code-stubs-x64.h 25.3 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_X64_CODE_STUBS_X64_H_
#define V8_X64_CODE_STUBS_X64_H_

#include "ic-inl.h"
32
#include "type-info.h"
33 34 35 36 37 38 39 40 41

namespace v8 {
namespace internal {


// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
 public:
42 43 44 45 46 47 48 49
  enum ArgumentType {
    TAGGED = 0,
    UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
  };

  explicit TranscendentalCacheStub(TranscendentalCache::Type type,
                                   ArgumentType argument_type)
      : type_(type), argument_type_(argument_type) {}
50 51 52
  void Generate(MacroAssembler* masm);
 private:
  TranscendentalCache::Type type_;
53 54
  ArgumentType argument_type_;

55
  Major MajorKey() { return TranscendentalCache; }
56
  int MinorKey() { return type_ | argument_type_; }
57
  Runtime::FunctionId RuntimeFunction();
58
  void GenerateOperation(MacroAssembler* masm);
59 60 61
};


62 63 64 65 66 67 68
class StoreBufferOverflowStub: public CodeStub {
 public:
  explicit StoreBufferOverflowStub(SaveFPRegsMode save_fp)
      : save_doubles_(save_fp) { }

  void Generate(MacroAssembler* masm);

69
  virtual bool IsPregenerated() { return true; }
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  static void GenerateFixedRegStubsAheadOfTime();
  virtual bool SometimesSetsUpAFrame() { return false; }

 private:
  SaveFPRegsMode save_doubles_;

  Major MajorKey() { return StoreBufferOverflow; }
  int MinorKey() { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; }
};


// Flag that indicates how to generate code for the stub GenericBinaryOpStub.
enum GenericBinaryFlags {
  NO_GENERIC_BINARY_FLAGS = 0,
  NO_SMI_CODE_IN_STUB = 1 << 0  // Omit smi code in stub.
};


88
class UnaryOpStub: public CodeStub {
89
 public:
90 91 92
  UnaryOpStub(Token::Value op,
              UnaryOverwriteMode mode,
              UnaryOpIC::TypeInfo operand_type = UnaryOpIC::UNINITIALIZED)
93 94
      : op_(op),
        mode_(mode),
95
        operand_type_(operand_type) {
96 97 98 99 100 101 102
  }

 private:
  Token::Value op_;
  UnaryOverwriteMode mode_;

  // Operand type information determined at runtime.
103
  UnaryOpIC::TypeInfo operand_type_;
104

105
  virtual void PrintName(StringStream* stream);
106 107 108

  class ModeBits: public BitField<UnaryOverwriteMode, 0, 1> {};
  class OpBits: public BitField<Token::Value, 1, 7> {};
109
  class OperandTypeInfoBits: public BitField<UnaryOpIC::TypeInfo, 8, 3> {};
110

111
  Major MajorKey() { return UnaryOp; }
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  int MinorKey() {
    return ModeBits::encode(mode_)
           | OpBits::encode(op_)
           | OperandTypeInfoBits::encode(operand_type_);
  }

  // Note: A lot of the helper functions below will vanish when we use virtual
  // function instead of switch more often.
  void Generate(MacroAssembler* masm);

  void GenerateTypeTransition(MacroAssembler* masm);

  void GenerateSmiStub(MacroAssembler* masm);
  void GenerateSmiStubSub(MacroAssembler* masm);
  void GenerateSmiStubBitNot(MacroAssembler* masm);
127 128 129 130 131 132 133 134
  void GenerateSmiCodeSub(MacroAssembler* masm,
                          Label* non_smi,
                          Label* slow,
                          Label::Distance non_smi_near = Label::kFar,
                          Label::Distance slow_near = Label::kFar);
  void GenerateSmiCodeBitNot(MacroAssembler* masm,
                             Label* non_smi,
                             Label::Distance non_smi_near);
135 136 137 138 139 140 141 142 143 144 145 146

  void GenerateHeapNumberStub(MacroAssembler* masm);
  void GenerateHeapNumberStubSub(MacroAssembler* masm);
  void GenerateHeapNumberStubBitNot(MacroAssembler* masm);
  void GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow);
  void GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow);

  void GenerateGenericStub(MacroAssembler* masm);
  void GenerateGenericStubSub(MacroAssembler* masm);
  void GenerateGenericStubBitNot(MacroAssembler* masm);
  void GenerateGenericCodeFallback(MacroAssembler* masm);

147
  virtual int GetCodeKind() { return Code::UNARY_OP_IC; }
148 149

  virtual InlineCacheState GetICState() {
150
    return UnaryOpIC::ToState(operand_type_);
151 152
  }

153
  virtual void FinishCode(Handle<Code> code) {
154
    code->set_unary_op_type(operand_type_);
155 156 157 158
  }
};


159
class BinaryOpStub: public CodeStub {
160
 public:
161
  BinaryOpStub(Token::Value op, OverwriteMode mode)
162 163
      : op_(op),
        mode_(mode),
164
        operands_type_(BinaryOpIC::UNINITIALIZED),
165
        result_type_(BinaryOpIC::UNINITIALIZED) {
166 167 168
    ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
  }

169
  BinaryOpStub(
170
      int key,
171 172
      BinaryOpIC::TypeInfo operands_type,
      BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED)
173 174 175
      : op_(OpBits::decode(key)),
        mode_(ModeBits::decode(key)),
        operands_type_(operands_type),
176
        result_type_(result_type) { }
177 178 179 180 181 182 183 184 185 186 187

 private:
  enum SmiCodeGenerateHeapNumberResults {
    ALLOW_HEAPNUMBER_RESULTS,
    NO_HEAPNUMBER_RESULTS
  };

  Token::Value op_;
  OverwriteMode mode_;

  // Operand type information determined at runtime.
188 189
  BinaryOpIC::TypeInfo operands_type_;
  BinaryOpIC::TypeInfo result_type_;
190

191
  virtual void PrintName(StringStream* stream);
192 193 194 195

  // Minor key encoding in 15 bits RRRTTTOOOOOOOMM.
  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
  class OpBits: public BitField<Token::Value, 2, 7> {};
196 197
  class OperandTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 9, 3> {};
  class ResultTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 12, 3> {};
198

199
  Major MajorKey() { return BinaryOp; }
200 201 202 203 204 205 206 207 208 209 210 211
  int MinorKey() {
    return OpBits::encode(op_)
           | ModeBits::encode(mode_)
           | OperandTypeInfoBits::encode(operands_type_)
           | ResultTypeInfoBits::encode(result_type_);
  }

  void Generate(MacroAssembler* masm);
  void GenerateGeneric(MacroAssembler* masm);
  void GenerateSmiCode(MacroAssembler* masm,
                       Label* slow,
                       SmiCodeGenerateHeapNumberResults heapnumber_results);
212 213 214 215 216
  void GenerateFloatingPointCode(MacroAssembler* masm,
                                 Label* allocation_failure,
                                 Label* non_numeric_failure);
  void GenerateStringAddCode(MacroAssembler* masm);
  void GenerateCallRuntimeCode(MacroAssembler* masm);
217 218 219 220 221 222
  void GenerateLoadArguments(MacroAssembler* masm);
  void GenerateReturn(MacroAssembler* masm);
  void GenerateUninitializedStub(MacroAssembler* masm);
  void GenerateSmiStub(MacroAssembler* masm);
  void GenerateInt32Stub(MacroAssembler* masm);
  void GenerateHeapNumberStub(MacroAssembler* masm);
223
  void GenerateOddballStub(MacroAssembler* masm);
224
  void GenerateStringStub(MacroAssembler* masm);
225
  void GenerateBothStringStub(MacroAssembler* masm);
226 227 228 229 230 231 232
  void GenerateGenericStub(MacroAssembler* masm);

  void GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure);
  void GenerateRegisterArgsPush(MacroAssembler* masm);
  void GenerateTypeTransition(MacroAssembler* masm);
  void GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm);

233
  virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
234 235

  virtual InlineCacheState GetICState() {
236
    return BinaryOpIC::ToState(operands_type_);
237 238
  }

239
  virtual void FinishCode(Handle<Code> code) {
240 241
    code->set_binary_op_type(operands_type_);
    code->set_binary_op_result_type(result_type_);
242 243 244 245 246 247
  }

  friend class CodeGenerator;
};


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
class StringHelper : public AllStatic {
 public:
  // Generate code for copying characters using a simple loop. This should only
  // be used in places where the number of characters is small and the
  // additional setup and checking in GenerateCopyCharactersREP adds too much
  // overhead. Copying of overlapping regions is not supported.
  static void GenerateCopyCharacters(MacroAssembler* masm,
                                     Register dest,
                                     Register src,
                                     Register count,
                                     bool ascii);

  // Generate code for copying characters using the rep movs instruction.
  // Copies rcx characters from rsi to rdi. Copying of overlapping regions is
  // not supported.
  static void GenerateCopyCharactersREP(MacroAssembler* masm,
                                        Register dest,     // Must be rdi.
                                        Register src,      // Must be rsi.
                                        Register count,    // Must be rcx.
                                        bool ascii);


  // Probe the symbol table for a two character string. If the string is
  // not found by probing a jump to the label not_found is performed. This jump
  // does not guarantee that the string is not in the symbol table. If the
  // string is found the code falls through with the string in register rax.
  static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
                                                   Register c1,
                                                   Register c2,
                                                   Register scratch1,
                                                   Register scratch2,
                                                   Register scratch3,
                                                   Register scratch4,
                                                   Label* not_found);

  // Generate string hash.
  static void GenerateHashInit(MacroAssembler* masm,
                               Register hash,
                               Register character,
                               Register scratch);
  static void GenerateHashAddCharacter(MacroAssembler* masm,
                                       Register hash,
                                       Register character,
                                       Register scratch);
  static void GenerateHashGetHash(MacroAssembler* masm,
                                  Register hash,
                                  Register scratch);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};


// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
  NO_STRING_ADD_FLAGS = 0,
304 305 306 307 308 309 310
  // Omit left string check in stub (left is definitely a string).
  NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
  // Omit right string check in stub (right is definitely a string).
  NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
  // Omit both string checks in stub.
  NO_STRING_CHECK_IN_STUB =
      NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
311 312 313 314 315
};


class StringAddStub: public CodeStub {
 public:
316
  explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}
317 318 319

 private:
  Major MajorKey() { return StringAdd; }
320
  int MinorKey() { return flags_; }
321 322 323

  void Generate(MacroAssembler* masm);

324 325 326 327 328 329 330 331 332
  void GenerateConvertArgument(MacroAssembler* masm,
                               int stack_offset,
                               Register arg,
                               Register scratch1,
                               Register scratch2,
                               Register scratch3,
                               Label* slow);

  const StringAddFlags flags_;
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
};


class SubStringStub: public CodeStub {
 public:
  SubStringStub() {}

 private:
  Major MajorKey() { return SubString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};


class StringCompareStub: public CodeStub {
 public:
350
  StringCompareStub() {}
351

352
  // Compares two flat ASCII strings and returns result in rax.
353 354 355 356 357 358 359 360
  static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
                                              Register left,
                                              Register right,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3,
                                              Register scratch4);

361 362 363 364 365 366 367 368
  // Compares two flat ASCII strings for equality and returns result
  // in rax.
  static void GenerateFlatAsciiStringEquals(MacroAssembler* masm,
                                            Register left,
                                            Register right,
                                            Register scratch1,
                                            Register scratch2);

369
 private:
370 371 372
  virtual Major MajorKey() { return StringCompare; }
  virtual int MinorKey() { return 0; }
  virtual void Generate(MacroAssembler* masm);
373

374 375 376 377 378 379 380 381
  static void GenerateAsciiCharsCompareLoop(
      MacroAssembler* masm,
      Register left,
      Register right,
      Register length,
      Register scratch,
      Label* chars_not_equal,
      Label::Distance near_jump = Label::kFar);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
};


class NumberToStringStub: public CodeStub {
 public:
  NumberToStringStub() { }

  // Generate code to do a lookup in the number string cache. If the number in
  // the register object is found in the cache the generated code falls through
  // with the result in the result register. The object and the result register
  // can be the same. If the number is not found in the cache the code jumps to
  // the label not_found with only the content of register object unchanged.
  static void GenerateLookupNumberStringCache(MacroAssembler* masm,
                                              Register object,
                                              Register result,
                                              Register scratch1,
                                              Register scratch2,
                                              bool object_is_smi,
                                              Label* not_found);

 private:
  static void GenerateConvertHashCodeToIndex(MacroAssembler* masm,
                                             Register hash,
                                             Register mask);

  Major MajorKey() { return NumberToString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};


414 415 416 417 418 419 420 421 422 423 424 425
class StringDictionaryLookupStub: public CodeStub {
 public:
  enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };

  StringDictionaryLookupStub(Register dictionary,
                             Register result,
                             Register index,
                             LookupMode mode)
      : dictionary_(dictionary), result_(result), index_(index), mode_(mode) { }

  void Generate(MacroAssembler* masm);

426 427 428 429 430 431 432
  static void GenerateNegativeLookup(MacroAssembler* masm,
                                     Label* miss,
                                     Label* done,
                                     Register properties,
                                     Handle<String> name,
                                     Register r0);

433 434 435 436 437 438 439 440
  static void GeneratePositiveLookup(MacroAssembler* masm,
                                     Label* miss,
                                     Label* done,
                                     Register elements,
                                     Register name,
                                     Register r0,
                                     Register r1);

441 442
  virtual bool SometimesSetsUpAFrame() { return false; }

443 444 445 446 447 448 449 450 451 452 453 454
 private:
  static const int kInlinedProbes = 4;
  static const int kTotalProbes = 20;

  static const int kCapacityOffset =
      StringDictionary::kHeaderSize +
      StringDictionary::kCapacityIndex * kPointerSize;

  static const int kElementsStartOffset =
      StringDictionary::kHeaderSize +
      StringDictionary::kElementsStartIndex * kPointerSize;

455
  Major MajorKey() { return StringDictionaryLookup; }
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

  int MinorKey() {
    return DictionaryBits::encode(dictionary_.code()) |
        ResultBits::encode(result_.code()) |
        IndexBits::encode(index_.code()) |
        LookupModeBits::encode(mode_);
  }

  class DictionaryBits: public BitField<int, 0, 4> {};
  class ResultBits: public BitField<int, 4, 4> {};
  class IndexBits: public BitField<int, 8, 4> {};
  class LookupModeBits: public BitField<LookupMode, 12, 1> {};

  Register dictionary_;
  Register result_;
  Register index_;
  LookupMode mode_;
};


476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
class RecordWriteStub: public CodeStub {
 public:
  RecordWriteStub(Register object,
                  Register value,
                  Register address,
                  RememberedSetAction remembered_set_action,
                  SaveFPRegsMode fp_mode)
      : object_(object),
        value_(value),
        address_(address),
        remembered_set_action_(remembered_set_action),
        save_fp_regs_mode_(fp_mode),
        regs_(object,   // An input reg.
              address,  // An input reg.
              value) {  // One scratch reg.
  }

  enum Mode {
    STORE_BUFFER_ONLY,
    INCREMENTAL,
    INCREMENTAL_COMPACTION
  };

499
  virtual bool IsPregenerated();
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
  static void GenerateFixedRegStubsAheadOfTime();
  virtual bool SometimesSetsUpAFrame() { return false; }

  static const byte kTwoByteNopInstruction = 0x3c;  // Cmpb al, #imm8.
  static const byte kTwoByteJumpInstruction = 0xeb;  // Jmp #imm8.

  static const byte kFiveByteNopInstruction = 0x3d;  // Cmpl eax, #imm32.
  static const byte kFiveByteJumpInstruction = 0xe9;  // Jmp #imm32.

  static Mode GetMode(Code* stub) {
    byte first_instruction = stub->instruction_start()[0];
    byte second_instruction = stub->instruction_start()[2];

    if (first_instruction == kTwoByteJumpInstruction) {
      return INCREMENTAL;
    }

    ASSERT(first_instruction == kTwoByteNopInstruction);

    if (second_instruction == kFiveByteJumpInstruction) {
      return INCREMENTAL_COMPACTION;
    }

    ASSERT(second_instruction == kFiveByteNopInstruction);

    return STORE_BUFFER_ONLY;
  }

  static void Patch(Code* stub, Mode mode) {
    switch (mode) {
      case STORE_BUFFER_ONLY:
        ASSERT(GetMode(stub) == INCREMENTAL ||
               GetMode(stub) == INCREMENTAL_COMPACTION);
        stub->instruction_start()[0] = kTwoByteNopInstruction;
        stub->instruction_start()[2] = kFiveByteNopInstruction;
        break;
      case INCREMENTAL:
        ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
        stub->instruction_start()[0] = kTwoByteJumpInstruction;
        break;
      case INCREMENTAL_COMPACTION:
        ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
        stub->instruction_start()[0] = kTwoByteNopInstruction;
        stub->instruction_start()[2] = kFiveByteJumpInstruction;
        break;
    }
    ASSERT(GetMode(stub) == mode);
    CPU::FlushICache(stub->instruction_start(), 7);
  }

 private:
  // This is a helper class for freeing up 3 scratch registers, where the third
  // is always rcx (needed for shift operations).  The input is two registers
  // that must be preserved and one scratch register provided by the caller.
  class RegisterAllocation {
   public:
    RegisterAllocation(Register object,
                       Register address,
                       Register scratch0)
        : object_orig_(object),
          address_orig_(address),
          scratch0_orig_(scratch0),
          object_(object),
          address_(address),
          scratch0_(scratch0) {
      ASSERT(!AreAliased(scratch0, object, address, no_reg));
      scratch1_ = GetRegThatIsNotRcxOr(object_, address_, scratch0_);
      if (scratch0.is(rcx)) {
        scratch0_ = GetRegThatIsNotRcxOr(object_, address_, scratch1_);
      }
      if (object.is(rcx)) {
        object_ = GetRegThatIsNotRcxOr(address_, scratch0_, scratch1_);
      }
      if (address.is(rcx)) {
        address_ = GetRegThatIsNotRcxOr(object_, scratch0_, scratch1_);
      }
      ASSERT(!AreAliased(scratch0_, object_, address_, rcx));
    }

    void Save(MacroAssembler* masm) {
      ASSERT(!address_orig_.is(object_));
      ASSERT(object_.is(object_orig_) || address_.is(address_orig_));
      ASSERT(!AreAliased(object_, address_, scratch1_, scratch0_));
      ASSERT(!AreAliased(object_orig_, address_, scratch1_, scratch0_));
      ASSERT(!AreAliased(object_, address_orig_, scratch1_, scratch0_));
      // We don't have to save scratch0_orig_ because it was given to us as
      // a scratch register.  But if we had to switch to a different reg then
      // we should save the new scratch0_.
      if (!scratch0_.is(scratch0_orig_)) masm->push(scratch0_);
      if (!rcx.is(scratch0_orig_) &&
          !rcx.is(object_orig_) &&
          !rcx.is(address_orig_)) {
        masm->push(rcx);
      }
      masm->push(scratch1_);
      if (!address_.is(address_orig_)) {
        masm->push(address_);
        masm->movq(address_, address_orig_);
      }
      if (!object_.is(object_orig_)) {
        masm->push(object_);
        masm->movq(object_, object_orig_);
      }
    }

    void Restore(MacroAssembler* masm) {
      // These will have been preserved the entire time, so we just need to move
      // them back.  Only in one case is the orig_ reg different from the plain
      // one, since only one of them can alias with rcx.
      if (!object_.is(object_orig_)) {
        masm->movq(object_orig_, object_);
        masm->pop(object_);
      }
      if (!address_.is(address_orig_)) {
        masm->movq(address_orig_, address_);
        masm->pop(address_);
      }
      masm->pop(scratch1_);
      if (!rcx.is(scratch0_orig_) &&
          !rcx.is(object_orig_) &&
          !rcx.is(address_orig_)) {
        masm->pop(rcx);
      }
      if (!scratch0_.is(scratch0_orig_)) masm->pop(scratch0_);
    }

    // If we have to call into C then we need to save and restore all caller-
    // saved registers that were not already preserved.

    // The three scratch registers (incl. rcx) will be restored by other means
    // so we don't bother pushing them here.  Rbx, rbp and r12-15 are callee
    // save and don't need to be preserved.
    void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
      masm->PushCallerSaved(mode, scratch0_, scratch1_, rcx);
    }

    inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
                                           SaveFPRegsMode mode) {
      masm->PopCallerSaved(mode, scratch0_, scratch1_, rcx);
    }

    inline Register object() { return object_; }
    inline Register address() { return address_; }
    inline Register scratch0() { return scratch0_; }
    inline Register scratch1() { return scratch1_; }

   private:
    Register object_orig_;
    Register address_orig_;
    Register scratch0_orig_;
    Register object_;
    Register address_;
    Register scratch0_;
    Register scratch1_;
    // Third scratch register is always rcx.

    Register GetRegThatIsNotRcxOr(Register r1,
                                  Register r2,
                                  Register r3) {
      for (int i = 0; i < Register::kNumAllocatableRegisters; i++) {
        Register candidate = Register::FromAllocationIndex(i);
        if (candidate.is(rcx)) continue;
        if (candidate.is(r1)) continue;
        if (candidate.is(r2)) continue;
        if (candidate.is(r3)) continue;
        return candidate;
      }
      UNREACHABLE();
      return no_reg;
    }
    friend class RecordWriteStub;
  };

  enum OnNoNeedToInformIncrementalMarker {
    kReturnOnNoNeedToInformIncrementalMarker,
    kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
  };

  void Generate(MacroAssembler* masm);
  void GenerateIncremental(MacroAssembler* masm, Mode mode);
  void CheckNeedsToInformIncrementalMarker(
      MacroAssembler* masm,
      OnNoNeedToInformIncrementalMarker on_no_need,
      Mode mode);
  void InformIncrementalMarker(MacroAssembler* masm, Mode mode);

  Major MajorKey() { return RecordWrite; }

  int MinorKey() {
    return ObjectBits::encode(object_.code()) |
        ValueBits::encode(value_.code()) |
        AddressBits::encode(address_.code()) |
        RememberedSetActionBits::encode(remembered_set_action_) |
        SaveFPRegsModeBits::encode(save_fp_regs_mode_);
  }

  void Activate(Code* code) {
    code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
  }

  class ObjectBits: public BitField<int, 0, 4> {};
  class ValueBits: public BitField<int, 4, 4> {};
  class AddressBits: public BitField<int, 8, 4> {};
  class RememberedSetActionBits: public BitField<RememberedSetAction, 12, 1> {};
  class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 13, 1> {};

  Register object_;
  Register value_;
  Register address_;
  RememberedSetAction remembered_set_action_;
  SaveFPRegsMode save_fp_regs_mode_;
  Label slow_;
  RegisterAllocation regs_;
};


716 717 718
} }  // namespace v8::internal

#endif  // V8_X64_CODE_STUBS_X64_H_