assembler-arm-inl.h 22.1 KB
Newer Older
1 2 3
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
4
// Redistribution and use in source and binary forms, with or without
5 6 7 8 9 10 11 12 13 14
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
15
//
16 17 18
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
19 20 21
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 23 24 25 26 27 28 29 30 31 32 33 34
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been modified
// significantly by Google Inc.
35
// Copyright 2012 the V8 project authors. All rights reserved.
36

37 38
#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
#define V8_ARM_ASSEMBLER_ARM_INL_H_
39

40
#include "src/arm/assembler-arm.h"
41

42
#include "src/assembler.h"
43
#include "src/debug/debug.h"
44 45


46 47
namespace v8 {
namespace internal {
48 49


50 51 52
bool CpuFeatures::SupportsCrankshaft() { return IsSupported(VFP3); }


53
int DoubleRegister::NumRegisters() {
54
  return CpuFeatures::IsSupported(VFP32DREGS) ? 32 : 16;
55 56 57
}


58
void RelocInfo::apply(intptr_t delta) {
59
  if (RelocInfo::IsInternalReference(rmode_)) {
60 61 62 63 64 65
    // absolute code pointer inside code object moves with the code object.
    int32_t* p = reinterpret_cast<int32_t*>(pc_);
    *p += delta;  // relocate entry
  }
  // We do not use pc relative addressing on ARM, so there is
  // nothing else to do.
66 67 68 69
}


Address RelocInfo::target_address() {
70
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
71
  return Assembler::target_address_at(pc_, host_);
72 73 74
}


75
Address RelocInfo::target_address_address() {
76
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
77 78
                              || rmode_ == EMBEDDED_OBJECT
                              || rmode_ == EXTERNAL_REFERENCE);
79
  if (FLAG_enable_embedded_constant_pool ||
80
      Assembler::IsMovW(Memory::int32_at(pc_))) {
81 82 83
    // We return the PC for embedded constant pool since this function is used
    // by the serializer and expects the address to reside within the code
    // object.
84 85
    return reinterpret_cast<Address>(pc_);
  } else {
86
    DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_)));
87
    return constant_pool_entry_address();
88
  }
89 90 91
}


92
Address RelocInfo::constant_pool_entry_address() {
93
  DCHECK(IsInConstantPool());
94
  return Assembler::constant_pool_entry_address(pc_, host_->constant_pool());
95 96 97
}


98
int RelocInfo::target_address_size() {
99
  return kPointerSize;
100 101 102
}


103 104 105
void RelocInfo::set_target_address(Address target,
                                   WriteBarrierMode write_barrier_mode,
                                   ICacheFlushMode icache_flush_mode) {
106
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
107 108 109
  Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
      host() != NULL && IsCodeTarget(rmode_)) {
110 111 112 113
    Object* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target_code));
  }
114 115 116 117
}


Object* RelocInfo::target_object() {
118
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
119
  return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
120 121 122
}


123
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
124
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
125
  return Handle<Object>(reinterpret_cast<Object**>(
126
      Assembler::target_address_at(pc_, host_)));
127 128 129
}


130 131 132
void RelocInfo::set_target_object(Object* target,
                                  WriteBarrierMode write_barrier_mode,
                                  ICacheFlushMode icache_flush_mode) {
133
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
134
  Assembler::set_target_address_at(pc_, host_,
135 136 137
                                   reinterpret_cast<Address>(target),
                                   icache_flush_mode);
  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
138 139
      host() != NULL &&
      target->IsHeapObject()) {
140 141 142
    host()->GetHeap()->incremental_marking()->RecordWrite(
        host(), &Memory::Object_at(pc_), HeapObject::cast(target));
  }
143 144 145
}


146
Address RelocInfo::target_external_reference() {
147
  DCHECK(rmode_ == EXTERNAL_REFERENCE);
148
  return Assembler::target_address_at(pc_, host_);
149 150 151
}


152 153 154 155 156 157
Address RelocInfo::target_internal_reference() {
  DCHECK(rmode_ == INTERNAL_REFERENCE);
  return Memory::Address_at(pc_);
}


158
Address RelocInfo::target_internal_reference_address() {
159
  DCHECK(rmode_ == INTERNAL_REFERENCE);
160
  return reinterpret_cast<Address>(pc_);
161 162 163
}


164
Address RelocInfo::target_runtime_entry(Assembler* origin) {
165
  DCHECK(IsRuntimeEntry(rmode_));
166 167 168 169 170
  return target_address();
}


void RelocInfo::set_target_runtime_entry(Address target,
171 172
                                         WriteBarrierMode write_barrier_mode,
                                         ICacheFlushMode icache_flush_mode) {
173
  DCHECK(IsRuntimeEntry(rmode_));
174 175
  if (target_address() != target)
    set_target_address(target, write_barrier_mode, icache_flush_mode);
176 177 178
}


179
Handle<Cell> RelocInfo::target_cell_handle() {
180
  DCHECK(rmode_ == RelocInfo::CELL);
181
  Address address = Memory::Address_at(pc_);
182
  return Handle<Cell>(reinterpret_cast<Cell**>(address));
183 184 185
}


186
Cell* RelocInfo::target_cell() {
187
  DCHECK(rmode_ == RelocInfo::CELL);
188
  return Cell::FromValueAddress(Memory::Address_at(pc_));
189 190 191
}


192 193 194
void RelocInfo::set_target_cell(Cell* cell,
                                WriteBarrierMode write_barrier_mode,
                                ICacheFlushMode icache_flush_mode) {
195
  DCHECK(rmode_ == RelocInfo::CELL);
196
  Address address = cell->address() + Cell::kValueOffset;
197
  Memory::Address_at(pc_) = address;
198
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
199 200 201 202 203
    // TODO(1550) We are passing NULL as a slot because cell can never be on
    // evacuation candidate.
    host()->GetHeap()->incremental_marking()->RecordWrite(
        host(), NULL, cell);
  }
204 205 206
}


207
static const int kNoCodeAgeSequenceLength = 3 * Assembler::kInstrSize;
208

209 210 211 212 213 214 215

Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
  UNREACHABLE();  // This should never be reached on Arm.
  return Handle<Object>();
}


216
Code* RelocInfo::code_age_stub() {
217
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
218
  return Code::GetCodeFromTargetAddress(
219 220
      Memory::Address_at(pc_ +
                         (kNoCodeAgeSequenceLength - Assembler::kInstrSize)));
221 222 223
}


224 225
void RelocInfo::set_code_age_stub(Code* stub,
                                  ICacheFlushMode icache_flush_mode) {
226
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
227 228
  Memory::Address_at(pc_ +
                     (kNoCodeAgeSequenceLength - Assembler::kInstrSize)) =
229 230 231 232
      stub->instruction_start();
}


233
Address RelocInfo::debug_call_address() {
234 235
  // The 2 instructions offset assumes patched debug break slot or return
  // sequence.
236 237
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
  return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
238 239 240
}


241 242 243 244
void RelocInfo::set_debug_call_address(Address target) {
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
  Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) =
      target;
245 246 247 248 249
  if (host() != NULL) {
    Object* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target_code));
  }
250 251 252
}


253
void RelocInfo::WipeOut() {
254 255 256 257 258 259 260 261
  DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
         IsInternalReference(rmode_));
  if (IsInternalReference(rmode_)) {
    Memory::Address_at(pc_) = NULL;
  } else {
    Assembler::set_target_address_at(pc_, host_, NULL);
  }
262 263 264
}


265
bool RelocInfo::IsPatchedReturnSequence() {
266 267 268 269 270
  Instr current_instr = Assembler::instr_at(pc_);
  Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize);
  // A patched return sequence is:
  //  ldr ip, [pc, #0]
  //  blx ip
271 272
  return Assembler::IsLdrPcImmediateOffset(current_instr) &&
         Assembler::IsBlxReg(next_instr);
273 274 275
}


276 277
bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
  Instr current_instr = Assembler::instr_at(pc_);
278
  return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
279 280 281
}


282
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
283 284
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
285
    visitor->VisitEmbeddedPointer(this);
286 287
  } else if (RelocInfo::IsCodeTarget(mode)) {
    visitor->VisitCodeTarget(this);
288 289
  } else if (mode == RelocInfo::CELL) {
    visitor->VisitCell(this);
290
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
291
    visitor->VisitExternalReference(this);
292 293
  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    visitor->VisitInternalReference(this);
294 295
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    visitor->VisitCodeAgeSequence(this);
296
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
297
             IsPatchedDebugBreakSlotSequence()) {
298
    visitor->VisitDebugTarget(this);
299
  } else if (RelocInfo::IsRuntimeEntry(mode)) {
300 301 302 303 304
    visitor->VisitRuntimeEntry(this);
  }
}


305
template<typename StaticVisitor>
306
void RelocInfo::Visit(Heap* heap) {
307 308
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
309
    StaticVisitor::VisitEmbeddedPointer(heap, this);
310
  } else if (RelocInfo::IsCodeTarget(mode)) {
311
    StaticVisitor::VisitCodeTarget(heap, this);
312 313
  } else if (mode == RelocInfo::CELL) {
    StaticVisitor::VisitCell(heap, this);
314
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
315
    StaticVisitor::VisitExternalReference(this);
316 317
  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    StaticVisitor::VisitInternalReference(this);
318 319
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    StaticVisitor::VisitCodeAgeSequence(heap, this);
320
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
321
             IsPatchedDebugBreakSlotSequence()) {
322
    StaticVisitor::VisitDebugTarget(heap, this);
323
  } else if (RelocInfo::IsRuntimeEntry(mode)) {
324 325 326 327 328
    StaticVisitor::VisitRuntimeEntry(this);
  }
}


329
Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
330 331 332 333 334 335 336 337 338
  rm_ = no_reg;
  imm32_ = immediate;
  rmode_ = rmode;
}


Operand::Operand(const ExternalReference& f)  {
  rm_ = no_reg;
  imm32_ = reinterpret_cast<int32_t>(f.address());
339
  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
340 341 342 343 344 345
}


Operand::Operand(Smi* value) {
  rm_ = no_reg;
  imm32_ =  reinterpret_cast<intptr_t>(value);
346
  rmode_ = RelocInfo::NONE32;
347 348 349 350 351 352 353 354 355 356 357
}


Operand::Operand(Register rm) {
  rm_ = rm;
  rs_ = no_reg;
  shift_op_ = LSL;
  shift_imm_ = 0;
}


358 359 360 361 362 363 364 365
bool Operand::is_reg() const {
  return rm_.is_valid() &&
         rs_.is(no_reg) &&
         shift_op_ == LSL &&
         shift_imm_ == 0;
}


366 367 368 369
void Assembler::CheckBuffer() {
  if (buffer_space() <= kGap) {
    GrowBuffer();
  }
370
  MaybeCheckConstPool();
371 372 373 374 375 376 377 378 379 380
}


void Assembler::emit(Instr x) {
  CheckBuffer();
  *reinterpret_cast<Instr*>(pc_) = x;
  pc_ += kInstrSize;
}


381 382 383
Address Assembler::target_address_from_return_address(Address pc) {
  // Returns the address of the call target from the return address that will
  // be returned to after a call.
384
  // Call sequence on V7 or later is:
385 386 387 388
  //  movw  ip, #... @ call address low 16
  //  movt  ip, #... @ call address high 16
  //  blx   ip
  //                      @ return address
389 390 391 392 393 394 395 396
  // For V6 when the constant pool is unavailable, it is:
  //  mov  ip, #...     @ call address low 8
  //  orr  ip, ip, #... @ call address 2nd 8
  //  orr  ip, ip, #... @ call address 3rd 8
  //  orr  ip, ip, #... @ call address high 8
  //  blx   ip
  //                      @ return address
  // In cases that need frequent patching, the address is in the
397 398 399 400
  // constant pool.  It could be a small constant pool load:
  //  ldr   ip, [pc / pp, #...] @ call address
  //  blx   ip
  //                      @ return address
401
  // Or an extended constant pool load (ARMv7):
402 403 404
  //  movw  ip, #...
  //  movt  ip, #...
  //  ldr   ip, [pc, ip]  @ call address
405 406
  //  blx   ip
  //                      @ return address
407 408 409 410 411 412 413 414
  // Or an extended constant pool load (ARMv6):
  //  mov  ip, #...
  //  orr  ip, ip, #...
  //  orr  ip, ip, #...
  //  orr  ip, ip, #...
  //  ldr   ip, [pc, ip]  @ call address
  //  blx   ip
  //                      @ return address
415 416
  Address candidate = pc - 2 * Assembler::kInstrSize;
  Instr candidate_instr(Memory::int32_at(candidate));
417 418
  if (IsLdrPcImmediateOffset(candidate_instr) |
      IsLdrPpImmediateOffset(candidate_instr)) {
419
    return candidate;
420
  } else {
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    if (IsLdrPpRegOffset(candidate_instr)) {
      candidate -= Assembler::kInstrSize;
    }
    if (CpuFeatures::IsSupported(ARMv7)) {
      candidate -= 1 * Assembler::kInstrSize;
      DCHECK(IsMovW(Memory::int32_at(candidate)) &&
             IsMovT(Memory::int32_at(candidate + Assembler::kInstrSize)));
    } else {
      candidate -= 3 * Assembler::kInstrSize;
      DCHECK(
          IsMovImmed(Memory::int32_at(candidate)) &&
          IsOrrImmed(Memory::int32_at(candidate + Assembler::kInstrSize)) &&
          IsOrrImmed(Memory::int32_at(candidate + 2 * Assembler::kInstrSize)) &&
          IsOrrImmed(Memory::int32_at(candidate + 3 * Assembler::kInstrSize)));
    }
436
    return candidate;
437 438 439 440 441
  }
}


Address Assembler::return_address_from_call_start(Address pc) {
442 443
  if (IsLdrPcImmediateOffset(Memory::int32_at(pc)) |
      IsLdrPpImmediateOffset(Memory::int32_at(pc))) {
444
    // Load from constant pool, small section.
445 446
    return pc + kInstrSize * 2;
  } else {
447 448 449 450 451 452 453 454 455 456
    if (CpuFeatures::IsSupported(ARMv7)) {
      DCHECK(IsMovW(Memory::int32_at(pc)));
      DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
      if (IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize))) {
        // Load from constant pool, extended section.
        return pc + kInstrSize * 4;
      } else {
        // A movw / movt load immediate.
        return pc + kInstrSize * 3;
      }
457
    } else {
458 459 460 461 462 463 464 465 466 467 468
      DCHECK(IsMovImmed(Memory::int32_at(pc)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
      if (IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize))) {
        // Load from constant pool, extended section.
        return pc + kInstrSize * 6;
      } else {
        // A mov / orr load immediate.
        return pc + kInstrSize * 5;
      }
469
    }
470
  }
471 472 473
}


474
void Assembler::deserialization_set_special_target_at(
475
    Address constant_pool_entry, Code* code, Address target) {
476
  if (FLAG_enable_embedded_constant_pool) {
477 478 479 480
    set_target_address_at(constant_pool_entry, code, target);
  } else {
    Memory::Address_at(constant_pool_entry) = target;
  }
481 482 483
}


484
void Assembler::deserialization_set_target_internal_reference_at(
485
    Address pc, Address target, RelocInfo::Mode mode) {
486 487 488 489
  Memory::Address_at(pc) = target;
}


490
bool Assembler::is_constant_pool_load(Address pc) {
491 492
  if (CpuFeatures::IsSupported(ARMv7)) {
    return !Assembler::IsMovW(Memory::int32_at(pc)) ||
493
           (FLAG_enable_embedded_constant_pool &&
494 495 496 497
            Assembler::IsLdrPpRegOffset(
                Memory::int32_at(pc + 2 * Assembler::kInstrSize)));
  } else {
    return !Assembler::IsMovImmed(Memory::int32_at(pc)) ||
498
           (FLAG_enable_embedded_constant_pool &&
499 500 501
            Assembler::IsLdrPpRegOffset(
                Memory::int32_at(pc + 4 * Assembler::kInstrSize)));
  }
502 503 504
}


505 506 507
Address Assembler::constant_pool_entry_address(Address pc,
                                               Address constant_pool) {
  if (FLAG_enable_embedded_constant_pool) {
508
    DCHECK(constant_pool != NULL);
509
    int cp_offset;
510 511 512 513 514 515 516 517 518 519 520 521 522
    if (!CpuFeatures::IsSupported(ARMv7) && IsMovImmed(Memory::int32_at(pc))) {
      DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
             IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
             IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)) &&
             IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize)));
      // This is an extended constant pool lookup (ARMv6).
      Instr mov_instr = instr_at(pc);
      Instr orr_instr_1 = instr_at(pc + kInstrSize);
      Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize);
      Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize);
      cp_offset = DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) |
                  DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3);
    } else if (IsMovW(Memory::int32_at(pc))) {
523
      DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)) &&
524
             IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize)));
525
      // This is an extended constant pool lookup (ARMv7).
526 527 528 529 530 531
      Instruction* movw_instr = Instruction::At(pc);
      Instruction* movt_instr = Instruction::At(pc + kInstrSize);
      cp_offset = (movt_instr->ImmedMovwMovtValue() << 16) |
                  movw_instr->ImmedMovwMovtValue();
    } else {
      // This is a small constant pool lookup.
532
      DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(pc)));
533 534
      cp_offset = GetLdrRegisterImmediateOffset(Memory::int32_at(pc));
    }
535
    return constant_pool + cp_offset;
536
  } else {
537
    DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc)));
538 539 540 541 542 543
    Instr instr = Memory::int32_at(pc);
    return pc + GetLdrRegisterImmediateOffset(instr) + kPcLoadDelta;
  }
}


544
Address Assembler::target_address_at(Address pc, Address constant_pool) {
545
  if (is_constant_pool_load(pc)) {
546 547
    // This is a constant pool lookup. Return the value in the constant pool.
    return Memory::Address_at(constant_pool_entry_address(pc, constant_pool));
548 549
  } else if (CpuFeatures::IsSupported(ARMv7)) {
    // This is an movw / movt immediate load. Return the immediate.
550
    DCHECK(IsMovW(Memory::int32_at(pc)) &&
551 552 553 554 555 556
           IsMovT(Memory::int32_at(pc + kInstrSize)));
    Instruction* movw_instr = Instruction::At(pc);
    Instruction* movt_instr = Instruction::At(pc + kInstrSize);
    return reinterpret_cast<Address>(
        (movt_instr->ImmedMovwMovtValue() << 16) |
         movw_instr->ImmedMovwMovtValue());
557 558 559 560 561 562 563 564 565 566 567 568 569 570
  } else {
    // This is an mov / orr immediate load. Return the immediate.
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    Instr mov_instr = instr_at(pc);
    Instr orr_instr_1 = instr_at(pc + kInstrSize);
    Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize);
    Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize);
    Address ret = reinterpret_cast<Address>(
        DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) |
        DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3));
    return ret;
571 572 573 574
  }
}


575
void Assembler::set_target_address_at(Address pc, Address constant_pool,
576 577
                                      Address target,
                                      ICacheFlushMode icache_flush_mode) {
578
  if (is_constant_pool_load(pc)) {
579 580 581 582
    // This is a constant pool lookup. Update the entry in the constant pool.
    Memory::Address_at(constant_pool_entry_address(pc, constant_pool)) = target;
    // Intuitively, we would think it is necessary to always flush the
    // instruction cache after patching a target address in the code as follows:
583
    //   Assembler::FlushICacheWithoutIsolate(pc, sizeof(target));
584 585 586 587 588
    // However, on ARM, no instruction is actually patched in the case
    // of embedded constants of the form:
    // ldr   ip, [pp, #...]
    // since the instruction accessing this address in the constant pool remains
    // unchanged.
589 590 591
  } else if (CpuFeatures::IsSupported(ARMv7)) {
    // This is an movw / movt immediate load. Patch the immediate embedded in
    // the instructions.
592 593
    DCHECK(IsMovW(Memory::int32_at(pc)));
    DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
594 595
    uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
    uint32_t immediate = reinterpret_cast<uint32_t>(target);
596 597
    instr_ptr[0] = PatchMovwImmediate(instr_ptr[0], immediate & 0xFFFF);
    instr_ptr[1] = PatchMovwImmediate(instr_ptr[1], immediate >> 16);
598 599
    DCHECK(IsMovW(Memory::int32_at(pc)));
    DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
600
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
601
      Assembler::FlushICacheWithoutIsolate(pc, 2 * kInstrSize);
602
    }
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
  } else {
    // This is an mov / orr immediate load. Patch the immediate embedded in
    // the instructions.
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
    uint32_t immediate = reinterpret_cast<uint32_t>(target);
    instr_ptr[0] = PatchShiftImm(instr_ptr[0], immediate & kImm8Mask);
    instr_ptr[1] = PatchShiftImm(instr_ptr[1], immediate & (kImm8Mask << 8));
    instr_ptr[2] = PatchShiftImm(instr_ptr[2], immediate & (kImm8Mask << 16));
    instr_ptr[3] = PatchShiftImm(instr_ptr[3], immediate & (kImm8Mask << 24));
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
621
      Assembler::FlushICacheWithoutIsolate(pc, 4 * kInstrSize);
622
    }
623 624 625 626
  }
}


627 628
}  // namespace internal
}  // namespace v8
629

630
#endif  // V8_ARM_ASSEMBLER_ARM_INL_H_