ARM64: Refactor instruction selection unit tests.

BUG=
R=bmeurer@chromium.org

Review URL: https://codereview.chromium.org/475823002

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@23188 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
parent c26d0b5f
......@@ -18,6 +18,7 @@ struct DPI {
Constructor constructor;
const char* constructor_name;
ArchOpcode arch_opcode;
MachineType machine_type;
};
......@@ -28,105 +29,139 @@ std::ostream& operator<<(std::ostream& os, const DPI& dpi) {
// ARM64 Logical instructions.
static const DPI kLogicalInstructions[] = {
{&RawMachineAssembler::Word32And, "Word32And", kArm64And32},
{&RawMachineAssembler::Word64And, "Word64And", kArm64And},
{&RawMachineAssembler::Word32Or, "Word32Or", kArm64Or32},
{&RawMachineAssembler::Word64Or, "Word64Or", kArm64Or},
{&RawMachineAssembler::Word32Xor, "Word32Xor", kArm64Xor32},
{&RawMachineAssembler::Word64Xor, "Word64Xor", kArm64Xor}};
{&RawMachineAssembler::Word32And, "Word32And", kArm64And32, kMachInt32},
{&RawMachineAssembler::Word64And, "Word64And", kArm64And, kMachInt64},
{&RawMachineAssembler::Word32Or, "Word32Or", kArm64Or32, kMachInt32},
{&RawMachineAssembler::Word64Or, "Word64Or", kArm64Or, kMachInt64},
{&RawMachineAssembler::Word32Xor, "Word32Xor", kArm64Xor32, kMachInt32},
{&RawMachineAssembler::Word64Xor, "Word64Xor", kArm64Xor, kMachInt64}};
// ARM64 Arithmetic instructions.
static const DPI kAddSubInstructions[] = {
{&RawMachineAssembler::Int32Add, "Int32Add", kArm64Add32},
{&RawMachineAssembler::Int64Add, "Int64Add", kArm64Add},
{&RawMachineAssembler::Int32Sub, "Int32Sub", kArm64Sub32},
{&RawMachineAssembler::Int64Sub, "Int64Sub", kArm64Sub}};
// ARM64 Add/Sub immediates.
// TODO(all): Test only a subset of the immediates, similar to what we do for
// arm. Unit tests should be really fast!
class AddSubImmediates V8_FINAL : public std::list<int32_t> {
public:
AddSubImmediates() {
for (int32_t imm12 = 0; imm12 < 4096; ++imm12) {
CHECK(Assembler::IsImmAddSub(imm12));
CHECK(Assembler::IsImmAddSub(imm12 << 12));
push_back(imm12);
push_back(imm12 << 12);
}
}
};
{&RawMachineAssembler::Int32Add, "Int32Add", kArm64Add32, kMachInt32},
{&RawMachineAssembler::Int64Add, "Int64Add", kArm64Add, kMachInt64},
{&RawMachineAssembler::Int32Sub, "Int32Sub", kArm64Sub32, kMachInt32},
{&RawMachineAssembler::Int64Sub, "Int64Sub", kArm64Sub, kMachInt64}};
// ARM64 Add/Sub immediates: 12-bit immediate optionally shifted by 12.
// Below is a combination of a random subset and some edge values.
static const int32_t kAddSubImmediates[] = {
0, 1, 69, 493, 599, 701, 719,
768, 818, 842, 945, 1246, 1286, 1429,
1669, 2171, 2179, 2182, 2254, 2334, 2338,
2343, 2396, 2449, 2610, 2732, 2855, 2876,
2944, 3377, 3458, 3475, 3476, 3540, 3574,
3601, 3813, 3871, 3917, 4095, 4096, 16384,
364544, 462848, 970752, 1523712, 1863680, 2363392, 3219456,
3280896, 4247552, 4526080, 4575232, 4960256, 5505024, 5894144,
6004736, 6193152, 6385664, 6795264, 7114752, 7233536, 7348224,
7499776, 7573504, 7729152, 8634368, 8937472, 9465856, 10354688,
10682368, 11059200, 11460608, 13168640, 13176832, 14336000, 15028224,
15597568, 15892480, 16773120};
// ARM64 Mul/Div instructions.
static const DPI kMulDivInstructions[] = {
{&RawMachineAssembler::Int32Mul, "Int32Mul", kArm64Mul32},
{&RawMachineAssembler::Int64Mul, "Int64Mul", kArm64Mul},
{&RawMachineAssembler::Int32Div, "Int32Div", kArm64Idiv32},
{&RawMachineAssembler::Int64Div, "Int64Div", kArm64Idiv},
{&RawMachineAssembler::Int32UDiv, "Int32UDiv", kArm64Udiv32},
{&RawMachineAssembler::Int64UDiv, "Int64UDiv", kArm64Udiv}};
{&RawMachineAssembler::Int32Mul, "Int32Mul", kArm64Mul32, kMachInt32},
{&RawMachineAssembler::Int64Mul, "Int64Mul", kArm64Mul, kMachInt64},
{&RawMachineAssembler::Int32Div, "Int32Div", kArm64Idiv32, kMachInt32},
{&RawMachineAssembler::Int64Div, "Int64Div", kArm64Idiv, kMachInt64},
{&RawMachineAssembler::Int32UDiv, "Int32UDiv", kArm64Udiv32, kMachInt32},
{&RawMachineAssembler::Int64UDiv, "Int64UDiv", kArm64Udiv, kMachInt64}};
} // namespace
// TODO(all): Use TEST_P, see instruction-selector-arm-unittest.cc.
TEST_F(InstructionSelectorTest, LogicalWithParameter) {
TRACED_FOREACH(DPI, dpi, kLogicalInstructions) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
}
}
// -----------------------------------------------------------------------------
// Logical instructions.
// TODO(all): Use TEST_P, see instruction-selector-arm-unittest.cc.
TEST_F(InstructionSelectorTest, AddSubWithParameter) {
TRACED_FOREACH(DPI, dpi, kAddSubInstructions) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
}
typedef InstructionSelectorTestWithParam<DPI> InstructionSelectorLogicalTest;
TEST_P(InstructionSelectorLogicalTest, Parameter) {
const DPI dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// TODO(all): Use TEST_P, see instruction-selector-arm-unittest.cc.
TEST_F(InstructionSelectorTest, AddSubWithImmediate) {
AddSubImmediates immediates;
TRACED_FOREACH(DPI, dpi, kAddSubInstructions) {
for (AddSubImmediates::const_iterator j = immediates.begin();
j != immediates.end(); ++j) {
int32_t imm = *j;
SCOPED_TRACE(::testing::Message() << "imm = " << imm);
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
}
// TODO(all): add immediate tests.
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorLogicalTest,
::testing::ValuesIn(kLogicalInstructions));
// -----------------------------------------------------------------------------
// Add and Sub instructions.
typedef InstructionSelectorTestWithParam<DPI> InstructionSelectorAddSubTest;
TEST_P(InstructionSelectorAddSubTest, Parameter) {
const DPI dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// TODO(all): Use TEST_P, see instruction-selector-arm-unittest.cc.
TEST_F(InstructionSelectorTest, MulDivWithParameter) {
TRACED_FOREACH(DPI, dpi, kMulDivInstructions) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
TEST_P(InstructionSelectorAddSubTest, Immediate) {
const DPI dpi = GetParam();
const MachineType type = dpi.machine_type;
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, type, type);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorAddSubTest,
::testing::ValuesIn(kAddSubInstructions));
// -----------------------------------------------------------------------------
// Mul and Div instructions.
typedef InstructionSelectorTestWithParam<DPI> InstructionSelectorMulDivTest;
TEST_P(InstructionSelectorMulDivTest, Parameter) {
const DPI dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorMulDivTest,
::testing::ValuesIn(kMulDivInstructions));
// -----------------------------------------------------------------------------
// Conversions.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment