DWARF3 Specification, Table 7.23
  enum CFIInstructions {
    DW_CFA_ADVANCE_LOC = 0x40,
    DW_CFA_OFFSET = 0x80,
    DW_CFA_RESTORE = 0xC0,
    DW_CFA_NOP = 0x00,
    DW_CFA_SET_LOC = 0x01,
    DW_CFA_ADVANCE_LOC1 = 0x02,
    DW_CFA_ADVANCE_LOC2 = 0x03,
    DW_CFA_ADVANCE_LOC4 = 0x04,
    DW_CFA_OFFSET_EXTENDED = 0x05,
    DW_CFA_RESTORE_EXTENDED = 0x06,
    DW_CFA_UNDEFINED = 0x07,
    DW_CFA_SAME_VALUE = 0x08,
    DW_CFA_REGISTER = 0x09,
    DW_CFA_REMEMBER_STATE = 0x0A,
    DW_CFA_RESTORE_STATE = 0x0B,
    DW_CFA_DEF_CFA = 0x0C,
    DW_CFA_DEF_CFA_REGISTER = 0x0D,
    DW_CFA_DEF_CFA_OFFSET = 0x0E,

    DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
    DW_CFA_EXPRESSION = 0x10,
    DW_CFA_OFFSET_EXTENDED_SF = 0x11,
    DW_CFA_DEF_CFA_SF = 0x12,
    DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
    DW_CFA_VAL_OFFSET = 0x14,
    DW_CFA_VAL_OFFSET_SF = 0x15,
    DW_CFA_VAL_EXPRESSION = 0x16
  };

  // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
  enum RegisterMapping {
    // Only the relevant ones have been added to reduce clutter.
    AMD64_RBP = 6,
    AMD64_RSP = 7,
    AMD64_RA = 16
  };

  enum CFIConstants {
    CIE_ID = 0,
    CIE_VERSION = 1,
    CODE_ALIGN_FACTOR = 1,
    DATA_ALIGN_FACTOR = 1,
    RETURN_ADDRESS_REGISTER = AMD64_RA
  };
};


1649
void UnwindInfoSection::WriteLength(Writer* w,
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
                                    Writer::Slot<uint32_t>* length_slot,
                                    int initial_position) {
  uint32_t align = (w->position() - initial_position) % kPointerSize;

  if (align != 0) {
    for (uint32_t i = 0; i < (kPointerSize - align); i++) {
      w->Write<uint8_t>(DW_CFA_NOP);
    }
  }

1660
  DCHECK_EQ((w->position() - initial_position) % kPointerSize, 0);
1661
  length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
1662 1663 1664
}


1665
UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
1666 1667 1668 1669 1670 1671 1672
#ifdef __ELF
    : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
#else
    : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
                   MachOSection::S_REGULAR),
#endif
      desc_(desc) { }
1673

1674
int UnwindInfoSection::WriteCIE(Writer* w) {
1675
  Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1676
  uint32_t cie_position = static_cast<uint32_t>(w->position());
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

  // Write out the CIE header. Currently no 'common instructions' are
  // emitted onto the CIE; every FDE has its own set of instructions.

  w->Write<uint32_t>(CIE_ID);
  w->Write<uint8_t>(CIE_VERSION);
  w->Write<uint8_t>(0);  // Null augmentation string.
  w->WriteSLEB128(CODE_ALIGN_FACTOR);
  w->WriteSLEB128(DATA_ALIGN_FACTOR);
  w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);

  WriteLength(w, &cie_length_slot, cie_position);

  return cie_position;
}


1694
void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
1695 1696
  // The only FDE for this function. The CFA is the current RBP.
  Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1697
  int fde_position = static_cast<uint32_t>(w->position());
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
  w->Write<int32_t>(fde_position - cie_position + 4);

  w->Write<uintptr_t>(desc_->CodeStart());
  w->Write<uintptr_t>(desc_->CodeSize());

  WriteFDEStateOnEntry(w);
  WriteFDEStateAfterRBPPush(w);
  WriteFDEStateAfterRBPSet(w);
  WriteFDEStateAfterRBPPop(w);

  WriteLength(w, &fde_length_slot, fde_position);
}


1712
void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
  // The first state, just after the control has been transferred to the the
  // function.

  // RBP for this function will be the value of RSP after pushing the RBP
  // for the previous function. The previous RBP has not been pushed yet.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
  w->WriteULEB128(AMD64_RSP);
  w->WriteSLEB128(-kPointerSize);

  // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
  // and hence omitted from the next states.
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RA);
  w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);

  // The RBP of the previous function is still in RBP.
  w->Write<uint8_t>(DW_CFA_SAME_VALUE);
  w->WriteULEB128(AMD64_RBP);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
}


1739
void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
  // The second state, just after RBP has been pushed.

  // RBP / CFA for this function is now the current RSP, so just set the
  // offset from the previous rule (from -8) to 0.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
  w->WriteULEB128(0);

  // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
  // in this and the next state, and hence omitted in the next state.
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RBP);
  w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
}


1760
void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
  // The third state, after the RBP has been set.

  // The CFA can now directly be set to RBP.
  w->Write<uint8_t>(DW_CFA_DEF_CFA);
  w->WriteULEB128(AMD64_RBP);
  w->WriteULEB128(0);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(
      desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
}


1775
void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
  // The fourth (final) state. The RBP has been popped (just before issuing a
  // return).

  // The CFA can is now calculated in the same way as in the first state.
  w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
  w->WriteULEB128(AMD64_RSP);
  w->WriteSLEB128(-kPointerSize);

  // The RBP
  w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
  w->WriteULEB128(AMD64_RBP);
  w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);

  // Last location described by this entry.
  w->Write<uint8_t>(DW_CFA_SET_LOC);
  w->Write<uint64_t>(desc_->CodeEnd());
}


1795
bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
1796 1797 1798 1799 1800 1801 1802 1803
  uint32_t cie_position = WriteCIE(w);
  WriteFDE(w, cie_position);
  return true;
}


#endif  // V8_TARGET_ARCH_X64

1804 1805 1806
static void CreateDWARFSections(CodeDescription* desc,
                                Zone* zone,
                                DebugObject* obj) {
1807
  if (desc->IsLineInfoAvailable()) {
1808 1809 1810
    obj->AddSection(new(zone) DebugInfoSection(desc));
    obj->AddSection(new(zone) DebugAbbrevSection(desc));
    obj->AddSection(new(zone) DebugLineSection(desc));
1811
  }
1812
#if V8_TARGET_ARCH_X64
1813
  obj->AddSection(new(zone) UnwindInfoSection(desc));
1814
#endif
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
}


// -------------------------------------------------------------------
// Binary GDB JIT Interface as described in
//   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
extern "C" {
  typedef enum {
    JIT_NOACTION = 0,
    JIT_REGISTER_FN,
    JIT_UNREGISTER_FN
  } JITAction;

  struct JITCodeEntry {
    JITCodeEntry* next_;
    JITCodeEntry* prev_;
    Address symfile_addr_;
    uint64_t symfile_size_;
  };

  struct JITDescriptor {
    uint32_t version_;
    uint32_t action_flag_;
1838 1839
    JITCodeEntry* relevant_entry_;
    JITCodeEntry* first_entry_;
1840 1841 1842 1843 1844 1845
  };

  // GDB will place breakpoint into this function.
  // To prevent GCC from inlining or removing it we place noinline attribute
  // and inline assembler statement inside.
  void __attribute__((noinline)) __jit_debug_register_code() {
1846
    __asm__("");
1847 1848 1849 1850 1851 1852
  }

  // GDB will inspect contents of this descriptor.
  // Static initialization is necessary to prevent GDB from seeing
  // uninitialized descriptor.
  JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1853 1854

#ifdef OBJECT_PRINT
1855
  void __gdb_print_v8_object(Object* object) {
1856
    StdoutStream os;
1857
    object->Print(os);
1858
    os << std::flush;
1859 1860
  }
#endif
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
}


static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
                                     uintptr_t symfile_size) {
  JITCodeEntry* entry = static_cast<JITCodeEntry*>(
      malloc(sizeof(JITCodeEntry) + symfile_size));

  entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
  entry->symfile_size_ = symfile_size;
1871 1872
  MemCopy(reinterpret_cast<void*>(entry->symfile_addr_),
          reinterpret_cast<void*>(symfile_addr), symfile_size);
1873

1874
  entry->prev_ = entry->next_ = nullptr;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

  return entry;
}


static void DestroyCodeEntry(JITCodeEntry* entry) {
  free(entry);
}


1885
static void RegisterCodeEntry(JITCodeEntry* entry) {
1886
  entry->next_ = __jit_debug_descriptor.first_entry_;
1887
  if (entry->next_ != nullptr) entry->next_->prev_ = entry;
1888 1889 1890 1891 1892 1893 1894 1895 1896
  __jit_debug_descriptor.first_entry_ =
      __jit_debug_descriptor.relevant_entry_ = entry;

  __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
  __jit_debug_register_code();
}


static void UnregisterCodeEntry(JITCodeEntry* entry) {
1897
  if (entry->prev_ != nullptr) {
1898 1899 1900 1901 1902
    entry->prev_->next_ = entry->next_;
  } else {
    __jit_debug_descriptor.first_entry_ = entry->next_;
  }

1903
  if (entry->next_ != nullptr) {
1904 1905 1906 1907 1908 1909 1910 1911 1912
    entry->next_->prev_ = entry->prev_;
  }

  __jit_debug_descriptor.relevant_entry_ = entry;
  __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
  __jit_debug_register_code();
}


1913
static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
1914
#ifdef __MACH_O
1915
  Zone zone(isolate->allocator(), ZONE_NAME);
1916
  MachO mach_o(&zone);
1917 1918
  Writer w(&mach_o);

1919 1920 1921
  mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
                                                desc->CodeStart(),
                                                desc->CodeSize()));
1922

1923
  CreateDWARFSections(desc, &zone, &mach_o);
1924

1925 1926
  mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
#else
1927
  Zone zone(isolate->allocator(), ZONE_NAME);
1928
  ELF elf(&zone);
1929 1930 1931
  Writer w(&elf);

  int text_section_index = elf.AddSection(
1932
      new(&zone) FullHeaderELFSection(
1933 1934 1935 1936 1937 1938
          ".text",
          ELFSection::TYPE_NOBITS,
          kCodeAlignment,
          desc->CodeStart(),
          0,
          desc->CodeSize(),
1939
          ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1940

1941
  CreateSymbolsTable(desc, &zone, &elf, text_section_index);
1942

1943
  CreateDWARFSections(desc, &zone, &elf);
1944 1945

  elf.Write(&w);
1946
#endif
1947

1948
  return CreateCodeEntry(reinterpret_cast<Address>(w.buffer()), w.position());
1949 1950 1951
}


1952 1953 1954 1955
struct AddressRange {
  Address start;
  Address end;
};
1956

1957 1958 1959 1960
struct SplayTreeConfig {
  typedef AddressRange Key;
  typedef JITCodeEntry* Value;
  static const AddressRange kNoKey;
1961
  static Value NoValue() { return nullptr; }
1962 1963 1964 1965 1966
  static int Compare(const AddressRange& a, const AddressRange& b) {
    // ptrdiff_t probably doesn't fit in an int.
    if (a.start < b.start) return -1;
    if (a.start == b.start) return 0;
    return 1;
1967
  }
1968
};
1969

1970 1971
const AddressRange SplayTreeConfig::kNoKey = {0, 0};
typedef SplayTree<SplayTreeConfig> CodeMap;
1972

1973
static CodeMap* GetCodeMap() {
1974 1975
  static CodeMap* code_map = nullptr;
  if (code_map == nullptr) code_map = new CodeMap();
1976
  return code_map;
1977 1978 1979
}


1980 1981
static uint32_t HashCodeAddress(Address addr) {
  static const uintptr_t kGoldenRatio = 2654435761u;
1982
  return static_cast<uint32_t>((addr >> kCodeAlignmentBits) * kGoldenRatio);
1983 1984
}

lpy's avatar
lpy committed
1985
static base::HashMap* GetLineMap() {
1986 1987
  static base::HashMap* line_map = nullptr;
  if (line_map == nullptr) {
1988
    line_map = new base::HashMap();
lpy's avatar
lpy committed
1989
  }
1990
  return line_map;
1991 1992 1993
}


1994
static void PutLineInfo(Address addr, LineInfo* info) {
lpy's avatar
lpy committed
1995
  base::HashMap* line_map = GetLineMap();
1996 1997
  base::HashMap::Entry* e = line_map->LookupOrInsert(
      reinterpret_cast<void*>(addr), HashCodeAddress(addr));
1998
  if (e->value != nullptr) delete static_cast<LineInfo*>(e->value);
1999
  e->value = info;
2000 2001 2002
}


2003
static LineInfo* GetLineInfo(Address addr) {
2004 2005
  void* value = GetLineMap()->Remove(reinterpret_cast<void*>(addr),
                                     HashCodeAddress(addr));
2006
  return static_cast<LineInfo*>(value);
2007 2008
}

2009

2010
static void AddUnwindInfo(CodeDescription* desc) {
2011
#if V8_TARGET_ARCH_X64
2012
  if (desc->is_function()) {
2013
    // To avoid propagating unwinding information through
2014 2015
    // compilation pipeline we use an approximation.
    // For most use cases this should not affect usability.
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
    static const int kFramePointerPushOffset = 1;
    static const int kFramePointerSetOffset = 4;
    static const int kFramePointerPopOffset = -3;

    uintptr_t frame_pointer_push_address =
        desc->CodeStart() + kFramePointerPushOffset;

    uintptr_t frame_pointer_set_address =
        desc->CodeStart() + kFramePointerSetOffset;

    uintptr_t frame_pointer_pop_address =
        desc->CodeEnd() + kFramePointerPopOffset;

    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
                                    frame_pointer_push_address);
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
                                    frame_pointer_set_address);
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
                                    frame_pointer_pop_address);
2035
  } else {
2036 2037 2038 2039 2040 2041
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
                                    desc->CodeStart());
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
                                    desc->CodeStart());
    desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
                                    desc->CodeEnd());
2042
  }
2043
#endif  // V8_TARGET_ARCH_X64
2044 2045 2046
}


2047
static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
2048 2049


2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
// Remove entries from the splay tree that intersect the given address range,
// and deregister them from GDB.
static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
  DCHECK(range.start < range.end);
  CodeMap::Locator cur;
  if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
    // Skip entries that are entirely less than the range of interest.
    while (cur.key().end <= range.start) {
      // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
      // than _or equal to_ the given key, so we have to advance our key to get
      // the next one.
      AddressRange new_key;
      new_key.start = cur.key().end;
      new_key.end = 0;
      if (!map->FindLeastGreaterThan(new_key, &cur)) return;
    }
    // Evict intersecting ranges.
    while (cur.key().start < range.end) {
      AddressRange old_range = cur.key();
      JITCodeEntry* old_entry = cur.value();

      UnregisterCodeEntry(old_entry);
      DestroyCodeEntry(old_entry);

      CHECK(map->Remove(old_range));
      if (!map->FindLeastGreaterThan(old_range, &cur)) return;
    }
  }
}


// Insert the entry into the splay tree and register it with GDB.
static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
                            JITCodeEntry* entry, bool dump_if_enabled,
                            const char* name_hint) {
#if defined(DEBUG) && !V8_OS_WIN
  static int file_num = 0;
  if (FLAG_gdbjit_dump && dump_if_enabled) {
    static const int kMaxFileNameSize = 64;
    char file_name[64];

    SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
2092
             (name_hint != nullptr) ? name_hint : "", file_num++);
2093
    WriteBytes(file_name, reinterpret_cast<byte*>(entry->symfile_addr_),
2094
               static_cast<int>(entry->symfile_size_));
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
  }
#endif

  CodeMap::Locator cur;
  CHECK(map->Insert(range, &cur));
  cur.set_value(entry);

  RegisterCodeEntry(entry);
}


static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
                    LineInfo* lineinfo) {
2108
  DisallowHeapAllocation no_gc;
2109

2110 2111 2112 2113 2114
  CodeMap* code_map = GetCodeMap();
  AddressRange range;
  range.start = code->address();
  range.end = code->address() + code->CodeSize();
  RemoveJITCodeEntries(code_map, range);
2115

2116
  CodeDescription code_desc(name, code, shared, lineinfo);
2117

2118
  if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
2119 2120 2121 2122
    delete lineinfo;
    return;
  }

2123
  AddUnwindInfo(&code_desc);
2124 2125
  Isolate* isolate = code->GetIsolate();
  JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
2126 2127 2128

  delete lineinfo;

2129
  const char* name_hint = nullptr;
2130 2131 2132 2133 2134
  bool should_dump = false;
  if (FLAG_gdbjit_dump) {
    if (strlen(FLAG_gdbjit_dump_filter) == 0) {
      name_hint = name;
      should_dump = true;
2135
    } else if (name != nullptr) {
2136
      name_hint = strstr(name, FLAG_gdbjit_dump_filter);
2137
      should_dump = (name_hint != nullptr);
2138 2139
    }
  }
2140
  AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
2141 2142 2143
}


2144
void EventHandler(const v8::JitCodeEvent* event) {
2145
  if (!FLAG_gdbjit) return;
2146
  if (event->code_type != v8::JitCodeEvent::JIT_CODE) return;
2147
  base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
2148
  switch (event->type) {
2149
    case v8::JitCodeEvent::CODE_ADDED: {
2150 2151 2152
      Address addr = reinterpret_cast<Address>(event->code_start);
      Code* code = Code::GetCodeFromTargetAddress(addr);
      LineInfo* lineinfo = GetLineInfo(addr);
2153 2154 2155
      EmbeddedVector<char, 256> buffer;
      StringBuilder builder(buffer.start(), buffer.length());
      builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
2156
      // It's called UnboundScript in the API but it's a SharedFunctionInfo.
2157 2158 2159
      SharedFunctionInfo* shared = event->script.IsEmpty()
                                       ? nullptr
                                       : *Utils::OpenHandle(*event->script);
2160
      AddCode(builder.Finalize(), code, shared, lineinfo);
2161 2162
      break;
    }
2163
    case v8::JitCodeEvent::CODE_MOVED:
2164 2165
      // Enabling the GDB JIT interface should disable code compaction.
      UNREACHABLE();
2166
      break;
2167 2168 2169
    case v8::JitCodeEvent::CODE_REMOVED:
      // Do nothing.  Instead, adding code causes eviction of any entry whose
      // address range intersects the address range of the added code.
2170
      break;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
    case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
      LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
      line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
                             static_cast<int>(event->line_info.pos),
                             event->line_info.position_type ==
                                 v8::JitCodeEvent::STATEMENT_POSITION);
      break;
    }
    case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
      v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
      mutable_event->user_data = new LineInfo();
      break;
    }
    case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
      LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2186
      PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
2187 2188 2189 2190
      break;
    }
  }
}
2191
#endif
2192 2193 2194
}  // namespace GDBJITInterface
}  // namespace internal
}  // namespace v8