marking.h 14.7 KB
Newer Older
1 2 3 4
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6
#ifndef V8_HEAP_MARKING_H_
#define V8_HEAP_MARKING_H_
7

8
#include "src/base/atomic-utils.h"
9 10 11 12 13 14 15
#include "src/utils.h"

namespace v8 {
namespace internal {

class MarkBit {
 public:
16
  using CellType = uint32_t;
17
  STATIC_ASSERT(sizeof(CellType) == sizeof(base::Atomic32));
18

19
  inline MarkBit(CellType* cell, CellType mask) : cell_(cell), mask_(mask) {}
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

#ifdef DEBUG
  bool operator==(const MarkBit& other) {
    return cell_ == other.cell_ && mask_ == other.mask_;
  }
#endif

 private:
  inline MarkBit Next() {
    CellType new_mask = mask_ << 1;
    if (new_mask == 0) {
      return MarkBit(cell_ + 1, 1);
    } else {
      return MarkBit(cell_, new_mask);
    }
  }

37 38
  // The function returns true if it succeeded to
  // transition the bit from 0 to 1.
39
  template <AccessMode mode = AccessMode::NON_ATOMIC>
40
  inline bool Set();
41

42
  template <AccessMode mode = AccessMode::NON_ATOMIC>
43
  inline bool Get();
44

45 46
  // The function returns true if it succeeded to
  // transition the bit from 1 to 0.
47
  template <AccessMode mode = AccessMode::NON_ATOMIC>
48
  inline bool Clear();
49

50 51
  CellType* cell_;
  CellType mask_;
52 53

  friend class IncrementalMarking;
54
  friend class ConcurrentMarkingMarkbits;
55 56 57
  friend class Marking;
};

58
template <>
59
inline bool MarkBit::Set<AccessMode::NON_ATOMIC>() {
60
  CellType old_value = *cell_;
61 62
  *cell_ = old_value | mask_;
  return (old_value & mask_) == 0;
63 64 65
}

template <>
66
inline bool MarkBit::Set<AccessMode::ATOMIC>() {
67
  return base::AsAtomic32::SetBits(cell_, mask_, mask_);
68 69 70
}

template <>
71
inline bool MarkBit::Get<AccessMode::NON_ATOMIC>() {
72
  return (*cell_ & mask_) != 0;
73 74 75
}

template <>
76
inline bool MarkBit::Get<AccessMode::ATOMIC>() {
77
  return (base::AsAtomic32::Acquire_Load(cell_) & mask_) != 0;
78 79 80
}

template <>
81
inline bool MarkBit::Clear<AccessMode::NON_ATOMIC>() {
82
  CellType old_value = *cell_;
83 84
  *cell_ = old_value & ~mask_;
  return (old_value & mask_) == mask_;
85 86 87
}

template <>
88
inline bool MarkBit::Clear<AccessMode::ATOMIC>() {
89
  return base::AsAtomic32::SetBits(cell_, 0u, mask_);
90 91
}

92
// Bitmap is a sequence of cells each containing fixed number of bits.
93
class V8_EXPORT_PRIVATE Bitmap {
94 95 96 97 98 99 100
 public:
  static const uint32_t kBitsPerCell = 32;
  static const uint32_t kBitsPerCellLog2 = 5;
  static const uint32_t kBitIndexMask = kBitsPerCell - 1;
  static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte;
  static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2;

101
  static const size_t kLength = (1 << kPageSizeBits) >> (kTaggedSizeLog2);
102 103

  static const size_t kSize = (1 << kPageSizeBits) >>
104
                              (kTaggedSizeLog2 + kBitsPerByteLog2);
105 106 107 108 109 110 111

  static int CellsForLength(int length) {
    return (length + kBitsPerCell - 1) >> kBitsPerCellLog2;
  }

  int CellsCount() { return CellsForLength(kLength); }

112
  V8_INLINE static uint32_t IndexToCell(uint32_t index) {
113 114 115 116 117 118 119
    return index >> kBitsPerCellLog2;
  }

  V8_INLINE static uint32_t IndexInCell(uint32_t index) {
    return index & kBitIndexMask;
  }

120 121 122
  // Retrieves the cell containing the provided markbit index.
  V8_INLINE static uint32_t CellAlignIndex(uint32_t index) {
    return index & ~kBitIndexMask;
123 124
  }

125
  V8_INLINE MarkBit::CellType* cells() {
126 127 128
    return reinterpret_cast<MarkBit::CellType*>(this);
  }

129
  V8_INLINE static Bitmap* FromAddress(Address addr) {
130 131 132 133 134 135
    return reinterpret_cast<Bitmap*>(addr);
  }

  inline MarkBit MarkBitFromIndex(uint32_t index) {
    MarkBit::CellType mask = 1u << IndexInCell(index);
    MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2);
136
    return MarkBit(cell, mask);
137
  }
138
};
139

140 141 142
template <AccessMode mode>
class ConcurrentBitmap : public Bitmap {
 public:
143
  void Clear();
144

145 146
  void MarkAllBits();

147 148 149 150 151 152 153 154
  // Clears bits in the given cell. The mask specifies bits to clear: if a
  // bit is set in the mask then the corresponding bit is cleared in the cell.
  void ClearBitsInCell(uint32_t cell_index, uint32_t mask);

  // Sets bits in the given cell. The mask specifies bits to set: if a
  // bit is set in the mask then the corresponding bit is set in the cell.
  void SetBitsInCell(uint32_t cell_index, uint32_t mask);

155 156 157
  // Sets all bits in the range [start_index, end_index). If the access is
  // atomic, the cells at the boundary of the range are updated with atomic
  // compare and swap operation. The inner cells are updated with relaxed write.
158
  void SetRange(uint32_t start_index, uint32_t end_index);
159

160 161 162
  // Clears all bits in the range [start_index, end_index). If the access is
  // atomic, the cells at the boundary of the range are updated with atomic
  // compare and swap operation. The inner cells are updated with relaxed write.
163
  void ClearRange(uint32_t start_index, uint32_t end_index);
164

165 166 167
  // The following methods are *not* safe to use in a concurrent context so they
  // are not implemented for `AccessMode::ATOMIC`.

168
  // Returns true if all bits in the range [start_index, end_index) are set.
169
  bool AllBitsSetInRange(uint32_t start_index, uint32_t end_index);
170 171

  // Returns true if all bits in the range [start_index, end_index) are cleared.
172
  bool AllBitsClearInRange(uint32_t start_index, uint32_t end_index);
173

174
  void Print();
175

176
  bool IsClean();
177 178 179 180 181 182 183 184 185 186

 private:
  // Clear all bits in the cell range [start_cell_index, end_cell_index). If the
  // access is atomic then *still* use a relaxed memory ordering.
  void ClearCellRangeRelaxed(uint32_t start_cell_index,
                             uint32_t end_cell_index);

  // Set all bits in the cell range [start_cell_index, end_cell_index). If the
  // access is atomic then *still* use a relaxed memory ordering.
  void SetCellRangeRelaxed(uint32_t start_cell_index, uint32_t end_cell_index);
187 188
};

189
template <>
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
inline void ConcurrentBitmap<AccessMode::ATOMIC>::ClearCellRangeRelaxed(
    uint32_t start_cell_index, uint32_t end_cell_index) {
  base::Atomic32* cell_base = reinterpret_cast<base::Atomic32*>(cells());
  for (uint32_t i = start_cell_index; i < end_cell_index; i++) {
    base::Relaxed_Store(cell_base + i, 0);
  }
}

template <>
inline void ConcurrentBitmap<AccessMode::NON_ATOMIC>::ClearCellRangeRelaxed(
    uint32_t start_cell_index, uint32_t end_cell_index) {
  for (uint32_t i = start_cell_index; i < end_cell_index; i++) {
    cells()[i] = 0;
  }
}

template <>
inline void ConcurrentBitmap<AccessMode::ATOMIC>::SetCellRangeRelaxed(
    uint32_t start_cell_index, uint32_t end_cell_index) {
  base::Atomic32* cell_base = reinterpret_cast<base::Atomic32*>(cells());
  for (uint32_t i = start_cell_index; i < end_cell_index; i++) {
    base::Relaxed_Store(cell_base + i, 0xffffffff);
  }
}

template <>
inline void ConcurrentBitmap<AccessMode::NON_ATOMIC>::SetCellRangeRelaxed(
    uint32_t start_cell_index, uint32_t end_cell_index) {
  for (uint32_t i = start_cell_index; i < end_cell_index; i++) {
    cells()[i] = 0xffffffff;
  }
}

template <AccessMode mode>
inline void ConcurrentBitmap<mode>::Clear() {
  ClearCellRangeRelaxed(0, CellsCount());
  if (mode == AccessMode::ATOMIC) {
    // This fence prevents re-ordering of publishing stores with the mark-bit
    // setting stores.
    base::SeqCst_MemoryFence();
  }
}

template <AccessMode mode>
inline void ConcurrentBitmap<mode>::MarkAllBits() {
  SetCellRangeRelaxed(0, CellsCount());
  if (mode == AccessMode::ATOMIC) {
    // This fence prevents re-ordering of publishing stores with the mark-bit
    // setting stores.
    base::SeqCst_MemoryFence();
  }
}

template <>
inline void ConcurrentBitmap<AccessMode::NON_ATOMIC>::SetBitsInCell(
    uint32_t cell_index, uint32_t mask) {
246 247 248 249
  cells()[cell_index] |= mask;
}

template <>
250 251
inline void ConcurrentBitmap<AccessMode::ATOMIC>::SetBitsInCell(
    uint32_t cell_index, uint32_t mask) {
252
  base::AsAtomic32::SetBits(cells() + cell_index, mask, mask);
253 254 255
}

template <>
256 257
inline void ConcurrentBitmap<AccessMode::NON_ATOMIC>::ClearBitsInCell(
    uint32_t cell_index, uint32_t mask) {
258 259 260 261
  cells()[cell_index] &= ~mask;
}

template <>
262 263
inline void ConcurrentBitmap<AccessMode::ATOMIC>::ClearBitsInCell(
    uint32_t cell_index, uint32_t mask) {
264
  base::AsAtomic32::SetBits(cells() + cell_index, 0u, mask);
265 266
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
template <AccessMode mode>
void ConcurrentBitmap<mode>::SetRange(uint32_t start_index,
                                      uint32_t end_index) {
  if (start_index >= end_index) return;
  end_index--;

  unsigned int start_cell_index = start_index >> Bitmap::kBitsPerCellLog2;
  MarkBit::CellType start_index_mask = 1u << Bitmap::IndexInCell(start_index);

  unsigned int end_cell_index = end_index >> Bitmap::kBitsPerCellLog2;
  MarkBit::CellType end_index_mask = 1u << Bitmap::IndexInCell(end_index);

  if (start_cell_index != end_cell_index) {
    // Firstly, fill all bits from the start address to the end of the first
    // cell with 1s.
    SetBitsInCell(start_cell_index, ~(start_index_mask - 1));
    // Then fill all in between cells with 1s.
    SetCellRangeRelaxed(start_cell_index + 1, end_cell_index);
    // Finally, fill all bits until the end address in the last cell with 1s.
    SetBitsInCell(end_cell_index, end_index_mask | (end_index_mask - 1));
  } else {
    SetBitsInCell(start_cell_index,
                  end_index_mask | (end_index_mask - start_index_mask));
  }
  if (mode == AccessMode::ATOMIC) {
    // This fence prevents re-ordering of publishing stores with the mark-bit
    // setting stores.
    base::SeqCst_MemoryFence();
  }
}

template <AccessMode mode>
void ConcurrentBitmap<mode>::ClearRange(uint32_t start_index,
                                        uint32_t end_index) {
  if (start_index >= end_index) return;
  end_index--;

  unsigned int start_cell_index = start_index >> Bitmap::kBitsPerCellLog2;
  MarkBit::CellType start_index_mask = 1u << Bitmap::IndexInCell(start_index);

  unsigned int end_cell_index = end_index >> Bitmap::kBitsPerCellLog2;
  MarkBit::CellType end_index_mask = 1u << Bitmap::IndexInCell(end_index);

  if (start_cell_index != end_cell_index) {
    // Firstly, fill all bits from the start address to the end of the first
    // cell with 0s.
    ClearBitsInCell(start_cell_index, ~(start_index_mask - 1));
    // Then fill all in between cells with 0s.
    ClearCellRangeRelaxed(start_cell_index + 1, end_cell_index);
    // Finally, set all bits until the end address in the last cell with 0s.
    ClearBitsInCell(end_cell_index, end_index_mask | (end_index_mask - 1));
  } else {
    ClearBitsInCell(start_cell_index,
                    end_index_mask | (end_index_mask - start_index_mask));
  }
  if (mode == AccessMode::ATOMIC) {
    // This fence prevents re-ordering of publishing stores with the mark-bit
    // clearing stores.
    base::SeqCst_MemoryFence();
  }
}

template <>
V8_EXPORT_PRIVATE bool
ConcurrentBitmap<AccessMode::NON_ATOMIC>::AllBitsSetInRange(
    uint32_t start_index, uint32_t end_index);

template <>
V8_EXPORT_PRIVATE bool
ConcurrentBitmap<AccessMode::NON_ATOMIC>::AllBitsClearInRange(
    uint32_t start_index, uint32_t end_index);

template <>
void ConcurrentBitmap<AccessMode::NON_ATOMIC>::Print();

template <>
V8_EXPORT_PRIVATE bool ConcurrentBitmap<AccessMode::NON_ATOMIC>::IsClean();

345 346
class Marking : public AllStatic {
 public:
347 348 349 350
  // TODO(hpayer): The current mark bit operations use as default NON_ATOMIC
  // mode for access. We should remove the default value or switch it with
  // ATOMIC as soon we add concurrency.

351 352
  // Impossible markbits: 01
  static const char* kImpossibleBitPattern;
353
  template <AccessMode mode = AccessMode::NON_ATOMIC>
354
  V8_INLINE static bool IsImpossible(MarkBit mark_bit) {
355
    if (mode == AccessMode::NON_ATOMIC) {
356 357 358 359 360 361 362 363 364 365 366
      return !mark_bit.Get<mode>() && mark_bit.Next().Get<mode>();
    }
    // If we are in concurrent mode we can only tell if an object has the
    // impossible bit pattern if we read the first bit again after reading
    // the first and the second bit. If the first bit is till zero and the
    // second bit is one then the object has the impossible bit pattern.
    bool is_impossible = !mark_bit.Get<mode>() && mark_bit.Next().Get<mode>();
    if (is_impossible) {
      return !mark_bit.Get<mode>();
    }
    return false;
367 368 369 370
  }

  // Black markbits: 11
  static const char* kBlackBitPattern;
371
  template <AccessMode mode = AccessMode::NON_ATOMIC>
372
  V8_INLINE static bool IsBlack(MarkBit mark_bit) {
373
    return mark_bit.Get<mode>() && mark_bit.Next().Get<mode>();
374 375 376 377
  }

  // White markbits: 00 - this is required by the mark bit clearer.
  static const char* kWhiteBitPattern;
378
  template <AccessMode mode = AccessMode::NON_ATOMIC>
379
  V8_INLINE static bool IsWhite(MarkBit mark_bit) {
380
    DCHECK(!IsImpossible<mode>(mark_bit));
381
    return !mark_bit.Get<mode>();
382 383 384 385
  }

  // Grey markbits: 10
  static const char* kGreyBitPattern;
386
  template <AccessMode mode = AccessMode::NON_ATOMIC>
387
  V8_INLINE static bool IsGrey(MarkBit mark_bit) {
388
    return mark_bit.Get<mode>() && !mark_bit.Next().Get<mode>();
389 390 391 392
  }

  // IsBlackOrGrey assumes that the first bit is set for black or grey
  // objects.
393
  template <AccessMode mode = AccessMode::NON_ATOMIC>
394
  V8_INLINE static bool IsBlackOrGrey(MarkBit mark_bit) {
395 396
    return mark_bit.Get<mode>();
  }
397

398
  template <AccessMode mode = AccessMode::NON_ATOMIC>
399
  V8_INLINE static void MarkWhite(MarkBit markbit) {
400
    STATIC_ASSERT(mode == AccessMode::NON_ATOMIC);
401 402
    markbit.Clear<mode>();
    markbit.Next().Clear<mode>();
403 404
  }

405 406 407
  // Warning: this method is not safe in general in concurrent scenarios.
  // If you know that nobody else will change the bits on the given location
  // then you may use it.
408
  template <AccessMode mode = AccessMode::NON_ATOMIC>
409
  V8_INLINE static void MarkBlack(MarkBit markbit) {
410 411
    markbit.Set<mode>();
    markbit.Next().Set<mode>();
412 413
  }

414
  template <AccessMode mode = AccessMode::NON_ATOMIC>
415
  V8_INLINE static bool WhiteToGrey(MarkBit markbit) {
416
    return markbit.Set<mode>();
417 418
  }

419
  template <AccessMode mode = AccessMode::NON_ATOMIC>
420
  V8_INLINE static bool WhiteToBlack(MarkBit markbit) {
421
    return markbit.Set<mode>() && markbit.Next().Set<mode>();
422 423
  }

424
  template <AccessMode mode = AccessMode::NON_ATOMIC>
425
  V8_INLINE static bool GreyToBlack(MarkBit markbit) {
426
    return markbit.Get<mode>() && markbit.Next().Set<mode>();
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  }

  enum ObjectColor {
    BLACK_OBJECT,
    WHITE_OBJECT,
    GREY_OBJECT,
    IMPOSSIBLE_COLOR
  };

  static const char* ColorName(ObjectColor color) {
    switch (color) {
      case BLACK_OBJECT:
        return "black";
      case WHITE_OBJECT:
        return "white";
      case GREY_OBJECT:
        return "grey";
      case IMPOSSIBLE_COLOR:
        return "impossible";
    }
    return "error";
  }

  static ObjectColor Color(MarkBit mark_bit) {
    if (IsBlack(mark_bit)) return BLACK_OBJECT;
    if (IsWhite(mark_bit)) return WHITE_OBJECT;
    if (IsGrey(mark_bit)) return GREY_OBJECT;
    UNREACHABLE();
  }

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(Marking);
};

}  // namespace internal
}  // namespace v8

464
#endif  // V8_HEAP_MARKING_H_