wasm-debug.cc 49.3 KB
Newer Older
1 2 3 4
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6
#include "src/wasm/wasm-debug.h"

7
#include <iomanip>
8 9
#include <unordered_map>

10
#include "src/base/optional.h"
11
#include "src/base/platform/wrappers.h"
12
#include "src/codegen/assembler-inl.h"
13
#include "src/common/assert-scope.h"
14
#include "src/compiler/wasm-compiler.h"
15
#include "src/debug/debug-evaluate.h"
16
#include "src/execution/frames-inl.h"
17
#include "src/heap/factory.h"
18
#include "src/wasm/baseline/liftoff-compiler.h"
19
#include "src/wasm/baseline/liftoff-register.h"
20
#include "src/wasm/module-decoder.h"
21
#include "src/wasm/value-type.h"
22
#include "src/wasm/wasm-code-manager.h"
23
#include "src/wasm/wasm-engine.h"
24
#include "src/wasm/wasm-limits.h"
25
#include "src/wasm/wasm-module.h"
26
#include "src/wasm/wasm-objects-inl.h"
27
#include "src/wasm/wasm-opcodes-inl.h"
28
#include "src/wasm/wasm-subtyping.h"
29
#include "src/wasm/wasm-value.h"
30
#include "src/zone/accounting-allocator.h"
31

32 33 34
namespace v8 {
namespace internal {
namespace wasm {
35

36 37
namespace {

38 39
using ImportExportKey = std::pair<ImportExportKindCode, uint32_t>;

40 41
enum ReturnLocation { kAfterBreakpoint, kAfterWasmCall };

42
Address FindNewPC(WasmFrame* frame, WasmCode* wasm_code, int byte_offset,
43
                  ReturnLocation return_location) {
44
  base::Vector<const uint8_t> new_pos_table = wasm_code->source_positions();
45 46

  DCHECK_LE(0, byte_offset);
47

48 49 50 51
  // Find the size of the call instruction by computing the distance from the
  // source position entry to the return address.
  WasmCode* old_code = frame->wasm_code();
  int pc_offset = static_cast<int>(frame->pc() - old_code->instruction_start());
52
  base::Vector<const uint8_t> old_pos_table = old_code->source_positions();
53 54 55 56 57 58 59 60 61
  SourcePositionTableIterator old_it(old_pos_table);
  int call_offset = -1;
  while (!old_it.done() && old_it.code_offset() < pc_offset) {
    call_offset = old_it.code_offset();
    old_it.Advance();
  }
  DCHECK_LE(0, call_offset);
  int call_instruction_size = pc_offset - call_offset;

62 63 64 65
  // If {return_location == kAfterBreakpoint} we search for the first code
  // offset which is marked as instruction (i.e. not the breakpoint).
  // If {return_location == kAfterWasmCall} we return the last code offset
  // associated with the byte offset.
66 67 68 69
  SourcePositionTableIterator it(new_pos_table);
  while (!it.done() && it.source_position().ScriptOffset() != byte_offset) {
    it.Advance();
  }
70 71 72
  if (return_location == kAfterBreakpoint) {
    while (!it.is_statement()) it.Advance();
    DCHECK_EQ(byte_offset, it.source_position().ScriptOffset());
73 74
    return wasm_code->instruction_start() + it.code_offset() +
           call_instruction_size;
75 76 77 78 79 80 81 82
  }

  DCHECK_EQ(kAfterWasmCall, return_location);
  int code_offset;
  do {
    code_offset = it.code_offset();
    it.Advance();
  } while (!it.done() && it.source_position().ScriptOffset() == byte_offset);
83
  return wasm_code->instruction_start() + code_offset + call_instruction_size;
84 85
}

86 87
}  // namespace

88 89 90 91 92 93 94 95
void DebugSideTable::Print(std::ostream& os) const {
  os << "Debug side table (" << num_locals_ << " locals, " << entries_.size()
     << " entries):\n";
  for (auto& entry : entries_) entry.Print(os);
  os << "\n";
}

void DebugSideTable::Entry::Print(std::ostream& os) const {
96 97 98
  os << std::setw(6) << std::hex << pc_offset_ << std::dec << " stack height "
     << stack_height_ << " [";
  for (auto& value : changed_values_) {
99
    os << " " << value.type.name() << ":";
100
    switch (value.storage) {
101 102 103 104 105 106 107 108 109 110 111 112 113 114
      case kConstant:
        os << "const#" << value.i32_const;
        break;
      case kRegister:
        os << "reg#" << value.reg_code;
        break;
      case kStack:
        os << "stack#" << value.stack_offset;
        break;
    }
  }
  os << " ]\n";
}

115 116 117 118 119
class DebugInfoImpl {
 public:
  explicit DebugInfoImpl(NativeModule* native_module)
      : native_module_(native_module) {}

120 121 122
  DebugInfoImpl(const DebugInfoImpl&) = delete;
  DebugInfoImpl& operator=(const DebugInfoImpl&) = delete;

123 124
  int GetNumLocals(Address pc) {
    FrameInspectionScope scope(this, pc);
125
    if (!scope.is_inspectable()) return 0;
126 127 128
    return scope.debug_side_table->num_locals();
  }

129
  WasmValue GetLocalValue(int local, Address pc, Address fp,
130
                          Address debug_break_fp, Isolate* isolate) {
131
    FrameInspectionScope scope(this, pc);
132
    return GetValue(scope.debug_side_table, scope.debug_side_table_entry, local,
133
                    fp, debug_break_fp, isolate);
134 135
  }

136 137
  int GetStackDepth(Address pc) {
    FrameInspectionScope scope(this, pc);
138
    if (!scope.is_inspectable()) return 0;
139 140 141
    int num_locals = scope.debug_side_table->num_locals();
    int stack_height = scope.debug_side_table_entry->stack_height();
    return stack_height - num_locals;
142 143
  }

144
  WasmValue GetStackValue(int index, Address pc, Address fp,
145
                          Address debug_break_fp, Isolate* isolate) {
146
    FrameInspectionScope scope(this, pc);
147 148
    int num_locals = scope.debug_side_table->num_locals();
    int value_count = scope.debug_side_table_entry->stack_height();
149
    if (num_locals + index >= value_count) return {};
150
    return GetValue(scope.debug_side_table, scope.debug_side_table_entry,
151
                    num_locals + index, fp, debug_break_fp, isolate);
152 153
  }

154 155 156 157 158 159
  const WasmFunction& GetFunctionAtAddress(Address pc) {
    FrameInspectionScope scope(this, pc);
    auto* module = native_module_->module();
    return module->functions[scope.code->index()];
  }

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  WireBytesRef GetExportName(ImportExportKindCode kind, uint32_t index) {
    base::MutexGuard guard(&mutex_);
    if (!export_names_) {
      export_names_ =
          std::make_unique<std::map<ImportExportKey, WireBytesRef>>();
      for (auto exp : native_module_->module()->export_table) {
        auto exp_key = std::make_pair(exp.kind, exp.index);
        if (export_names_->find(exp_key) != export_names_->end()) continue;
        export_names_->insert(std::make_pair(exp_key, exp.name));
      }
    }
    auto it = export_names_->find(std::make_pair(kind, index));
    if (it != export_names_->end()) return it->second;
    return {};
  }

  std::pair<WireBytesRef, WireBytesRef> GetImportName(ImportExportKindCode kind,
                                                      uint32_t index) {
    base::MutexGuard guard(&mutex_);
    if (!import_names_) {
      import_names_ = std::make_unique<
          std::map<ImportExportKey, std::pair<WireBytesRef, WireBytesRef>>>();
      for (auto imp : native_module_->module()->import_table) {
        import_names_->insert(
            std::make_pair(std::make_pair(imp.kind, imp.index),
                           std::make_pair(imp.module_name, imp.field_name)));
      }
    }
    auto it = import_names_->find(std::make_pair(kind, index));
    if (it != import_names_->end()) return it->second;
    return {};
  }

193 194 195 196 197 198 199 200 201
  WireBytesRef GetTypeName(int type_index) {
    base::MutexGuard guard(&mutex_);
    if (!type_names_) {
      type_names_ = std::make_unique<NameMap>(DecodeNameMap(
          native_module_->wire_bytes(), NameSectionKindCode::kType));
    }
    return type_names_->GetName(type_index);
  }

202 203 204
  WireBytesRef GetLocalName(int func_index, int local_index) {
    base::MutexGuard guard(&mutex_);
    if (!local_names_) {
205 206
      local_names_ = std::make_unique<IndirectNameMap>(DecodeIndirectNameMap(
          native_module_->wire_bytes(), NameSectionKindCode::kLocal));
207 208 209 210
    }
    return local_names_->GetName(func_index, local_index);
  }

211 212 213 214 215 216 217 218 219
  WireBytesRef GetFieldName(int struct_index, int field_index) {
    base::MutexGuard guard(&mutex_);
    if (!field_names_) {
      field_names_ = std::make_unique<IndirectNameMap>(DecodeIndirectNameMap(
          native_module_->wire_bytes(), NameSectionKindCode::kField));
    }
    return field_names_->GetName(struct_index, field_index);
  }

220 221
  // If the frame position is not in the list of breakpoints, return that
  // position. Return 0 otherwise.
222 223
  // This is used to generate a "dead breakpoint" in Liftoff, which is necessary
  // for OSR to find the correct return address.
224
  int DeadBreakpoint(WasmFrame* frame, base::Vector<const int> breakpoints) {
225 226
    const auto& function =
        native_module_->module()->functions[frame->function_index()];
227 228 229 230 231 232 233
    int offset = frame->position() - function.code.offset();
    if (std::binary_search(breakpoints.begin(), breakpoints.end(), offset)) {
      return 0;
    }
    return offset;
  }

234 235
  // Find the dead breakpoint (see above) for the top wasm frame, if that frame
  // is in the function of the given index.
236
  int DeadBreakpoint(int func_index, base::Vector<const int> breakpoints,
237 238 239 240 241 242 243 244
                     Isolate* isolate) {
    StackTraceFrameIterator it(isolate);
    if (it.done() || !it.is_wasm()) return 0;
    auto* wasm_frame = WasmFrame::cast(it.frame());
    if (static_cast<int>(wasm_frame->function_index()) != func_index) return 0;
    return DeadBreakpoint(wasm_frame, breakpoints);
  }

245
  WasmCode* RecompileLiftoffWithBreakpoints(int func_index,
246
                                            base::Vector<const int> offsets,
247
                                            int dead_breakpoint) {
248
    DCHECK(!mutex_.TryLock());  // Mutex is held externally.
249

250 251 252 253
    ForDebugging for_debugging = offsets.size() == 1 && offsets[0] == 0
                                     ? kForStepping
                                     : kWithBreakpoints;

254 255 256 257 258 259 260 261 262
    // Check the cache first.
    for (auto begin = cached_debugging_code_.begin(), it = begin,
              end = cached_debugging_code_.end();
         it != end; ++it) {
      if (it->func_index == func_index &&
          it->breakpoint_offsets.as_vector() == offsets &&
          it->dead_breakpoint == dead_breakpoint) {
        // Rotate the cache entry to the front (for LRU).
        for (; it != begin; --it) std::iter_swap(it, it - 1);
263 264 265 266
        if (for_debugging == kWithBreakpoints) {
          // Re-install the code, in case it was replaced in the meantime.
          native_module_->ReinstallDebugCode(it->code);
        }
267 268 269 270
        return it->code;
      }
    }

271
    // Recompile the function with Liftoff, setting the new breakpoints.
272
    // Not thread-safe. The caller is responsible for locking {mutex_}.
273 274
    CompilationEnv env = native_module_->CreateCompilationEnv();
    auto* function = &native_module_->module()->functions[func_index];
275
    base::Vector<const uint8_t> wire_bytes = native_module_->wire_bytes();
276 277 278
    FunctionBody body{function->sig, function->code.offset(),
                      wire_bytes.begin() + function->code.offset(),
                      wire_bytes.begin() + function->code.end_offset()};
279
    std::unique_ptr<DebugSideTable> debug_sidetable;
280

281 282
    // Debug side tables for stepping are generated lazily.
    bool generate_debug_sidetable = for_debugging == kWithBreakpoints;
283
    WasmCompilationResult result = ExecuteLiftoffCompilation(
284 285 286 287 288 289
        &env, body, func_index, for_debugging,
        LiftoffOptions{}
            .set_breakpoints(offsets)
            .set_dead_breakpoint(dead_breakpoint)
            .set_debug_sidetable(generate_debug_sidetable ? &debug_sidetable
                                                          : nullptr));
290 291 292
    // Liftoff compilation failure is a FATAL error. We rely on complete Liftoff
    // support for debugging.
    if (!result.succeeded()) FATAL("Liftoff compilation failed");
293
    DCHECK_EQ(generate_debug_sidetable, debug_sidetable != nullptr);
294

295 296 297
    WasmCode* new_code = native_module_->PublishCode(
        native_module_->AddCompiledCode(std::move(result)));

298
    DCHECK(new_code->is_inspectable());
299
    if (generate_debug_sidetable) {
300 301 302 303
      base::MutexGuard lock(&debug_side_tables_mutex_);
      DCHECK_EQ(0, debug_side_tables_.count(new_code));
      debug_side_tables_.emplace(new_code, std::move(debug_sidetable));
    }
304

305 306 307
    // Insert new code into the cache. Insert before existing elements for LRU.
    cached_debugging_code_.insert(
        cached_debugging_code_.begin(),
308
        CachedDebuggingCode{func_index, base::OwnedVector<int>::Of(offsets),
309 310 311 312 313 314 315 316 317 318 319 320 321
                            dead_breakpoint, new_code});
    // Increase the ref count (for the cache entry).
    new_code->IncRef();
    // Remove exceeding element.
    if (cached_debugging_code_.size() > kMaxCachedDebuggingCode) {
      // Put the code in the surrounding CodeRefScope to delay deletion until
      // after the mutex is released.
      WasmCodeRefScope::AddRef(cached_debugging_code_.back().code);
      cached_debugging_code_.back().code->DecRefOnLiveCode();
      cached_debugging_code_.pop_back();
    }
    DCHECK_GE(kMaxCachedDebuggingCode, cached_debugging_code_.size());

322
    return new_code;
323 324
  }

325
  void SetBreakpoint(int func_index, int offset, Isolate* isolate) {
326 327 328
    // Put the code ref scope outside of the mutex, so we don't unnecessarily
    // hold the mutex while freeing code.
    WasmCodeRefScope wasm_code_ref_scope;
329

330 331 332
    // Hold the mutex while modifying breakpoints, to ensure consistency when
    // multiple isolates set/remove breakpoints at the same time.
    base::MutexGuard guard(&mutex_);
333

334 335 336
    // offset == 0 indicates flooding and should not happen here.
    DCHECK_NE(0, offset);

337 338 339 340
    // Get the set of previously set breakpoints, to check later whether a new
    // breakpoint was actually added.
    std::vector<int> all_breakpoints = FindAllBreakpoints(func_index);

341 342 343 344 345 346 347 348
    auto& isolate_data = per_isolate_data_[isolate];
    std::vector<int>& breakpoints =
        isolate_data.breakpoints_per_function[func_index];
    auto insertion_point =
        std::lower_bound(breakpoints.begin(), breakpoints.end(), offset);
    if (insertion_point != breakpoints.end() && *insertion_point == offset) {
      // The breakpoint is already set for this isolate.
      return;
349
    }
350 351
    breakpoints.insert(insertion_point, offset);

352 353 354 355 356 357
    DCHECK(std::is_sorted(all_breakpoints.begin(), all_breakpoints.end()));
    // Find the insertion position within {all_breakpoints}.
    insertion_point = std::lower_bound(all_breakpoints.begin(),
                                       all_breakpoints.end(), offset);
    bool breakpoint_exists =
        insertion_point != all_breakpoints.end() && *insertion_point == offset;
358 359 360
    // If the breakpoint was already set before, then we can just reuse the old
    // code. Otherwise, recompile it. In any case, rewrite this isolate's stack
    // to make sure that it uses up-to-date code containing the breakpoint.
361
    WasmCode* new_code;
362
    if (breakpoint_exists) {
363 364
      new_code = native_module_->GetCode(func_index);
    } else {
365
      all_breakpoints.insert(insertion_point, offset);
366
      int dead_breakpoint =
367
          DeadBreakpoint(func_index, base::VectorOf(all_breakpoints), isolate);
368
      new_code = RecompileLiftoffWithBreakpoints(
369
          func_index, base::VectorOf(all_breakpoints), dead_breakpoint);
370 371
    }
    UpdateReturnAddresses(isolate, new_code, isolate_data.stepping_frame);
372 373 374 375 376 377 378 379 380 381 382
  }

  std::vector<int> FindAllBreakpoints(int func_index) {
    DCHECK(!mutex_.TryLock());  // Mutex must be held externally.
    std::set<int> breakpoints;
    for (auto& data : per_isolate_data_) {
      auto it = data.second.breakpoints_per_function.find(func_index);
      if (it == data.second.breakpoints_per_function.end()) continue;
      for (int offset : it->second) breakpoints.insert(offset);
    }
    return {breakpoints.begin(), breakpoints.end()};
383 384
  }

385
  void UpdateBreakpoints(int func_index, base::Vector<int> breakpoints,
386 387
                         Isolate* isolate, StackFrameId stepping_frame,
                         int dead_breakpoint) {
388
    DCHECK(!mutex_.TryLock());  // Mutex is held externally.
389 390
    WasmCode* new_code = RecompileLiftoffWithBreakpoints(
        func_index, breakpoints, dead_breakpoint);
391
    UpdateReturnAddresses(isolate, new_code, stepping_frame);
392 393
  }

394
  void FloodWithBreakpoints(WasmFrame* frame, ReturnLocation return_location) {
395
    // 0 is an invalid offset used to indicate flooding.
396
    constexpr int kFloodingBreakpoints[] = {0};
397 398
    DCHECK(frame->wasm_code()->is_liftoff());
    // Generate an additional source position for the current byte offset.
399
    base::MutexGuard guard(&mutex_);
400
    WasmCode* new_code = RecompileLiftoffWithBreakpoints(
401
        frame->function_index(), base::ArrayVector(kFloodingBreakpoints), 0);
402
    UpdateReturnAddress(frame, new_code, return_location);
403 404

    per_isolate_data_[frame->isolate()].stepping_frame = frame->id();
405 406
  }

407 408 409 410 411 412 413 414
  bool PrepareStep(WasmFrame* frame) {
    WasmCodeRefScope wasm_code_ref_scope;
    wasm::WasmCode* code = frame->wasm_code();
    if (!code->is_liftoff()) return false;  // Cannot step in TurboFan code.
    if (IsAtReturn(frame)) return false;    // Will return after this step.
    FloodWithBreakpoints(frame, kAfterBreakpoint);
    return true;
  }
415

416 417 418 419 420
  void PrepareStepOutTo(WasmFrame* frame) {
    WasmCodeRefScope wasm_code_ref_scope;
    wasm::WasmCode* code = frame->wasm_code();
    if (!code->is_liftoff()) return;  // Cannot step out to TurboFan code.
    FloodWithBreakpoints(frame, kAfterWasmCall);
421 422
  }

423 424 425 426 427 428 429
  void ClearStepping(WasmFrame* frame) {
    WasmCodeRefScope wasm_code_ref_scope;
    base::MutexGuard guard(&mutex_);
    auto* code = frame->wasm_code();
    if (code->for_debugging() != kForStepping) return;
    int func_index = code->index();
    std::vector<int> breakpoints = FindAllBreakpoints(func_index);
430
    int dead_breakpoint = DeadBreakpoint(frame, base::VectorOf(breakpoints));
431
    WasmCode* new_code = RecompileLiftoffWithBreakpoints(
432
        func_index, base::VectorOf(breakpoints), dead_breakpoint);
433 434 435
    UpdateReturnAddress(frame, new_code, kAfterBreakpoint);
  }

436 437 438 439 440
  void ClearStepping(Isolate* isolate) {
    base::MutexGuard guard(&mutex_);
    auto it = per_isolate_data_.find(isolate);
    if (it != per_isolate_data_.end()) it->second.stepping_frame = NO_ID;
  }
441

442
  bool IsStepping(WasmFrame* frame) {
443
    Isolate* isolate = frame->wasm_instance().GetIsolate();
444
    if (isolate->debug()->last_step_action() == StepInto) return true;
445 446 447 448
    base::MutexGuard guard(&mutex_);
    auto it = per_isolate_data_.find(isolate);
    return it != per_isolate_data_.end() &&
           it->second.stepping_frame == frame->id();
449 450
  }

451
  void RemoveBreakpoint(int func_index, int position, Isolate* isolate) {
452 453 454 455 456 457 458 459 460 461
    // Put the code ref scope outside of the mutex, so we don't unnecessarily
    // hold the mutex while freeing code.
    WasmCodeRefScope wasm_code_ref_scope;

    // Hold the mutex while modifying breakpoints, to ensure consistency when
    // multiple isolates set/remove breakpoints at the same time.
    base::MutexGuard guard(&mutex_);

    const auto& function = native_module_->module()->functions[func_index];
    int offset = position - function.code.offset();
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476
    auto& isolate_data = per_isolate_data_[isolate];
    std::vector<int>& breakpoints =
        isolate_data.breakpoints_per_function[func_index];
    DCHECK_LT(0, offset);
    auto insertion_point =
        std::lower_bound(breakpoints.begin(), breakpoints.end(), offset);
    if (insertion_point == breakpoints.end()) return;
    if (*insertion_point != offset) return;
    breakpoints.erase(insertion_point);

    std::vector<int> remaining = FindAllBreakpoints(func_index);
    // If the breakpoint is still set in another isolate, don't remove it.
    DCHECK(std::is_sorted(remaining.begin(), remaining.end()));
    if (std::binary_search(remaining.begin(), remaining.end(), offset)) return;
477
    int dead_breakpoint =
478 479
        DeadBreakpoint(func_index, base::VectorOf(remaining), isolate);
    UpdateBreakpoints(func_index, base::VectorOf(remaining), isolate,
480
                      isolate_data.stepping_frame, dead_breakpoint);
481 482
  }

483
  void RemoveDebugSideTables(base::Vector<WasmCode* const> codes) {
484
    base::MutexGuard guard(&debug_side_tables_mutex_);
485 486
    for (auto* code : codes) {
      debug_side_tables_.erase(code);
487
    }
488 489
  }

490
  DebugSideTable* GetDebugSideTableIfExists(const WasmCode* code) const {
491
    base::MutexGuard guard(&debug_side_tables_mutex_);
492 493 494 495
    auto it = debug_side_tables_.find(code);
    return it == debug_side_tables_.end() ? nullptr : it->second.get();
  }

496 497 498 499 500 501 502 503 504 505 506 507
  static bool HasRemovedBreakpoints(const std::vector<int>& removed,
                                    const std::vector<int>& remaining) {
    DCHECK(std::is_sorted(remaining.begin(), remaining.end()));
    for (int offset : removed) {
      // Return true if we removed a breakpoint which is not part of remaining.
      if (!std::binary_search(remaining.begin(), remaining.end(), offset)) {
        return true;
      }
    }
    return false;
  }

508
  void RemoveIsolate(Isolate* isolate) {
509 510 511 512
    // Put the code ref scope outside of the mutex, so we don't unnecessarily
    // hold the mutex while freeing code.
    WasmCodeRefScope wasm_code_ref_scope;

513
    base::MutexGuard guard(&mutex_);
514 515
    auto per_isolate_data_it = per_isolate_data_.find(isolate);
    if (per_isolate_data_it == per_isolate_data_.end()) return;
516 517 518 519
    std::unordered_map<int, std::vector<int>> removed_per_function =
        std::move(per_isolate_data_it->second.breakpoints_per_function);
    per_isolate_data_.erase(per_isolate_data_it);
    for (auto& entry : removed_per_function) {
520 521 522 523
      int func_index = entry.first;
      std::vector<int>& removed = entry.second;
      std::vector<int> remaining = FindAllBreakpoints(func_index);
      if (HasRemovedBreakpoints(removed, remaining)) {
524 525
        RecompileLiftoffWithBreakpoints(func_index, base::VectorOf(remaining),
                                        0);
526 527
      }
    }
528 529
  }

530
 private:
531
  struct FrameInspectionScope {
532
    FrameInspectionScope(DebugInfoImpl* debug_info, Address pc)
533
        : code(wasm::GetWasmCodeManager()->LookupCode(pc)),
534
          pc_offset(static_cast<int>(pc - code->instruction_start())),
535 536 537
          debug_side_table(code->is_inspectable()
                               ? debug_info->GetDebugSideTable(code)
                               : nullptr),
538 539
          debug_side_table_entry(debug_side_table
                                     ? debug_side_table->GetEntry(pc_offset)
540 541 542 543 544
                                     : nullptr) {
      DCHECK_IMPLIES(code->is_inspectable(), debug_side_table_entry != nullptr);
    }

    bool is_inspectable() const { return debug_side_table_entry; }
545 546 547 548 549 550 551 552

    wasm::WasmCodeRefScope wasm_code_ref_scope;
    wasm::WasmCode* code;
    int pc_offset;
    const DebugSideTable* debug_side_table;
    const DebugSideTable::Entry* debug_side_table_entry;
  };

553
  const DebugSideTable* GetDebugSideTable(WasmCode* code) {
554
    DCHECK(code->is_inspectable());
555 556 557
    {
      // Only hold the mutex temporarily. We can't hold it while generating the
      // debug side table, because compilation takes the {NativeModule} lock.
558
      base::MutexGuard guard(&debug_side_tables_mutex_);
559 560
      auto it = debug_side_tables_.find(code);
      if (it != debug_side_tables_.end()) return it->second.get();
561 562 563
    }

    // Otherwise create the debug side table now.
564
    std::unique_ptr<DebugSideTable> debug_side_table =
565
        GenerateLiftoffDebugSideTable(code);
566
    DebugSideTable* ret = debug_side_table.get();
567

568 569
    // Check cache again, maybe another thread concurrently generated a debug
    // side table already.
570
    {
571
      base::MutexGuard guard(&debug_side_tables_mutex_);
572 573 574
      auto& slot = debug_side_tables_[code];
      if (slot != nullptr) return slot.get();
      slot = std::move(debug_side_table);
575
    }
576 577 578

    // Print the code together with the debug table, if requested.
    code->MaybePrint();
579
    return ret;
580 581 582 583
  }

  // Get the value of a local (including parameters) or stack value. Stack
  // values follow the locals in the same index space.
584 585
  WasmValue GetValue(const DebugSideTable* debug_side_table,
                     const DebugSideTable::Entry* debug_side_table_entry,
586
                     int index, Address stack_frame_base,
587
                     Address debug_break_fp, Isolate* isolate) const {
588 589 590
    const auto* value =
        debug_side_table->FindValue(debug_side_table_entry, index);
    if (value->is_constant()) {
591 592 593
      DCHECK(value->type == kWasmI32 || value->type == kWasmI64);
      return value->type == kWasmI32 ? WasmValue(value->i32_const)
                                     : WasmValue(int64_t{value->i32_const});
594
    }
595

596 597
    if (value->is_register()) {
      auto reg = LiftoffRegister::from_liftoff_code(value->reg_code);
598 599 600 601 602 603
      auto gp_addr = [debug_break_fp](Register reg) {
        return debug_break_fp +
               WasmDebugBreakFrameConstants::GetPushedGpRegisterOffset(
                   reg.code());
      };
      if (reg.is_gp_pair()) {
604
        DCHECK_EQ(kWasmI64, value->type);
605 606 607 608 609 610
        uint32_t low_word = ReadUnalignedValue<uint32_t>(gp_addr(reg.low_gp()));
        uint32_t high_word =
            ReadUnalignedValue<uint32_t>(gp_addr(reg.high_gp()));
        return WasmValue((uint64_t{high_word} << 32) | low_word);
      }
      if (reg.is_gp()) {
611 612 613 614 615 616 617 618 619 620 621
        if (value->type == kWasmI32) {
          return WasmValue(ReadUnalignedValue<uint32_t>(gp_addr(reg.gp())));
        } else if (value->type == kWasmI64) {
          return WasmValue(ReadUnalignedValue<uint64_t>(gp_addr(reg.gp())));
        } else if (value->type.is_reference()) {
          Handle<Object> obj(
              Object(ReadUnalignedValue<Address>(gp_addr(reg.gp()))), isolate);
          return WasmValue(obj, value->type);
        } else {
          UNREACHABLE();
        }
622
      }
623
      DCHECK(reg.is_fp() || reg.is_fp_pair());
624 625 626 627 628 629
      // ifdef here to workaround unreachable code for is_fp_pair.
#ifdef V8_TARGET_ARCH_ARM
      int code = reg.is_fp_pair() ? reg.low_fp().code() : reg.fp().code();
#else
      int code = reg.fp().code();
#endif
630 631
      Address spilled_addr =
          debug_break_fp +
632
          WasmDebugBreakFrameConstants::GetPushedFpRegisterOffset(code);
633
      if (value->type == kWasmF32) {
634
        return WasmValue(ReadUnalignedValue<float>(spilled_addr));
635
      } else if (value->type == kWasmF64) {
636
        return WasmValue(ReadUnalignedValue<double>(spilled_addr));
637
      } else if (value->type == kWasmS128) {
638 639 640 641 642
        return WasmValue(Simd128(ReadUnalignedValue<int16>(spilled_addr)));
      } else {
        // All other cases should have been handled above.
        UNREACHABLE();
      }
643 644
    }

645
    // Otherwise load the value from the stack.
646
    Address stack_address = stack_frame_base - value->stack_offset;
647
    switch (value->type.kind()) {
648
      case kI32:
649
        return WasmValue(ReadUnalignedValue<int32_t>(stack_address));
650
      case kI64:
651
        return WasmValue(ReadUnalignedValue<int64_t>(stack_address));
652
      case kF32:
653
        return WasmValue(ReadUnalignedValue<float>(stack_address));
654
      case kF64:
655
        return WasmValue(ReadUnalignedValue<double>(stack_address));
656
      case kS128:
657
        return WasmValue(Simd128(ReadUnalignedValue<int16>(stack_address)));
658 659 660 661 662 663 664
      case kRef:
      case kOptRef:
      case kRtt:
      case kRttWithDepth: {
        Handle<Object> obj(Object(ReadUnalignedValue<Address>(stack_address)),
                           isolate);
        return WasmValue(obj, value->type);
665
      }
666 667
      case kI8:
      case kI16:
668
      case kVoid:
669 670
      case kBottom:
        UNREACHABLE();
671 672 673
    }
  }

674 675 676
  // After installing a Liftoff code object with a different set of breakpoints,
  // update return addresses on the stack so that execution resumes in the new
  // code. The frame layout itself should be independent of breakpoints.
677 678
  void UpdateReturnAddresses(Isolate* isolate, WasmCode* new_code,
                             StackFrameId stepping_frame) {
679 680 681 682 683
    // The first return location is after the breakpoint, others are after wasm
    // calls.
    ReturnLocation return_location = kAfterBreakpoint;
    for (StackTraceFrameIterator it(isolate); !it.done();
         it.Advance(), return_location = kAfterWasmCall) {
684
      // We still need the flooded function for stepping.
685
      if (it.frame()->id() == stepping_frame) continue;
686
      if (!it.is_wasm()) continue;
687
      WasmFrame* frame = WasmFrame::cast(it.frame());
688 689
      if (frame->native_module() != new_code->native_module()) continue;
      if (frame->function_index() != new_code->index()) continue;
690
      if (!frame->wasm_code()->is_liftoff()) continue;
691
      UpdateReturnAddress(frame, new_code, return_location);
692 693 694
    }
  }

695
  void UpdateReturnAddress(WasmFrame* frame, WasmCode* new_code,
696 697 698 699 700
                           ReturnLocation return_location) {
    DCHECK(new_code->is_liftoff());
    DCHECK_EQ(frame->function_index(), new_code->index());
    DCHECK_EQ(frame->native_module(), new_code->native_module());
    DCHECK(frame->wasm_code()->is_liftoff());
701 702
    Address new_pc =
        FindNewPC(frame, new_code, frame->byte_offset(), return_location);
703 704 705
#ifdef DEBUG
    int old_position = frame->position();
#endif
706 707 708 709 710
#if V8_TARGET_ARCH_X64
    if (frame->wasm_code()->for_debugging()) {
      base::Memory<Address>(frame->fp() - kOSRTargetOffset) = new_pc;
    }
#else
711 712
    PointerAuthentication::ReplacePC(frame->pc_address(), new_pc,
                                     kSystemPointerSize);
713
#endif
714 715 716 717
    // The frame position should still be the same after OSR.
    DCHECK_EQ(old_position, frame->position());
  }

718
  bool IsAtReturn(WasmFrame* frame) {
719
    DisallowGarbageCollection no_gc;
720 721 722 723 724 725 726 727 728 729 730
    int position = frame->position();
    NativeModule* native_module =
        frame->wasm_instance().module_object().native_module();
    uint8_t opcode = native_module->wire_bytes()[position];
    if (opcode == kExprReturn) return true;
    // Another implicit return is at the last kExprEnd in the function body.
    int func_index = frame->function_index();
    WireBytesRef code = native_module->module()->functions[func_index].code;
    return static_cast<size_t>(position) == code.end_offset() - 1;
  }

731 732 733
  // Isolate-specific data, for debugging modules that are shared by multiple
  // isolates.
  struct PerIsolateDebugData {
734 735 736 737
    // Keeps track of the currently set breakpoints (by offset within that
    // function).
    std::unordered_map<int, std::vector<int>> breakpoints_per_function;

738 739 740 741 742
    // Store the frame ID when stepping, to avoid overwriting that frame when
    // setting or removing a breakpoint.
    StackFrameId stepping_frame = NO_ID;
  };

743 744
  NativeModule* const native_module_;

745
  mutable base::Mutex debug_side_tables_mutex_;
746

747
  // DebugSideTable per code object, lazily initialized.
748
  std::unordered_map<const WasmCode*, std::unique_ptr<DebugSideTable>>
749
      debug_side_tables_;
750

751 752 753
  // {mutex_} protects all fields below.
  mutable base::Mutex mutex_;

754 755 756 757 758 759 760
  // Cache a fixed number of WasmCode objects that were generated for debugging.
  // This is useful especially in stepping, because stepping code is cleared on
  // every pause and re-installed on the next step.
  // This is a LRU cache (most recently used entries first).
  static constexpr size_t kMaxCachedDebuggingCode = 3;
  struct CachedDebuggingCode {
    int func_index;
761
    base::OwnedVector<const int> breakpoint_offsets;
762 763 764 765 766
    int dead_breakpoint;
    WasmCode* code;
  };
  std::vector<CachedDebuggingCode> cached_debugging_code_;

767 768 769 770 771 772 773 774
  // Names of exports, lazily derived from the exports table.
  std::unique_ptr<std::map<ImportExportKey, wasm::WireBytesRef>> export_names_;

  // Names of imports, lazily derived from the imports table.
  std::unique_ptr<std::map<ImportExportKey,
                           std::pair<wasm::WireBytesRef, wasm::WireBytesRef>>>
      import_names_;

775 776
  // Names of types, lazily decoded from the wire bytes.
  std::unique_ptr<NameMap> type_names_;
777
  // Names of locals, lazily decoded from the wire bytes.
778 779 780
  std::unique_ptr<IndirectNameMap> local_names_;
  // Names of struct fields, lazily decoded from the wire bytes.
  std::unique_ptr<IndirectNameMap> field_names_;
781

782 783
  // Isolate-specific data.
  std::unordered_map<Isolate*, PerIsolateDebugData> per_isolate_data_;
784 785 786 787 788 789 790
};

DebugInfo::DebugInfo(NativeModule* native_module)
    : impl_(std::make_unique<DebugInfoImpl>(native_module)) {}

DebugInfo::~DebugInfo() = default;

791
int DebugInfo::GetNumLocals(Address pc) { return impl_->GetNumLocals(pc); }
792

793
WasmValue DebugInfo::GetLocalValue(int local, Address pc, Address fp,
794 795
                                   Address debug_break_fp, Isolate* isolate) {
  return impl_->GetLocalValue(local, pc, fp, debug_break_fp, isolate);
796 797
}

798
int DebugInfo::GetStackDepth(Address pc) { return impl_->GetStackDepth(pc); }
799

800
WasmValue DebugInfo::GetStackValue(int index, Address pc, Address fp,
801 802
                                   Address debug_break_fp, Isolate* isolate) {
  return impl_->GetStackValue(index, pc, fp, debug_break_fp, isolate);
803 804
}

805 806 807 808
const wasm::WasmFunction& DebugInfo::GetFunctionAtAddress(Address pc) {
  return impl_->GetFunctionAtAddress(pc);
}

809 810 811 812 813 814 815 816 817 818
WireBytesRef DebugInfo::GetExportName(ImportExportKindCode code,
                                      uint32_t index) {
  return impl_->GetExportName(code, index);
}

std::pair<WireBytesRef, WireBytesRef> DebugInfo::GetImportName(
    ImportExportKindCode code, uint32_t index) {
  return impl_->GetImportName(code, index);
}

819 820 821 822
WireBytesRef DebugInfo::GetTypeName(int type_index) {
  return impl_->GetTypeName(type_index);
}

823 824 825 826
WireBytesRef DebugInfo::GetLocalName(int func_index, int local_index) {
  return impl_->GetLocalName(func_index, local_index);
}

827 828 829 830
WireBytesRef DebugInfo::GetFieldName(int struct_index, int field_index) {
  return impl_->GetFieldName(struct_index, field_index);
}

831 832 833
void DebugInfo::SetBreakpoint(int func_index, int offset,
                              Isolate* current_isolate) {
  impl_->SetBreakpoint(func_index, offset, current_isolate);
834 835
}

836 837 838 839 840 841 842
bool DebugInfo::PrepareStep(WasmFrame* frame) {
  return impl_->PrepareStep(frame);
}

void DebugInfo::PrepareStepOutTo(WasmFrame* frame) {
  impl_->PrepareStepOutTo(frame);
}
843

844 845 846
void DebugInfo::ClearStepping(Isolate* isolate) {
  impl_->ClearStepping(isolate);
}
847

848 849
void DebugInfo::ClearStepping(WasmFrame* frame) { impl_->ClearStepping(frame); }

850
bool DebugInfo::IsStepping(WasmFrame* frame) {
851 852 853
  return impl_->IsStepping(frame);
}

854 855 856 857 858
void DebugInfo::RemoveBreakpoint(int func_index, int offset,
                                 Isolate* current_isolate) {
  impl_->RemoveBreakpoint(func_index, offset, current_isolate);
}

859
void DebugInfo::RemoveDebugSideTables(base::Vector<WasmCode* const> code) {
860 861 862
  impl_->RemoveDebugSideTables(code);
}

863 864 865 866 867
DebugSideTable* DebugInfo::GetDebugSideTableIfExists(
    const WasmCode* code) const {
  return impl_->GetDebugSideTableIfExists(code);
}

868 869 870 871
void DebugInfo::RemoveIsolate(Isolate* isolate) {
  return impl_->RemoveIsolate(isolate);
}

872 873
}  // namespace wasm

874 875
namespace {

876
// Return the next breakable position at or after {offset_in_func} in function
877 878 879 880 881
// {func_index}, or 0 if there is none.
// Note that 0 is never a breakable position in wasm, since the first byte
// contains the locals count for the function.
int FindNextBreakablePosition(wasm::NativeModule* native_module, int func_index,
                              int offset_in_func) {
882 883 884 885 886 887 888 889 890 891
  AccountingAllocator alloc;
  Zone tmp(&alloc, ZONE_NAME);
  wasm::BodyLocalDecls locals(&tmp);
  const byte* module_start = native_module->wire_bytes().begin();
  const wasm::WasmFunction& func =
      native_module->module()->functions[func_index];
  wasm::BytecodeIterator iterator(module_start + func.code.offset(),
                                  module_start + func.code.end_offset(),
                                  &locals);
  DCHECK_LT(0, locals.encoded_size);
892
  if (offset_in_func < 0) return 0;
893 894 895 896
  for (; iterator.has_next(); iterator.next()) {
    if (iterator.pc_offset() < static_cast<uint32_t>(offset_in_func)) continue;
    if (!wasm::WasmOpcodes::IsBreakable(iterator.current())) continue;
    return static_cast<int>(iterator.pc_offset());
897
  }
898
  return 0;
899 900 901 902 903 904 905
}

}  // namespace

// static
bool WasmScript::SetBreakPoint(Handle<Script> script, int* position,
                               Handle<BreakPoint> break_point) {
906
  DCHECK_NE(kOnEntryBreakpointPosition, *position);
907

908 909 910 911 912 913 914
  // Find the function for this breakpoint.
  const wasm::WasmModule* module = script->wasm_native_module()->module();
  int func_index = GetContainingWasmFunction(module, *position);
  if (func_index < 0) return false;
  const wasm::WasmFunction& func = module->functions[func_index];
  int offset_in_func = *position - func.code.offset();

915 916 917 918
  int breakable_offset = FindNextBreakablePosition(script->wasm_native_module(),
                                                   func_index, offset_in_func);
  if (breakable_offset == 0) return false;
  *position = func.code.offset() + breakable_offset;
919

920 921 922 923
  return WasmScript::SetBreakPointForFunction(script, func_index,
                                              breakable_offset, break_point);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
// static
void WasmScript::SetBreakPointOnEntry(Handle<Script> script,
                                      Handle<BreakPoint> break_point) {
  // Special handling for on-entry breakpoints.
  AddBreakpointToInfo(script, kOnEntryBreakpointPosition, break_point);
  script->set_break_on_entry(true);

  // Update the "break_on_entry" flag on all live instances.
  i::WeakArrayList weak_instance_list = script->wasm_weak_instance_list();
  for (int i = 0; i < weak_instance_list.length(); ++i) {
    if (weak_instance_list.Get(i)->IsCleared()) continue;
    i::WasmInstanceObject instance =
        i::WasmInstanceObject::cast(weak_instance_list.Get(i)->GetHeapObject());
    instance.set_break_on_entry(true);
  }
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
// static
bool WasmScript::SetBreakPointOnFirstBreakableForFunction(
    Handle<Script> script, int func_index, Handle<BreakPoint> break_point) {
  if (func_index < 0) return false;
  int offset_in_func = 0;

  int breakable_offset = FindNextBreakablePosition(script->wasm_native_module(),
                                                   func_index, offset_in_func);
  if (breakable_offset == 0) return false;
  return WasmScript::SetBreakPointForFunction(script, func_index,
                                              breakable_offset, break_point);
}

// static
bool WasmScript::SetBreakPointForFunction(Handle<Script> script, int func_index,
956
                                          int offset,
957 958 959 960
                                          Handle<BreakPoint> break_point) {
  Isolate* isolate = script->GetIsolate();

  DCHECK_LE(0, func_index);
961
  DCHECK_NE(0, offset);
962 963

  // Find the function for this breakpoint.
964 965
  wasm::NativeModule* native_module = script->wasm_native_module();
  const wasm::WasmModule* module = native_module->module();
966 967
  const wasm::WasmFunction& func = module->functions[func_index];

968
  // Insert new break point into {wasm_breakpoint_infos} of the script.
969
  AddBreakpointToInfo(script, func.code.offset() + offset, break_point);
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
  native_module->GetDebugInfo()->SetBreakpoint(func_index, offset, isolate);

  return true;
}

namespace {

int GetBreakpointPos(Isolate* isolate, Object break_point_info_or_undef) {
  if (break_point_info_or_undef.IsUndefined(isolate)) return kMaxInt;
  return BreakPointInfo::cast(break_point_info_or_undef).source_position();
}

int FindBreakpointInfoInsertPos(Isolate* isolate,
                                Handle<FixedArray> breakpoint_infos,
                                int position) {
  // Find insert location via binary search, taking care of undefined values on
987 988 989
  // the right. {position} is either {kOnEntryBreakpointPosition} (which is -1),
  // or positive.
  DCHECK(position == WasmScript::kOnEntryBreakpointPosition || position > 0);
990 991 992 993 994 995 996 997 998 999

  int left = 0;                            // inclusive
  int right = breakpoint_infos->length();  // exclusive
  while (right - left > 1) {
    int mid = left + (right - left) / 2;
    Object mid_obj = breakpoint_infos->get(mid);
    if (GetBreakpointPos(isolate, mid_obj) <= position) {
      left = mid;
    } else {
      right = mid;
1000 1001 1002
    }
  }

1003 1004
  int left_pos = GetBreakpointPos(isolate, breakpoint_infos->get(left));
  return left_pos < position ? left + 1 : left;
1005 1006
}

1007 1008
}  // namespace

1009 1010 1011
// static
bool WasmScript::ClearBreakPoint(Handle<Script> script, int position,
                                 Handle<BreakPoint> break_point) {
1012 1013
  if (!script->has_wasm_breakpoint_infos()) return false;

1014
  Isolate* isolate = script->GetIsolate();
1015
  Handle<FixedArray> breakpoint_infos(script->wasm_breakpoint_infos(), isolate);
1016

1017
  int pos = FindBreakpointInfoInsertPos(isolate, breakpoint_infos, position);
1018

1019 1020
  // Does a BreakPointInfo object already exist for this position?
  if (pos == breakpoint_infos->length()) return false;
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  Handle<BreakPointInfo> info(BreakPointInfo::cast(breakpoint_infos->get(pos)),
                              isolate);
  BreakPointInfo::ClearBreakPoint(isolate, info, break_point);

  // Check if there are no more breakpoints at this location.
  if (info->GetBreakPointCount(isolate) == 0) {
    // Update array by moving breakpoints up one position.
    for (int i = pos; i < breakpoint_infos->length() - 1; i++) {
      Object entry = breakpoint_infos->get(i + 1);
      breakpoint_infos->set(i, entry);
      if (entry.IsUndefined(isolate)) break;
1033
    }
1034 1035
    // Make sure last array element is empty as a result.
    breakpoint_infos->set_undefined(breakpoint_infos->length() - 1);
1036
  }
1037 1038 1039 1040 1041 1042 1043 1044

  // Remove the breakpoint from DebugInfo and recompile.
  wasm::NativeModule* native_module = script->wasm_native_module();
  const wasm::WasmModule* module = native_module->module();
  int func_index = GetContainingWasmFunction(module, position);
  native_module->GetDebugInfo()->RemoveBreakpoint(func_index, position,
                                                  isolate);

1045 1046 1047
  return true;
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
// static
bool WasmScript::ClearBreakPointById(Handle<Script> script, int breakpoint_id) {
  if (!script->has_wasm_breakpoint_infos()) {
    return false;
  }
  Isolate* isolate = script->GetIsolate();
  Handle<FixedArray> breakpoint_infos(script->wasm_breakpoint_infos(), isolate);
  // If the array exists, it should not be empty.
  DCHECK_LT(0, breakpoint_infos->length());

  for (int i = 0, e = breakpoint_infos->length(); i < e; ++i) {
    Handle<Object> obj(breakpoint_infos->get(i), isolate);
    if (obj->IsUndefined(isolate)) {
      continue;
    }
    Handle<BreakPointInfo> breakpoint_info = Handle<BreakPointInfo>::cast(obj);
    Handle<BreakPoint> breakpoint;
    if (BreakPointInfo::GetBreakPointById(isolate, breakpoint_info,
                                          breakpoint_id)
            .ToHandle(&breakpoint)) {
      DCHECK(breakpoint->id() == breakpoint_id);
      return WasmScript::ClearBreakPoint(
          script, breakpoint_info->source_position(), breakpoint);
    }
  }
  return false;
}

1076 1077 1078 1079 1080 1081
// static
void WasmScript::ClearAllBreakpoints(Script script) {
  script.set_wasm_breakpoint_infos(
      ReadOnlyRoots(script.GetIsolate()).empty_fixed_array());
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
// static
void WasmScript::AddBreakpointToInfo(Handle<Script> script, int position,
                                     Handle<BreakPoint> break_point) {
  Isolate* isolate = script->GetIsolate();
  Handle<FixedArray> breakpoint_infos;
  if (script->has_wasm_breakpoint_infos()) {
    breakpoint_infos = handle(script->wasm_breakpoint_infos(), isolate);
  } else {
    breakpoint_infos =
        isolate->factory()->NewFixedArray(4, AllocationType::kOld);
    script->set_wasm_breakpoint_infos(*breakpoint_infos);
  }

  int insert_pos =
      FindBreakpointInfoInsertPos(isolate, breakpoint_infos, position);

  // If a BreakPointInfo object already exists for this position, add the new
  // breakpoint object and return.
  if (insert_pos < breakpoint_infos->length() &&
      GetBreakpointPos(isolate, breakpoint_infos->get(insert_pos)) ==
          position) {
    Handle<BreakPointInfo> old_info(
        BreakPointInfo::cast(breakpoint_infos->get(insert_pos)), isolate);
    BreakPointInfo::SetBreakPoint(isolate, old_info, break_point);
    return;
  }

  // Enlarge break positions array if necessary.
  bool need_realloc = !breakpoint_infos->get(breakpoint_infos->length() - 1)
                           .IsUndefined(isolate);
  Handle<FixedArray> new_breakpoint_infos = breakpoint_infos;
  if (need_realloc) {
    new_breakpoint_infos = isolate->factory()->NewFixedArray(
        2 * breakpoint_infos->length(), AllocationType::kOld);
    script->set_wasm_breakpoint_infos(*new_breakpoint_infos);
    // Copy over the entries [0, insert_pos).
    for (int i = 0; i < insert_pos; ++i)
      new_breakpoint_infos->set(i, breakpoint_infos->get(i));
  }

  // Move elements [insert_pos, ...] up by one.
  for (int i = breakpoint_infos->length() - 1; i >= insert_pos; --i) {
    Object entry = breakpoint_infos->get(i);
    if (entry.IsUndefined(isolate)) continue;
    new_breakpoint_infos->set(i + 1, entry);
  }

  // Generate new BreakpointInfo.
  Handle<BreakPointInfo> breakpoint_info =
      isolate->factory()->NewBreakPointInfo(position);
  BreakPointInfo::SetBreakPoint(isolate, breakpoint_info, break_point);

  // Now insert new position at insert_pos.
  new_breakpoint_infos->set(insert_pos, *breakpoint_info);
}

// static
bool WasmScript::GetPossibleBreakpoints(
    wasm::NativeModule* native_module, const v8::debug::Location& start,
    const v8::debug::Location& end,
    std::vector<v8::debug::BreakLocation>* locations) {
1143
  DisallowGarbageCollection no_gc;
1144

1145 1146 1147 1148
  const wasm::WasmModule* module = native_module->module();
  const std::vector<wasm::WasmFunction>& functions = module->functions;

  if (start.GetLineNumber() != 0 || start.GetColumnNumber() < 0 ||
1149
      (!end.IsEmpty() &&
1150 1151
       (end.GetLineNumber() != 0 || end.GetColumnNumber() < 0 ||
        end.GetColumnNumber() < start.GetColumnNumber())))
1152 1153 1154 1155 1156
    return false;

  // start_func_index, start_offset and end_func_index is inclusive.
  // end_offset is exclusive.
  // start_offset and end_offset are module-relative byte offsets.
1157 1158 1159 1160 1161 1162
  // We set strict to false because offsets may be between functions.
  int start_func_index =
      GetNearestWasmFunction(module, start.GetColumnNumber());
  if (start_func_index < 0) return false;
  uint32_t start_offset = start.GetColumnNumber();
  int end_func_index;
1163
  uint32_t end_offset;
1164

1165 1166 1167 1168 1169 1170
  if (end.IsEmpty()) {
    // Default: everything till the end of the Script.
    end_func_index = static_cast<uint32_t>(functions.size() - 1);
    end_offset = functions[end_func_index].code.end_offset();
  } else {
    // If end is specified: Use it and check for valid input.
1171 1172 1173
    end_offset = end.GetColumnNumber();
    end_func_index = GetNearestWasmFunction(module, end_offset);
    DCHECK_GE(end_func_index, start_func_index);
1174 1175
  }

1176 1177 1178
  if (start_func_index == end_func_index &&
      start_offset > functions[end_func_index].code.end_offset())
    return false;
1179 1180 1181 1182
  AccountingAllocator alloc;
  Zone tmp(&alloc, ZONE_NAME);
  const byte* module_start = native_module->wire_bytes().begin();

1183
  for (int func_idx = start_func_index; func_idx <= end_func_index;
1184 1185 1186 1187 1188 1189 1190 1191 1192
       ++func_idx) {
    const wasm::WasmFunction& func = functions[func_idx];
    if (func.code.length() == 0) continue;

    wasm::BodyLocalDecls locals(&tmp);
    wasm::BytecodeIterator iterator(module_start + func.code.offset(),
                                    module_start + func.code.end_offset(),
                                    &locals);
    DCHECK_LT(0u, locals.encoded_size);
1193 1194
    for (; iterator.has_next(); iterator.next()) {
      uint32_t total_offset = func.code.offset() + iterator.pc_offset();
1195 1196 1197 1198 1199
      if (total_offset >= end_offset) {
        DCHECK_EQ(end_func_index, func_idx);
        break;
      }
      if (total_offset < start_offset) continue;
1200
      if (!wasm::WasmOpcodes::IsBreakable(iterator.current())) continue;
1201
      locations->emplace_back(0, total_offset, debug::kCommonBreakLocation);
1202 1203 1204 1205 1206
    }
  }
  return true;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
namespace {

bool CheckBreakPoint(Isolate* isolate, Handle<BreakPoint> break_point,
                     StackFrameId frame_id) {
  if (break_point->condition().length() == 0) return true;

  HandleScope scope(isolate);
  Handle<String> condition(break_point->condition(), isolate);
  Handle<Object> result;
  // The Wasm engine doesn't perform any sort of inlining.
  const int inlined_jsframe_index = 0;
  const bool throw_on_side_effect = false;
  if (!DebugEvaluate::Local(isolate, frame_id, inlined_jsframe_index, condition,
                            throw_on_side_effect)
           .ToHandle(&result)) {
    isolate->clear_pending_exception();
    return false;
  }
  return result->BooleanValue(isolate);
}

}  // namespace

1230 1231 1232
// static
MaybeHandle<FixedArray> WasmScript::CheckBreakPoints(Isolate* isolate,
                                                     Handle<Script> script,
1233 1234
                                                     int position,
                                                     StackFrameId frame_id) {
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
  if (!script->has_wasm_breakpoint_infos()) return {};

  Handle<FixedArray> breakpoint_infos(script->wasm_breakpoint_infos(), isolate);
  int insert_pos =
      FindBreakpointInfoInsertPos(isolate, breakpoint_infos, position);
  if (insert_pos >= breakpoint_infos->length()) return {};

  Handle<Object> maybe_breakpoint_info(breakpoint_infos->get(insert_pos),
                                       isolate);
  if (maybe_breakpoint_info->IsUndefined(isolate)) return {};
  Handle<BreakPointInfo> breakpoint_info =
      Handle<BreakPointInfo>::cast(maybe_breakpoint_info);
  if (breakpoint_info->source_position() != position) return {};

  Handle<Object> break_points(breakpoint_info->break_points(), isolate);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
  if (!break_points->IsFixedArray()) {
    if (!CheckBreakPoint(isolate, Handle<BreakPoint>::cast(break_points),
                         frame_id)) {
      return {};
    }
    Handle<FixedArray> break_points_hit = isolate->factory()->NewFixedArray(1);
    break_points_hit->set(0, *break_points);
    return break_points_hit;
  }

  Handle<FixedArray> array = Handle<FixedArray>::cast(break_points);
  Handle<FixedArray> break_points_hit =
      isolate->factory()->NewFixedArray(array->length());
  int break_points_hit_count = 0;
  for (int i = 0; i < array->length(); ++i) {
    Handle<BreakPoint> break_point(BreakPoint::cast(array->get(i)), isolate);
    if (CheckBreakPoint(isolate, break_point, frame_id)) {
      break_points_hit->set(break_points_hit_count++, *break_point);
    }
1269
  }
1270 1271
  if (break_points_hit_count == 0) return {};
  break_points_hit->Shrink(isolate, break_points_hit_count);
1272 1273 1274
  return break_points_hit;
}

1275 1276
}  // namespace internal
}  // namespace v8