Commit 3393fda0 authored by whesse@chromium.org's avatar whesse@chromium.org

X64 Crankshaft: Add untagged version of TranscendentalCacheStub to x64, enable...

X64 Crankshaft: Add untagged version of TranscendentalCacheStub to x64, enable Cos, Sin, and Log in lithium.
Review URL: http://codereview.chromium.org/6580032

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6949 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent 735dc964
......@@ -1506,40 +1506,59 @@ void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// Input on stack:
// rsp[8]: argument (should be number).
// rsp[0]: return address.
// TAGGED case:
// Input:
// rsp[8]: argument (should be number).
// rsp[0]: return address.
// Output:
// rax: tagged double result.
// UNTAGGED case:
// Input::
// rsp[0]: return address.
// xmm1: untagged double input argument
// Output:
// xmm1: untagged double result.
Label runtime_call;
Label runtime_call_clear_stack;
Label input_not_smi;
NearLabel loaded;
// Test that rax is a number.
__ movq(rax, Operand(rsp, kPointerSize));
__ JumpIfNotSmi(rax, &input_not_smi);
// Input is a smi. Untag and load it onto the FPU stack.
// Then load the bits of the double into rbx.
__ SmiToInteger32(rax, rax);
__ subq(rsp, Immediate(kPointerSize));
__ cvtlsi2sd(xmm1, rax);
__ movsd(Operand(rsp, 0), xmm1);
__ movq(rbx, xmm1);
__ movq(rdx, xmm1);
__ fld_d(Operand(rsp, 0));
__ addq(rsp, Immediate(kPointerSize));
__ jmp(&loaded);
__ bind(&input_not_smi);
// Check if input is a HeapNumber.
__ Move(rbx, Factory::heap_number_map());
__ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ j(not_equal, &runtime_call);
// Input is a HeapNumber. Push it on the FPU stack and load its
// bits into rbx.
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rdx, rbx);
__ bind(&loaded);
// ST[0] == double value
Label skip_cache;
const bool tagged = (argument_type_ == TAGGED);
if (tagged) {
NearLabel input_not_smi;
NearLabel loaded;
// Test that rax is a number.
__ movq(rax, Operand(rsp, kPointerSize));
__ JumpIfNotSmi(rax, &input_not_smi);
// Input is a smi. Untag and load it onto the FPU stack.
// Then load the bits of the double into rbx.
__ SmiToInteger32(rax, rax);
__ subq(rsp, Immediate(kDoubleSize));
__ cvtlsi2sd(xmm1, rax);
__ movsd(Operand(rsp, 0), xmm1);
__ movq(rbx, xmm1);
__ movq(rdx, xmm1);
__ fld_d(Operand(rsp, 0));
__ addq(rsp, Immediate(kDoubleSize));
__ jmp(&loaded);
__ bind(&input_not_smi);
// Check if input is a HeapNumber.
__ LoadRoot(rbx, Heap::kHeapNumberMapRootIndex);
__ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ j(not_equal, &runtime_call);
// Input is a HeapNumber. Push it on the FPU stack and load its
// bits into rbx.
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rdx, rbx);
__ bind(&loaded);
} else { // UNTAGGED.
__ movq(rbx, xmm1);
__ movq(rdx, xmm1);
}
// ST[0] == double value, if TAGGED.
// rbx = bits of double value.
// rdx = also bits of double value.
// Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
......@@ -1571,7 +1590,7 @@ void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// rax points to the cache for the type type_.
// If NULL, the cache hasn't been initialized yet, so go through runtime.
__ testq(rax, rax);
__ j(zero, &runtime_call_clear_stack);
__ j(zero, &runtime_call_clear_stack); // Only clears stack if TAGGED.
#ifdef DEBUG
// Check that the layout of cache elements match expectations.
{ // NOLINT - doesn't like a single brace on a line.
......@@ -1597,30 +1616,70 @@ void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
__ j(not_equal, &cache_miss);
// Cache hit!
__ movq(rax, Operand(rcx, 2 * kIntSize));
__ fstp(0); // Clear FPU stack.
__ ret(kPointerSize);
if (tagged) {
__ fstp(0); // Clear FPU stack.
__ ret(kPointerSize);
} else { // UNTAGGED.
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ Ret();
}
__ bind(&cache_miss);
// Update cache with new value.
Label nan_result;
GenerateOperation(masm, &nan_result);
if (tagged) {
__ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
} else { // UNTAGGED.
__ AllocateHeapNumber(rax, rdi, &skip_cache);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1);
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
}
GenerateOperation(masm);
__ movq(Operand(rcx, 0), rbx);
__ movq(Operand(rcx, 2 * kIntSize), rax);
__ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ ret(kPointerSize);
__ bind(&runtime_call_clear_stack);
__ fstp(0);
__ bind(&runtime_call);
__ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
if (tagged) {
__ ret(kPointerSize);
} else { // UNTAGGED.
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ Ret();
// Skip cache and return answer directly, only in untagged case.
__ bind(&skip_cache);
__ subq(rsp, Immediate(kDoubleSize));
__ movsd(Operand(rsp, 0), xmm1);
__ fld_d(Operand(rsp, 0));
GenerateOperation(masm);
__ fstp_d(Operand(rsp, 0));
__ movsd(xmm1, Operand(rsp, 0));
__ addq(rsp, Immediate(kDoubleSize));
// We return the value in xmm1 without adding it to the cache, but
// we cause a scavenging GC so that future allocations will succeed.
__ EnterInternalFrame();
// Allocate an unused object bigger than a HeapNumber.
__ Push(Smi::FromInt(2 * kDoubleSize));
__ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
__ LeaveInternalFrame();
__ Ret();
}
__ bind(&nan_result);
__ fstp(0); // Remove argument from FPU stack.
__ LoadRoot(rax, Heap::kNanValueRootIndex);
__ movq(Operand(rcx, 0), rbx);
__ movq(Operand(rcx, 2 * kIntSize), rax);
__ ret(kPointerSize);
// Call runtime, doing whatever allocation and cleanup is necessary.
if (tagged) {
__ bind(&runtime_call_clear_stack);
__ fstp(0);
__ bind(&runtime_call);
__ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
} else { // UNTAGGED.
__ bind(&runtime_call_clear_stack);
__ bind(&runtime_call);
__ AllocateHeapNumber(rax, rdi, &skip_cache);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1);
__ EnterInternalFrame();
__ push(rax);
__ CallRuntime(RuntimeFunction(), 1);
__ LeaveInternalFrame();
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ Ret();
}
}
......@@ -1637,9 +1696,9 @@ Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
}
void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
Label* on_nan_result) {
void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) {
// Registers:
// rax: Newly allocated HeapNumber, which must be preserved.
// rbx: Bits of input double. Must be preserved.
// rcx: Pointer to cache entry. Must be preserved.
// st(0): Input double
......@@ -1661,9 +1720,18 @@ void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
__ j(below, &in_range);
// Check for infinity and NaN. Both return NaN for sin.
__ cmpl(rdi, Immediate(0x7ff));
__ j(equal, on_nan_result);
NearLabel non_nan_result;
__ j(not_equal, &non_nan_result);
// Input is +/-Infinity or NaN. Result is NaN.
__ fstp(0);
__ LoadRoot(kScratchRegister, Heap::kNanValueRootIndex);
__ fld_d(FieldOperand(kScratchRegister, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&non_nan_result);
// Use fpmod to restrict argument to the range +/-2*PI.
__ movq(rdi, rax); // Save rax before using fnstsw_ax.
__ fldpi();
__ fadd(0);
__ fld(1);
......@@ -1696,6 +1764,7 @@ void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
// FPU Stack: input % 2*pi, 2*pi,
__ fstp(0);
// FPU Stack: input % 2*pi
__ movq(rax, rdi); // Restore rax, pointer to the new HeapNumber.
__ bind(&in_range);
switch (type_) {
case TranscendentalCache::SIN:
......
......@@ -39,15 +39,23 @@ namespace internal {
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
public:
explicit TranscendentalCacheStub(TranscendentalCache::Type type)
: type_(type) {}
enum ArgumentType {
TAGGED = 0,
UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
};
explicit TranscendentalCacheStub(TranscendentalCache::Type type,
ArgumentType argument_type)
: type_(type), argument_type_(argument_type) {}
void Generate(MacroAssembler* masm);
private:
TranscendentalCache::Type type_;
ArgumentType argument_type_;
Major MajorKey() { return TranscendentalCache; }
int MinorKey() { return type_; }
int MinorKey() { return type_ | argument_type_; }
Runtime::FunctionId RuntimeFunction();
void GenerateOperation(MacroAssembler* masm, Label* on_nan_result);
void GenerateOperation(MacroAssembler* masm);
};
......
......@@ -7030,7 +7030,8 @@ void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
TranscendentalCacheStub stub(TranscendentalCache::SIN);
TranscendentalCacheStub stub(TranscendentalCache::SIN,
TranscendentalCacheStub::TAGGED);
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
......@@ -7039,7 +7040,8 @@ void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
TranscendentalCacheStub stub(TranscendentalCache::COS);
TranscendentalCacheStub stub(TranscendentalCache::COS,
TranscendentalCacheStub::TAGGED);
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
......@@ -7048,7 +7050,8 @@ void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
TranscendentalCacheStub stub(TranscendentalCache::LOG);
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::TAGGED);
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
......
......@@ -2887,7 +2887,8 @@ void FullCodeGenerator::EmitStringCompare(ZoneList<Expression*>* args) {
void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::SIN);
TranscendentalCacheStub stub(TranscendentalCache::SIN,
TranscendentalCacheStub::TAGGED);
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
__ CallStub(&stub);
......@@ -2897,7 +2898,8 @@ void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) {
void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::COS);
TranscendentalCacheStub stub(TranscendentalCache::COS,
TranscendentalCacheStub::TAGGED);
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
__ CallStub(&stub);
......@@ -2907,7 +2909,8 @@ void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) {
void FullCodeGenerator::EmitMathLog(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::LOG);
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::TAGGED);
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
__ CallStub(&stub);
......
......@@ -711,7 +711,8 @@ void LCodeGen::DoCallStub(LCallStub* instr) {
break;
}
case CodeStub::TranscendentalCache: {
TranscendentalCacheStub stub(instr->transcendental_type());
TranscendentalCacheStub stub(instr->transcendental_type(),
TranscendentalCacheStub::TAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
......@@ -2466,17 +2467,26 @@ void LCodeGen::DoPower(LPower* instr) {
void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
Abort("Unimplemented: %s", "DoMathLog");
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
Abort("Unimplemented: %s", "DoMathCos");
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
Abort("Unimplemented: %s", "DoMathSin");
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment