h264dec.h 25.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
24
 * H.264 / AVC / MPEG-4 part10 codec.
25 26 27
 * @author Michael Niedermayer <michaelni@gmx.at>
 */

28 29
#ifndef AVCODEC_H264DEC_H
#define AVCODEC_H264DEC_H
30

31
#include "libavutil/buffer.h"
32
#include "libavutil/intreadwrite.h"
33
#include "libavutil/thread.h"
34

35
#include "cabac.h"
36
#include "error_resilience.h"
37
#include "h264_parse.h"
38
#include "h264_ps.h"
39
#include "h264_sei.h"
40
#include "h2645_parse.h"
41
#include "h264chroma.h"
42
#include "h264dsp.h"
43
#include "h264pred.h"
44
#include "h264qpel.h"
45
#include "internal.h"
46
#include "mpegutils.h"
47
#include "parser.h"
48
#include "qpeldsp.h"
49
#include "rectangle.h"
50
#include "videodsp.h"
51

52
#define H264_MAX_PICTURE_COUNT 36
53

54
#define MAX_MMCO_COUNT         66
55

56
#define MAX_DELAYED_PIC_COUNT  16
57

58 59 60 61
/* Compiling in interlaced support reduces the speed
 * of progressive decoding by about 2%. */
#define ALLOW_INTERLACE

62 63
#define FMO 0

64 65 66 67
/**
 * The maximum number of slices supported by the decoder.
 * must be a power of 2
 */
68
#define MAX_SLICES 32
69

70
#ifdef ALLOW_INTERLACE
71
#define MB_MBAFF(h)    (h)->mb_mbaff
72
#define MB_FIELD(sl)  (sl)->mb_field_decoding_flag
73 74
#define FRAME_MBAFF(h) (h)->mb_aff_frame
#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
75
#define LEFT_MBS 2
76 77 78
#define LTOP     0
#define LBOT     1
#define LEFT(i)  (i)
79
#else
80
#define MB_MBAFF(h)      0
81
#define MB_FIELD(sl)     0
82
#define FRAME_MBAFF(h)   0
83
#define FIELD_PICTURE(h) 0
84 85
#undef  IS_INTERLACED
#define IS_INTERLACED(mb_type) 0
86
#define LEFT_MBS 1
87 88 89
#define LTOP     0
#define LBOT     0
#define LEFT(i)  0
90
#endif
91
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
92

93
#ifndef CABAC
94
#define CABAC(h) (h)->ps.pps->cabac
95 96
#endif

97 98 99
#define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)
#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
100

101
#define MB_TYPE_REF0       MB_TYPE_ACPRED // dirty but it fits in 16 bit
102 103 104 105
#define MB_TYPE_8x8DCT     0x01000000
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)

106 107 108
/**
 * Memory management control operation opcode.
 */
109 110
typedef enum MMCOOpcode {
    MMCO_END = 0,
111 112 113 114 115 116 117 118 119 120 121
    MMCO_SHORT2UNUSED,
    MMCO_LONG2UNUSED,
    MMCO_SHORT2LONG,
    MMCO_SET_MAX_LONG,
    MMCO_RESET,
    MMCO_LONG,
} MMCOOpcode;

/**
 * Memory management control operation.
 */
122
typedef struct MMCO {
123
    MMCOOpcode opcode;
124 125
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
126 127
} MMCO;

128
typedef struct H264Picture {
129
    AVFrame *f;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    ThreadFrame tf;

    AVBufferRef *qscale_table_buf;
    int8_t *qscale_table;

    AVBufferRef *motion_val_buf[2];
    int16_t (*motion_val[2])[2];

    AVBufferRef *mb_type_buf;
    uint32_t *mb_type;

    AVBufferRef *hwaccel_priv_buf;
    void *hwaccel_picture_private; ///< hardware accelerator private data

    AVBufferRef *ref_index_buf[2];
    int8_t *ref_index[2];

    int field_poc[2];       ///< top/bottom POC
    int poc;                ///< frame POC
    int frame_num;          ///< frame_num (raw frame_num from slice header)
    int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must
                                 not mix pictures before and after MMCO_RESET. */
    int pic_id;             /**< pic_num (short -> no wrap version of pic_num,
                                 pic_num & max_pic_num; long -> long_pic_num) */
    int long_ref;           ///< 1->long term reference 0->short term reference
155
    int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)
156 157 158 159 160 161
    int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)
    int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF
    int field_picture;      ///< whether or not picture was encoded in separate fields

    int reference;
    int recovered;          ///< picture at IDR or recovery point + recovery count
162
    int invalid_gap;
163
    int sei_recovery_frame_cnt;
164 165
} H264Picture;

166 167 168 169 170 171 172 173 174 175 176
typedef struct H264Ref {
    uint8_t *data[3];
    int linesize[3];

    int reference;
    int poc;
    int pic_id;

    H264Picture *parent;
} H264Ref;

177 178
typedef struct H264SliceContext {
    struct H264Context *h264;
179
    GetBitContext gb;
180
    ERContext er;
181

182 183 184 185 186
    int slice_num;
    int slice_type;
    int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
    int slice_type_fixed;

187 188
    int qscale;
    int chroma_qp[2];   // QPc
189
    int qp_thresh;      ///< QP threshold to skip loopfilter
190
    int last_qscale_diff;
191

192 193 194 195 196
    // deblock
    int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
    int slice_alpha_c0_offset;
    int slice_beta_offset;

197
    H264PredWeightTable pwt;
198 199 200

    int prev_mb_skipped;
    int next_mb_skipped;
201 202 203

    int chroma_pred_mode;
    int intra16x16_pred_mode;
204

205 206 207
    int8_t intra4x4_pred_mode_cache[5 * 8];
    int8_t(*intra4x4_pred_mode);

208 209 210 211 212 213 214 215 216 217 218 219
    int topleft_mb_xy;
    int top_mb_xy;
    int topright_mb_xy;
    int left_mb_xy[LEFT_MBS];

    int topleft_type;
    int top_type;
    int topright_type;
    int left_type[LEFT_MBS];

    const uint8_t *left_block;
    int topleft_partition;
220 221 222 223 224

    unsigned int topleft_samples_available;
    unsigned int top_samples_available;
    unsigned int topright_samples_available;
    unsigned int left_samples_available;
225

226
    ptrdiff_t linesize, uvlinesize;
227 228 229
    ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
    ptrdiff_t mb_uvlinesize;

230
    int mb_x, mb_y;
231
    int mb_xy;
232 233
    int resync_mb_x;
    int resync_mb_y;
234
    unsigned int first_mb_addr;
235 236
    // index of the first MB of the next slice
    int next_slice_idx;
237
    int mb_skip_run;
238
    int is_complex;
239

240
    int picture_structure;
241
    int mb_field_decoding_flag;
242
    int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
243

244 245
    int redundant_pic_count;

246 247 248 249 250
    /**
     * number of neighbors (top and/or left) that used 8x8 dct
     */
    int neighbor_transform_size;

251
    int direct_spatial_mv_pred;
252 253
    int col_parity;
    int col_fieldoff;
254

255 256 257 258
    int cbp;
    int top_cbp;
    int left_cbp;

259 260
    int dist_scale_factor[32];
    int dist_scale_factor_field[2][32];
261 262
    int map_col_to_list0[2][16 + 32];
    int map_col_to_list0_field[2][2][16 + 32];
263

264 265 266 267 268
    /**
     * num_ref_idx_l0/1_active_minus1 + 1
     */
    unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
    unsigned int list_count;
269
    H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.
270 271
                                         *   Reordered version of default_ref_list
                                         *   according to picture reordering in slice header */
272 273
    struct {
        uint8_t op;
274
        uint32_t val;
275 276
    } ref_modifications[2][32];
    int nb_ref_modifications[2];
277

278 279
    unsigned int pps_id;

280
    const uint8_t *intra_pcm_ptr;
281
    int16_t *dc_val_base;
282

283 284
    uint8_t *bipred_scratchpad;
    uint8_t *edge_emu_buffer;
285
    uint8_t (*top_borders[2])[(16 * 3) * 2];
286 287
    int bipred_scratchpad_allocated;
    int edge_emu_buffer_allocated;
288
    int top_borders_allocated[2];
289

290 291 292 293 294
    /**
     * non zero coeff count cache.
     * is 64 if not available.
     */
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
295 296 297 298 299 300

    /**
     * Motion vector cache.
     */
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
    DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];
301
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
302
    uint8_t direct_cache[5 * 8];
303 304

    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
305

306
    ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
307 308 309 310 311
    DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
    DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
    ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
    ///< check that i is not too large or ensure that there is some unused stuff after mb
    int16_t mb_padding[256 * 2];
312

313 314
    uint8_t (*mvd_table[2])[2];

315 316 317 318 319
    /**
     * Cabac
     */
    CABACContext cabac;
    uint8_t cabac_state[1024];
320
    int cabac_init_idc;
321 322 323

    MMCO mmco[MAX_MMCO_COUNT];
    int  nb_mmco;
324
    int explicit_ref_marking;
325 326 327 328 329

    int frame_num;
    int poc_lsb;
    int delta_poc_bottom;
    int delta_poc[2];
330 331
    int curr_pic_num;
    int max_pic_num;
332 333
} H264SliceContext;

334 335 336
/**
 * H264Context
 */
337
typedef struct H264Context {
338
    const AVClass *class;
339 340
    AVCodecContext *avctx;
    VideoDSPContext vdsp;
341
    H264DSPContext h264dsp;
342
    H264ChromaContext h264chroma;
343
    H264QpelContext h264qpel;
344

345
    H264Picture DPB[H264_MAX_PICTURE_COUNT];
346 347
    H264Picture *cur_pic_ptr;
    H264Picture cur_pic;
348
    H264Picture last_pic_for_ec;
349

350 351
    H264SliceContext *slice_ctx;
    int            nb_slice_ctx;
352
    int            nb_slice_ctx_queued;
353

354 355
    H2645Packet pkt;

356
    int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
357

358
    /* coded dimensions -- 16 * mb w/h */
359 360 361 362 363 364 365 366 367
    int width, height;
    int chroma_x_shift, chroma_y_shift;

    int droppable;
    int coded_picture_number;

    int context_initialized;
    int flags;
    int workaround_bugs;
368
    int x264_build;
369 370 371 372 373
    /* Set when slice threading is used and at least one slice uses deblocking
     * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
     * during normal MB decoding and execute it serially at the end.
     */
    int postpone_filter;
374

375 376 377 378 379
    /*
     * Set to 1 when the current picture is IDR, 0 otherwise.
     */
    int picture_idr;

380 381 382 383 384
    int crop_left;
    int crop_right;
    int crop_top;
    int crop_bottom;

385
    int8_t(*intra4x4_pred_mode);
386
    H264PredContext hpc;
387

388
    uint8_t (*non_zero_count)[48];
389

390
#define LIST_NOT_USED -1 // FIXME rename?
391 392 393 394 395 396
#define PART_NOT_AVAILABLE -2

    /**
     * block_offset[ 0..23] for frame macroblocks
     * block_offset[24..47] for field macroblocks
     */
397
    int block_offset[2 * (16 * 3)];
398

399
    uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
400
    uint32_t *mb2br_xy;
401
    int b_stride;       // FIXME use s->b4_stride
402

403
    uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
404

405
    // interlacing specific flags
406
    int mb_aff_frame;
407 408
    int picture_structure;
    int first_field;
409

410
    uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
411

412 413
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
    uint16_t *cbp_table;
414

415
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
416 417 418
    uint8_t *chroma_pred_mode_table;
    uint8_t (*mvd_table[2])[2];
    uint8_t *direct_table;
419

420
    uint8_t scan_padding[16];
421 422 423 424 425 426
    uint8_t zigzag_scan[16];
    uint8_t zigzag_scan8x8[64];
    uint8_t zigzag_scan8x8_cavlc[64];
    uint8_t field_scan[16];
    uint8_t field_scan8x8[64];
    uint8_t field_scan8x8_cavlc[64];
427 428 429 430 431 432
    uint8_t zigzag_scan_q0[16];
    uint8_t zigzag_scan8x8_q0[64];
    uint8_t zigzag_scan8x8_cavlc_q0[64];
    uint8_t field_scan_q0[16];
    uint8_t field_scan8x8_q0[64];
    uint8_t field_scan8x8_cavlc_q0[64];
433

434
    int mb_y;
435 436 437
    int mb_height, mb_width;
    int mb_stride;
    int mb_num;
438

439 440
    // =============================================================
    // Things below are not used in the MB or more inner code
441 442 443 444

    int nal_ref_idc;
    int nal_unit_type;

445 446
    int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()

447
    /**
448
     * Used to parse AVC variant of H.264
449
     */
450 451
    int is_avc;           ///< this flag is != 0 if codec is avc1
    int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
452

453 454
    int bit_depth_luma;         ///< luma bit depth from sps to detect changes
    int chroma_format_idc;      ///< chroma format from sps to detect changes
455

456
    H264ParamSets ps;
457 458 459

    uint16_t *slice_table_base;

460
    H264POCContext poc;
461

462
    H264Ref default_ref[2];
463 464 465
    H264Picture *short_ref[32];
    H264Picture *long_ref[32];
    H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
466
    int last_pocs[MAX_DELAYED_PIC_COUNT];
467
    H264Picture *next_output_pic;
468
    int next_outputed_poc;
469 470 471 472 473

    /**
     * memory management control operations buffer.
     */
    MMCO mmco[MAX_MMCO_COUNT];
474
    int  nb_mmco;
475
    int mmco_reset;
476
    int explicit_ref_marking;
477

478 479
    int long_ref_count;     ///< number of actual long term references
    int short_ref_count;    ///< number of actual short term references
480

481
    /**
482
     * @name Members for slice based multithreading
483 484 485
     * @{
     */
    /**
486
     * current slice number, used to initialize slice_num of each thread/context
487 488 489 490 491
     */
    int current_slice;

    /** @} */

492
    /**
493 494 495 496 497 498 499
     * Complement sei_pic_struct
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
     * However, soft telecined frames may have these values.
     * This is used in an attempt to flag soft telecine progressive.
     */
    int prev_interlaced_frame;

500 501 502 503 504
    /**
     * Are the SEI recovery points looking valid.
     */
    int valid_recovery_point;

505 506 507 508 509 510 511
    /**
     * recovery_frame is the frame_num at which the next frame should
     * be fully constructed.
     *
     * Set to -1 when not expecting a recovery point.
     */
    int recovery_frame;
512

513 514 515 516 517 518 519 520 521 522
/**
 * We have seen an IDR, so all the following frames in coded order are correctly
 * decodable.
 */
#define FRAME_RECOVERED_IDR  (1 << 0)
/**
 * Sufficient number of frames have been decoded since a SEI recovery point,
 * so all the following frames in presentation order are correct.
 */
#define FRAME_RECOVERED_SEI  (1 << 1)
523

524
    int frame_recovered;    ///< Initial frame has been completely recovered
525

526 527
    int has_recovery_point;

528 529
    int missing_fields;

530
    /* for frame threading, this is set to 1
531 532 533 534
     * after finish_setup() has been called, so we cannot modify
     * some context properties (which are supposed to stay constant between
     * slices) anymore */
    int setup_finished;
535

536
    int cur_chroma_format_idc;
537
    int cur_bit_depth_luma;
538
    int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
539

540 541 542 543 544
    /* original AVCodecContext dimensions, used to handle container
     * cropping */
    int width_from_caller;
    int height_from_caller;

545 546
    int enable_er;

547 548
    H264SEIContext sei;

549 550 551 552
    AVBufferPool *qscale_table_pool;
    AVBufferPool *mb_type_pool;
    AVBufferPool *motion_val_pool;
    AVBufferPool *ref_index_pool;
553
    int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
554
} H264Context;
555

556
extern const uint16_t ff_h264_mb_sizes[4];
557

558
/**
559
 * Reconstruct bitstream slice_type.
560
 */
561
int ff_h264_get_slice_type(const H264SliceContext *sl);
562

563
/**
564
 * Allocate tables.
565 566 567 568
 * needs width/height
 */
int ff_h264_alloc_tables(H264Context *h);

569
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
570
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
571 572 573
void ff_h264_remove_all_refs(H264Context *h);

/**
574
 * Execute the reference picture marking (memory management control operations).
575
 */
576
int ff_h264_execute_ref_pic_marking(H264Context *h);
577

578 579
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
                                   const H2645NAL *nal, void *logctx);
580

581
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
582
void ff_h264_decode_init_vlc(void);
583 584

/**
585
 * Decode a macroblock
586
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
587
 */
588
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
589

590
/**
591
 * Decode a CABAC coded macroblock
592
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
593
 */
594
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
595

596
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
597

598 599 600
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
601
                                int *mb_type);
602

603
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
604 605
                            uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
                            unsigned int linesize, unsigned int uvlinesize);
606
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
607 608
                       uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
                       unsigned int linesize, unsigned int uvlinesize);
609

610
/*
611 612 613 614 615 616 617 618
 * o-o o-o
 *  / / /
 * o-o o-o
 *  ,---'
 * o-o o-o
 *  / / /
 * o-o o-o
 */
619 620

/* Scan8 organization:
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
 *    0 1 2 3 4 5 6 7
 * 0  DY    y y y y y
 * 1        y Y Y Y Y
 * 2        y Y Y Y Y
 * 3        y Y Y Y Y
 * 4        y Y Y Y Y
 * 5  DU    u u u u u
 * 6        u U U U U
 * 7        u U U U U
 * 8        u U U U U
 * 9        u U U U U
 * 10 DV    v v v v v
 * 11       v V V V V
 * 12       v V V V V
 * 13       v V V V V
 * 14       v V V V V
637 638 639
 * DY/DU/DV are for luma/chroma DC.
 */

640 641 642
#define LUMA_DC_BLOCK_INDEX   48
#define CHROMA_DC_BLOCK_INDEX 49

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
// This table must be here because scan8[constant] must be known at compiletime
static const uint8_t scan8[16 * 3 + 3] = {
    4 +  1 * 8, 5 +  1 * 8, 4 +  2 * 8, 5 +  2 * 8,
    6 +  1 * 8, 7 +  1 * 8, 6 +  2 * 8, 7 +  2 * 8,
    4 +  3 * 8, 5 +  3 * 8, 4 +  4 * 8, 5 +  4 * 8,
    6 +  3 * 8, 7 +  3 * 8, 6 +  4 * 8, 7 +  4 * 8,
    4 +  6 * 8, 5 +  6 * 8, 4 +  7 * 8, 5 +  7 * 8,
    6 +  6 * 8, 7 +  6 * 8, 6 +  7 * 8, 7 +  7 * 8,
    4 +  8 * 8, 5 +  8 * 8, 4 +  9 * 8, 5 +  9 * 8,
    6 +  8 * 8, 7 +  8 * 8, 6 +  9 * 8, 7 +  9 * 8,
    4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
    6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
    4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
    6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
    0 +  0 * 8, 0 +  5 * 8, 0 + 10 * 8
658 659
};

660
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
661
{
662
#if HAVE_BIGENDIAN
663
    return (b & 0xFFFF) + (a << 16);
664
#else
665
    return (a & 0xFFFF) + (b << 16);
666 667 668
#endif
}

669
static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
670
{
671
#if HAVE_BIGENDIAN
672
    return (b & 0xFF) + (a << 8);
673
#else
674
    return (a & 0xFF) + (b << 8);
675 676 677
#endif
}

678
/**
679
 * Get the chroma qp.
680
 */
681
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
682
{
683
    return pps->chroma_qp_table[t][qscale];
684 685
}

686
/**
687
 * Get the predicted intra4x4 prediction mode.
688
 */
689
static av_always_inline int pred_intra_mode(const H264Context *h,
690
                                            H264SliceContext *sl, int n)
691 692
{
    const int index8 = scan8[n];
693 694
    const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];
    const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];
695
    const int min    = FFMIN(left, top);
696

697
    ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
698

699 700 701 702
    if (min < 0)
        return DC_PRED;
    else
        return min;
703 704
}

705
static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
706
                                                        H264SliceContext *sl)
707
{
708
    int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
709
    int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
710

711 712 713 714
    AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
    i4x4[4] = i4x4_cache[7 + 8 * 3];
    i4x4[5] = i4x4_cache[7 + 8 * 2];
    i4x4[6] = i4x4_cache[7 + 8 * 1];
715
}
716

717
static av_always_inline void write_back_non_zero_count(const H264Context *h,
718
                                                       H264SliceContext *sl)
719
{
720
    const int mb_xy    = sl->mb_xy;
721
    uint8_t *nnz       = h->non_zero_count[mb_xy];
722
    uint8_t *nnz_cache = sl->non_zero_count_cache;
723

724 725 726 727 728 729 730 731 732
    AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
    AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
    AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
    AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
    AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
    AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
    AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
    AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);

733
    if (!h->chroma_y_shift) {
734 735 736 737
        AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
        AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
        AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
        AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
738
    }
739 740
}

741
static av_always_inline void write_back_motion_list(const H264Context *h,
742
                                                    H264SliceContext *sl,
743 744 745
                                                    int b_stride,
                                                    int b_xy, int b8_xy,
                                                    int mb_type, int list)
746
{
747
    int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
748
    int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
749 750 751 752
    AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
    AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
    AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
    AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
753
    if (CABAC(h)) {
754 755
        uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
                                                        : h->mb2br_xy[sl->mb_xy]];
756
        uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];
757
        if (IS_SKIP(mb_type)) {
758
            AV_ZERO128(mvd_dst);
759 760 761 762 763
        } else {
            AV_COPY64(mvd_dst, mvd_src + 8 * 3);
            AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
            AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
            AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
764 765 766 767
        }
    }

    {
768
        int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
769
        int8_t *ref_cache = sl->ref_cache[list];
770 771 772 773
        ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
        ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
        ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
        ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
774
    }
775 776
}

777
static av_always_inline void write_back_motion(const H264Context *h,
778 779
                                               H264SliceContext *sl,
                                               int mb_type)
780 781
{
    const int b_stride      = h->b_stride;
782
    const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
783
    const int b8_xy = 4 * sl->mb_xy;
784

785
    if (USES_LIST(mb_type, 0)) {
786
        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
787
    } else {
788
        fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
789
                       2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
790
    }
791
    if (USES_LIST(mb_type, 1))
792
        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
793

794
    if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
795
        if (IS_8X8(mb_type)) {
796
            uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
797 798 799
            direct_table[1] = sl->sub_mb_type[1] >> 1;
            direct_table[2] = sl->sub_mb_type[2] >> 1;
            direct_table[3] = sl->sub_mb_type[3] >> 1;
800 801 802 803
        }
    }
}

804
static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
805
{
806
    if (h->ps.sps->direct_8x8_inference_flag)
807
        return !(AV_RN64A(sl->sub_mb_type) &
808 809
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
                  0x0001000100010001ULL));
810
    else
811
        return !(AV_RN64A(sl->sub_mb_type) &
812 813
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
                  0x0001000100010001ULL));
814 815
}

816 817 818
static inline int find_start_code(const uint8_t *buf, int buf_size,
                           int buf_index, int next_avc)
{
819
    uint32_t state = -1;
820

821
    buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
822

823
    return FFMIN(buf_index, buf_size);
824 825
}

826
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
827 828 829 830

int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
void ff_h264_unref_picture(H264Context *h, H264Picture *pic);

831
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
832

833
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
834

835 836
int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl,
                                const H2645NAL *nal);
837 838 839 840 841 842 843 844
/**
 * Submit a slice for decoding.
 *
 * Parse the slice header, starting a new field/frame if necessary. If any
 * slices are queued for the previous field, they are decoded.
 */
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
int ff_h264_execute_decode_slices(H264Context *h);
845 846 847 848 849
int ff_h264_update_thread_context(AVCodecContext *dst,
                                  const AVCodecContext *src);

void ff_h264_flush_change(H264Context *h);

850
void ff_h264_free_tables(H264Context *h);
851

852 853
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);

854
#endif /* AVCODEC_H264DEC_H */