wasm-debug.cc 46.1 KB
Newer Older
1 2 3 4
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6
#include "src/wasm/wasm-debug.h"

7
#include <iomanip>
8 9
#include <unordered_map>

10
#include "src/common/assert-scope.h"
11
#include "src/compiler/wasm-compiler.h"
12
#include "src/debug/debug-evaluate.h"
13
#include "src/debug/debug.h"
14
#include "src/execution/frames-inl.h"
15
#include "src/heap/factory.h"
16
#include "src/wasm/baseline/liftoff-compiler.h"
17
#include "src/wasm/baseline/liftoff-register.h"
18
#include "src/wasm/module-decoder.h"
19
#include "src/wasm/value-type.h"
20
#include "src/wasm/wasm-code-manager.h"
21
#include "src/wasm/wasm-engine.h"
22
#include "src/wasm/wasm-limits.h"
23
#include "src/wasm/wasm-module.h"
24
#include "src/wasm/wasm-objects-inl.h"
25
#include "src/wasm/wasm-opcodes-inl.h"
26
#include "src/wasm/wasm-subtyping.h"
27
#include "src/wasm/wasm-value.h"
28
#include "src/zone/accounting-allocator.h"
29

30 31 32
namespace v8 {
namespace internal {
namespace wasm {
33

34 35
namespace {

36 37
using ImportExportKey = std::pair<ImportExportKindCode, uint32_t>;

38 39
enum ReturnLocation { kAfterBreakpoint, kAfterWasmCall };

40
Address FindNewPC(WasmFrame* frame, WasmCode* wasm_code, int byte_offset,
41
                  ReturnLocation return_location) {
42
  base::Vector<const uint8_t> new_pos_table = wasm_code->source_positions();
43 44

  DCHECK_LE(0, byte_offset);
45

46 47 48 49
  // Find the size of the call instruction by computing the distance from the
  // source position entry to the return address.
  WasmCode* old_code = frame->wasm_code();
  int pc_offset = static_cast<int>(frame->pc() - old_code->instruction_start());
50
  base::Vector<const uint8_t> old_pos_table = old_code->source_positions();
51 52 53 54 55 56 57 58 59
  SourcePositionTableIterator old_it(old_pos_table);
  int call_offset = -1;
  while (!old_it.done() && old_it.code_offset() < pc_offset) {
    call_offset = old_it.code_offset();
    old_it.Advance();
  }
  DCHECK_LE(0, call_offset);
  int call_instruction_size = pc_offset - call_offset;

60 61 62 63
  // If {return_location == kAfterBreakpoint} we search for the first code
  // offset which is marked as instruction (i.e. not the breakpoint).
  // If {return_location == kAfterWasmCall} we return the last code offset
  // associated with the byte offset.
64 65 66 67
  SourcePositionTableIterator it(new_pos_table);
  while (!it.done() && it.source_position().ScriptOffset() != byte_offset) {
    it.Advance();
  }
68 69 70
  if (return_location == kAfterBreakpoint) {
    while (!it.is_statement()) it.Advance();
    DCHECK_EQ(byte_offset, it.source_position().ScriptOffset());
71 72
    return wasm_code->instruction_start() + it.code_offset() +
           call_instruction_size;
73 74 75 76 77 78 79 80
  }

  DCHECK_EQ(kAfterWasmCall, return_location);
  int code_offset;
  do {
    code_offset = it.code_offset();
    it.Advance();
  } while (!it.done() && it.source_position().ScriptOffset() == byte_offset);
81
  return wasm_code->instruction_start() + code_offset + call_instruction_size;
82 83
}

84 85
}  // namespace

86 87 88 89 90 91 92 93
void DebugSideTable::Print(std::ostream& os) const {
  os << "Debug side table (" << num_locals_ << " locals, " << entries_.size()
     << " entries):\n";
  for (auto& entry : entries_) entry.Print(os);
  os << "\n";
}

void DebugSideTable::Entry::Print(std::ostream& os) const {
94 95 96
  os << std::setw(6) << std::hex << pc_offset_ << std::dec << " stack height "
     << stack_height_ << " [";
  for (auto& value : changed_values_) {
97
    os << " " << value.type.name() << ":";
98
    switch (value.storage) {
99 100 101 102 103 104 105 106 107 108 109 110 111 112
      case kConstant:
        os << "const#" << value.i32_const;
        break;
      case kRegister:
        os << "reg#" << value.reg_code;
        break;
      case kStack:
        os << "stack#" << value.stack_offset;
        break;
    }
  }
  os << " ]\n";
}

113 114 115 116 117
class DebugInfoImpl {
 public:
  explicit DebugInfoImpl(NativeModule* native_module)
      : native_module_(native_module) {}

118 119 120
  DebugInfoImpl(const DebugInfoImpl&) = delete;
  DebugInfoImpl& operator=(const DebugInfoImpl&) = delete;

121 122
  int GetNumLocals(Address pc) {
    FrameInspectionScope scope(this, pc);
123
    if (!scope.is_inspectable()) return 0;
124 125 126
    return scope.debug_side_table->num_locals();
  }

127
  WasmValue GetLocalValue(int local, Address pc, Address fp,
128
                          Address debug_break_fp, Isolate* isolate) {
129
    FrameInspectionScope scope(this, pc);
130
    return GetValue(scope.debug_side_table, scope.debug_side_table_entry, local,
131
                    fp, debug_break_fp, isolate);
132 133
  }

134 135
  int GetStackDepth(Address pc) {
    FrameInspectionScope scope(this, pc);
136
    if (!scope.is_inspectable()) return 0;
137 138 139
    int num_locals = scope.debug_side_table->num_locals();
    int stack_height = scope.debug_side_table_entry->stack_height();
    return stack_height - num_locals;
140 141
  }

142
  WasmValue GetStackValue(int index, Address pc, Address fp,
143
                          Address debug_break_fp, Isolate* isolate) {
144
    FrameInspectionScope scope(this, pc);
145 146
    int num_locals = scope.debug_side_table->num_locals();
    int value_count = scope.debug_side_table_entry->stack_height();
147
    if (num_locals + index >= value_count) return {};
148
    return GetValue(scope.debug_side_table, scope.debug_side_table_entry,
149
                    num_locals + index, fp, debug_break_fp, isolate);
150 151
  }

152 153 154 155 156 157
  const WasmFunction& GetFunctionAtAddress(Address pc) {
    FrameInspectionScope scope(this, pc);
    auto* module = native_module_->module();
    return module->functions[scope.code->index()];
  }

158 159
  // If the frame position is not in the list of breakpoints, return that
  // position. Return 0 otherwise.
160 161
  // This is used to generate a "dead breakpoint" in Liftoff, which is necessary
  // for OSR to find the correct return address.
162
  int DeadBreakpoint(WasmFrame* frame, base::Vector<const int> breakpoints) {
163 164
    const auto& function =
        native_module_->module()->functions[frame->function_index()];
165 166 167 168 169 170 171
    int offset = frame->position() - function.code.offset();
    if (std::binary_search(breakpoints.begin(), breakpoints.end(), offset)) {
      return 0;
    }
    return offset;
  }

172 173
  // Find the dead breakpoint (see above) for the top wasm frame, if that frame
  // is in the function of the given index.
174
  int DeadBreakpoint(int func_index, base::Vector<const int> breakpoints,
175 176 177 178 179 180 181 182
                     Isolate* isolate) {
    StackTraceFrameIterator it(isolate);
    if (it.done() || !it.is_wasm()) return 0;
    auto* wasm_frame = WasmFrame::cast(it.frame());
    if (static_cast<int>(wasm_frame->function_index()) != func_index) return 0;
    return DeadBreakpoint(wasm_frame, breakpoints);
  }

183
  WasmCode* RecompileLiftoffWithBreakpoints(int func_index,
184
                                            base::Vector<const int> offsets,
185
                                            int dead_breakpoint) {
186
    DCHECK(!mutex_.TryLock());  // Mutex is held externally.
187

188 189 190 191
    ForDebugging for_debugging = offsets.size() == 1 && offsets[0] == 0
                                     ? kForStepping
                                     : kWithBreakpoints;

192 193 194 195 196 197 198 199 200
    // Check the cache first.
    for (auto begin = cached_debugging_code_.begin(), it = begin,
              end = cached_debugging_code_.end();
         it != end; ++it) {
      if (it->func_index == func_index &&
          it->breakpoint_offsets.as_vector() == offsets &&
          it->dead_breakpoint == dead_breakpoint) {
        // Rotate the cache entry to the front (for LRU).
        for (; it != begin; --it) std::iter_swap(it, it - 1);
201 202 203 204
        if (for_debugging == kWithBreakpoints) {
          // Re-install the code, in case it was replaced in the meantime.
          native_module_->ReinstallDebugCode(it->code);
        }
205 206 207 208
        return it->code;
      }
    }

209
    // Recompile the function with Liftoff, setting the new breakpoints.
210
    // Not thread-safe. The caller is responsible for locking {mutex_}.
211 212
    CompilationEnv env = native_module_->CreateCompilationEnv();
    auto* function = &native_module_->module()->functions[func_index];
213
    base::Vector<const uint8_t> wire_bytes = native_module_->wire_bytes();
214 215 216
    FunctionBody body{function->sig, function->code.offset(),
                      wire_bytes.begin() + function->code.offset(),
                      wire_bytes.begin() + function->code.end_offset()};
217
    std::unique_ptr<DebugSideTable> debug_sidetable;
218

219 220
    // Debug side tables for stepping are generated lazily.
    bool generate_debug_sidetable = for_debugging == kWithBreakpoints;
221
    WasmCompilationResult result = ExecuteLiftoffCompilation(
222
        &env, body,
223
        LiftoffOptions{}
224 225
            .set_func_index(func_index)
            .set_for_debugging(for_debugging)
226 227 228 229
            .set_breakpoints(offsets)
            .set_dead_breakpoint(dead_breakpoint)
            .set_debug_sidetable(generate_debug_sidetable ? &debug_sidetable
                                                          : nullptr));
230 231 232
    // Liftoff compilation failure is a FATAL error. We rely on complete Liftoff
    // support for debugging.
    if (!result.succeeded()) FATAL("Liftoff compilation failed");
233
    DCHECK_EQ(generate_debug_sidetable, debug_sidetable != nullptr);
234

235 236 237
    WasmCode* new_code = native_module_->PublishCode(
        native_module_->AddCompiledCode(std::move(result)));

238
    DCHECK(new_code->is_inspectable());
239
    if (generate_debug_sidetable) {
240 241 242 243
      base::MutexGuard lock(&debug_side_tables_mutex_);
      DCHECK_EQ(0, debug_side_tables_.count(new_code));
      debug_side_tables_.emplace(new_code, std::move(debug_sidetable));
    }
244

245 246 247
    // Insert new code into the cache. Insert before existing elements for LRU.
    cached_debugging_code_.insert(
        cached_debugging_code_.begin(),
248
        CachedDebuggingCode{func_index, base::OwnedVector<int>::Of(offsets),
249 250 251 252 253 254 255 256 257 258 259 260 261
                            dead_breakpoint, new_code});
    // Increase the ref count (for the cache entry).
    new_code->IncRef();
    // Remove exceeding element.
    if (cached_debugging_code_.size() > kMaxCachedDebuggingCode) {
      // Put the code in the surrounding CodeRefScope to delay deletion until
      // after the mutex is released.
      WasmCodeRefScope::AddRef(cached_debugging_code_.back().code);
      cached_debugging_code_.back().code->DecRefOnLiveCode();
      cached_debugging_code_.pop_back();
    }
    DCHECK_GE(kMaxCachedDebuggingCode, cached_debugging_code_.size());

262
    return new_code;
263 264
  }

265
  void SetBreakpoint(int func_index, int offset, Isolate* isolate) {
266 267 268
    // Put the code ref scope outside of the mutex, so we don't unnecessarily
    // hold the mutex while freeing code.
    WasmCodeRefScope wasm_code_ref_scope;
269

270 271 272
    // Hold the mutex while modifying breakpoints, to ensure consistency when
    // multiple isolates set/remove breakpoints at the same time.
    base::MutexGuard guard(&mutex_);
273

274 275 276
    // offset == 0 indicates flooding and should not happen here.
    DCHECK_NE(0, offset);

277 278 279 280
    // Get the set of previously set breakpoints, to check later whether a new
    // breakpoint was actually added.
    std::vector<int> all_breakpoints = FindAllBreakpoints(func_index);

281 282 283 284 285 286 287 288
    auto& isolate_data = per_isolate_data_[isolate];
    std::vector<int>& breakpoints =
        isolate_data.breakpoints_per_function[func_index];
    auto insertion_point =
        std::lower_bound(breakpoints.begin(), breakpoints.end(), offset);
    if (insertion_point != breakpoints.end() && *insertion_point == offset) {
      // The breakpoint is already set for this isolate.
      return;
289
    }
290 291
    breakpoints.insert(insertion_point, offset);

292 293 294 295 296 297
    DCHECK(std::is_sorted(all_breakpoints.begin(), all_breakpoints.end()));
    // Find the insertion position within {all_breakpoints}.
    insertion_point = std::lower_bound(all_breakpoints.begin(),
                                       all_breakpoints.end(), offset);
    bool breakpoint_exists =
        insertion_point != all_breakpoints.end() && *insertion_point == offset;
298 299 300
    // If the breakpoint was already set before, then we can just reuse the old
    // code. Otherwise, recompile it. In any case, rewrite this isolate's stack
    // to make sure that it uses up-to-date code containing the breakpoint.
301
    WasmCode* new_code;
302
    if (breakpoint_exists) {
303 304
      new_code = native_module_->GetCode(func_index);
    } else {
305
      all_breakpoints.insert(insertion_point, offset);
306
      int dead_breakpoint =
307
          DeadBreakpoint(func_index, base::VectorOf(all_breakpoints), isolate);
308
      new_code = RecompileLiftoffWithBreakpoints(
309
          func_index, base::VectorOf(all_breakpoints), dead_breakpoint);
310 311
    }
    UpdateReturnAddresses(isolate, new_code, isolate_data.stepping_frame);
312 313 314 315 316 317 318 319 320 321 322
  }

  std::vector<int> FindAllBreakpoints(int func_index) {
    DCHECK(!mutex_.TryLock());  // Mutex must be held externally.
    std::set<int> breakpoints;
    for (auto& data : per_isolate_data_) {
      auto it = data.second.breakpoints_per_function.find(func_index);
      if (it == data.second.breakpoints_per_function.end()) continue;
      for (int offset : it->second) breakpoints.insert(offset);
    }
    return {breakpoints.begin(), breakpoints.end()};
323 324
  }

325
  void UpdateBreakpoints(int func_index, base::Vector<int> breakpoints,
326 327
                         Isolate* isolate, StackFrameId stepping_frame,
                         int dead_breakpoint) {
328
    DCHECK(!mutex_.TryLock());  // Mutex is held externally.
329 330
    WasmCode* new_code = RecompileLiftoffWithBreakpoints(
        func_index, breakpoints, dead_breakpoint);
331
    UpdateReturnAddresses(isolate, new_code, stepping_frame);
332 333
  }

334
  void FloodWithBreakpoints(WasmFrame* frame, ReturnLocation return_location) {
335
    // 0 is an invalid offset used to indicate flooding.
336
    constexpr int kFloodingBreakpoints[] = {0};
337 338
    DCHECK(frame->wasm_code()->is_liftoff());
    // Generate an additional source position for the current byte offset.
339
    base::MutexGuard guard(&mutex_);
340
    WasmCode* new_code = RecompileLiftoffWithBreakpoints(
341
        frame->function_index(), base::ArrayVector(kFloodingBreakpoints), 0);
342
    UpdateReturnAddress(frame, new_code, return_location);
343 344

    per_isolate_data_[frame->isolate()].stepping_frame = frame->id();
345 346
  }

347 348 349 350 351 352 353 354
  bool PrepareStep(WasmFrame* frame) {
    WasmCodeRefScope wasm_code_ref_scope;
    wasm::WasmCode* code = frame->wasm_code();
    if (!code->is_liftoff()) return false;  // Cannot step in TurboFan code.
    if (IsAtReturn(frame)) return false;    // Will return after this step.
    FloodWithBreakpoints(frame, kAfterBreakpoint);
    return true;
  }
355

356 357 358 359 360
  void PrepareStepOutTo(WasmFrame* frame) {
    WasmCodeRefScope wasm_code_ref_scope;
    wasm::WasmCode* code = frame->wasm_code();
    if (!code->is_liftoff()) return;  // Cannot step out to TurboFan code.
    FloodWithBreakpoints(frame, kAfterWasmCall);
361 362
  }

363 364 365 366 367 368 369
  void ClearStepping(WasmFrame* frame) {
    WasmCodeRefScope wasm_code_ref_scope;
    base::MutexGuard guard(&mutex_);
    auto* code = frame->wasm_code();
    if (code->for_debugging() != kForStepping) return;
    int func_index = code->index();
    std::vector<int> breakpoints = FindAllBreakpoints(func_index);
370
    int dead_breakpoint = DeadBreakpoint(frame, base::VectorOf(breakpoints));
371
    WasmCode* new_code = RecompileLiftoffWithBreakpoints(
372
        func_index, base::VectorOf(breakpoints), dead_breakpoint);
373 374 375
    UpdateReturnAddress(frame, new_code, kAfterBreakpoint);
  }

376 377 378 379 380
  void ClearStepping(Isolate* isolate) {
    base::MutexGuard guard(&mutex_);
    auto it = per_isolate_data_.find(isolate);
    if (it != per_isolate_data_.end()) it->second.stepping_frame = NO_ID;
  }
381

382
  bool IsStepping(WasmFrame* frame) {
383
    Isolate* isolate = frame->wasm_instance().GetIsolate();
384
    if (isolate->debug()->last_step_action() == StepInto) return true;
385 386 387 388
    base::MutexGuard guard(&mutex_);
    auto it = per_isolate_data_.find(isolate);
    return it != per_isolate_data_.end() &&
           it->second.stepping_frame == frame->id();
389 390
  }

391
  void RemoveBreakpoint(int func_index, int position, Isolate* isolate) {
392 393 394 395 396 397 398 399 400 401
    // Put the code ref scope outside of the mutex, so we don't unnecessarily
    // hold the mutex while freeing code.
    WasmCodeRefScope wasm_code_ref_scope;

    // Hold the mutex while modifying breakpoints, to ensure consistency when
    // multiple isolates set/remove breakpoints at the same time.
    base::MutexGuard guard(&mutex_);

    const auto& function = native_module_->module()->functions[func_index];
    int offset = position - function.code.offset();
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416
    auto& isolate_data = per_isolate_data_[isolate];
    std::vector<int>& breakpoints =
        isolate_data.breakpoints_per_function[func_index];
    DCHECK_LT(0, offset);
    auto insertion_point =
        std::lower_bound(breakpoints.begin(), breakpoints.end(), offset);
    if (insertion_point == breakpoints.end()) return;
    if (*insertion_point != offset) return;
    breakpoints.erase(insertion_point);

    std::vector<int> remaining = FindAllBreakpoints(func_index);
    // If the breakpoint is still set in another isolate, don't remove it.
    DCHECK(std::is_sorted(remaining.begin(), remaining.end()));
    if (std::binary_search(remaining.begin(), remaining.end(), offset)) return;
417
    int dead_breakpoint =
418 419
        DeadBreakpoint(func_index, base::VectorOf(remaining), isolate);
    UpdateBreakpoints(func_index, base::VectorOf(remaining), isolate,
420
                      isolate_data.stepping_frame, dead_breakpoint);
421 422
  }

423
  void RemoveDebugSideTables(base::Vector<WasmCode* const> codes) {
424
    base::MutexGuard guard(&debug_side_tables_mutex_);
425 426
    for (auto* code : codes) {
      debug_side_tables_.erase(code);
427
    }
428 429
  }

430
  DebugSideTable* GetDebugSideTableIfExists(const WasmCode* code) const {
431
    base::MutexGuard guard(&debug_side_tables_mutex_);
432 433 434 435
    auto it = debug_side_tables_.find(code);
    return it == debug_side_tables_.end() ? nullptr : it->second.get();
  }

436 437 438 439 440 441 442 443 444 445 446 447
  static bool HasRemovedBreakpoints(const std::vector<int>& removed,
                                    const std::vector<int>& remaining) {
    DCHECK(std::is_sorted(remaining.begin(), remaining.end()));
    for (int offset : removed) {
      // Return true if we removed a breakpoint which is not part of remaining.
      if (!std::binary_search(remaining.begin(), remaining.end(), offset)) {
        return true;
      }
    }
    return false;
  }

448
  void RemoveIsolate(Isolate* isolate) {
449 450 451 452
    // Put the code ref scope outside of the mutex, so we don't unnecessarily
    // hold the mutex while freeing code.
    WasmCodeRefScope wasm_code_ref_scope;

453
    base::MutexGuard guard(&mutex_);
454 455
    auto per_isolate_data_it = per_isolate_data_.find(isolate);
    if (per_isolate_data_it == per_isolate_data_.end()) return;
456 457 458 459
    std::unordered_map<int, std::vector<int>> removed_per_function =
        std::move(per_isolate_data_it->second.breakpoints_per_function);
    per_isolate_data_.erase(per_isolate_data_it);
    for (auto& entry : removed_per_function) {
460 461 462 463
      int func_index = entry.first;
      std::vector<int>& removed = entry.second;
      std::vector<int> remaining = FindAllBreakpoints(func_index);
      if (HasRemovedBreakpoints(removed, remaining)) {
464 465
        RecompileLiftoffWithBreakpoints(func_index, base::VectorOf(remaining),
                                        0);
466 467
      }
    }
468 469
  }

470
 private:
471
  struct FrameInspectionScope {
472
    FrameInspectionScope(DebugInfoImpl* debug_info, Address pc)
473
        : code(wasm::GetWasmCodeManager()->LookupCode(pc)),
474
          pc_offset(static_cast<int>(pc - code->instruction_start())),
475 476 477
          debug_side_table(code->is_inspectable()
                               ? debug_info->GetDebugSideTable(code)
                               : nullptr),
478 479
          debug_side_table_entry(debug_side_table
                                     ? debug_side_table->GetEntry(pc_offset)
480 481 482 483 484
                                     : nullptr) {
      DCHECK_IMPLIES(code->is_inspectable(), debug_side_table_entry != nullptr);
    }

    bool is_inspectable() const { return debug_side_table_entry; }
485 486 487 488 489 490 491 492

    wasm::WasmCodeRefScope wasm_code_ref_scope;
    wasm::WasmCode* code;
    int pc_offset;
    const DebugSideTable* debug_side_table;
    const DebugSideTable::Entry* debug_side_table_entry;
  };

493
  const DebugSideTable* GetDebugSideTable(WasmCode* code) {
494
    DCHECK(code->is_inspectable());
495 496 497
    {
      // Only hold the mutex temporarily. We can't hold it while generating the
      // debug side table, because compilation takes the {NativeModule} lock.
498
      base::MutexGuard guard(&debug_side_tables_mutex_);
499 500
      auto it = debug_side_tables_.find(code);
      if (it != debug_side_tables_.end()) return it->second.get();
501 502 503
    }

    // Otherwise create the debug side table now.
504
    std::unique_ptr<DebugSideTable> debug_side_table =
505
        GenerateLiftoffDebugSideTable(code);
506
    DebugSideTable* ret = debug_side_table.get();
507

508 509
    // Check cache again, maybe another thread concurrently generated a debug
    // side table already.
510
    {
511
      base::MutexGuard guard(&debug_side_tables_mutex_);
512 513 514
      auto& slot = debug_side_tables_[code];
      if (slot != nullptr) return slot.get();
      slot = std::move(debug_side_table);
515
    }
516 517 518

    // Print the code together with the debug table, if requested.
    code->MaybePrint();
519
    return ret;
520 521 522 523
  }

  // Get the value of a local (including parameters) or stack value. Stack
  // values follow the locals in the same index space.
524 525
  WasmValue GetValue(const DebugSideTable* debug_side_table,
                     const DebugSideTable::Entry* debug_side_table_entry,
526
                     int index, Address stack_frame_base,
527
                     Address debug_break_fp, Isolate* isolate) const {
528 529 530
    const auto* value =
        debug_side_table->FindValue(debug_side_table_entry, index);
    if (value->is_constant()) {
531 532 533
      DCHECK(value->type == kWasmI32 || value->type == kWasmI64);
      return value->type == kWasmI32 ? WasmValue(value->i32_const)
                                     : WasmValue(int64_t{value->i32_const});
534
    }
535

536 537
    if (value->is_register()) {
      auto reg = LiftoffRegister::from_liftoff_code(value->reg_code);
538 539 540 541 542 543
      auto gp_addr = [debug_break_fp](Register reg) {
        return debug_break_fp +
               WasmDebugBreakFrameConstants::GetPushedGpRegisterOffset(
                   reg.code());
      };
      if (reg.is_gp_pair()) {
544
        DCHECK_EQ(kWasmI64, value->type);
545 546 547 548 549 550
        uint32_t low_word = ReadUnalignedValue<uint32_t>(gp_addr(reg.low_gp()));
        uint32_t high_word =
            ReadUnalignedValue<uint32_t>(gp_addr(reg.high_gp()));
        return WasmValue((uint64_t{high_word} << 32) | low_word);
      }
      if (reg.is_gp()) {
551 552 553 554 555 556 557 558 559 560 561
        if (value->type == kWasmI32) {
          return WasmValue(ReadUnalignedValue<uint32_t>(gp_addr(reg.gp())));
        } else if (value->type == kWasmI64) {
          return WasmValue(ReadUnalignedValue<uint64_t>(gp_addr(reg.gp())));
        } else if (value->type.is_reference()) {
          Handle<Object> obj(
              Object(ReadUnalignedValue<Address>(gp_addr(reg.gp()))), isolate);
          return WasmValue(obj, value->type);
        } else {
          UNREACHABLE();
        }
562
      }
563
      DCHECK(reg.is_fp() || reg.is_fp_pair());
564 565 566 567 568 569
      // ifdef here to workaround unreachable code for is_fp_pair.
#ifdef V8_TARGET_ARCH_ARM
      int code = reg.is_fp_pair() ? reg.low_fp().code() : reg.fp().code();
#else
      int code = reg.fp().code();
#endif
570 571
      Address spilled_addr =
          debug_break_fp +
572
          WasmDebugBreakFrameConstants::GetPushedFpRegisterOffset(code);
573
      if (value->type == kWasmF32) {
574
        return WasmValue(ReadUnalignedValue<float>(spilled_addr));
575
      } else if (value->type == kWasmF64) {
576
        return WasmValue(ReadUnalignedValue<double>(spilled_addr));
577
      } else if (value->type == kWasmS128) {
578 579 580 581 582
        return WasmValue(Simd128(ReadUnalignedValue<int16>(spilled_addr)));
      } else {
        // All other cases should have been handled above.
        UNREACHABLE();
      }
583 584
    }

585
    // Otherwise load the value from the stack.
586
    Address stack_address = stack_frame_base - value->stack_offset;
587
    switch (value->type.kind()) {
588
      case kI32:
589
        return WasmValue(ReadUnalignedValue<int32_t>(stack_address));
590
      case kI64:
591
        return WasmValue(ReadUnalignedValue<int64_t>(stack_address));
592
      case kF32:
593
        return WasmValue(ReadUnalignedValue<float>(stack_address));
594
      case kF64:
595
        return WasmValue(ReadUnalignedValue<double>(stack_address));
596
      case kS128:
597
        return WasmValue(Simd128(ReadUnalignedValue<int16>(stack_address)));
598
      case kRef:
599
      case kRefNull:
600
      case kRtt: {
601 602 603
        Handle<Object> obj(Object(ReadUnalignedValue<Address>(stack_address)),
                           isolate);
        return WasmValue(obj, value->type);
604
      }
605 606
      case kI8:
      case kI16:
607
      case kVoid:
608 609
      case kBottom:
        UNREACHABLE();
610 611 612
    }
  }

613 614 615
  // After installing a Liftoff code object with a different set of breakpoints,
  // update return addresses on the stack so that execution resumes in the new
  // code. The frame layout itself should be independent of breakpoints.
616 617
  void UpdateReturnAddresses(Isolate* isolate, WasmCode* new_code,
                             StackFrameId stepping_frame) {
618 619 620 621 622
    // The first return location is after the breakpoint, others are after wasm
    // calls.
    ReturnLocation return_location = kAfterBreakpoint;
    for (StackTraceFrameIterator it(isolate); !it.done();
         it.Advance(), return_location = kAfterWasmCall) {
623
      // We still need the flooded function for stepping.
624
      if (it.frame()->id() == stepping_frame) continue;
625
      if (!it.is_wasm()) continue;
626
      WasmFrame* frame = WasmFrame::cast(it.frame());
627 628
      if (frame->native_module() != new_code->native_module()) continue;
      if (frame->function_index() != new_code->index()) continue;
629
      if (!frame->wasm_code()->is_liftoff()) continue;
630
      UpdateReturnAddress(frame, new_code, return_location);
631 632 633
    }
  }

634
  void UpdateReturnAddress(WasmFrame* frame, WasmCode* new_code,
635 636 637 638 639
                           ReturnLocation return_location) {
    DCHECK(new_code->is_liftoff());
    DCHECK_EQ(frame->function_index(), new_code->index());
    DCHECK_EQ(frame->native_module(), new_code->native_module());
    DCHECK(frame->wasm_code()->is_liftoff());
640 641
    Address new_pc =
        FindNewPC(frame, new_code, frame->byte_offset(), return_location);
642 643 644
#ifdef DEBUG
    int old_position = frame->position();
#endif
645 646 647 648 649
#if V8_TARGET_ARCH_X64
    if (frame->wasm_code()->for_debugging()) {
      base::Memory<Address>(frame->fp() - kOSRTargetOffset) = new_pc;
    }
#else
650 651
    PointerAuthentication::ReplacePC(frame->pc_address(), new_pc,
                                     kSystemPointerSize);
652
#endif
653 654 655 656
    // The frame position should still be the same after OSR.
    DCHECK_EQ(old_position, frame->position());
  }

657
  bool IsAtReturn(WasmFrame* frame) {
658
    DisallowGarbageCollection no_gc;
659 660 661 662 663 664 665 666 667 668 669
    int position = frame->position();
    NativeModule* native_module =
        frame->wasm_instance().module_object().native_module();
    uint8_t opcode = native_module->wire_bytes()[position];
    if (opcode == kExprReturn) return true;
    // Another implicit return is at the last kExprEnd in the function body.
    int func_index = frame->function_index();
    WireBytesRef code = native_module->module()->functions[func_index].code;
    return static_cast<size_t>(position) == code.end_offset() - 1;
  }

670 671 672
  // Isolate-specific data, for debugging modules that are shared by multiple
  // isolates.
  struct PerIsolateDebugData {
673 674 675 676
    // Keeps track of the currently set breakpoints (by offset within that
    // function).
    std::unordered_map<int, std::vector<int>> breakpoints_per_function;

677 678 679 680 681
    // Store the frame ID when stepping, to avoid overwriting that frame when
    // setting or removing a breakpoint.
    StackFrameId stepping_frame = NO_ID;
  };

682 683
  NativeModule* const native_module_;

684
  mutable base::Mutex debug_side_tables_mutex_;
685

686
  // DebugSideTable per code object, lazily initialized.
687
  std::unordered_map<const WasmCode*, std::unique_ptr<DebugSideTable>>
688
      debug_side_tables_;
689

690 691 692
  // {mutex_} protects all fields below.
  mutable base::Mutex mutex_;

693 694 695 696 697 698 699
  // Cache a fixed number of WasmCode objects that were generated for debugging.
  // This is useful especially in stepping, because stepping code is cleared on
  // every pause and re-installed on the next step.
  // This is a LRU cache (most recently used entries first).
  static constexpr size_t kMaxCachedDebuggingCode = 3;
  struct CachedDebuggingCode {
    int func_index;
700
    base::OwnedVector<const int> breakpoint_offsets;
701 702 703 704 705
    int dead_breakpoint;
    WasmCode* code;
  };
  std::vector<CachedDebuggingCode> cached_debugging_code_;

706 707
  // Isolate-specific data.
  std::unordered_map<Isolate*, PerIsolateDebugData> per_isolate_data_;
708 709 710 711 712 713 714
};

DebugInfo::DebugInfo(NativeModule* native_module)
    : impl_(std::make_unique<DebugInfoImpl>(native_module)) {}

DebugInfo::~DebugInfo() = default;

715
int DebugInfo::GetNumLocals(Address pc) { return impl_->GetNumLocals(pc); }
716

717
WasmValue DebugInfo::GetLocalValue(int local, Address pc, Address fp,
718 719
                                   Address debug_break_fp, Isolate* isolate) {
  return impl_->GetLocalValue(local, pc, fp, debug_break_fp, isolate);
720 721
}

722
int DebugInfo::GetStackDepth(Address pc) { return impl_->GetStackDepth(pc); }
723

724
WasmValue DebugInfo::GetStackValue(int index, Address pc, Address fp,
725 726
                                   Address debug_break_fp, Isolate* isolate) {
  return impl_->GetStackValue(index, pc, fp, debug_break_fp, isolate);
727 728
}

729 730 731 732
const wasm::WasmFunction& DebugInfo::GetFunctionAtAddress(Address pc) {
  return impl_->GetFunctionAtAddress(pc);
}

733 734 735
void DebugInfo::SetBreakpoint(int func_index, int offset,
                              Isolate* current_isolate) {
  impl_->SetBreakpoint(func_index, offset, current_isolate);
736 737
}

738 739 740 741 742 743 744
bool DebugInfo::PrepareStep(WasmFrame* frame) {
  return impl_->PrepareStep(frame);
}

void DebugInfo::PrepareStepOutTo(WasmFrame* frame) {
  impl_->PrepareStepOutTo(frame);
}
745

746 747 748
void DebugInfo::ClearStepping(Isolate* isolate) {
  impl_->ClearStepping(isolate);
}
749

750 751
void DebugInfo::ClearStepping(WasmFrame* frame) { impl_->ClearStepping(frame); }

752
bool DebugInfo::IsStepping(WasmFrame* frame) {
753 754 755
  return impl_->IsStepping(frame);
}

756 757 758 759 760
void DebugInfo::RemoveBreakpoint(int func_index, int offset,
                                 Isolate* current_isolate) {
  impl_->RemoveBreakpoint(func_index, offset, current_isolate);
}

761
void DebugInfo::RemoveDebugSideTables(base::Vector<WasmCode* const> code) {
762 763 764
  impl_->RemoveDebugSideTables(code);
}

765 766 767 768 769
DebugSideTable* DebugInfo::GetDebugSideTableIfExists(
    const WasmCode* code) const {
  return impl_->GetDebugSideTableIfExists(code);
}

770 771 772 773
void DebugInfo::RemoveIsolate(Isolate* isolate) {
  return impl_->RemoveIsolate(isolate);
}

774 775
}  // namespace wasm

776 777
namespace {

778
// Return the next breakable position at or after {offset_in_func} in function
779 780 781 782 783
// {func_index}, or 0 if there is none.
// Note that 0 is never a breakable position in wasm, since the first byte
// contains the locals count for the function.
int FindNextBreakablePosition(wasm::NativeModule* native_module, int func_index,
                              int offset_in_func) {
784 785 786 787 788 789 790 791 792 793
  AccountingAllocator alloc;
  Zone tmp(&alloc, ZONE_NAME);
  wasm::BodyLocalDecls locals(&tmp);
  const byte* module_start = native_module->wire_bytes().begin();
  const wasm::WasmFunction& func =
      native_module->module()->functions[func_index];
  wasm::BytecodeIterator iterator(module_start + func.code.offset(),
                                  module_start + func.code.end_offset(),
                                  &locals);
  DCHECK_LT(0, locals.encoded_size);
794
  if (offset_in_func < 0) return 0;
795 796 797 798
  for (; iterator.has_next(); iterator.next()) {
    if (iterator.pc_offset() < static_cast<uint32_t>(offset_in_func)) continue;
    if (!wasm::WasmOpcodes::IsBreakable(iterator.current())) continue;
    return static_cast<int>(iterator.pc_offset());
799
  }
800
  return 0;
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815
void SetBreakOnEntryFlag(Script script, bool enabled) {
  if (script.break_on_entry() == enabled) return;

  script.set_break_on_entry(enabled);
  // Update the "break_on_entry" flag on all live instances.
  i::WeakArrayList weak_instance_list = script.wasm_weak_instance_list();
  for (int i = 0; i < weak_instance_list.length(); ++i) {
    if (weak_instance_list.Get(i)->IsCleared()) continue;
    i::WasmInstanceObject instance =
        i::WasmInstanceObject::cast(weak_instance_list.Get(i)->GetHeapObject());
    instance.set_break_on_entry(enabled);
  }
}
816 817 818 819 820
}  // namespace

// static
bool WasmScript::SetBreakPoint(Handle<Script> script, int* position,
                               Handle<BreakPoint> break_point) {
821
  DCHECK_NE(kOnEntryBreakpointPosition, *position);
822

823 824 825 826 827 828 829
  // Find the function for this breakpoint.
  const wasm::WasmModule* module = script->wasm_native_module()->module();
  int func_index = GetContainingWasmFunction(module, *position);
  if (func_index < 0) return false;
  const wasm::WasmFunction& func = module->functions[func_index];
  int offset_in_func = *position - func.code.offset();

830 831 832 833
  int breakable_offset = FindNextBreakablePosition(script->wasm_native_module(),
                                                   func_index, offset_in_func);
  if (breakable_offset == 0) return false;
  *position = func.code.offset() + breakable_offset;
834

835 836 837 838
  return WasmScript::SetBreakPointForFunction(script, func_index,
                                              breakable_offset, break_point);
}

839
// static
840 841
void WasmScript::SetInstrumentationBreakpoint(Handle<Script> script,
                                              Handle<BreakPoint> break_point) {
842 843 844 845
  // Special handling for on-entry breakpoints.
  AddBreakpointToInfo(script, kOnEntryBreakpointPosition, break_point);

  // Update the "break_on_entry" flag on all live instances.
846
  SetBreakOnEntryFlag(*script, true);
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
// static
bool WasmScript::SetBreakPointOnFirstBreakableForFunction(
    Handle<Script> script, int func_index, Handle<BreakPoint> break_point) {
  if (func_index < 0) return false;
  int offset_in_func = 0;

  int breakable_offset = FindNextBreakablePosition(script->wasm_native_module(),
                                                   func_index, offset_in_func);
  if (breakable_offset == 0) return false;
  return WasmScript::SetBreakPointForFunction(script, func_index,
                                              breakable_offset, break_point);
}

// static
bool WasmScript::SetBreakPointForFunction(Handle<Script> script, int func_index,
864
                                          int offset,
865 866 867 868
                                          Handle<BreakPoint> break_point) {
  Isolate* isolate = script->GetIsolate();

  DCHECK_LE(0, func_index);
869
  DCHECK_NE(0, offset);
870 871

  // Find the function for this breakpoint.
872 873
  wasm::NativeModule* native_module = script->wasm_native_module();
  const wasm::WasmModule* module = native_module->module();
874 875
  const wasm::WasmFunction& func = module->functions[func_index];

876
  // Insert new break point into {wasm_breakpoint_infos} of the script.
877
  AddBreakpointToInfo(script, func.code.offset() + offset, break_point);
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
  native_module->GetDebugInfo()->SetBreakpoint(func_index, offset, isolate);

  return true;
}

namespace {

int GetBreakpointPos(Isolate* isolate, Object break_point_info_or_undef) {
  if (break_point_info_or_undef.IsUndefined(isolate)) return kMaxInt;
  return BreakPointInfo::cast(break_point_info_or_undef).source_position();
}

int FindBreakpointInfoInsertPos(Isolate* isolate,
                                Handle<FixedArray> breakpoint_infos,
                                int position) {
  // Find insert location via binary search, taking care of undefined values on
895 896 897
  // the right. {position} is either {kOnEntryBreakpointPosition} (which is -1),
  // or positive.
  DCHECK(position == WasmScript::kOnEntryBreakpointPosition || position > 0);
898 899 900 901 902 903 904 905 906 907

  int left = 0;                            // inclusive
  int right = breakpoint_infos->length();  // exclusive
  while (right - left > 1) {
    int mid = left + (right - left) / 2;
    Object mid_obj = breakpoint_infos->get(mid);
    if (GetBreakpointPos(isolate, mid_obj) <= position) {
      left = mid;
    } else {
      right = mid;
908 909 910
    }
  }

911 912
  int left_pos = GetBreakpointPos(isolate, breakpoint_infos->get(left));
  return left_pos < position ? left + 1 : left;
913 914
}

915 916
}  // namespace

917 918 919
// static
bool WasmScript::ClearBreakPoint(Handle<Script> script, int position,
                                 Handle<BreakPoint> break_point) {
920 921
  if (!script->has_wasm_breakpoint_infos()) return false;

922
  Isolate* isolate = script->GetIsolate();
923
  Handle<FixedArray> breakpoint_infos(script->wasm_breakpoint_infos(), isolate);
924

925
  int pos = FindBreakpointInfoInsertPos(isolate, breakpoint_infos, position);
926

927 928
  // Does a BreakPointInfo object already exist for this position?
  if (pos == breakpoint_infos->length()) return false;
929

930 931 932 933 934 935 936 937 938 939 940
  Handle<BreakPointInfo> info(BreakPointInfo::cast(breakpoint_infos->get(pos)),
                              isolate);
  BreakPointInfo::ClearBreakPoint(isolate, info, break_point);

  // Check if there are no more breakpoints at this location.
  if (info->GetBreakPointCount(isolate) == 0) {
    // Update array by moving breakpoints up one position.
    for (int i = pos; i < breakpoint_infos->length() - 1; i++) {
      Object entry = breakpoint_infos->get(i + 1);
      breakpoint_infos->set(i, entry);
      if (entry.IsUndefined(isolate)) break;
941
    }
942 943
    // Make sure last array element is empty as a result.
    breakpoint_infos->set_undefined(breakpoint_infos->length() - 1);
944
  }
945

946 947 948 949 950 951 952 953 954 955 956
  if (break_point->id() == v8::internal::Debug::kInstrumentationId) {
    // Special handling for instrumentation breakpoints.
    SetBreakOnEntryFlag(*script, false);
  } else {
    // Remove the breakpoint from DebugInfo and recompile.
    wasm::NativeModule* native_module = script->wasm_native_module();
    const wasm::WasmModule* module = native_module->module();
    int func_index = GetContainingWasmFunction(module, position);
    native_module->GetDebugInfo()->RemoveBreakpoint(func_index, position,
                                                    isolate);
  }
957

958 959 960
  return true;
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
// static
bool WasmScript::ClearBreakPointById(Handle<Script> script, int breakpoint_id) {
  if (!script->has_wasm_breakpoint_infos()) {
    return false;
  }
  Isolate* isolate = script->GetIsolate();
  Handle<FixedArray> breakpoint_infos(script->wasm_breakpoint_infos(), isolate);
  // If the array exists, it should not be empty.
  DCHECK_LT(0, breakpoint_infos->length());

  for (int i = 0, e = breakpoint_infos->length(); i < e; ++i) {
    Handle<Object> obj(breakpoint_infos->get(i), isolate);
    if (obj->IsUndefined(isolate)) {
      continue;
    }
    Handle<BreakPointInfo> breakpoint_info = Handle<BreakPointInfo>::cast(obj);
    Handle<BreakPoint> breakpoint;
    if (BreakPointInfo::GetBreakPointById(isolate, breakpoint_info,
                                          breakpoint_id)
            .ToHandle(&breakpoint)) {
      DCHECK(breakpoint->id() == breakpoint_id);
      return WasmScript::ClearBreakPoint(
          script, breakpoint_info->source_position(), breakpoint);
    }
  }
  return false;
}

989 990 991 992
// static
void WasmScript::ClearAllBreakpoints(Script script) {
  script.set_wasm_breakpoint_infos(
      ReadOnlyRoots(script.GetIsolate()).empty_fixed_array());
993
  SetBreakOnEntryFlag(script, false);
994 995
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
// static
void WasmScript::AddBreakpointToInfo(Handle<Script> script, int position,
                                     Handle<BreakPoint> break_point) {
  Isolate* isolate = script->GetIsolate();
  Handle<FixedArray> breakpoint_infos;
  if (script->has_wasm_breakpoint_infos()) {
    breakpoint_infos = handle(script->wasm_breakpoint_infos(), isolate);
  } else {
    breakpoint_infos =
        isolate->factory()->NewFixedArray(4, AllocationType::kOld);
    script->set_wasm_breakpoint_infos(*breakpoint_infos);
  }

  int insert_pos =
      FindBreakpointInfoInsertPos(isolate, breakpoint_infos, position);

  // If a BreakPointInfo object already exists for this position, add the new
  // breakpoint object and return.
  if (insert_pos < breakpoint_infos->length() &&
      GetBreakpointPos(isolate, breakpoint_infos->get(insert_pos)) ==
          position) {
    Handle<BreakPointInfo> old_info(
        BreakPointInfo::cast(breakpoint_infos->get(insert_pos)), isolate);
    BreakPointInfo::SetBreakPoint(isolate, old_info, break_point);
    return;
  }

  // Enlarge break positions array if necessary.
  bool need_realloc = !breakpoint_infos->get(breakpoint_infos->length() - 1)
                           .IsUndefined(isolate);
  Handle<FixedArray> new_breakpoint_infos = breakpoint_infos;
  if (need_realloc) {
    new_breakpoint_infos = isolate->factory()->NewFixedArray(
        2 * breakpoint_infos->length(), AllocationType::kOld);
    script->set_wasm_breakpoint_infos(*new_breakpoint_infos);
    // Copy over the entries [0, insert_pos).
    for (int i = 0; i < insert_pos; ++i)
      new_breakpoint_infos->set(i, breakpoint_infos->get(i));
  }

  // Move elements [insert_pos, ...] up by one.
  for (int i = breakpoint_infos->length() - 1; i >= insert_pos; --i) {
    Object entry = breakpoint_infos->get(i);
    if (entry.IsUndefined(isolate)) continue;
    new_breakpoint_infos->set(i + 1, entry);
  }

  // Generate new BreakpointInfo.
  Handle<BreakPointInfo> breakpoint_info =
      isolate->factory()->NewBreakPointInfo(position);
  BreakPointInfo::SetBreakPoint(isolate, breakpoint_info, break_point);

  // Now insert new position at insert_pos.
  new_breakpoint_infos->set(insert_pos, *breakpoint_info);
}

// static
bool WasmScript::GetPossibleBreakpoints(
    wasm::NativeModule* native_module, const v8::debug::Location& start,
    const v8::debug::Location& end,
    std::vector<v8::debug::BreakLocation>* locations) {
1057
  DisallowGarbageCollection no_gc;
1058

1059 1060 1061 1062
  const wasm::WasmModule* module = native_module->module();
  const std::vector<wasm::WasmFunction>& functions = module->functions;

  if (start.GetLineNumber() != 0 || start.GetColumnNumber() < 0 ||
1063
      (!end.IsEmpty() &&
1064 1065
       (end.GetLineNumber() != 0 || end.GetColumnNumber() < 0 ||
        end.GetColumnNumber() < start.GetColumnNumber())))
1066 1067 1068 1069 1070
    return false;

  // start_func_index, start_offset and end_func_index is inclusive.
  // end_offset is exclusive.
  // start_offset and end_offset are module-relative byte offsets.
1071 1072 1073 1074 1075 1076
  // We set strict to false because offsets may be between functions.
  int start_func_index =
      GetNearestWasmFunction(module, start.GetColumnNumber());
  if (start_func_index < 0) return false;
  uint32_t start_offset = start.GetColumnNumber();
  int end_func_index;
1077
  uint32_t end_offset;
1078

1079 1080 1081 1082 1083 1084
  if (end.IsEmpty()) {
    // Default: everything till the end of the Script.
    end_func_index = static_cast<uint32_t>(functions.size() - 1);
    end_offset = functions[end_func_index].code.end_offset();
  } else {
    // If end is specified: Use it and check for valid input.
1085 1086 1087
    end_offset = end.GetColumnNumber();
    end_func_index = GetNearestWasmFunction(module, end_offset);
    DCHECK_GE(end_func_index, start_func_index);
1088 1089
  }

1090 1091 1092
  if (start_func_index == end_func_index &&
      start_offset > functions[end_func_index].code.end_offset())
    return false;
1093 1094 1095 1096
  AccountingAllocator alloc;
  Zone tmp(&alloc, ZONE_NAME);
  const byte* module_start = native_module->wire_bytes().begin();

1097
  for (int func_idx = start_func_index; func_idx <= end_func_index;
1098 1099 1100 1101 1102 1103 1104 1105 1106
       ++func_idx) {
    const wasm::WasmFunction& func = functions[func_idx];
    if (func.code.length() == 0) continue;

    wasm::BodyLocalDecls locals(&tmp);
    wasm::BytecodeIterator iterator(module_start + func.code.offset(),
                                    module_start + func.code.end_offset(),
                                    &locals);
    DCHECK_LT(0u, locals.encoded_size);
1107 1108
    for (; iterator.has_next(); iterator.next()) {
      uint32_t total_offset = func.code.offset() + iterator.pc_offset();
1109 1110 1111 1112 1113
      if (total_offset >= end_offset) {
        DCHECK_EQ(end_func_index, func_idx);
        break;
      }
      if (total_offset < start_offset) continue;
1114
      if (!wasm::WasmOpcodes::IsBreakable(iterator.current())) continue;
1115
      locations->emplace_back(0, total_offset, debug::kCommonBreakLocation);
1116 1117 1118 1119 1120
    }
  }
  return true;
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
namespace {

bool CheckBreakPoint(Isolate* isolate, Handle<BreakPoint> break_point,
                     StackFrameId frame_id) {
  if (break_point->condition().length() == 0) return true;

  HandleScope scope(isolate);
  Handle<String> condition(break_point->condition(), isolate);
  Handle<Object> result;
  // The Wasm engine doesn't perform any sort of inlining.
  const int inlined_jsframe_index = 0;
  const bool throw_on_side_effect = false;
  if (!DebugEvaluate::Local(isolate, frame_id, inlined_jsframe_index, condition,
                            throw_on_side_effect)
           .ToHandle(&result)) {
    isolate->clear_pending_exception();
    return false;
  }
  return result->BooleanValue(isolate);
}

}  // namespace

1144 1145 1146
// static
MaybeHandle<FixedArray> WasmScript::CheckBreakPoints(Isolate* isolate,
                                                     Handle<Script> script,
1147 1148
                                                     int position,
                                                     StackFrameId frame_id) {
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
  if (!script->has_wasm_breakpoint_infos()) return {};

  Handle<FixedArray> breakpoint_infos(script->wasm_breakpoint_infos(), isolate);
  int insert_pos =
      FindBreakpointInfoInsertPos(isolate, breakpoint_infos, position);
  if (insert_pos >= breakpoint_infos->length()) return {};

  Handle<Object> maybe_breakpoint_info(breakpoint_infos->get(insert_pos),
                                       isolate);
  if (maybe_breakpoint_info->IsUndefined(isolate)) return {};
  Handle<BreakPointInfo> breakpoint_info =
      Handle<BreakPointInfo>::cast(maybe_breakpoint_info);
  if (breakpoint_info->source_position() != position) return {};

  Handle<Object> break_points(breakpoint_info->break_points(), isolate);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
  if (!break_points->IsFixedArray()) {
    if (!CheckBreakPoint(isolate, Handle<BreakPoint>::cast(break_points),
                         frame_id)) {
      return {};
    }
    Handle<FixedArray> break_points_hit = isolate->factory()->NewFixedArray(1);
    break_points_hit->set(0, *break_points);
    return break_points_hit;
  }

  Handle<FixedArray> array = Handle<FixedArray>::cast(break_points);
  Handle<FixedArray> break_points_hit =
      isolate->factory()->NewFixedArray(array->length());
  int break_points_hit_count = 0;
  for (int i = 0; i < array->length(); ++i) {
    Handle<BreakPoint> break_point(BreakPoint::cast(array->get(i)), isolate);
    if (CheckBreakPoint(isolate, break_point, frame_id)) {
      break_points_hit->set(break_points_hit_count++, *break_point);
    }
1183
  }
1184 1185
  if (break_points_hit_count == 0) return {};
  break_points_hit->Shrink(isolate, break_points_hit_count);
1186 1187 1188
  return break_points_hit;
}

1189 1190
}  // namespace internal
}  // namespace v8