bignum-dtoa.cc 26.2 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#include "src/bignum-dtoa.h"

7
#include <cmath>
8

9
#include "src/base/logging.h"
10 11
#include "src/bignum.h"
#include "src/double.h"
12
#include "src/utils.h"
13 14 15 16 17

namespace v8 {
namespace internal {

static int NormalizedExponent(uint64_t significand, int exponent) {
18
  DCHECK_NE(significand, 0);
19 20 21 22 23 24 25 26 27 28
  while ((significand & Double::kHiddenBit) == 0) {
    significand = significand << 1;
    exponent = exponent - 1;
  }
  return exponent;
}


// Forward declarations:
// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
29
static int EstimatePower(int exponent);
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
// and denominator.
static void InitialScaledStartValues(double v,
                                     int estimated_power,
                                     bool need_boundary_deltas,
                                     Bignum* numerator,
                                     Bignum* denominator,
                                     Bignum* delta_minus,
                                     Bignum* delta_plus);
// Multiplies numerator/denominator so that its values lies in the range 1-10.
// Returns decimal_point s.t.
//  v = numerator'/denominator' * 10^(decimal_point-1)
//     where numerator' and denominator' are the values of numerator and
//     denominator after the call to this function.
static void FixupMultiply10(int estimated_power, bool is_even,
                            int* decimal_point,
                            Bignum* numerator, Bignum* denominator,
                            Bignum* delta_minus, Bignum* delta_plus);
// Generates digits from the left to the right and stops when the generated
// digits yield the shortest decimal representation of v.
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
                                   Bignum* delta_minus, Bignum* delta_plus,
                                   bool is_even,
                                   Vector<char> buffer, int* length);
// Generates 'requested_digits' after the decimal point.
static void BignumToFixed(int requested_digits, int* decimal_point,
                          Bignum* numerator, Bignum* denominator,
                          Vector<char>(buffer), int* length);
// Generates 'count' digits of numerator/denominator.
// Once 'count' digits have been produced rounds the result depending on the
// remainder (remainders of exactly .5 round upwards). Might update the
// decimal_point when rounding up (for example for 0.9999).
static void GenerateCountedDigits(int count, int* decimal_point,
                                  Bignum* numerator, Bignum* denominator,
                                  Vector<char>(buffer), int* length);


void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
                Vector<char> buffer, int* length, int* decimal_point) {
69
  DCHECK_GT(v, 0);
70
  DCHECK(!Double(v).IsSpecial());
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  uint64_t significand = Double(v).Significand();
  bool is_even = (significand & 1) == 0;
  int exponent = Double(v).Exponent();
  int normalized_exponent = NormalizedExponent(significand, exponent);
  // estimated_power might be too low by 1.
  int estimated_power = EstimatePower(normalized_exponent);

  // Shortcut for Fixed.
  // The requested digits correspond to the digits after the point. If the
  // number is much too small, then there is no need in trying to get any
  // digits.
  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
    buffer[0] = '\0';
    *length = 0;
    // Set decimal-point to -requested_digits. This is what Gay does.
    // Note that it should not have any effect anyways since the string is
    // empty.
    *decimal_point = -requested_digits;
    return;
  }

  Bignum numerator;
  Bignum denominator;
  Bignum delta_minus;
  Bignum delta_plus;
  // Make sure the bignum can grow large enough. The smallest double equals
  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
  // The maximum double is 1.7976931348623157e308 which needs fewer than
  // 308*4 binary digits.
100
  DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
  InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
                           &numerator, &denominator,
                           &delta_minus, &delta_plus);
  // We now have v = (numerator / denominator) * 10^estimated_power.
  FixupMultiply10(estimated_power, is_even, decimal_point,
                  &numerator, &denominator,
                  &delta_minus, &delta_plus);
  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
  //  1 <= (numerator + delta_plus) / denominator < 10
  switch (mode) {
    case BIGNUM_DTOA_SHORTEST:
      GenerateShortestDigits(&numerator, &denominator,
                             &delta_minus, &delta_plus,
                             is_even, buffer, length);
      break;
    case BIGNUM_DTOA_FIXED:
      BignumToFixed(requested_digits, decimal_point,
                    &numerator, &denominator,
                    buffer, length);
      break;
    case BIGNUM_DTOA_PRECISION:
      GenerateCountedDigits(requested_digits, decimal_point,
                            &numerator, &denominator,
                            buffer, length);
      break;
    default:
      UNREACHABLE();
  }
  buffer[*length] = '\0';
}


// The procedure starts generating digits from the left to the right and stops
// when the generated digits yield the shortest decimal representation of v. A
// decimal representation of v is a number lying closer to v than to any other
// double, so it converts to v when read.
//
// This is true if d, the decimal representation, is between m- and m+, the
// upper and lower boundaries. d must be strictly between them if !is_even.
//           m- := (numerator - delta_minus) / denominator
//           m+ := (numerator + delta_plus) / denominator
//
// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
//   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
//   will be produced. This should be the standard precondition.
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
                                   Bignum* delta_minus, Bignum* delta_plus,
                                   bool is_even,
                                   Vector<char> buffer, int* length) {
  // Small optimization: if delta_minus and delta_plus are the same just reuse
  // one of the two bignums.
  if (Bignum::Equal(*delta_minus, *delta_plus)) {
    delta_plus = delta_minus;
  }
  *length = 0;
  while (true) {
    uint16_t digit;
    digit = numerator->DivideModuloIntBignum(*denominator);
160
    DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive.
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    // digit = numerator / denominator (integer division).
    // numerator = numerator % denominator.
    buffer[(*length)++] = digit + '0';

    // Can we stop already?
    // If the remainder of the division is less than the distance to the lower
    // boundary we can stop. In this case we simply round down (discarding the
    // remainder).
    // Similarly we test if we can round up (using the upper boundary).
    bool in_delta_room_minus;
    bool in_delta_room_plus;
    if (is_even) {
      in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
    } else {
      in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
    }
    if (is_even) {
      in_delta_room_plus =
          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
    } else {
      in_delta_room_plus =
          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
    }
    if (!in_delta_room_minus && !in_delta_room_plus) {
      // Prepare for next iteration.
      numerator->Times10();
      delta_minus->Times10();
      // We optimized delta_plus to be equal to delta_minus (if they share the
      // same value). So don't multiply delta_plus if they point to the same
      // object.
      if (delta_minus != delta_plus) {
        delta_plus->Times10();
      }
    } else if (in_delta_room_minus && in_delta_room_plus) {
      // Let's see if 2*numerator < denominator.
      // If yes, then the next digit would be < 5 and we can round down.
      int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
      if (compare < 0) {
        // Remaining digits are less than .5. -> Round down (== do nothing).
      } else if (compare > 0) {
        // Remaining digits are more than .5 of denominator. -> Round up.
        // Note that the last digit could not be a '9' as otherwise the whole
        // loop would have stopped earlier.
        // We still have an assert here in case the preconditions were not
        // satisfied.
206
        DCHECK_NE(buffer[(*length) - 1], '9');
207 208 209 210 211 212 213 214 215 216
        buffer[(*length) - 1]++;
      } else {
        // Halfway case.
        // TODO(floitsch): need a way to solve half-way cases.
        //   For now let's round towards even (since this is what Gay seems to
        //   do).

        if ((buffer[(*length) - 1] - '0') % 2 == 0) {
          // Round down => Do nothing.
        } else {
217
          DCHECK_NE(buffer[(*length) - 1], '9');
218 219 220 221 222 223 224 225 226 227 228
          buffer[(*length) - 1]++;
        }
      }
      return;
    } else if (in_delta_room_minus) {
      // Round down (== do nothing).
      return;
    } else {  // in_delta_room_plus
      // Round up.
      // Note again that the last digit could not be '9' since this would have
      // stopped the loop earlier.
229
      // We still have an DCHECK here, in case the preconditions were not
230
      // satisfied.
231
      DCHECK_NE(buffer[(*length) - 1], '9');
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
      buffer[(*length) - 1]++;
      return;
    }
  }
}


// Let v = numerator / denominator < 10.
// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
// from left to right. Once 'count' digits have been produced we decide wether
// to round up or down. Remainders of exactly .5 round upwards. Numbers such
// as 9.999999 propagate a carry all the way, and change the
// exponent (decimal_point), when rounding upwards.
static void GenerateCountedDigits(int count, int* decimal_point,
                                  Bignum* numerator, Bignum* denominator,
                                  Vector<char>(buffer), int* length) {
248
  DCHECK_GE(count, 0);
249 250 251
  for (int i = 0; i < count - 1; ++i) {
    uint16_t digit;
    digit = numerator->DivideModuloIntBignum(*denominator);
252
    DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive.
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    // digit = numerator / denominator (integer division).
    // numerator = numerator % denominator.
    buffer[i] = digit + '0';
    // Prepare for next iteration.
    numerator->Times10();
  }
  // Generate the last digit.
  uint16_t digit;
  digit = numerator->DivideModuloIntBignum(*denominator);
  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
    digit++;
  }
  buffer[count - 1] = digit + '0';
  // Correct bad digits (in case we had a sequence of '9's). Propagate the
  // carry until we hat a non-'9' or til we reach the first digit.
  for (int i = count - 1; i > 0; --i) {
    if (buffer[i] != '0' + 10) break;
    buffer[i] = '0';
    buffer[i - 1]++;
  }
  if (buffer[0] == '0' + 10) {
    // Propagate a carry past the top place.
    buffer[0] = '1';
    (*decimal_point)++;
  }
  *length = count;
}


// Generates 'requested_digits' after the decimal point. It might omit
// trailing '0's. If the input number is too small then no digits at all are
// generated (ex.: 2 fixed digits for 0.00001).
//
// Input verifies:  1 <= (numerator + delta) / denominator < 10.
static void BignumToFixed(int requested_digits, int* decimal_point,
                          Bignum* numerator, Bignum* denominator,
                          Vector<char>(buffer), int* length) {
  // Note that we have to look at more than just the requested_digits, since
  // a number could be rounded up. Example: v=0.5 with requested_digits=0.
  // Even though the power of v equals 0 we can't just stop here.
  if (-(*decimal_point) > requested_digits) {
    // The number is definitively too small.
    // Ex: 0.001 with requested_digits == 1.
    // Set decimal-point to -requested_digits. This is what Gay does.
    // Note that it should not have any effect anyways since the string is
    // empty.
    *decimal_point = -requested_digits;
    *length = 0;
    return;
  } else if (-(*decimal_point) == requested_digits) {
    // We only need to verify if the number rounds down or up.
    // Ex: 0.04 and 0.06 with requested_digits == 1.
305
    DCHECK(*decimal_point == -requested_digits);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    // Initially the fraction lies in range (1, 10]. Multiply the denominator
    // by 10 so that we can compare more easily.
    denominator->Times10();
    if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
      // If the fraction is >= 0.5 then we have to include the rounded
      // digit.
      buffer[0] = '1';
      *length = 1;
      (*decimal_point)++;
    } else {
      // Note that we caught most of similar cases earlier.
      *length = 0;
    }
    return;
  } else {
    // The requested digits correspond to the digits after the point.
    // The variable 'needed_digits' includes the digits before the point.
    int needed_digits = (*decimal_point) + requested_digits;
    GenerateCountedDigits(needed_digits, decimal_point,
                          numerator, denominator,
                          buffer, length);
  }
}


// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
// v = f * 2^exponent and 2^52 <= f < 2^53.
// v is hence a normalized double with the given exponent. The output is an
// approximation for the exponent of the decimal approimation .digits * 10^k.
//
// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
// Note: this property holds for v's upper boundary m+ too.
//    10^k <= m+ < 10^k+1.
//   (see explanation below).
//
// Examples:
//  EstimatePower(0)   => 16
//  EstimatePower(-52) => 0
//
// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
static int EstimatePower(int exponent) {
  // This function estimates log10 of v where v = f*2^e (with e == exponent).
  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
  // Note that f is bounded by its container size. Let p = 53 (the double's
  // significand size). Then 2^(p-1) <= f < 2^p.
  //
  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
  // The computed number undershoots by less than 0.631 (when we compute log3
  // and not log10).
  //
  // Optimization: since we only need an approximated result this computation
  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
  // not really measurable, though.
  //
  // Since we want to avoid overshooting we decrement by 1e10 so that
  // floating-point imprecisions don't affect us.
  //
  // Explanation for v's boundary m+: the computation takes advantage of
  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
  // (even for denormals where the delta can be much more important).

  const double k1Log10 = 0.30102999566398114;  // 1/lg(10)

  // For doubles len(f) == 53 (don't forget the hidden bit).
  const int kSignificandSize = 53;
372 373
  double estimate =
      std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
374 375 376 377 378 379 380 381 382 383
  return static_cast<int>(estimate);
}


// See comments for InitialScaledStartValues.
static void InitialScaledStartValuesPositiveExponent(
    double v, int estimated_power, bool need_boundary_deltas,
    Bignum* numerator, Bignum* denominator,
    Bignum* delta_minus, Bignum* delta_plus) {
  // A positive exponent implies a positive power.
384
  DCHECK_GE(estimated_power, 0);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  // Since the estimated_power is positive we simply multiply the denominator
  // by 10^estimated_power.

  // numerator = v.
  numerator->AssignUInt64(Double(v).Significand());
  numerator->ShiftLeft(Double(v).Exponent());
  // denominator = 10^estimated_power.
  denominator->AssignPowerUInt16(10, estimated_power);

  if (need_boundary_deltas) {
    // Introduce a common denominator so that the deltas to the boundaries are
    // integers.
    denominator->ShiftLeft(1);
    numerator->ShiftLeft(1);
    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
    // denominator (of 2) delta_plus equals 2^e.
    delta_plus->AssignUInt16(1);
    delta_plus->ShiftLeft(Double(v).Exponent());
    // Same for delta_minus (with adjustments below if f == 2^p-1).
    delta_minus->AssignUInt16(1);
    delta_minus->ShiftLeft(Double(v).Exponent());

    // If the significand (without the hidden bit) is 0, then the lower
    // boundary is closer than just half a ulp (unit in the last place).
    // There is only one exception: if the next lower number is a denormal then
    // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
    // have to test it in the other function where exponent < 0).
    uint64_t v_bits = Double(v).AsUint64();
    if ((v_bits & Double::kSignificandMask) == 0) {
      // The lower boundary is closer at half the distance of "normal" numbers.
      // Increase the common denominator and adapt all but the delta_minus.
      denominator->ShiftLeft(1);  // *2
      numerator->ShiftLeft(1);    // *2
      delta_plus->ShiftLeft(1);   // *2
    }
  }
}


// See comments for InitialScaledStartValues
static void InitialScaledStartValuesNegativeExponentPositivePower(
    double v, int estimated_power, bool need_boundary_deltas,
    Bignum* numerator, Bignum* denominator,
    Bignum* delta_minus, Bignum* delta_plus) {
  uint64_t significand = Double(v).Significand();
  int exponent = Double(v).Exponent();
  // v = f * 2^e with e < 0, and with estimated_power >= 0.
  // This means that e is close to 0 (have a look at how estimated_power is
  // computed).

  // numerator = significand
  //  since v = significand * 2^exponent this is equivalent to
  //  numerator = v * / 2^-exponent
  numerator->AssignUInt64(significand);
  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
  denominator->AssignPowerUInt16(10, estimated_power);
  denominator->ShiftLeft(-exponent);

  if (need_boundary_deltas) {
    // Introduce a common denominator so that the deltas to the boundaries are
    // integers.
    denominator->ShiftLeft(1);
    numerator->ShiftLeft(1);
    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
    // denominator (of 2) delta_plus equals 2^e.
    // Given that the denominator already includes v's exponent the distance
    // to the boundaries is simply 1.
    delta_plus->AssignUInt16(1);
    // Same for delta_minus (with adjustments below if f == 2^p-1).
    delta_minus->AssignUInt16(1);

    // If the significand (without the hidden bit) is 0, then the lower
    // boundary is closer than just one ulp (unit in the last place).
    // There is only one exception: if the next lower number is a denormal
    // then the distance is 1 ulp. Since the exponent is close to zero
    // (otherwise estimated_power would have been negative) this cannot happen
    // here either.
    uint64_t v_bits = Double(v).AsUint64();
    if ((v_bits & Double::kSignificandMask) == 0) {
      // The lower boundary is closer at half the distance of "normal" numbers.
      // Increase the denominator and adapt all but the delta_minus.
      denominator->ShiftLeft(1);  // *2
      numerator->ShiftLeft(1);    // *2
      delta_plus->ShiftLeft(1);   // *2
    }
  }
}


// See comments for InitialScaledStartValues
static void InitialScaledStartValuesNegativeExponentNegativePower(
    double v, int estimated_power, bool need_boundary_deltas,
    Bignum* numerator, Bignum* denominator,
    Bignum* delta_minus, Bignum* delta_plus) {
  const uint64_t kMinimalNormalizedExponent =
      V8_2PART_UINT64_C(0x00100000, 00000000);
  uint64_t significand = Double(v).Significand();
  int exponent = Double(v).Exponent();
  // Instead of multiplying the denominator with 10^estimated_power we
  // multiply all values (numerator and deltas) by 10^-estimated_power.

  // Use numerator as temporary container for power_ten.
  Bignum* power_ten = numerator;
  power_ten->AssignPowerUInt16(10, -estimated_power);

  if (need_boundary_deltas) {
    // Since power_ten == numerator we must make a copy of 10^estimated_power
    // before we complete the computation of the numerator.
    // delta_plus = delta_minus = 10^estimated_power
    delta_plus->AssignBignum(*power_ten);
    delta_minus->AssignBignum(*power_ten);
  }

  // numerator = significand * 2 * 10^-estimated_power
  //  since v = significand * 2^exponent this is equivalent to
  // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
  // Remember: numerator has been abused as power_ten. So no need to assign it
  //  to itself.
503
  DCHECK(numerator == power_ten);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
  numerator->MultiplyByUInt64(significand);

  // denominator = 2 * 2^-exponent with exponent < 0.
  denominator->AssignUInt16(1);
  denominator->ShiftLeft(-exponent);

  if (need_boundary_deltas) {
    // Introduce a common denominator so that the deltas to the boundaries are
    // integers.
    numerator->ShiftLeft(1);
    denominator->ShiftLeft(1);
    // With this shift the boundaries have their correct value, since
    // delta_plus = 10^-estimated_power, and
    // delta_minus = 10^-estimated_power.
    // These assignments have been done earlier.

    // The special case where the lower boundary is twice as close.
    // This time we have to look out for the exception too.
    uint64_t v_bits = Double(v).AsUint64();
    if ((v_bits & Double::kSignificandMask) == 0 &&
        // The only exception where a significand == 0 has its boundaries at
        // "normal" distances:
        (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
      numerator->ShiftLeft(1);    // *2
      denominator->ShiftLeft(1);  // *2
      delta_plus->ShiftLeft(1);   // *2
    }
  }
}


// Let v = significand * 2^exponent.
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
// and denominator. The functions GenerateShortestDigits and
// GenerateCountedDigits will then convert this ratio to its decimal
// representation d, with the required accuracy.
// Then d * 10^estimated_power is the representation of v.
// (Note: the fraction and the estimated_power might get adjusted before
// generating the decimal representation.)
//
// The initial start values consist of:
//  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
//  - a scaled (common) denominator.
//  optionally (used by GenerateShortestDigits to decide if it has the shortest
//  decimal converting back to v):
//  - v - m-: the distance to the lower boundary.
//  - m+ - v: the distance to the upper boundary.
//
// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
//
// Let ep == estimated_power, then the returned values will satisfy:
//  v / 10^ep = numerator / denominator.
//  v's boundarys m- and m+:
//    m- / 10^ep == v / 10^ep - delta_minus / denominator
//    m+ / 10^ep == v / 10^ep + delta_plus / denominator
//  Or in other words:
//    m- == v - delta_minus * 10^ep / denominator;
//    m+ == v + delta_plus * 10^ep / denominator;
//
// Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
//  or       10^k <= v < 10^(k+1)
//  we then have 0.1 <= numerator/denominator < 1
//           or    1 <= numerator/denominator < 10
//
// It is then easy to kickstart the digit-generation routine.
//
// The boundary-deltas are only filled if need_boundary_deltas is set.
static void InitialScaledStartValues(double v,
                                     int estimated_power,
                                     bool need_boundary_deltas,
                                     Bignum* numerator,
                                     Bignum* denominator,
                                     Bignum* delta_minus,
                                     Bignum* delta_plus) {
  if (Double(v).Exponent() >= 0) {
    InitialScaledStartValuesPositiveExponent(
        v, estimated_power, need_boundary_deltas,
        numerator, denominator, delta_minus, delta_plus);
  } else if (estimated_power >= 0) {
    InitialScaledStartValuesNegativeExponentPositivePower(
        v, estimated_power, need_boundary_deltas,
        numerator, denominator, delta_minus, delta_plus);
  } else {
    InitialScaledStartValuesNegativeExponentNegativePower(
        v, estimated_power, need_boundary_deltas,
        numerator, denominator, delta_minus, delta_plus);
  }
}


// This routine multiplies numerator/denominator so that its values lies in the
// range 1-10. That is after a call to this function we have:
//    1 <= (numerator + delta_plus) /denominator < 10.
// Let numerator the input before modification and numerator' the argument
// after modification, then the output-parameter decimal_point is such that
//  numerator / denominator * 10^estimated_power ==
//    numerator' / denominator' * 10^(decimal_point - 1)
// In some cases estimated_power was too low, and this is already the case. We
// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
// estimated_power) but do not touch the numerator or denominator.
// Otherwise the routine multiplies the numerator and the deltas by 10.
static void FixupMultiply10(int estimated_power, bool is_even,
                            int* decimal_point,
                            Bignum* numerator, Bignum* denominator,
                            Bignum* delta_minus, Bignum* delta_plus) {
  bool in_range;
  if (is_even) {
    // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
    // are rounded to the closest floating-point number with even significand.
    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
  } else {
    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
  }
  if (in_range) {
    // Since numerator + delta_plus >= denominator we already have
    // 1 <= numerator/denominator < 10. Simply update the estimated_power.
    *decimal_point = estimated_power + 1;
  } else {
    *decimal_point = estimated_power;
    numerator->Times10();
    if (Bignum::Equal(*delta_minus, *delta_plus)) {
      delta_minus->Times10();
      delta_plus->AssignBignum(*delta_minus);
    } else {
      delta_minus->Times10();
      delta_plus->Times10();
    }
  }
}

634 635
}  // namespace internal
}  // namespace v8