h264.h 45.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
24 25 26 27
 * H.264 / AVC / MPEG4 part10 codec.
 * @author Michael Niedermayer <michaelni@gmx.at>
 */

28 29
#ifndef AVCODEC_H264_H
#define AVCODEC_H264_H
30

31
#include "libavutil/intreadwrite.h"
32 33 34
#include "dsputil.h"
#include "cabac.h"
#include "mpegvideo.h"
35
#include "h264dsp.h"
36
#include "h264pred.h"
37
#include "rectangle.h"
38 39

#define interlaced_dct interlaced_dct_is_a_bad_name
Diego Biurrun's avatar
Diego Biurrun committed
40
#define mb_intra mb_intra_is_not_initialized_see_mb_type
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

#define LUMA_DC_BLOCK_INDEX   25
#define CHROMA_DC_BLOCK_INDEX 26

#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
#define COEFF_TOKEN_VLC_BITS           8
#define TOTAL_ZEROS_VLC_BITS           9
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
#define RUN_VLC_BITS                   3
#define RUN7_VLC_BITS                  6

#define MAX_SPS_COUNT 32
#define MAX_PPS_COUNT 256

#define MAX_MMCO_COUNT 66

57 58
#define MAX_DELAYED_PIC_COUNT 16

59 60 61 62
/* Compiling in interlaced support reduces the speed
 * of progressive decoding by about 2%. */
#define ALLOW_INTERLACE

63 64
#define ALLOW_NOCHROMA

65 66
#define FMO 0

67 68 69 70 71 72
/**
 * The maximum number of slices supported by the decoder.
 * must be a power of 2
 */
#define MAX_SLICES 16

73 74 75 76
#ifdef ALLOW_INTERLACE
#define MB_MBAFF h->mb_mbaff
#define MB_FIELD h->mb_field_decoding_flag
#define FRAME_MBAFF h->mb_aff_frame
Carl Eugen Hoyos's avatar
Carl Eugen Hoyos committed
77
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
78 79 80 81
#else
#define MB_MBAFF 0
#define MB_FIELD 0
#define FRAME_MBAFF 0
82
#define FIELD_PICTURE 0
83 84 85
#undef  IS_INTERLACED
#define IS_INTERLACED(mb_type) 0
#endif
86
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
87

88 89 90 91 92 93
#ifdef ALLOW_NOCHROMA
#define CHROMA h->sps.chroma_format_idc
#else
#define CHROMA 1
#endif

94 95 96 97
#ifndef CABAC
#define CABAC h->pps.cabac
#endif

98 99
#define EXTENDED_SAR          255

100 101 102 103 104
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
#define MB_TYPE_8x8DCT     0x01000000
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)

105 106 107 108 109 110 111
/**
 * Value of Picture.reference when Picture is not a reference picture, but
 * is held for delayed output.
 */
#define DELAYED_PIC_REF 4


112 113
/* NAL unit types */
enum {
114 115 116 117 118 119 120 121 122 123 124 125 126 127
    NAL_SLICE=1,
    NAL_DPA,
    NAL_DPB,
    NAL_DPC,
    NAL_IDR_SLICE,
    NAL_SEI,
    NAL_SPS,
    NAL_PPS,
    NAL_AUD,
    NAL_END_SEQUENCE,
    NAL_END_STREAM,
    NAL_FILLER_DATA,
    NAL_SPS_EXT,
    NAL_AUXILIARY_SLICE=19
128 129
};

130 131 132 133
/**
 * SEI message types
 */
typedef enum {
134
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
135 136 137 138 139
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
} SEI_Type;

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/**
 * pic_struct in picture timing SEI message
 */
typedef enum {
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
} SEI_PicStructType;

155 156 157 158 159 160 161
/**
 * Sequence parameter set
 */
typedef struct SPS{

    int profile_idc;
    int level_idc;
162
    int chroma_format_idc;
163 164 165 166 167 168 169 170 171 172
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
    int poc_type;                      ///< pic_order_cnt_type
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
    int delta_pic_order_always_zero_flag;
    int offset_for_non_ref_pic;
    int offset_for_top_to_bottom_field;
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
    int ref_frame_count;               ///< num_ref_frames
    int gaps_in_frame_num_allowed_flag;
173 174
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
175 176 177 178
    int frame_mbs_only_flag;
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
    int direct_8x8_inference_flag;
    int crop;                   ///< frame_cropping_flag
179 180 181 182
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
183 184
    int vui_parameters_present_flag;
    AVRational sar;
185 186 187 188 189 190
    int video_signal_type_present_flag;
    int full_range;
    int colour_description_present_flag;
    enum AVColorPrimaries color_primaries;
    enum AVColorTransferCharacteristic color_trc;
    enum AVColorSpace colorspace;
191 192 193 194 195 196 197 198 199 200
    int timing_info_present_flag;
    uint32_t num_units_in_tick;
    uint32_t time_scale;
    int fixed_frame_rate_flag;
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
    int bitstream_restriction_flag;
    int num_reorder_frames;
    int scaling_matrix_present;
    uint8_t scaling_matrix4[6][16];
    uint8_t scaling_matrix8[2][64];
201 202 203 204
    int nal_hrd_parameters_present_flag;
    int vcl_hrd_parameters_present_flag;
    int pic_struct_present_flag;
    int time_offset_length;
205
    int cpb_cnt;                       ///< See H.264 E.1.2
206
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
207 208
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
209 210 211
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
    int residual_color_transform_flag; ///< residual_colour_transform_flag
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
}SPS;

/**
 * Picture parameter set
 */
typedef struct PPS{
    unsigned int sps_id;
    int cabac;                  ///< entropy_coding_mode_flag
    int pic_order_present;      ///< pic_order_present_flag
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
    int mb_slice_group_map_type;
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
    int weighted_pred;          ///< weighted_pred_flag
    int weighted_bipred_idc;
    int init_qp;                ///< pic_init_qp_minus26 + 26
    int init_qs;                ///< pic_init_qs_minus26 + 26
228
    int chroma_qp_index_offset[2];
229 230 231 232 233 234
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
    int constrained_intra_pred; ///< constrained_intra_pred_flag
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
    uint8_t scaling_matrix4[6][16];
    uint8_t scaling_matrix8[2][64];
235
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
236
    int chroma_qp_diff;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
}PPS;

/**
 * Memory management control operation opcode.
 */
typedef enum MMCOOpcode{
    MMCO_END=0,
    MMCO_SHORT2UNUSED,
    MMCO_LONG2UNUSED,
    MMCO_SHORT2LONG,
    MMCO_SET_MAX_LONG,
    MMCO_RESET,
    MMCO_LONG,
} MMCOOpcode;

/**
 * Memory management control operation.
 */
typedef struct MMCO{
    MMCOOpcode opcode;
257 258
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
259 260 261 262 263 264 265
} MMCO;

/**
 * H264Context
 */
typedef struct H264Context{
    MpegEncContext s;
266
    H264DSPContext h264dsp;
267
    int chroma_qp[2]; //QPc
268

269 270
    int qp_thresh;      ///< QP threshold to skip loopfilter

271 272 273 274 275 276 277
    int prev_mb_skipped;
    int next_mb_skipped;

    //prediction stuff
    int chroma_pred_mode;
    int intra16x16_pred_mode;

278
    int topleft_mb_xy;
279
    int top_mb_xy;
280
    int topright_mb_xy;
281 282
    int left_mb_xy[2];

283
    int topleft_type;
284
    int top_type;
285
    int topright_type;
286 287
    int left_type[2];

288 289 290
    const uint8_t * left_block;
    int topleft_partition;

291
    int8_t intra4x4_pred_mode_cache[5*8];
292
    int8_t (*intra4x4_pred_mode);
293
    H264PredContext hpc;
294 295 296 297 298 299 300 301 302 303
    unsigned int topleft_samples_available;
    unsigned int top_samples_available;
    unsigned int topright_samples_available;
    unsigned int left_samples_available;
    uint8_t (*top_borders[2])[16+2*8];

    /**
     * non zero coeff count cache.
     * is 64 if not available.
     */
304
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
305 306 307 308 309 310 311

    /*
    .UU.YYYY
    .UU.YYYY
    .vv.YYYY
    .VV.YYYY
    */
312
    uint8_t (*non_zero_count)[32];
313 314 315 316

    /**
     * Motion vector cache.
     */
317 318
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
    DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#define LIST_NOT_USED -1 //FIXME rename?
#define PART_NOT_AVAILABLE -2

    /**
     * is 1 if the specific list MV&references are set to 0,0,-2.
     */
    int mv_cache_clean[2];

    /**
     * number of neighbors (top and/or left) that used 8x8 dct
     */
    int neighbor_transform_size;

    /**
     * block_offset[ 0..23] for frame macroblocks
     * block_offset[24..47] for field macroblocks
     */
    int block_offset[2*(16+8)];

    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
339
    uint32_t *mb2br_xy;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    int b_stride; //FIXME use s->b4_stride

    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
    int mb_uvlinesize;

    int emu_edge_width;
    int emu_edge_height;

    SPS sps; ///< current sps

    /**
     * current pps
     */
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?

355
    uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
356 357 358 359 360
    uint32_t dequant8_buffer[2][52][64];
    uint32_t (*dequant4_coeff[6])[16];
    uint32_t (*dequant8_coeff[2])[64];

    int slice_num;
361
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
362
    int slice_type;
363
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
364 365 366 367 368 369 370
    int slice_type_fixed;

    //interlacing specific flags
    int mb_aff_frame;
    int mb_field_decoding_flag;
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag

371
    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
372 373 374 375 376 377

    //Weighted pred stuff
    int use_weight;
    int use_weight_chroma;
    int luma_log2_weight_denom;
    int chroma_log2_weight_denom;
378
    //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
379 380
    int luma_weight[48][2][2];
    int chroma_weight[48][2][2][2];
381
    int implicit_weight[48][48][2];
382 383

    int direct_spatial_mv_pred;
384 385
    int col_parity;
    int col_fieldoff;
386
    int dist_scale_factor[16];
387
    int dist_scale_factor_field[2][32];
388 389
    int map_col_to_list0[2][16+32];
    int map_col_to_list0_field[2][2][16+32];
390 391 392 393 394 395

    /**
     * num_ref_idx_l0/1_active_minus1 + 1
     */
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
    unsigned int list_count;
396
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
397 398 399
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
                                          Reordered version of default_ref_list
                                          according to picture reordering in slice header */
400
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
401 402 403 404 405 406 407

    //data partitioning
    GetBitContext intra_gb;
    GetBitContext inter_gb;
    GetBitContext *intra_gb_ptr;
    GetBitContext *inter_gb_ptr;

408
    DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
Diego Biurrun's avatar
Diego Biurrun committed
409
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

    /**
     * Cabac
     */
    CABACContext cabac;
    uint8_t      cabac_state[460];

    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
    uint16_t     *cbp_table;
    int cbp;
    int top_cbp;
    int left_cbp;
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
    uint8_t     *chroma_pred_mode_table;
    int         last_qscale_diff;
425
    uint8_t     (*mvd_table[2])[2];
426
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    uint8_t     *direct_table;
    uint8_t     direct_cache[5*8];

    uint8_t zigzag_scan[16];
    uint8_t zigzag_scan8x8[64];
    uint8_t zigzag_scan8x8_cavlc[64];
    uint8_t field_scan[16];
    uint8_t field_scan8x8[64];
    uint8_t field_scan8x8_cavlc[64];
    const uint8_t *zigzag_scan_q0;
    const uint8_t *zigzag_scan8x8_q0;
    const uint8_t *zigzag_scan8x8_cavlc_q0;
    const uint8_t *field_scan_q0;
    const uint8_t *field_scan8x8_q0;
    const uint8_t *field_scan8x8_cavlc_q0;

    int x264_build;
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    int mb_xy;

    int is_complex;

    //deblock
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
    int slice_alpha_c0_offset;
    int slice_beta_offset;

//=============================================================
    //Things below are not used in the MB or more inner code

    int nal_ref_idc;
    int nal_unit_type;
    uint8_t *rbsp_buffer[2];
    unsigned int rbsp_buffer_size[2];

    /**
     * Used to parse AVC variant of h264
     */
    int is_avc; ///< this flag is != 0 if codec is avc1
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
467
    int got_first; ///< this flag is != 0 if we've parsed a frame
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

    SPS *sps_buffers[MAX_SPS_COUNT];
    PPS *pps_buffers[MAX_PPS_COUNT];

    int dequant_coeff_pps;     ///< reinit tables when pps changes

    uint16_t *slice_table_base;


    //POC stuff
    int poc_lsb;
    int poc_msb;
    int delta_poc_bottom;
    int delta_poc[2];
    int frame_num;
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
    int frame_num_offset;         ///< for POC type 2
    int prev_frame_num_offset;    ///< for POC type 2
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2

    /**
     * frame_num for frames or 2*frame_num+1 for field pics.
     */
    int curr_pic_num;

    /**
     * max_frame_num or 2*max_frame_num for field pics.
     */
    int max_pic_num;

    int redundant_pic_count;

    Picture *short_ref[32];
    Picture *long_ref[32];
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
    int outputed_poc;

    /**
     * memory management control operations buffer.
     */
    MMCO mmco[MAX_MMCO_COUNT];
    int mmco_index;

    int long_ref_count;  ///< number of actual long term references
    int short_ref_count; ///< number of actual short term references

    int          cabac_init_idc;

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    /**
     * @defgroup multithreading Members for slice based multithreading
     * @{
     */
    struct H264Context *thread_context[MAX_THREADS];

    /**
     * current slice number, used to initalize slice_num of each thread/context
     */
    int current_slice;

    /**
     * Max number of threads / contexts.
     * This is equal to AVCodecContext.thread_count unless
     * multithreaded decoding is impossible, in which case it is
     * reduced to 1.
     */
    int max_contexts;

    /**
     *  1 if the single thread fallback warning has already been
     *  displayed, 0 otherwise.
     */
    int single_decode_warning;

    int last_slice_type;
    /** @} */

546 547 548 549
    /**
     * pic_struct in picture timing SEI message
     */
    SEI_PicStructType sei_pic_struct;
550

551
    /**
552 553 554 555 556 557 558 559
     * Complement sei_pic_struct
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
     * However, soft telecined frames may have these values.
     * This is used in an attempt to flag soft telecine progressive.
     */
    int prev_interlaced_frame;

    /**
560 561 562 563 564 565
     * Bit set of clock types for fields/frames in picture timing SEI message.
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
     * interlaced).
     */
    int sei_ct_type;

566 567 568 569 570
    /**
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
     */
    int sei_dpb_output_delay;

571 572 573 574 575
    /**
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
     */
    int sei_cpb_removal_delay;

576 577 578 579 580 581 582 583 584
    /**
     * recovery_frame_cnt from SEI message
     *
     * Set to -1 if no recovery point SEI message found or to number of frames
     * before playback synchronizes. Frames having recovery point are key
     * frames.
     */
    int sei_recovery_frame_cnt;

585 586
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
587 588 589 590

    // Timestamp stuff
    int sei_buffering_period_present;  ///< Buffering period SEI flag
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
591 592 593 594 595 596 597

    //SVQ3 specific fields
    int halfpel_flag;
    int thirdpel_flag;
    int unknown_svq3_flag;
    int next_slice_index;
    uint32_t svq3_watermark_key;
598 599
}H264Context;

600 601 602

extern const uint8_t ff_h264_chroma_qp[52];

603 604 605
void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);

void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
606

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
/**
 * Decode SEI
 */
int ff_h264_decode_sei(H264Context *h);

/**
 * Decode SPS
 */
int ff_h264_decode_seq_parameter_set(H264Context *h);

/**
 * Decode PPS
 */
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);

/**
 * Decodes a network abstraction layer unit.
 * @param consumed is the number of bytes used as input
 * @param length is the length of the array
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
627
 * @return decoded bytes, might be src+1 if no escapes
628 629 630 631 632 633 634 635 636
 */
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);

/**
 * identifies the exact end of the bitstream
 * @return the length of the trailing, or 0 if damaged
 */
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);

637 638 639
/**
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
 */
640
av_cold void ff_h264_free_context(H264Context *h);
641

642 643 644
/**
 * reconstructs bitstream slice_type.
 */
645
int ff_h264_get_slice_type(const H264Context *h);
646

647 648 649 650 651 652
/**
 * allocates tables.
 * needs width/height
 */
int ff_h264_alloc_tables(H264Context *h);

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/**
 * fills the default_ref_list.
 */
int ff_h264_fill_default_ref_list(H264Context *h);

int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
void ff_h264_fill_mbaff_ref_list(H264Context *h);
void ff_h264_remove_all_refs(H264Context *h);

/**
 * Executes the reference picture marking (memory management control operations).
 */
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);

int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);


670 671 672 673 674
/**
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
 */
int ff_h264_check_intra4x4_pred_mode(H264Context *h);

675 676 677 678 679 680 681 682
/**
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
 */
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);

void ff_h264_write_back_intra_pred_mode(H264Context *h);
void ff_h264_hl_decode_mb(H264Context *h);
int ff_h264_frame_start(H264Context *h);
683
int ff_h264_decode_extradata(H264Context *h);
684 685
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
686 687 688 689
av_cold void ff_h264_decode_init_vlc(void);

/**
 * decodes a macroblock
690
 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
691 692
 */
int ff_h264_decode_mb_cavlc(H264Context *h);
693

694 695
/**
 * decodes a CABAC coded macroblock
696
 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
697 698 699 700 701
 */
int ff_h264_decode_mb_cabac(H264Context *h);

void ff_h264_init_cabac_states(H264Context *h);

702 703 704 705
void ff_h264_direct_dist_scale_factor(H264Context * const h);
void ff_h264_direct_ref_list_init(H264Context * const h);
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);

706 707 708
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);

709 710 711 712 713 714 715 716
/**
 * Reset SEI values at the beginning of the frame.
 *
 * @param h H.264 context.
 */
void ff_h264_reset_sei(H264Context *h);


717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/*
o-o o-o
 / / /
o-o o-o
 ,---'
o-o o-o
 / / /
o-o o-o
*/
//This table must be here because scan8[constant] must be known at compiletime
static const uint8_t scan8[16 + 2*4]={
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
 1+1*8, 2+1*8,
 1+2*8, 2+2*8,
 1+4*8, 2+4*8,
 1+5*8, 2+5*8,
};

static av_always_inline uint32_t pack16to32(int a, int b){
#if HAVE_BIGENDIAN
   return (b&0xFFFF) + (a<<16);
#else
   return (a&0xFFFF) + (b<<16);
#endif
}

746 747 748 749 750 751 752 753
static av_always_inline uint16_t pack8to16(int a, int b){
#if HAVE_BIGENDIAN
   return (b&0xFF) + (a<<8);
#else
   return (a&0xFF) + (b<<8);
#endif
}

754 755 756 757 758 759 760
/**
 * gets the chroma qp.
 */
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
    return h->pps.chroma_qp_table[t][qscale];
}

761 762
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);

763
static void fill_decode_neighbors(H264Context *h, int mb_type){
764 765 766
    MpegEncContext * const s = &h->s;
    const int mb_xy= h->mb_xy;
    int topleft_xy, top_xy, topright_xy, left_xy[2];
767 768 769 770 771
    static const uint8_t left_block_options[4][16]={
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
772 773
    };

774 775
    h->topleft_partition= -1;

776
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
777 778 779 780 781 782 783

    /* Wow, what a mess, why didn't they simplify the interlacing & intra
     * stuff, I can't imagine that these complex rules are worth it. */

    topleft_xy = top_xy - 1;
    topright_xy= top_xy + 1;
    left_xy[1] = left_xy[0] = mb_xy-1;
784
    h->left_block = left_block_options[0];
785
    if(FRAME_MBAFF){
786
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
787
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
788 789 790 791 792
        if(s->mb_y&1){
            if (left_mb_field_flag != curr_mb_field_flag) {
                left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
                if (curr_mb_field_flag) {
                    left_xy[1] += s->mb_stride;
793
                    h->left_block = left_block_options[3];
794 795 796
                } else {
                    topleft_xy += s->mb_stride;
                    // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
797 798
                    h->topleft_partition = 0;
                    h->left_block = left_block_options[1];
799 800 801 802 803 804 805 806 807 808 809
                }
            }
        }else{
            if(curr_mb_field_flag){
                topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
                topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
            }
            if (left_mb_field_flag != curr_mb_field_flag) {
                if (curr_mb_field_flag) {
                    left_xy[1] += s->mb_stride;
810
                    h->left_block = left_block_options[3];
811
                } else {
812
                    h->left_block = left_block_options[2];
813
                }
814 815 816 817
            }
        }
    }

818 819 820
    h->topleft_mb_xy = topleft_xy;
    h->top_mb_xy     = top_xy;
    h->topright_mb_xy= topright_xy;
821 822
    h->left_mb_xy[0] = left_xy[0];
    h->left_mb_xy[1] = left_xy[1];
823
    //FIXME do we need all in the context?
824 825 826 827 828 829 830

    h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
    h->top_type     = s->current_picture.mb_type[top_xy]     ;
    h->topright_type= s->current_picture.mb_type[topright_xy];
    h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
    h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;

831
    if(FMO){
832 833
    if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
    if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
834
    if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
835 836 837 838 839 840 841 842
    }else{
        if(h->slice_table[topleft_xy ] != h->slice_num){
            h->topleft_type = 0;
            if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
            if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
        }
    }
    if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
}

static void fill_decode_caches(H264Context *h, int mb_type){
    MpegEncContext * const s = &h->s;
    int topleft_xy, top_xy, topright_xy, left_xy[2];
    int topleft_type, top_type, topright_type, left_type[2];
    const uint8_t * left_block= h->left_block;
    int i;

    topleft_xy   = h->topleft_mb_xy ;
    top_xy       = h->top_mb_xy     ;
    topright_xy  = h->topright_mb_xy;
    left_xy[0]   = h->left_mb_xy[0] ;
    left_xy[1]   = h->left_mb_xy[1] ;
    topleft_type = h->topleft_type  ;
    top_type     = h->top_type      ;
    topright_type= h->topright_type ;
    left_type[0] = h->left_type[0]  ;
    left_type[1] = h->left_type[1]  ;
862

863
    if(!IS_SKIP(mb_type)){
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        if(IS_INTRA(mb_type)){
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
            h->topleft_samples_available=
            h->top_samples_available=
            h->left_samples_available= 0xFFFF;
            h->topright_samples_available= 0xEEEA;

            if(!(top_type & type_mask)){
                h->topleft_samples_available= 0xB3FF;
                h->top_samples_available= 0x33FF;
                h->topright_samples_available= 0x26EA;
            }
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
                if(IS_INTERLACED(mb_type)){
                    if(!(left_type[0] & type_mask)){
                        h->topleft_samples_available&= 0xDFFF;
                        h->left_samples_available&= 0x5FFF;
                    }
                    if(!(left_type[1] & type_mask)){
                        h->topleft_samples_available&= 0xFF5F;
                        h->left_samples_available&= 0xFF5F;
                    }
                }else{
887 888
                    int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];

889 890 891 892 893
                    assert(left_xy[0] == left_xy[1]);
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
                        h->topleft_samples_available&= 0xDF5F;
                        h->left_samples_available&= 0x5F5F;
                    }
894 895
                }
            }else{
896
                if(!(left_type[0] & type_mask)){
897 898 899 900 901
                    h->topleft_samples_available&= 0xDF5F;
                    h->left_samples_available&= 0x5F5F;
                }
            }

902 903
            if(!(topleft_type & type_mask))
                h->topleft_samples_available&= 0x7FFF;
904

905 906
            if(!(topright_type & type_mask))
                h->topright_samples_available&= 0xFBFF;
907

908 909
            if(IS_INTRA4x4(mb_type)){
                if(IS_INTRA4x4(top_type)){
910
                    AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
911
                }else{
912 913 914
                    h->intra4x4_pred_mode_cache[4+8*0]=
                    h->intra4x4_pred_mode_cache[5+8*0]=
                    h->intra4x4_pred_mode_cache[6+8*0]=
915
                    h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
916 917 918
                }
                for(i=0; i<2; i++){
                    if(IS_INTRA4x4(left_type[i])){
919
                        int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
920 921
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
922 923
                    }else{
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
924
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
925
                    }
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
                }
            }
        }


/*
0 . T T. T T T T
1 L . .L . . . .
2 L . .L . . . .
3 . T TL . . . .
4 L . .L . . . .
5 L . .. . . . .
*/
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
    if(top_type){
941
        AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
942 943
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
944

945 946
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
947
    }else {
948 949
            h->non_zero_count_cache[1+8*0]=
            h->non_zero_count_cache[2+8*0]=
950

951 952
            h->non_zero_count_cache[1+8*3]=
            h->non_zero_count_cache[2+8*3]=
953
            AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
954 955 956 957
    }

    for (i=0; i<2; i++) {
        if(left_type[i]){
958 959
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
960 961
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
962
        }else{
963 964 965 966
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
                h->non_zero_count_cache[0+8*1 +   8*i]=
                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
967 968 969
        }
    }

970
    if( CABAC ) {
971 972 973 974
        // top_cbp
        if(top_type) {
            h->top_cbp = h->cbp_table[top_xy];
        } else {
975
            h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
976 977 978
        }
        // left_cbp
        if (left_type[0]) {
979 980 981
            h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
                        |  ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
                        | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
982 983
        } else {
            h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
984 985
        }
    }
986
    }
987 988

#if 1
989
    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
990 991
        int list;
        for(list=0; list<h->list_count; list++){
992
            if(!USES_LIST(mb_type, list)){
993 994 995 996 997 998 999
                /*if(!h->mv_cache_clean[list]){
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
                    h->mv_cache_clean[list]= 1;
                }*/
                continue;
            }
1000 1001
            assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));

1002 1003 1004 1005
            h->mv_cache_clean[list]= 0;

            if(USES_LIST(top_type, list)){
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1006
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1007
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1008
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
1009
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1010
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
1011
            }else{
1012
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1013
                AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
1014 1015
            }

1016
            if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
1017 1018 1019 1020
            for(i=0; i<2; i++){
                int cache_idx = scan8[0] - 1 + i*2*8;
                if(USES_LIST(left_type[i], list)){
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1021
                    const int b8_xy= 4*left_xy[i] + 1;
1022 1023
                    AV_COPY32(h->mv_cache[list][cache_idx  ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
                    AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
1024 1025
                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
1026
                }else{
1027 1028
                    AV_ZERO32(h->mv_cache [list][cache_idx  ]);
                    AV_ZERO32(h->mv_cache [list][cache_idx+8]);
1029
                    h->ref_cache[list][cache_idx  ]=
1030
                    h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1031 1032
                }
            }
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            }else{
                if(USES_LIST(left_type[0], list)){
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
                    const int b8_xy= 4*left_xy[0] + 1;
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
                    h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
                }else{
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
                    h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
                }
            }
1044 1045 1046

            if(USES_LIST(topright_type, list)){
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1047
                AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
1048
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
1049
            }else{
1050
                AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
1051 1052
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
            }
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
            if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
                if(USES_LIST(topleft_type, list)){
                    const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
                    const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
                    h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
                }else{
                    AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
                    h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
                }
            }
1064

1065
            if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1066 1067
                continue;

1068
            if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1069 1070
            h->ref_cache[list][scan8[4 ]] =
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1071 1072
            AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
            AV_ZERO32(h->mv_cache [list][scan8[12]]);
1073

1074
            if( CABAC ) {
1075 1076
                /* XXX beurk, Load mvd */
                if(USES_LIST(top_type, list)){
1077
                    const int b_xy= h->mb2br_xy[top_xy];
1078
                    AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1079
                }else{
1080
                    AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1081 1082
                }
                if(USES_LIST(left_type[0], list)){
1083 1084 1085
                    const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
1086
                }else{
1087 1088
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
1089 1090
                }
                if(USES_LIST(left_type[1], list)){
1091 1092 1093
                    const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
1094
                }else{
1095 1096
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
1097
                }
1098 1099
                AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
                AV_ZERO16(h->mvd_cache [list][scan8[12]]);
1100
                if(h->slice_type_nos == FF_B_TYPE){
1101
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1102 1103

                    if(IS_DIRECT(top_type)){
1104
                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
1105
                    }else if(IS_8X8(top_type)){
1106 1107 1108
                        int b8_xy = 4*top_xy;
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
1109
                    }else{
1110
                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
1111 1112 1113
                    }

                    if(IS_DIRECT(left_type[0]))
1114
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1115
                    else if(IS_8X8(left_type[0]))
1116
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
1117
                    else
1118
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1119 1120

                    if(IS_DIRECT(left_type[1]))
1121
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1122
                    else if(IS_8X8(left_type[1]))
1123
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
1124
                    else
1125
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1126 1127
                }
            }
1128
            }
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            if(FRAME_MBAFF){
#define MAP_MVS\
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
                if(MB_FIELD){
#define MAP_F2F(idx, mb_type)\
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
                        h->ref_cache[list][idx] <<= 1;\
                        h->mv_cache[list][idx][1] /= 2;\
1146
                        h->mvd_cache[list][idx][1] >>=1;\
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
                    }
                    MAP_MVS
#undef MAP_F2F
                }else{
#define MAP_F2F(idx, mb_type)\
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
                        h->ref_cache[list][idx] >>= 1;\
                        h->mv_cache[list][idx][1] <<= 1;\
                        h->mvd_cache[list][idx][1] <<= 1;\
                    }
                    MAP_MVS
#undef MAP_F2F
                }
            }
        }
    }
#endif

1165
        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/**
 * gets the predicted intra4x4 prediction mode.
 */
static inline int pred_intra_mode(H264Context *h, int n){
    const int index8= scan8[n];
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
    const int min= FFMIN(left, top);

    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);

    if(min<0) return DC_PRED;
    else      return min;
}

static inline void write_back_non_zero_count(H264Context *h){
    const int mb_xy= h->mb_xy;

1186 1187
    AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
    AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1188 1189
    AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
    AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
1190
    AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1191 1192 1193 1194
}

static inline void write_back_motion(H264Context *h, int mb_type){
    MpegEncContext * const s = &h->s;
1195 1196
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
    const int b8_xy= 4*h->mb_xy;
1197 1198 1199
    int list;

    if(!USES_LIST(mb_type, 0))
1200
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1201 1202

    for(list=0; list<h->list_count; list++){
1203 1204 1205 1206
        int y, b_stride;
        int16_t (*mv_dst)[2];
        int16_t (*mv_src)[2];

1207 1208 1209
        if(!USES_LIST(mb_type, list))
            continue;

1210 1211 1212
        b_stride = h->b_stride;
        mv_dst   = &s->current_picture.motion_val[list][b_xy];
        mv_src   = &h->mv_cache[list][scan8[0]];
1213
        for(y=0; y<4; y++){
1214
            AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1215
        }
1216
        if( CABAC ) {
1217
            uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
1218
            uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1219
            if(IS_SKIP(mb_type))
1220 1221 1222
                AV_ZERO128(mvd_dst);
            else{
            AV_COPY64(mvd_dst, mvd_src + 8*3);
1223 1224 1225
                AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
                AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
                AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
1226 1227 1228 1229 1230
            }
        }

        {
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1231 1232 1233 1234
            ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
            ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
            ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
            ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
1235 1236 1237
        }
    }

1238
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1239
        if(IS_8X8(mb_type)){
1240 1241 1242 1243
            uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
            direct_table[1] = h->sub_mb_type[1]>>1;
            direct_table[2] = h->sub_mb_type[2]>>1;
            direct_table[3] = h->sub_mb_type[3]>>1;
1244 1245 1246 1247 1248 1249
        }
    }
}

static inline int get_dct8x8_allowed(H264Context *h){
    if(h->sps.direct_8x8_inference_flag)
1250
        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1251
    else
1252
        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
}

/**
 * decodes a P_SKIP or B_SKIP macroblock
 */
static void decode_mb_skip(H264Context *h){
    MpegEncContext * const s = &h->s;
    const int mb_xy= h->mb_xy;
    int mb_type=0;

1263
    memset(h->non_zero_count[mb_xy], 0, 32);
1264 1265 1266 1267 1268 1269 1270 1271
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui

    if(MB_FIELD)
        mb_type|= MB_TYPE_INTERLACED;

    if( h->slice_type_nos == FF_B_TYPE )
    {
        // just for fill_caches. pred_direct_motion will set the real mb_type
1272
        mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1273 1274
        if(h->direct_spatial_mv_pred){
            fill_decode_neighbors(h, mb_type);
1275
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1276
        }
1277 1278 1279 1280 1281 1282 1283 1284
        ff_h264_pred_direct_motion(h, &mb_type);
        mb_type|= MB_TYPE_SKIP;
    }
    else
    {
        int mx, my;
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;

1285
        fill_decode_neighbors(h, mb_type);
1286
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
        pred_pskip_motion(h, &mx, &my);
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
    }

    write_back_motion(h, mb_type);
    s->current_picture.mb_type[mb_xy]= mb_type;
    s->current_picture.qscale_table[mb_xy]= s->qscale;
    h->slice_table[ mb_xy ]= h->slice_num;
    h->prev_mb_skipped= 1;
}

1299 1300
#include "h264_mvpred.h" //For pred_pskip_motion()

1301
#endif /* AVCODEC_H264_H */