instruction-scheduler.cc 10.7 KB
Newer Older
1 2 3 4 5 6 7
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/instruction-scheduler.h"

#include "src/base/adapters.h"
8
#include "src/base/utils/random-number-generator.h"
9 10 11 12 13

namespace v8 {
namespace internal {
namespace compiler {

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// Compare the two nodes and return true if node1 is a better candidate than
// node2 (i.e. node1 should be scheduled before node2).
bool InstructionScheduler::CriticalPathFirstQueue::CompareNodes(
    ScheduleGraphNode *node1, ScheduleGraphNode *node2) const {
  return node1->total_latency() > node2->total_latency();
}


InstructionScheduler::ScheduleGraphNode*
InstructionScheduler::CriticalPathFirstQueue::PopBestCandidate(int cycle) {
  DCHECK(!IsEmpty());
  auto candidate = nodes_.end();
  for (auto iterator = nodes_.begin(); iterator != nodes_.end(); ++iterator) {
    // We only consider instructions that have all their operands ready and
    // we try to schedule the critical path first.
    if (cycle >= (*iterator)->start_cycle()) {
      if ((candidate == nodes_.end()) || CompareNodes(*iterator, *candidate)) {
        candidate = iterator;
      }
    }
  }

  if (candidate != nodes_.end()) {
    ScheduleGraphNode *result = *candidate;
    nodes_.erase(candidate);
    return result;
  }

  return nullptr;
}


InstructionScheduler::ScheduleGraphNode*
InstructionScheduler::StressSchedulerQueue::PopBestCandidate(int cycle) {
  DCHECK(!IsEmpty());
  // Choose a random element from the ready list.
  auto candidate = nodes_.begin();
  std::advance(candidate, isolate()->random_number_generator()->NextInt(
      static_cast<int>(nodes_.size())));
  ScheduleGraphNode *result = *candidate;
  nodes_.erase(candidate);
  return result;
}


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
InstructionScheduler::ScheduleGraphNode::ScheduleGraphNode(
    Zone* zone,
    Instruction* instr)
    : instr_(instr),
      successors_(zone),
      unscheduled_predecessors_count_(0),
      latency_(GetInstructionLatency(instr)),
      total_latency_(-1),
      start_cycle_(-1) {
}


void InstructionScheduler::ScheduleGraphNode::AddSuccessor(
    ScheduleGraphNode* node) {
  successors_.push_back(node);
  node->unscheduled_predecessors_count_++;
}


InstructionScheduler::InstructionScheduler(Zone* zone,
                                           InstructionSequence* sequence)
    : zone_(zone),
      sequence_(sequence),
      graph_(zone),
      last_side_effect_instr_(nullptr),
      pending_loads_(zone),
85 86
      last_live_in_reg_marker_(nullptr),
      last_deopt_(nullptr) {
87 88 89 90 91 92 93 94
}


void InstructionScheduler::StartBlock(RpoNumber rpo) {
  DCHECK(graph_.empty());
  DCHECK(last_side_effect_instr_ == nullptr);
  DCHECK(pending_loads_.empty());
  DCHECK(last_live_in_reg_marker_ == nullptr);
95
  DCHECK(last_deopt_ == nullptr);
96 97 98 99 100
  sequence()->StartBlock(rpo);
}


void InstructionScheduler::EndBlock(RpoNumber rpo) {
101 102 103 104 105
  if (FLAG_turbo_stress_instruction_scheduling) {
    ScheduleBlock<StressSchedulerQueue>();
  } else {
    ScheduleBlock<CriticalPathFirstQueue>();
  }
106 107 108 109 110
  sequence()->EndBlock(rpo);
  graph_.clear();
  last_side_effect_instr_ = nullptr;
  pending_loads_.clear();
  last_live_in_reg_marker_ = nullptr;
111
  last_deopt_ = nullptr;
112 113 114 115 116 117 118 119 120
}


void InstructionScheduler::AddInstruction(Instruction* instr) {
  ScheduleGraphNode* new_node = new (zone()) ScheduleGraphNode(zone(), instr);

  if (IsBlockTerminator(instr)) {
    // Make sure that basic block terminators are not moved by adding them
    // as successor of every instruction.
121
    for (ScheduleGraphNode* node : graph_) {
122 123 124 125 126 127 128 129 130 131 132 133
      node->AddSuccessor(new_node);
    }
  } else if (IsFixedRegisterParameter(instr)) {
    if (last_live_in_reg_marker_ != nullptr) {
      last_live_in_reg_marker_->AddSuccessor(new_node);
    }
    last_live_in_reg_marker_ = new_node;
  } else {
    if (last_live_in_reg_marker_ != nullptr) {
      last_live_in_reg_marker_->AddSuccessor(new_node);
    }

134 135 136 137 138 139
    // Make sure that new instructions are not scheduled before the last
    // deoptimization point.
    if (last_deopt_ != nullptr) {
      last_deopt_->AddSuccessor(new_node);
    }

140 141 142 143 144 145
    // Instructions with side effects and memory operations can't be
    // reordered with respect to each other.
    if (HasSideEffect(instr)) {
      if (last_side_effect_instr_ != nullptr) {
        last_side_effect_instr_->AddSuccessor(new_node);
      }
146
      for (ScheduleGraphNode* load : pending_loads_) {
147 148 149 150 151 152 153 154 155 156 157
        load->AddSuccessor(new_node);
      }
      pending_loads_.clear();
      last_side_effect_instr_ = new_node;
    } else if (IsLoadOperation(instr)) {
      // Load operations can't be reordered with side effects instructions but
      // independent loads can be reordered with respect to each other.
      if (last_side_effect_instr_ != nullptr) {
        last_side_effect_instr_->AddSuccessor(new_node);
      }
      pending_loads_.push_back(new_node);
158 159 160 161 162 163 164
    } else if (instr->IsDeoptimizeCall()) {
      // Ensure that deopts are not reordered with respect to side-effect
      // instructions.
      if (last_side_effect_instr_ != nullptr) {
        last_side_effect_instr_->AddSuccessor(new_node);
      }
      last_deopt_ = new_node;
165 166 167
    }

    // Look for operand dependencies.
168
    for (ScheduleGraphNode* node : graph_) {
169 170 171 172 173 174 175 176 177 178
      if (HasOperandDependency(node->instruction(), instr)) {
        node->AddSuccessor(new_node);
      }
    }
  }

  graph_.push_back(new_node);
}


179
template <typename QueueType>
180
void InstructionScheduler::ScheduleBlock() {
181
  QueueType ready_list(this);
182 183 184 185 186

  // Compute total latencies so that we can schedule the critical path first.
  ComputeTotalLatencies();

  // Add nodes which don't have dependencies to the ready list.
187
  for (ScheduleGraphNode* node : graph_) {
188
    if (!node->HasUnscheduledPredecessor()) {
189
      ready_list.AddNode(node);
190 191 192 193 194
    }
  }

  // Go through the ready list and schedule the instructions.
  int cycle = 0;
195
  while (!ready_list.IsEmpty()) {
196
    ScheduleGraphNode* candidate = ready_list.PopBestCandidate(cycle);
197

198 199
    if (candidate != nullptr) {
      sequence()->AddInstruction(candidate->instruction());
200

201
      for (ScheduleGraphNode* successor : candidate->successors()) {
202 203 204
        successor->DropUnscheduledPredecessor();
        successor->set_start_cycle(
            std::max(successor->start_cycle(),
205
                     cycle + candidate->latency()));
206 207

        if (!successor->HasUnscheduledPredecessor()) {
208
          ready_list.AddNode(successor);
209 210 211 212 213 214 215 216 217 218 219 220 221
        }
      }
    }

    cycle++;
  }
}


int InstructionScheduler::GetInstructionFlags(const Instruction* instr) const {
  switch (instr->arch_opcode()) {
    case kArchNop:
    case kArchFramePointer:
222
    case kArchParentFramePointer:
223
    case kArchTruncateDoubleToI:
224
    case kArchStackSlot:
225
    case kArchDebugBreak:
226
    case kArchComment:
227 228 229 230
    case kIeee754Float64Acos:
    case kIeee754Float64Acosh:
    case kIeee754Float64Asin:
    case kIeee754Float64Asinh:
231
    case kIeee754Float64Atan:
232
    case kIeee754Float64Atanh:
233
    case kIeee754Float64Atan2:
234 235
    case kIeee754Float64Cbrt:
    case kIeee754Float64Cos:
236
    case kIeee754Float64Cosh:
237
    case kIeee754Float64Exp:
238
    case kIeee754Float64Expm1:
239
    case kIeee754Float64Log:
240
    case kIeee754Float64Log1p:
241
    case kIeee754Float64Log10:
242
    case kIeee754Float64Log2:
243
    case kIeee754Float64Pow:
244
    case kIeee754Float64Sin:
245
    case kIeee754Float64Sinh:
246
    case kIeee754Float64Tan:
247
    case kIeee754Float64Tanh:
248 249
      return kNoOpcodeFlags;

250 251 252 253 254
    case kArchStackPointer:
      // ArchStackPointer instruction loads the current stack pointer value and
      // must not be reordered with instruction with side effects.
      return kIsLoadOperation;

255 256 257 258 259 260 261
    case kArchPrepareCallCFunction:
    case kArchPrepareTailCall:
    case kArchCallCFunction:
    case kArchCallCodeObject:
    case kArchCallJSFunction:
      return kHasSideEffect;

262
    case kArchTailCallCodeObjectFromJSFunction:
263
    case kArchTailCallCodeObject:
264
    case kArchTailCallJSFunctionFromJSFunction:
265
    case kArchTailCallJSFunction:
266
    case kArchTailCallAddress:
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
      return kHasSideEffect | kIsBlockTerminator;

    case kArchDeoptimize:
    case kArchJmp:
    case kArchLookupSwitch:
    case kArchTableSwitch:
    case kArchRet:
    case kArchThrowTerminator:
      return kIsBlockTerminator;

    case kCheckedLoadInt8:
    case kCheckedLoadUint8:
    case kCheckedLoadInt16:
    case kCheckedLoadUint16:
    case kCheckedLoadWord32:
    case kCheckedLoadWord64:
    case kCheckedLoadFloat32:
    case kCheckedLoadFloat64:
      return kIsLoadOperation;

    case kCheckedStoreWord8:
    case kCheckedStoreWord16:
    case kCheckedStoreWord32:
    case kCheckedStoreWord64:
    case kCheckedStoreFloat32:
    case kCheckedStoreFloat64:
    case kArchStoreWithWriteBarrier:
      return kHasSideEffect;

296 297 298 299 300 301 302
    case kAtomicLoadInt8:
    case kAtomicLoadUint8:
    case kAtomicLoadInt16:
    case kAtomicLoadUint16:
    case kAtomicLoadWord32:
      return kIsLoadOperation;

303 304 305 306 307
    case kAtomicStoreWord8:
    case kAtomicStoreWord16:
    case kAtomicStoreWord32:
      return kHasSideEffect;

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
#define CASE(Name) case k##Name:
    TARGET_ARCH_OPCODE_LIST(CASE)
#undef CASE
      return GetTargetInstructionFlags(instr);
  }

  UNREACHABLE();
  return kNoOpcodeFlags;
}


bool InstructionScheduler::HasOperandDependency(
    const Instruction* instr1, const Instruction* instr2) const {
  for (size_t i = 0; i < instr1->OutputCount(); ++i) {
    for (size_t j = 0; j < instr2->InputCount(); ++j) {
      const InstructionOperand* output = instr1->OutputAt(i);
      const InstructionOperand* input = instr2->InputAt(j);

      if (output->IsUnallocated() && input->IsUnallocated() &&
          (UnallocatedOperand::cast(output)->virtual_register() ==
           UnallocatedOperand::cast(input)->virtual_register())) {
        return true;
      }

      if (output->IsConstant() && input->IsUnallocated() &&
          (ConstantOperand::cast(output)->virtual_register() ==
           UnallocatedOperand::cast(input)->virtual_register())) {
        return true;
      }
    }
  }

  // TODO(bafsa): Do we need to look for anti-dependencies/output-dependencies?

  return false;
}


bool InstructionScheduler::IsBlockTerminator(const Instruction* instr) const {
  return ((GetInstructionFlags(instr) & kIsBlockTerminator) ||
          (instr->flags_mode() == kFlags_branch));
}


void InstructionScheduler::ComputeTotalLatencies() {
353
  for (ScheduleGraphNode* node : base::Reversed(graph_)) {
354 355
    int max_latency = 0;

356
    for (ScheduleGraphNode* successor : node->successors()) {
357 358 359 360 361 362 363 364 365 366 367 368 369
      DCHECK(successor->total_latency() != -1);
      if (successor->total_latency() > max_latency) {
        max_latency = successor->total_latency();
      }
    }

    node->set_total_latency(max_latency + node->latency());
  }
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8