assembler-arm-inl.h 23.1 KB
Newer Older
1 2 3
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
4
// Redistribution and use in source and binary forms, with or without
5 6 7 8 9 10 11 12 13 14
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
15
//
16 17 18
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
19 20 21
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 23 24 25 26 27 28 29 30 31 32 33 34
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been modified
// significantly by Google Inc.
35
// Copyright 2012 the V8 project authors. All rights reserved.
36

37 38
#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
#define V8_ARM_ASSEMBLER_ARM_INL_H_
39

40
#include "src/arm/assembler-arm.h"
41

42
#include "src/assembler.h"
43
#include "src/debug/debug.h"
44 45


46 47
namespace v8 {
namespace internal {
48 49


50 51 52
bool CpuFeatures::SupportsCrankshaft() { return IsSupported(VFP3); }


53
int Register::NumAllocatableRegisters() {
54
  return kMaxNumAllocatableRegisters;
55 56 57 58
}


int DwVfpRegister::NumRegisters() {
59
  return CpuFeatures::IsSupported(VFP32DREGS) ? 32 : 16;
60 61 62
}


63 64 65 66 67
int DwVfpRegister::NumReservedRegisters() {
  return kNumReservedRegisters;
}


68
int DwVfpRegister::NumAllocatableRegisters() {
69
  return NumRegisters() - kNumReservedRegisters;
70 71 72
}


73 74 75 76 77 78
// static
int DwVfpRegister::NumAllocatableAliasedRegisters() {
  return LowDwVfpRegister::kMaxNumLowRegisters - kNumReservedRegisters;
}


79
int DwVfpRegister::ToAllocationIndex(DwVfpRegister reg) {
80 81
  DCHECK(!reg.is(kDoubleRegZero));
  DCHECK(!reg.is(kScratchDoubleReg));
82 83 84
  if (reg.code() > kDoubleRegZero.code()) {
    return reg.code() - kNumReservedRegisters;
  }
85 86 87 88
  return reg.code();
}


89
DwVfpRegister DwVfpRegister::FromAllocationIndex(int index) {
90 91
  DCHECK(index >= 0 && index < NumAllocatableRegisters());
  DCHECK(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
92 93 94 95 96 97 98 99
         kNumReservedRegisters - 1);
  if (index >= kDoubleRegZero.code()) {
    return from_code(index + kNumReservedRegisters);
  }
  return from_code(index);
}


100
void RelocInfo::apply(intptr_t delta) {
101
  if (RelocInfo::IsInternalReference(rmode_)) {
102 103 104 105 106 107
    // absolute code pointer inside code object moves with the code object.
    int32_t* p = reinterpret_cast<int32_t*>(pc_);
    *p += delta;  // relocate entry
  }
  // We do not use pc relative addressing on ARM, so there is
  // nothing else to do.
108 109 110 111
}


Address RelocInfo::target_address() {
112
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
113
  return Assembler::target_address_at(pc_, host_);
114 115 116
}


117
Address RelocInfo::target_address_address() {
118
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
119 120
                              || rmode_ == EMBEDDED_OBJECT
                              || rmode_ == EXTERNAL_REFERENCE);
121
  if (FLAG_enable_embedded_constant_pool ||
122
      Assembler::IsMovW(Memory::int32_at(pc_))) {
123 124 125
    // We return the PC for embedded constant pool since this function is used
    // by the serializer and expects the address to reside within the code
    // object.
126 127
    return reinterpret_cast<Address>(pc_);
  } else {
128
    DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_)));
129
    return constant_pool_entry_address();
130
  }
131 132 133
}


134
Address RelocInfo::constant_pool_entry_address() {
135
  DCHECK(IsInConstantPool());
136
  return Assembler::constant_pool_entry_address(pc_, host_->constant_pool());
137 138 139
}


140
int RelocInfo::target_address_size() {
141
  return kPointerSize;
142 143 144
}


145 146 147
void RelocInfo::set_target_address(Address target,
                                   WriteBarrierMode write_barrier_mode,
                                   ICacheFlushMode icache_flush_mode) {
148
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
149 150 151
  Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
      host() != NULL && IsCodeTarget(rmode_)) {
152 153 154 155
    Object* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target_code));
  }
156 157 158 159
}


Object* RelocInfo::target_object() {
160
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
161
  return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
162 163 164
}


165
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
166
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
167
  return Handle<Object>(reinterpret_cast<Object**>(
168
      Assembler::target_address_at(pc_, host_)));
169 170 171
}


172 173 174
void RelocInfo::set_target_object(Object* target,
                                  WriteBarrierMode write_barrier_mode,
                                  ICacheFlushMode icache_flush_mode) {
175
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
176
  Assembler::set_target_address_at(pc_, host_,
177 178 179
                                   reinterpret_cast<Address>(target),
                                   icache_flush_mode);
  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
180 181
      host() != NULL &&
      target->IsHeapObject()) {
182 183 184
    host()->GetHeap()->incremental_marking()->RecordWrite(
        host(), &Memory::Object_at(pc_), HeapObject::cast(target));
  }
185 186 187
}


188
Address RelocInfo::target_external_reference() {
189
  DCHECK(rmode_ == EXTERNAL_REFERENCE);
190
  return Assembler::target_address_at(pc_, host_);
191 192 193
}


194 195 196 197 198 199
Address RelocInfo::target_internal_reference() {
  DCHECK(rmode_ == INTERNAL_REFERENCE);
  return Memory::Address_at(pc_);
}


200
Address RelocInfo::target_internal_reference_address() {
201
  DCHECK(rmode_ == INTERNAL_REFERENCE);
202
  return reinterpret_cast<Address>(pc_);
203 204 205
}


206
Address RelocInfo::target_runtime_entry(Assembler* origin) {
207
  DCHECK(IsRuntimeEntry(rmode_));
208 209 210 211 212
  return target_address();
}


void RelocInfo::set_target_runtime_entry(Address target,
213 214
                                         WriteBarrierMode write_barrier_mode,
                                         ICacheFlushMode icache_flush_mode) {
215
  DCHECK(IsRuntimeEntry(rmode_));
216 217
  if (target_address() != target)
    set_target_address(target, write_barrier_mode, icache_flush_mode);
218 219 220
}


221
Handle<Cell> RelocInfo::target_cell_handle() {
222
  DCHECK(rmode_ == RelocInfo::CELL);
223
  Address address = Memory::Address_at(pc_);
224
  return Handle<Cell>(reinterpret_cast<Cell**>(address));
225 226 227
}


228
Cell* RelocInfo::target_cell() {
229
  DCHECK(rmode_ == RelocInfo::CELL);
230
  return Cell::FromValueAddress(Memory::Address_at(pc_));
231 232 233
}


234 235 236
void RelocInfo::set_target_cell(Cell* cell,
                                WriteBarrierMode write_barrier_mode,
                                ICacheFlushMode icache_flush_mode) {
237
  DCHECK(rmode_ == RelocInfo::CELL);
238
  Address address = cell->address() + Cell::kValueOffset;
239
  Memory::Address_at(pc_) = address;
240
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
241 242 243 244 245
    // TODO(1550) We are passing NULL as a slot because cell can never be on
    // evacuation candidate.
    host()->GetHeap()->incremental_marking()->RecordWrite(
        host(), NULL, cell);
  }
246 247 248
}


249
static const int kNoCodeAgeSequenceLength = 3 * Assembler::kInstrSize;
250

251 252 253 254 255 256 257

Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
  UNREACHABLE();  // This should never be reached on Arm.
  return Handle<Object>();
}


258
Code* RelocInfo::code_age_stub() {
259
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
260
  return Code::GetCodeFromTargetAddress(
261 262
      Memory::Address_at(pc_ +
                         (kNoCodeAgeSequenceLength - Assembler::kInstrSize)));
263 264 265
}


266 267
void RelocInfo::set_code_age_stub(Code* stub,
                                  ICacheFlushMode icache_flush_mode) {
268
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
269 270
  Memory::Address_at(pc_ +
                     (kNoCodeAgeSequenceLength - Assembler::kInstrSize)) =
271 272 273 274
      stub->instruction_start();
}


275
Address RelocInfo::debug_call_address() {
276 277
  // The 2 instructions offset assumes patched debug break slot or return
  // sequence.
278 279
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
  return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
280 281 282
}


283 284 285 286
void RelocInfo::set_debug_call_address(Address target) {
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
  Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) =
      target;
287 288 289 290 291
  if (host() != NULL) {
    Object* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target_code));
  }
292 293 294
}


295
void RelocInfo::WipeOut() {
296 297 298 299 300 301 302 303
  DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
         IsInternalReference(rmode_));
  if (IsInternalReference(rmode_)) {
    Memory::Address_at(pc_) = NULL;
  } else {
    Assembler::set_target_address_at(pc_, host_, NULL);
  }
304 305 306
}


307
bool RelocInfo::IsPatchedReturnSequence() {
308 309 310 311 312
  Instr current_instr = Assembler::instr_at(pc_);
  Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize);
  // A patched return sequence is:
  //  ldr ip, [pc, #0]
  //  blx ip
313 314
  return Assembler::IsLdrPcImmediateOffset(current_instr) &&
         Assembler::IsBlxReg(next_instr);
315 316 317
}


318 319
bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
  Instr current_instr = Assembler::instr_at(pc_);
320
  return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
321 322 323
}


324
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
325 326
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
327
    visitor->VisitEmbeddedPointer(this);
328 329
  } else if (RelocInfo::IsCodeTarget(mode)) {
    visitor->VisitCodeTarget(this);
330 331
  } else if (mode == RelocInfo::CELL) {
    visitor->VisitCell(this);
332
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
333
    visitor->VisitExternalReference(this);
334 335
  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    visitor->VisitInternalReference(this);
336 337
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    visitor->VisitCodeAgeSequence(this);
338
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
339
             IsPatchedDebugBreakSlotSequence()) {
340
    visitor->VisitDebugTarget(this);
341
  } else if (RelocInfo::IsRuntimeEntry(mode)) {
342 343 344 345 346
    visitor->VisitRuntimeEntry(this);
  }
}


347
template<typename StaticVisitor>
348
void RelocInfo::Visit(Heap* heap) {
349 350
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
351
    StaticVisitor::VisitEmbeddedPointer(heap, this);
352
  } else if (RelocInfo::IsCodeTarget(mode)) {
353
    StaticVisitor::VisitCodeTarget(heap, this);
354 355
  } else if (mode == RelocInfo::CELL) {
    StaticVisitor::VisitCell(heap, this);
356
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
357
    StaticVisitor::VisitExternalReference(this);
358 359
  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    StaticVisitor::VisitInternalReference(this);
360 361
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    StaticVisitor::VisitCodeAgeSequence(heap, this);
362
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
363
             IsPatchedDebugBreakSlotSequence()) {
364
    StaticVisitor::VisitDebugTarget(heap, this);
365
  } else if (RelocInfo::IsRuntimeEntry(mode)) {
366 367 368 369 370
    StaticVisitor::VisitRuntimeEntry(this);
  }
}


371
Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
372 373 374 375 376 377 378 379 380
  rm_ = no_reg;
  imm32_ = immediate;
  rmode_ = rmode;
}


Operand::Operand(const ExternalReference& f)  {
  rm_ = no_reg;
  imm32_ = reinterpret_cast<int32_t>(f.address());
381
  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
382 383 384 385 386 387
}


Operand::Operand(Smi* value) {
  rm_ = no_reg;
  imm32_ =  reinterpret_cast<intptr_t>(value);
388
  rmode_ = RelocInfo::NONE32;
389 390 391 392 393 394 395 396 397 398 399
}


Operand::Operand(Register rm) {
  rm_ = rm;
  rs_ = no_reg;
  shift_op_ = LSL;
  shift_imm_ = 0;
}


400 401 402 403 404 405 406 407
bool Operand::is_reg() const {
  return rm_.is_valid() &&
         rs_.is(no_reg) &&
         shift_op_ == LSL &&
         shift_imm_ == 0;
}


408 409 410 411
void Assembler::CheckBuffer() {
  if (buffer_space() <= kGap) {
    GrowBuffer();
  }
412
  MaybeCheckConstPool();
413 414 415 416 417 418 419 420 421 422
}


void Assembler::emit(Instr x) {
  CheckBuffer();
  *reinterpret_cast<Instr*>(pc_) = x;
  pc_ += kInstrSize;
}


423 424 425
Address Assembler::target_address_from_return_address(Address pc) {
  // Returns the address of the call target from the return address that will
  // be returned to after a call.
426
  // Call sequence on V7 or later is:
427 428 429 430
  //  movw  ip, #... @ call address low 16
  //  movt  ip, #... @ call address high 16
  //  blx   ip
  //                      @ return address
431 432 433 434 435 436 437 438
  // For V6 when the constant pool is unavailable, it is:
  //  mov  ip, #...     @ call address low 8
  //  orr  ip, ip, #... @ call address 2nd 8
  //  orr  ip, ip, #... @ call address 3rd 8
  //  orr  ip, ip, #... @ call address high 8
  //  blx   ip
  //                      @ return address
  // In cases that need frequent patching, the address is in the
439 440 441 442
  // constant pool.  It could be a small constant pool load:
  //  ldr   ip, [pc / pp, #...] @ call address
  //  blx   ip
  //                      @ return address
443
  // Or an extended constant pool load (ARMv7):
444 445 446
  //  movw  ip, #...
  //  movt  ip, #...
  //  ldr   ip, [pc, ip]  @ call address
447 448
  //  blx   ip
  //                      @ return address
449 450 451 452 453 454 455 456
  // Or an extended constant pool load (ARMv6):
  //  mov  ip, #...
  //  orr  ip, ip, #...
  //  orr  ip, ip, #...
  //  orr  ip, ip, #...
  //  ldr   ip, [pc, ip]  @ call address
  //  blx   ip
  //                      @ return address
457 458
  Address candidate = pc - 2 * Assembler::kInstrSize;
  Instr candidate_instr(Memory::int32_at(candidate));
459 460
  if (IsLdrPcImmediateOffset(candidate_instr) |
      IsLdrPpImmediateOffset(candidate_instr)) {
461
    return candidate;
462
  } else {
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    if (IsLdrPpRegOffset(candidate_instr)) {
      candidate -= Assembler::kInstrSize;
    }
    if (CpuFeatures::IsSupported(ARMv7)) {
      candidate -= 1 * Assembler::kInstrSize;
      DCHECK(IsMovW(Memory::int32_at(candidate)) &&
             IsMovT(Memory::int32_at(candidate + Assembler::kInstrSize)));
    } else {
      candidate -= 3 * Assembler::kInstrSize;
      DCHECK(
          IsMovImmed(Memory::int32_at(candidate)) &&
          IsOrrImmed(Memory::int32_at(candidate + Assembler::kInstrSize)) &&
          IsOrrImmed(Memory::int32_at(candidate + 2 * Assembler::kInstrSize)) &&
          IsOrrImmed(Memory::int32_at(candidate + 3 * Assembler::kInstrSize)));
    }
478
    return candidate;
479 480 481 482 483
  }
}


Address Assembler::return_address_from_call_start(Address pc) {
484 485
  if (IsLdrPcImmediateOffset(Memory::int32_at(pc)) |
      IsLdrPpImmediateOffset(Memory::int32_at(pc))) {
486
    // Load from constant pool, small section.
487 488
    return pc + kInstrSize * 2;
  } else {
489 490 491 492 493 494 495 496 497 498
    if (CpuFeatures::IsSupported(ARMv7)) {
      DCHECK(IsMovW(Memory::int32_at(pc)));
      DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
      if (IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize))) {
        // Load from constant pool, extended section.
        return pc + kInstrSize * 4;
      } else {
        // A movw / movt load immediate.
        return pc + kInstrSize * 3;
      }
499
    } else {
500 501 502 503 504 505 506 507 508 509 510
      DCHECK(IsMovImmed(Memory::int32_at(pc)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)));
      DCHECK(IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
      if (IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize))) {
        // Load from constant pool, extended section.
        return pc + kInstrSize * 6;
      } else {
        // A mov / orr load immediate.
        return pc + kInstrSize * 5;
      }
511
    }
512
  }
513 514 515
}


516
void Assembler::deserialization_set_special_target_at(
517
    Address constant_pool_entry, Code* code, Address target) {
518
  if (FLAG_enable_embedded_constant_pool) {
519 520 521 522
    set_target_address_at(constant_pool_entry, code, target);
  } else {
    Memory::Address_at(constant_pool_entry) = target;
  }
523 524 525
}


526
void Assembler::deserialization_set_target_internal_reference_at(
527
    Address pc, Address target, RelocInfo::Mode mode) {
528 529 530 531
  Memory::Address_at(pc) = target;
}


532
bool Assembler::is_constant_pool_load(Address pc) {
533 534
  if (CpuFeatures::IsSupported(ARMv7)) {
    return !Assembler::IsMovW(Memory::int32_at(pc)) ||
535
           (FLAG_enable_embedded_constant_pool &&
536 537 538 539
            Assembler::IsLdrPpRegOffset(
                Memory::int32_at(pc + 2 * Assembler::kInstrSize)));
  } else {
    return !Assembler::IsMovImmed(Memory::int32_at(pc)) ||
540
           (FLAG_enable_embedded_constant_pool &&
541 542 543
            Assembler::IsLdrPpRegOffset(
                Memory::int32_at(pc + 4 * Assembler::kInstrSize)));
  }
544 545 546
}


547 548 549
Address Assembler::constant_pool_entry_address(Address pc,
                                               Address constant_pool) {
  if (FLAG_enable_embedded_constant_pool) {
550
    DCHECK(constant_pool != NULL);
551
    int cp_offset;
552 553 554 555 556 557 558 559 560 561 562 563 564
    if (!CpuFeatures::IsSupported(ARMv7) && IsMovImmed(Memory::int32_at(pc))) {
      DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
             IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
             IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)) &&
             IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize)));
      // This is an extended constant pool lookup (ARMv6).
      Instr mov_instr = instr_at(pc);
      Instr orr_instr_1 = instr_at(pc + kInstrSize);
      Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize);
      Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize);
      cp_offset = DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) |
                  DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3);
    } else if (IsMovW(Memory::int32_at(pc))) {
565
      DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)) &&
566
             IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize)));
567
      // This is an extended constant pool lookup (ARMv7).
568 569 570 571 572 573
      Instruction* movw_instr = Instruction::At(pc);
      Instruction* movt_instr = Instruction::At(pc + kInstrSize);
      cp_offset = (movt_instr->ImmedMovwMovtValue() << 16) |
                  movw_instr->ImmedMovwMovtValue();
    } else {
      // This is a small constant pool lookup.
574
      DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(pc)));
575 576
      cp_offset = GetLdrRegisterImmediateOffset(Memory::int32_at(pc));
    }
577
    return constant_pool + cp_offset;
578
  } else {
579
    DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc)));
580 581 582 583 584 585
    Instr instr = Memory::int32_at(pc);
    return pc + GetLdrRegisterImmediateOffset(instr) + kPcLoadDelta;
  }
}


586
Address Assembler::target_address_at(Address pc, Address constant_pool) {
587
  if (is_constant_pool_load(pc)) {
588 589
    // This is a constant pool lookup. Return the value in the constant pool.
    return Memory::Address_at(constant_pool_entry_address(pc, constant_pool));
590 591
  } else if (CpuFeatures::IsSupported(ARMv7)) {
    // This is an movw / movt immediate load. Return the immediate.
592
    DCHECK(IsMovW(Memory::int32_at(pc)) &&
593 594 595 596 597 598
           IsMovT(Memory::int32_at(pc + kInstrSize)));
    Instruction* movw_instr = Instruction::At(pc);
    Instruction* movt_instr = Instruction::At(pc + kInstrSize);
    return reinterpret_cast<Address>(
        (movt_instr->ImmedMovwMovtValue() << 16) |
         movw_instr->ImmedMovwMovtValue());
599 600 601 602 603 604 605 606 607 608 609 610 611 612
  } else {
    // This is an mov / orr immediate load. Return the immediate.
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    Instr mov_instr = instr_at(pc);
    Instr orr_instr_1 = instr_at(pc + kInstrSize);
    Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize);
    Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize);
    Address ret = reinterpret_cast<Address>(
        DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) |
        DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3));
    return ret;
613 614 615 616
  }
}


617
void Assembler::set_target_address_at(Address pc, Address constant_pool,
618 619
                                      Address target,
                                      ICacheFlushMode icache_flush_mode) {
620
  if (is_constant_pool_load(pc)) {
621 622 623 624
    // This is a constant pool lookup. Update the entry in the constant pool.
    Memory::Address_at(constant_pool_entry_address(pc, constant_pool)) = target;
    // Intuitively, we would think it is necessary to always flush the
    // instruction cache after patching a target address in the code as follows:
625
    //   CpuFeatures::FlushICache(pc, sizeof(target));
626 627 628 629 630
    // However, on ARM, no instruction is actually patched in the case
    // of embedded constants of the form:
    // ldr   ip, [pp, #...]
    // since the instruction accessing this address in the constant pool remains
    // unchanged.
631 632 633
  } else if (CpuFeatures::IsSupported(ARMv7)) {
    // This is an movw / movt immediate load. Patch the immediate embedded in
    // the instructions.
634 635
    DCHECK(IsMovW(Memory::int32_at(pc)));
    DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
636 637
    uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
    uint32_t immediate = reinterpret_cast<uint32_t>(target);
638 639
    instr_ptr[0] = PatchMovwImmediate(instr_ptr[0], immediate & 0xFFFF);
    instr_ptr[1] = PatchMovwImmediate(instr_ptr[1], immediate >> 16);
640 641
    DCHECK(IsMovW(Memory::int32_at(pc)));
    DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
642
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
643
      CpuFeatures::FlushICache(pc, 2 * kInstrSize);
644
    }
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
  } else {
    // This is an mov / orr immediate load. Patch the immediate embedded in
    // the instructions.
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
    uint32_t immediate = reinterpret_cast<uint32_t>(target);
    instr_ptr[0] = PatchShiftImm(instr_ptr[0], immediate & kImm8Mask);
    instr_ptr[1] = PatchShiftImm(instr_ptr[1], immediate & (kImm8Mask << 8));
    instr_ptr[2] = PatchShiftImm(instr_ptr[2], immediate & (kImm8Mask << 16));
    instr_ptr[3] = PatchShiftImm(instr_ptr[3], immediate & (kImm8Mask << 24));
    DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
           IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
           IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
      CpuFeatures::FlushICache(pc, 4 * kInstrSize);
    }
665 666 667 668
  }
}


669 670
} }  // namespace v8::internal

671
#endif  // V8_ARM_ASSEMBLER_ARM_INL_H_