property-details.h 12.4 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4 5 6 7

#ifndef V8_PROPERTY_DETAILS_H_
#define V8_PROPERTY_DETAILS_H_

8 9 10
#include "include/v8.h"
#include "src/allocation.h"
#include "src/utils.h"
11 12 13 14 15 16 17

// Ecma-262 3rd 8.6.1
enum PropertyAttributes {
  NONE              = v8::None,
  READ_ONLY         = v8::ReadOnly,
  DONT_ENUM         = v8::DontEnum,
  DONT_DELETE       = v8::DontDelete,
18

19
  SEALED            = DONT_DELETE,
20 21
  FROZEN            = SEALED | READ_ONLY,

22 23 24 25 26 27
  STRING            = 8,  // Used to filter symbols and string names
  SYMBOLIC          = 16,
  PRIVATE_SYMBOL    = 32,

  DONT_SHOW         = DONT_ENUM | SYMBOLIC | PRIVATE_SYMBOL,
  ABSENT            = 64  // Used in runtime to indicate a property is absent.
28 29 30 31 32 33 34 35 36 37
  // ABSENT can never be stored in or returned from a descriptor's attributes
  // bitfield.  It is only used as a return value meaning the attributes of
  // a non-existent property.
};


namespace v8 {
namespace internal {

class Smi;
38
template<class> class TypeImpl;
39 40
struct ZoneTypeConfig;
typedef TypeImpl<ZoneTypeConfig> Type;
41
class TypeInfo;
42 43

// Type of properties.
44 45
// Order of kinds is significant.
// Must fit in the BitField PropertyDetails::KindField.
46
enum PropertyKind { kData = 0, kAccessor = 1 };
47 48 49 50


// Order of modes is significant.
// Must fit in the BitField PropertyDetails::StoreModeField.
51
enum PropertyLocation { kField = 0, kDescriptor = 1 };
52 53


54 55 56
// Order of properties is significant.
// Must fit in the BitField PropertyDetails::TypeField.
// A copy of this is in mirror-debugger.js.
57
enum PropertyType {
58 59 60 61
  DATA = (kField << 1) | kData,
  DATA_CONSTANT = (kDescriptor << 1) | kData,
  ACCESSOR = (kField << 1) | kAccessor,
  ACCESSOR_CONSTANT = (kDescriptor << 1) | kAccessor
62
};
63 64


65 66 67 68
class Representation {
 public:
  enum Kind {
    kNone,
69 70 71 72
    kInteger8,
    kUInteger8,
    kInteger16,
    kUInteger16,
73 74 75
    kSmi,
    kInteger32,
    kDouble,
76
    kHeapObject,
77 78 79 80 81 82 83 84 85
    kTagged,
    kExternal,
    kNumRepresentations
  };

  Representation() : kind_(kNone) { }

  static Representation None() { return Representation(kNone); }
  static Representation Tagged() { return Representation(kTagged); }
86 87 88
  static Representation Integer8() { return Representation(kInteger8); }
  static Representation UInteger8() { return Representation(kUInteger8); }
  static Representation Integer16() { return Representation(kInteger16); }
89
  static Representation UInteger16() { return Representation(kUInteger16); }
90 91 92
  static Representation Smi() { return Representation(kSmi); }
  static Representation Integer32() { return Representation(kInteger32); }
  static Representation Double() { return Representation(kDouble); }
93
  static Representation HeapObject() { return Representation(kHeapObject); }
94 95 96 97
  static Representation External() { return Representation(kExternal); }

  static Representation FromKind(Kind kind) { return Representation(kind); }

98
  bool Equals(const Representation& other) const {
99 100 101
    return kind_ == other.kind_;
  }

102 103 104 105 106
  bool IsCompatibleForLoad(const Representation& other) const {
    return (IsDouble() && other.IsDouble()) ||
        (!IsDouble() && !other.IsDouble());
  }

107 108 109 110
  bool IsCompatibleForStore(const Representation& other) const {
    return Equals(other);
  }

111
  bool is_more_general_than(const Representation& other) const {
112 113 114 115
    if (kind_ == kExternal && other.kind_ == kNone) return true;
    if (kind_ == kExternal && other.kind_ == kExternal) return false;
    if (kind_ == kNone && other.kind_ == kExternal) return false;

116 117
    DCHECK(kind_ != kExternal);
    DCHECK(other.kind_ != kExternal);
118
    if (IsHeapObject()) return other.IsNone();
119 120
    if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false;
    if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false;
121 122 123
    return kind_ > other.kind_;
  }

124 125 126 127
  bool fits_into(const Representation& other) const {
    return other.is_more_general_than(*this) || other.Equals(*this);
  }

128
  Representation generalize(Representation other) {
129 130 131
    if (other.fits_into(*this)) return *this;
    if (other.is_more_general_than(*this)) return other;
    return Representation::Tagged();
132 133
  }

134
  int size() const {
135
    DCHECK(!IsNone());
136 137 138 139 140 141 142 143 144 145 146 147
    if (IsInteger8() || IsUInteger8()) {
      return sizeof(uint8_t);
    }
    if (IsInteger16() || IsUInteger16()) {
      return sizeof(uint16_t);
    }
    if (IsInteger32()) {
      return sizeof(uint32_t);
    }
    return kPointerSize;
  }

148 149
  Kind kind() const { return static_cast<Kind>(kind_); }
  bool IsNone() const { return kind_ == kNone; }
150 151 152 153
  bool IsInteger8() const { return kind_ == kInteger8; }
  bool IsUInteger8() const { return kind_ == kUInteger8; }
  bool IsInteger16() const { return kind_ == kInteger16; }
  bool IsUInteger16() const { return kind_ == kUInteger16; }
154 155
  bool IsTagged() const { return kind_ == kTagged; }
  bool IsSmi() const { return kind_ == kSmi; }
156
  bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); }
157
  bool IsInteger32() const { return kind_ == kInteger32; }
158
  bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); }
159
  bool IsDouble() const { return kind_ == kDouble; }
160
  bool IsHeapObject() const { return kind_ == kHeapObject; }
161 162
  bool IsExternal() const { return kind_ == kExternal; }
  bool IsSpecialization() const {
163 164 165
    return IsInteger8() || IsUInteger8() ||
      IsInteger16() || IsUInteger16() ||
      IsSmi() || IsInteger32() || IsDouble();
166 167 168 169 170 171 172 173 174 175 176 177 178
  }
  const char* Mnemonic() const;

 private:
  explicit Representation(Kind k) : kind_(k) { }

  // Make sure kind fits in int8.
  STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte));

  int8_t kind_;
};


179 180 181 182 183 184 185 186 187
static const int kDescriptorIndexBitCount = 10;
// The maximum number of descriptors we want in a descriptor array (should
// fit in a page).
static const int kMaxNumberOfDescriptors =
    (1 << kDescriptorIndexBitCount) - 2;
static const int kInvalidEnumCacheSentinel =
    (1 << kDescriptorIndexBitCount) - 1;


188
enum class PropertyCellType {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  // Meaningful when a property cell does not contain the hole.
  kUndefined,     // The PREMONOMORPHIC of property cells.
  kConstant,      // Cell has been assigned only once.
  kConstantType,  // Cell has been assigned only one type.
  kMutable,       // Cell will no longer be tracked as constant.

  // Meaningful when a property cell contains the hole.
  kUninitialized = kUndefined,  // Cell has never been initialized.
  kInvalidated = kConstant,     // Cell has been deleted or invalidated.

  // For dictionaries not holding cells.
  kNoCell = kMutable,
};


enum class PropertyCellConstantType {
  kSmi,
  kStableMap,
207 208 209
};


210 211 212 213
// PropertyDetails captures type and attributes for a property.
// They are used both in property dictionaries and instance descriptors.
class PropertyDetails BASE_EMBEDDED {
 public:
214 215 216 217 218
  PropertyDetails(PropertyAttributes attributes, PropertyType type, int index,
                  PropertyCellType cell_type) {
    value_ = TypeField::encode(type) | AttributesField::encode(attributes) |
             DictionaryStorageField::encode(index) |
             PropertyCellTypeField::encode(cell_type);
219

220 221
    DCHECK(type == this->type());
    DCHECK(attributes == this->attributes());
222 223 224 225
  }

  PropertyDetails(PropertyAttributes attributes,
                  PropertyType type,
226 227
                  Representation representation,
                  int field_index = 0) {
228 229
    value_ = TypeField::encode(type)
        | AttributesField::encode(attributes)
230 231
        | RepresentationField::encode(EncodeRepresentation(representation))
        | FieldIndexField::encode(field_index);
232 233
  }

234 235 236 237 238 239 240 241 242
  PropertyDetails(PropertyAttributes attributes, PropertyKind kind,
                  PropertyLocation location, Representation representation,
                  int field_index = 0) {
    value_ = KindField::encode(kind) | LocationField::encode(location) |
             AttributesField::encode(attributes) |
             RepresentationField::encode(EncodeRepresentation(representation)) |
             FieldIndexField::encode(field_index);
  }

243
  static PropertyDetails Empty() {
244
    return PropertyDetails(NONE, DATA, 0, PropertyCellType::kNoCell);
245 246
  }

247
  int pointer() const { return DescriptorPointer::decode(value_); }
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  PropertyDetails set_pointer(int i) const {
    return PropertyDetails(value_, i);
  }

  PropertyDetails set_cell_type(PropertyCellType type) const {
    PropertyDetails details = *this;
    details.value_ = PropertyCellTypeField::update(details.value_, type);
    return details;
  }

  PropertyDetails set_index(int index) const {
    PropertyDetails details = *this;
    details.value_ = DictionaryStorageField::update(details.value_, index);
    return details;
  }
264

265
  PropertyDetails CopyWithRepresentation(Representation representation) const {
266 267
    return PropertyDetails(value_, representation);
  }
268
  PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const {
269 270 271 272
    new_attributes =
        static_cast<PropertyAttributes>(attributes() | new_attributes);
    return PropertyDetails(value_, new_attributes);
  }
273

274 275
  // Conversion for storing details as Object*.
  explicit inline PropertyDetails(Smi* smi);
276
  inline Smi* AsSmi() const;
277

278
  static uint8_t EncodeRepresentation(Representation representation) {
279
    return representation.kind();
280 281 282 283 284 285
  }

  static Representation DecodeRepresentation(uint32_t bits) {
    return Representation::FromKind(static_cast<Representation::Kind>(bits));
  }

286 287 288
  PropertyKind kind() const { return KindField::decode(value_); }
  PropertyLocation location() const { return LocationField::decode(value_); }

289
  PropertyType type() const { return TypeField::decode(value_); }
290

291 292 293
  PropertyAttributes attributes() const {
    return AttributesField::decode(value_);
  }
294

295
  int dictionary_index() const {
296 297 298
    return DictionaryStorageField::decode(value_);
  }

299
  Representation representation() const {
300 301 302
    return DecodeRepresentation(RepresentationField::decode(value_));
  }

303
  int field_index() const { return FieldIndexField::decode(value_); }
304

305 306
  inline int field_width_in_words() const;

307
  static bool IsValidIndex(int index) {
308
    return DictionaryStorageField::is_valid(index);
309 310
  }

311
  bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; }
312
  bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; }
313
  bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; }
314 315 316
  PropertyCellType cell_type() const {
    return PropertyCellTypeField::decode(value_);
  }
317 318 319

  // Bit fields in value_ (type, shift, size). Must be public so the
  // constants can be embedded in generated code.
320 321
  class KindField : public BitField<PropertyKind, 0, 1> {};
  class LocationField : public BitField<PropertyLocation, 1, 1> {};
322
  class AttributesField : public BitField<PropertyAttributes, 2, 3> {};
323 324

  // Bit fields for normalized objects.
325 326
  class PropertyCellTypeField : public BitField<PropertyCellType, 5, 2> {};
  class DictionaryStorageField : public BitField<uint32_t, 7, 24> {};
327 328

  // Bit fields for fast objects.
329 330 331 332 333 334
  class RepresentationField : public BitField<uint32_t, 5, 4> {};
  class DescriptorPointer
      : public BitField<uint32_t, 9, kDescriptorIndexBitCount> {};  // NOLINT
  class FieldIndexField
      : public BitField<uint32_t, 9 + kDescriptorIndexBitCount,
                        kDescriptorIndexBitCount> {};  // NOLINT
335

336 337 338 339 340 341
  // NOTE: TypeField overlaps with KindField and LocationField.
  class TypeField : public BitField<PropertyType, 0, 2> {};
  STATIC_ASSERT(KindField::kNext == LocationField::kShift);
  STATIC_ASSERT(TypeField::kShift == KindField::kShift);
  STATIC_ASSERT(TypeField::kNext == LocationField::kNext);

342 343 344
  // All bits for both fast and slow objects must fit in a smi.
  STATIC_ASSERT(DictionaryStorageField::kNext <= 31);
  STATIC_ASSERT(FieldIndexField::kNext <= 31);
345 346 347

  static const int kInitialIndex = 1;

348 349 350 351 352
#ifdef OBJECT_PRINT
  // For our gdb macros, we should perhaps change these in the future.
  void Print(bool dictionary_mode);
#endif

353
 private:
354
  PropertyDetails(int value, int pointer) {
355 356 357 358 359
    value_ = DescriptorPointer::update(value, pointer);
  }
  PropertyDetails(int value, Representation representation) {
    value_ = RepresentationField::update(
        value, EncodeRepresentation(representation));
360
  }
361 362 363
  PropertyDetails(int value, PropertyAttributes attributes) {
    value_ = AttributesField::update(value, attributes);
  }
364

365 366 367
  uint32_t value_;
};

368 369 370 371

std::ostream& operator<<(std::ostream& os,
                         const PropertyAttributes& attributes);
std::ostream& operator<<(std::ostream& os, const PropertyDetails& details);
372 373 374
} }  // namespace v8::internal

#endif  // V8_PROPERTY_DETAILS_H_