ic-mips64.cc 42 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


#include "src/v8.h"

#if V8_TARGET_ARCH_MIPS64

#include "src/codegen.h"
11
#include "src/ic/ic.h"
12
#include "src/ic/ic-compiler.h"
13
#include "src/ic/stub-cache.h"
14 15 16 17 18 19 20 21 22 23 24 25

namespace v8 {
namespace internal {


// ----------------------------------------------------------------------------
// Static IC stub generators.
//

#define __ ACCESS_MASM(masm)


26
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
                                            Label* global_object) {
  // Register usage:
  //   type: holds the receiver instance type on entry.
  __ Branch(global_object, eq, type, Operand(JS_GLOBAL_OBJECT_TYPE));
  __ Branch(global_object, eq, type, Operand(JS_BUILTINS_OBJECT_TYPE));
  __ Branch(global_object, eq, type, Operand(JS_GLOBAL_PROXY_TYPE));
}


// Helper function used from LoadIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
//           label is done.
// name:     Property name. It is not clobbered if a jump to the miss label is
//           done
// result:   Register for the result. It is only updated if a jump to the miss
//           label is not done. Can be the same as elements or name clobbering
//           one of these in the case of not jumping to the miss label.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
51 52 53
static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
                                   Register elements, Register name,
                                   Register result, Register scratch1,
54 55 56 57 58 59 60 61
                                   Register scratch2) {
  // Main use of the scratch registers.
  // scratch1: Used as temporary and to hold the capacity of the property
  //           dictionary.
  // scratch2: Used as temporary.
  Label done;

  // Probe the dictionary.
62 63
  NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
                                                   name, scratch1, scratch2);
64 65 66 67

  // If probing finds an entry check that the value is a normal
  // property.
  __ bind(&done);  // scratch2 == elements + 4 * index.
68 69
  const int kElementsStartOffset =
      NameDictionary::kHeaderSize +
70 71 72
      NameDictionary::kElementsStartIndex * kPointerSize;
  const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
  __ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
73
  __ And(at, scratch1,
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
         Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
  __ Branch(miss, ne, at, Operand(zero_reg));

  // Get the value at the masked, scaled index and return.
  __ ld(result,
        FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}


// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
//           label is done.
// name:     Property name. It is not clobbered if a jump to the miss label is
//           done
// value:    The value to store.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
96 97 98
static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
                                    Register elements, Register name,
                                    Register value, Register scratch1,
99 100 101 102 103 104 105 106
                                    Register scratch2) {
  // Main use of the scratch registers.
  // scratch1: Used as temporary and to hold the capacity of the property
  //           dictionary.
  // scratch2: Used as temporary.
  Label done;

  // Probe the dictionary.
107 108
  NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
                                                   name, scratch1, scratch2);
109 110 111 112

  // If probing finds an entry in the dictionary check that the value
  // is a normal property that is not read only.
  __ bind(&done);  // scratch2 == elements + 4 * index.
113 114
  const int kElementsStartOffset =
      NameDictionary::kHeaderSize +
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
      NameDictionary::kElementsStartIndex * kPointerSize;
  const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
  const int kTypeAndReadOnlyMask =
      (PropertyDetails::TypeField::kMask |
       PropertyDetails::AttributesField::encode(READ_ONLY));
  __ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
  __ And(at, scratch1, Operand(Smi::FromInt(kTypeAndReadOnlyMask)));
  __ Branch(miss, ne, at, Operand(zero_reg));

  // Store the value at the masked, scaled index and return.
  const int kValueOffset = kElementsStartOffset + kPointerSize;
  __ Daddu(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
  __ sd(value, MemOperand(scratch2));

  // Update the write barrier. Make sure not to clobber the value.
  __ mov(scratch1, value);
131 132
  __ RecordWrite(elements, scratch2, scratch1, kRAHasNotBeenSaved,
                 kDontSaveFPRegs);
133 134 135 136 137 138
}


// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
139
                                           Register receiver, Register map,
140
                                           Register scratch,
141
                                           int interceptor_bit, Label* slow) {
142 143 144 145 146 147 148 149 150 151 152 153 154
  // Check that the object isn't a smi.
  __ JumpIfSmi(receiver, slow);
  // Get the map of the receiver.
  __ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  // Check bit field.
  __ lbu(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
  __ And(at, scratch,
         Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
  __ Branch(slow, ne, at, Operand(zero_reg));
  // Check that the object is some kind of JS object EXCEPT JS Value type.
  // In the case that the object is a value-wrapper object,
  // we enter the runtime system to make sure that indexing into string
  // objects work as intended.
155
  DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE);
156 157 158 159 160 161 162
  __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
  __ Branch(slow, lt, scratch, Operand(JS_OBJECT_TYPE));
}


// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
163 164 165 166
static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
                                  Register key, Register elements,
                                  Register scratch1, Register scratch2,
                                  Register result, Label* not_fast_array,
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
                                  Label* out_of_range) {
  // Register use:
  //
  // receiver - holds the receiver on entry.
  //            Unchanged unless 'result' is the same register.
  //
  // key      - holds the smi key on entry.
  //            Unchanged unless 'result' is the same register.
  //
  // elements - holds the elements of the receiver on exit.
  //
  // result   - holds the result on exit if the load succeeded.
  //            Allowed to be the the same as 'receiver' or 'key'.
  //            Unchanged on bailout so 'receiver' and 'key' can be safely
  //            used by further computation.
  //
  // Scratch registers:
  //
  // scratch1 - used to hold elements map and elements length.
  //            Holds the elements map if not_fast_array branch is taken.
  //
  // scratch2 - used to hold the loaded value.

  __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  if (not_fast_array != NULL) {
    // Check that the object is in fast mode (not dictionary).
    __ ld(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
    __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
    __ Branch(not_fast_array, ne, scratch1, Operand(at));
  } else {
    __ AssertFastElements(elements);
  }

  // Check that the key (index) is within bounds.
  __ ld(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
  __ Branch(out_of_range, hs, key, Operand(scratch1));

  // Fast case: Do the load.
  __ Daddu(scratch1, elements,
206
           Operand(FixedArray::kHeaderSize - kHeapObjectTag));
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  // The key is a smi.
  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
  __ SmiScale(at, key, kPointerSizeLog2);
  __ daddu(at, at, scratch1);
  __ ld(scratch2, MemOperand(at));

  __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
  // In case the loaded value is the_hole we have to consult GetProperty
  // to ensure the prototype chain is searched.
  __ Branch(out_of_range, eq, scratch2, Operand(at));
  __ mov(result, scratch2);
}


// Checks whether a key is an array index string or a unique name.
// Falls through if a key is a unique name.
223 224 225
static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
                                 Register map, Register hash,
                                 Label* index_string, Label* not_unique) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  // The key is not a smi.
  Label unique;
  // Is it a name?
  __ GetObjectType(key, map, hash);
  __ Branch(not_unique, hi, hash, Operand(LAST_UNIQUE_NAME_TYPE));
  STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
  __ Branch(&unique, eq, hash, Operand(LAST_UNIQUE_NAME_TYPE));

  // Is the string an array index, with cached numeric value?
  __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
  __ And(at, hash, Operand(Name::kContainsCachedArrayIndexMask));
  __ Branch(index_string, eq, at, Operand(zero_reg));

  // Is the string internalized? We know it's a string, so a single
  // bit test is enough.
  // map: key map
  __ lbu(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kInternalizedTag == 0);
  __ And(at, hash, Operand(kIsNotInternalizedMask));
  __ Branch(not_unique, ne, at, Operand(zero_reg));

  __ bind(&unique);
}


void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
  // The return address is in lr.
  Register receiver = ReceiverRegister();
  Register name = NameRegister();
255 256
  DCHECK(receiver.is(a1));
  DCHECK(name.is(a2));
257 258

  // Probe the stub cache.
259 260
  Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
      Code::ComputeHandlerFlags(Code::LOAD_IC));
261 262
  masm->isolate()->stub_cache()->GenerateProbe(masm, flags, receiver, name, a3,
                                               a4, a5, a6);
263 264 265 266 267 268 269

  // Cache miss: Jump to runtime.
  GenerateMiss(masm);
}


void LoadIC::GenerateNormal(MacroAssembler* masm) {
270
  Register dictionary = a0;
271 272
  DCHECK(!dictionary.is(ReceiverRegister()));
  DCHECK(!dictionary.is(NameRegister()));
273
  Label slow;
274

275 276 277
  __ ld(dictionary,
        FieldMemOperand(ReceiverRegister(), JSObject::kPropertiesOffset));
  GenerateDictionaryLoad(masm, &slow, dictionary, NameRegister(), v0, a3, a4);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  __ Ret();

  // Dictionary load failed, go slow (but don't miss).
  __ bind(&slow);
  GenerateRuntimeGetProperty(masm);
}


// A register that isn't one of the parameters to the load ic.
static const Register LoadIC_TempRegister() { return a3; }


void LoadIC::GenerateMiss(MacroAssembler* masm) {
  // The return address is on the stack.
  Isolate* isolate = masm->isolate();

  __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a3, a4);

  __ mov(LoadIC_TempRegister(), ReceiverRegister());
  __ Push(LoadIC_TempRegister(), NameRegister());

  // Perform tail call to the entry.
  ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate);
  __ TailCallExternalReference(ref, 2, 1);
}


void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
  // The return address is in ra.

  __ mov(LoadIC_TempRegister(), ReceiverRegister());
  __ Push(LoadIC_TempRegister(), NameRegister());

  __ TailCallRuntime(Runtime::kGetProperty, 2, 1);
}


315 316 317 318
static MemOperand GenerateMappedArgumentsLookup(
    MacroAssembler* masm, Register object, Register key, Register scratch1,
    Register scratch2, Register scratch3, Label* unmapped_case,
    Label* slow_case) {
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  Heap* heap = masm->isolate()->heap();

  // Check that the receiver is a JSObject. Because of the map check
  // later, we do not need to check for interceptors or whether it
  // requires access checks.
  __ JumpIfSmi(object, slow_case);
  // Check that the object is some kind of JSObject.
  __ GetObjectType(object, scratch1, scratch2);
  __ Branch(slow_case, lt, scratch2, Operand(FIRST_JS_RECEIVER_TYPE));

  // Check that the key is a positive smi.
  __ NonNegativeSmiTst(key, scratch1);
  __ Branch(slow_case, ne, scratch1, Operand(zero_reg));

  // Load the elements into scratch1 and check its map.
  Handle<Map> arguments_map(heap->sloppy_arguments_elements_map());
  __ ld(scratch1, FieldMemOperand(object, JSObject::kElementsOffset));
336
  __ CheckMap(scratch1, scratch2, arguments_map, slow_case, DONT_DO_SMI_CHECK);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  // Check if element is in the range of mapped arguments. If not, jump
  // to the unmapped lookup with the parameter map in scratch1.
  __ ld(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset));
  __ Dsubu(scratch2, scratch2, Operand(Smi::FromInt(2)));
  __ Branch(unmapped_case, Ugreater_equal, key, Operand(scratch2));

  // Load element index and check whether it is the hole.
  const int kOffset =
      FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag;

  __ SmiUntag(scratch3, key);
  __ dsll(scratch3, scratch3, kPointerSizeLog2);
  __ Daddu(scratch3, scratch3, Operand(kOffset));

  __ Daddu(scratch2, scratch1, scratch3);
  __ ld(scratch2, MemOperand(scratch2));
  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
  __ Branch(unmapped_case, eq, scratch2, Operand(scratch3));

  // Load value from context and return it. We can reuse scratch1 because
  // we do not jump to the unmapped lookup (which requires the parameter
  // map in scratch1).
  __ ld(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
  __ SmiUntag(scratch3, scratch2);
  __ dsll(scratch3, scratch3, kPointerSizeLog2);
  __ Daddu(scratch3, scratch3, Operand(Context::kHeaderSize - kHeapObjectTag));
  __ Daddu(scratch2, scratch1, scratch3);
  return MemOperand(scratch2);
}


static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
                                                  Register key,
                                                  Register parameter_map,
                                                  Register scratch,
                                                  Label* slow_case) {
  // Element is in arguments backing store, which is referenced by the
  // second element of the parameter_map. The parameter_map register
  // must be loaded with the parameter map of the arguments object and is
  // overwritten.
  const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
  Register backing_store = parameter_map;
  __ ld(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset));
380
  __ CheckMap(backing_store, scratch, Heap::kFixedArrayMapRootIndex, slow_case,
381 382 383 384 385
              DONT_DO_SMI_CHECK);
  __ ld(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset));
  __ Branch(slow_case, Ugreater_equal, key, Operand(scratch));
  __ SmiUntag(scratch, key);
  __ dsll(scratch, scratch, kPointerSizeLog2);
386
  __ Daddu(scratch, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
387 388 389 390 391 392 393 394 395
  __ Daddu(scratch, backing_store, scratch);
  return MemOperand(scratch);
}


void KeyedLoadIC::GenerateSloppyArguments(MacroAssembler* masm) {
  // The return address is in ra.
  Register receiver = ReceiverRegister();
  Register key = NameRegister();
396 397
  DCHECK(receiver.is(a1));
  DCHECK(key.is(a2));
398 399

  Label slow, notin;
400 401
  MemOperand mapped_location = GenerateMappedArgumentsLookup(
      masm, receiver, key, a0, a3, a4, &notin, &slow);
402 403 404 405 406
  __ Ret(USE_DELAY_SLOT);
  __ ld(v0, mapped_location);
  __ bind(&notin);
  // The unmapped lookup expects that the parameter map is in a2.
  MemOperand unmapped_location =
407
      GenerateUnmappedArgumentsLookup(masm, key, a0, a3, &slow);
408 409 410 411 412 413 414 415 416 417 418
  __ ld(a0, unmapped_location);
  __ LoadRoot(a3, Heap::kTheHoleValueRootIndex);
  __ Branch(&slow, eq, a0, Operand(a3));
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, a0);
  __ bind(&slow);
  GenerateMiss(masm);
}


void KeyedStoreIC::GenerateSloppyArguments(MacroAssembler* masm) {
419 420 421
  Register receiver = ReceiverRegister();
  Register key = NameRegister();
  Register value = ValueRegister();
422
  DCHECK(value.is(a0));
423

424 425
  Label slow, notin;
  // Store address is returned in register (of MemOperand) mapped_location.
426 427 428 429
  MemOperand mapped_location = GenerateMappedArgumentsLookup(
      masm, receiver, key, a3, a4, a5, &notin, &slow);
  __ sd(value, mapped_location);
  __ mov(t1, value);
430
  DCHECK_EQ(mapped_location.offset(), 0);
431 432
  __ RecordWrite(a3, mapped_location.rm(), t1, kRAHasNotBeenSaved,
                 kDontSaveFPRegs);
433
  __ Ret(USE_DELAY_SLOT);
434
  __ mov(v0, value);  // (In delay slot) return the value stored in v0.
435 436 437 438
  __ bind(&notin);
  // The unmapped lookup expects that the parameter map is in a3.
  // Store address is returned in register (of MemOperand) unmapped_location.
  MemOperand unmapped_location =
439 440 441
      GenerateUnmappedArgumentsLookup(masm, key, a3, a4, &slow);
  __ sd(value, unmapped_location);
  __ mov(t1, value);
442
  DCHECK_EQ(unmapped_location.offset(), 0);
443 444
  __ RecordWrite(a3, unmapped_location.rm(), t1, kRAHasNotBeenSaved,
                 kDontSaveFPRegs);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, a0);  // (In delay slot) return the value stored in v0.
  __ bind(&slow);
  GenerateMiss(masm);
}


void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
  // The return address is in ra.
  Isolate* isolate = masm->isolate();

  __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a3, a4);

  __ Push(ReceiverRegister(), NameRegister());

  // Perform tail call to the entry.
  ExternalReference ref =
      ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate);

  __ TailCallExternalReference(ref, 2, 1);
}


// IC register specifications
const Register LoadIC::ReceiverRegister() { return a1; }
const Register LoadIC::NameRegister() { return a2; }


473
const Register LoadIC::SlotRegister() {
474
  DCHECK(FLAG_vector_ics);
475 476 477 478 479
  return a0;
}


const Register LoadIC::VectorRegister() {
480
  DCHECK(FLAG_vector_ics);
481 482 483 484
  return a3;
}


485
const Register StoreIC::ReceiverRegister() { return a1; }
486 487 488 489
const Register StoreIC::NameRegister() { return a2; }
const Register StoreIC::ValueRegister() { return a0; }


490
const Register KeyedStoreIC::MapRegister() { return a3; }
491 492


493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
  // The return address is in ra.

  __ Push(ReceiverRegister(), NameRegister());

  __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}


void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
  // The return address is in ra.
  Label slow, check_name, index_smi, index_name, property_array_property;
  Label probe_dictionary, check_number_dictionary;

  Register key = NameRegister();
  Register receiver = ReceiverRegister();
509 510
  DCHECK(key.is(a2));
  DCHECK(receiver.is(a1));
511 512 513 514 515 516 517 518 519

  Isolate* isolate = masm->isolate();

  // Check that the key is a smi.
  __ JumpIfNotSmi(key, &check_name);
  __ bind(&index_smi);
  // Now the key is known to be a smi. This place is also jumped to from below
  // where a numeric string is converted to a smi.

520 521
  GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
                                 Map::kHasIndexedInterceptor, &slow);
522 523 524 525

  // Check the receiver's map to see if it has fast elements.
  __ CheckFastElements(a0, a3, &check_number_dictionary);

526
  GenerateFastArrayLoad(masm, receiver, key, a0, a3, a4, v0, NULL, &slow);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
  __ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, a4, a3);
  __ Ret();

  __ bind(&check_number_dictionary);
  __ ld(a4, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ ld(a3, FieldMemOperand(a4, JSObject::kMapOffset));

  // Check whether the elements is a number dictionary.
  // a3: elements map
  // a4: elements
  __ LoadRoot(at, Heap::kHashTableMapRootIndex);
  __ Branch(&slow, ne, a3, Operand(at));
  __ dsra32(a0, key, 0);
  __ LoadFromNumberDictionary(&slow, a4, key, v0, a0, a3, a5);
  __ Ret();

  // Slow case, key and receiver still in a2 and a1.
  __ bind(&slow);
545
  __ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, a4,
546 547 548 549 550 551
                      a3);
  GenerateRuntimeGetProperty(masm);

  __ bind(&check_name);
  GenerateKeyNameCheck(masm, key, a0, a3, &index_name, &slow);

552 553
  GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
                                 Map::kHasNamedInterceptor, &slow);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633


  // If the receiver is a fast-case object, check the keyed lookup
  // cache. Otherwise probe the dictionary.
  __ ld(a3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
  __ ld(a4, FieldMemOperand(a3, HeapObject::kMapOffset));
  __ LoadRoot(at, Heap::kHashTableMapRootIndex);
  __ Branch(&probe_dictionary, eq, a4, Operand(at));

  // Load the map of the receiver, compute the keyed lookup cache hash
  // based on 32 bits of the map pointer and the name hash.
  __ ld(a0, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ dsll32(a3, a0, 0);
  __ dsrl32(a3, a3, 0);
  __ dsra(a3, a3, KeyedLookupCache::kMapHashShift);
  __ lwu(a4, FieldMemOperand(key, Name::kHashFieldOffset));
  __ dsra(at, a4, Name::kHashShift);
  __ xor_(a3, a3, at);
  int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask;
  __ And(a3, a3, Operand(mask));

  // Load the key (consisting of map and unique name) from the cache and
  // check for match.
  Label load_in_object_property;
  static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
  Label hit_on_nth_entry[kEntriesPerBucket];
  ExternalReference cache_keys =
      ExternalReference::keyed_lookup_cache_keys(isolate);
  __ li(a4, Operand(cache_keys));
  __ dsll(at, a3, kPointerSizeLog2 + 1);
  __ daddu(a4, a4, at);

  for (int i = 0; i < kEntriesPerBucket - 1; i++) {
    Label try_next_entry;
    __ ld(a5, MemOperand(a4, kPointerSize * i * 2));
    __ Branch(&try_next_entry, ne, a0, Operand(a5));
    __ ld(a5, MemOperand(a4, kPointerSize * (i * 2 + 1)));
    __ Branch(&hit_on_nth_entry[i], eq, key, Operand(a5));
    __ bind(&try_next_entry);
  }

  __ ld(a5, MemOperand(a4, kPointerSize * (kEntriesPerBucket - 1) * 2));
  __ Branch(&slow, ne, a0, Operand(a5));
  __ ld(a5, MemOperand(a4, kPointerSize * ((kEntriesPerBucket - 1) * 2 + 1)));
  __ Branch(&slow, ne, key, Operand(a5));

  // Get field offset.
  // a0     : receiver's map
  // a3     : lookup cache index
  ExternalReference cache_field_offsets =
      ExternalReference::keyed_lookup_cache_field_offsets(isolate);

  // Hit on nth entry.
  for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
    __ bind(&hit_on_nth_entry[i]);
    __ li(a4, Operand(cache_field_offsets));

    // TODO(yy) This data structure does NOT follow natural pointer size.
    __ dsll(at, a3, kPointerSizeLog2 - 1);
    __ daddu(at, a4, at);
    __ lwu(a5, MemOperand(at, kPointerSize / 2 * i));

    __ lbu(a6, FieldMemOperand(a0, Map::kInObjectPropertiesOffset));
    __ Dsubu(a5, a5, a6);
    __ Branch(&property_array_property, ge, a5, Operand(zero_reg));
    if (i != 0) {
      __ Branch(&load_in_object_property);
    }
  }

  // Load in-object property.
  __ bind(&load_in_object_property);
  __ lbu(a6, FieldMemOperand(a0, Map::kInstanceSizeOffset));
  // Index from start of object.
  __ daddu(a6, a6, a5);
  // Remove the heap tag.
  __ Dsubu(receiver, receiver, Operand(kHeapObjectTag));
  __ dsll(at, a6, kPointerSizeLog2);
  __ daddu(at, receiver, at);
  __ ld(v0, MemOperand(at));
634 635
  __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
                      a4, a3);
636 637 638 639 640 641 642 643 644
  __ Ret();

  // Load property array property.
  __ bind(&property_array_property);
  __ ld(receiver, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
  __ Daddu(receiver, receiver, FixedArray::kHeaderSize - kHeapObjectTag);
  __ dsll(v0, a5, kPointerSizeLog2);
  __ Daddu(v0, v0, a1);
  __ ld(v0, MemOperand(v0));
645 646
  __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
                      a4, a3);
647 648 649 650 651 652 653 654 655 656 657 658
  __ Ret();


  // Do a quick inline probe of the receiver's dictionary, if it
  // exists.
  __ bind(&probe_dictionary);
  // a3: elements
  __ ld(a0, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
  GenerateGlobalInstanceTypeCheck(masm, a0, &slow);
  // Load the property to v0.
  GenerateDictionaryLoad(masm, &slow, a3, key, v0, a5, a4);
659
  __ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1, a4,
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
                      a3);
  __ Ret();

  __ bind(&index_name);
  __ IndexFromHash(a3, key);
  // Now jump to the place where smi keys are handled.
  __ Branch(&index_smi);
}


void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
  // Return address is in ra.
  Label miss;

  Register receiver = ReceiverRegister();
  Register index = NameRegister();
  Register scratch = a3;
  Register result = v0;
678
  DCHECK(!scratch.is(receiver) && !scratch.is(index));
679

680
  StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
                                          &miss,  // When not a string.
                                          &miss,  // When not a number.
                                          &miss,  // When index out of range.
                                          STRING_INDEX_IS_ARRAY_INDEX);
  char_at_generator.GenerateFast(masm);
  __ Ret();

  StubRuntimeCallHelper call_helper;
  char_at_generator.GenerateSlow(masm, call_helper);

  __ bind(&miss);
  GenerateMiss(masm);
}


static void KeyedStoreGenerateGenericHelper(
697 698 699 700
    MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
    KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
    Register value, Register key, Register receiver, Register receiver_map,
    Register elements_map, Register elements) {
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
  Label transition_smi_elements;
  Label finish_object_store, non_double_value, transition_double_elements;
  Label fast_double_without_map_check;

  // Fast case: Do the store, could be either Object or double.
  __ bind(fast_object);
  Register scratch_value = a4;
  Register address = a5;
  if (check_map == kCheckMap) {
    __ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
    __ Branch(fast_double, ne, elements_map,
              Operand(masm->isolate()->factory()->fixed_array_map()));
  }

  // HOLECHECK: guards "A[i] = V"
  // We have to go to the runtime if the current value is the hole because
  // there may be a callback on the element.
  Label holecheck_passed1;
  __ Daddu(address, elements, FixedArray::kHeaderSize - kHeapObjectTag);
  __ SmiScale(at, key, kPointerSizeLog2);
  __ daddu(address, address, at);
  __ ld(scratch_value, MemOperand(address));

  __ Branch(&holecheck_passed1, ne, scratch_value,
            Operand(masm->isolate()->factory()->the_hole_value()));
  __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
                                      slow);

  __ bind(&holecheck_passed1);

  // Smi stores don't require further checks.
  Label non_smi_value;
  __ JumpIfNotSmi(value, &non_smi_value);

  if (increment_length == kIncrementLength) {
    // Add 1 to receiver->length.
    __ Daddu(scratch_value, key, Operand(Smi::FromInt(1)));
    __ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
  }
  // It's irrelevant whether array is smi-only or not when writing a smi.
  __ Daddu(address, elements,
742
           Operand(FixedArray::kHeaderSize - kHeapObjectTag));
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
  __ SmiScale(scratch_value, key, kPointerSizeLog2);
  __ Daddu(address, address, scratch_value);
  __ sd(value, MemOperand(address));
  __ Ret();

  __ bind(&non_smi_value);
  // Escape to elements kind transition case.
  __ CheckFastObjectElements(receiver_map, scratch_value,
                             &transition_smi_elements);

  // Fast elements array, store the value to the elements backing store.
  __ bind(&finish_object_store);
  if (increment_length == kIncrementLength) {
    // Add 1 to receiver->length.
    __ Daddu(scratch_value, key, Operand(Smi::FromInt(1)));
    __ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
  }
  __ Daddu(address, elements,
761
           Operand(FixedArray::kHeaderSize - kHeapObjectTag));
762 763 764 765 766
  __ SmiScale(scratch_value, key, kPointerSizeLog2);
  __ Daddu(address, address, scratch_value);
  __ sd(value, MemOperand(address));
  // Update write barrier for the elements array address.
  __ mov(scratch_value, value);  // Preserve the value which is returned.
767 768
  __ RecordWrite(elements, address, scratch_value, kRAHasNotBeenSaved,
                 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
769 770 771 772 773 774 775 776 777 778 779 780 781 782
  __ Ret();

  __ bind(fast_double);
  if (check_map == kCheckMap) {
    // Check for fast double array case. If this fails, call through to the
    // runtime.
    __ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
    __ Branch(slow, ne, elements_map, Operand(at));
  }

  // HOLECHECK: guards "A[i] double hole?"
  // We have to see if the double version of the hole is present. If so
  // go to the runtime.
  __ Daddu(address, elements,
783 784
           Operand(FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32) -
                   kHeapObjectTag));
785 786 787 788 789 790 791 792 793
  __ SmiScale(at, key, kPointerSizeLog2);
  __ daddu(address, address, at);
  __ lw(scratch_value, MemOperand(address));
  __ Branch(&fast_double_without_map_check, ne, scratch_value,
            Operand(kHoleNanUpper32));
  __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
                                      slow);

  __ bind(&fast_double_without_map_check);
794
  __ StoreNumberToDoubleElements(value, key,
795 796
                                 elements,  // Overwritten.
                                 a3,        // Scratch regs...
797
                                 a4, a5, &transition_double_elements);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
  if (increment_length == kIncrementLength) {
    // Add 1 to receiver->length.
    __ Daddu(scratch_value, key, Operand(Smi::FromInt(1)));
    __ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
  }
  __ Ret();

  __ bind(&transition_smi_elements);
  // Transition the array appropriately depending on the value type.
  __ ld(a4, FieldMemOperand(value, HeapObject::kMapOffset));
  __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
  __ Branch(&non_double_value, ne, a4, Operand(at));

  // Value is a double. Transition FAST_SMI_ELEMENTS ->
  // FAST_DOUBLE_ELEMENTS and complete the store.
813 814 815 816 817 818
  __ LoadTransitionedArrayMapConditional(
      FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, a4, slow);
  AllocationSiteMode mode =
      AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
  ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
                                                   receiver_map, mode, slow);
819 820 821 822 823
  __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ jmp(&fast_double_without_map_check);

  __ bind(&non_double_value);
  // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
824 825
  __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
                                         receiver_map, a4, slow);
826
  mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
827 828
  ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
      masm, receiver, key, value, receiver_map, mode, slow);
829 830 831 832 833 834 835
  __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ jmp(&finish_object_store);

  __ bind(&transition_double_elements);
  // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
  // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
  // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
836 837
  __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
                                         receiver_map, a4, slow);
838
  mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
839 840
  ElementsTransitionGenerator::GenerateDoubleToObject(
      masm, receiver, key, value, receiver_map, mode, slow);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
  __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ jmp(&finish_object_store);
}


void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
                                   StrictMode strict_mode) {
  // ---------- S t a t e --------------
  //  -- a0     : value
  //  -- a1     : key
  //  -- a2     : receiver
  //  -- ra     : return address
  // -----------------------------------
  Label slow, fast_object, fast_object_grow;
  Label fast_double, fast_double_grow;
  Label array, extra, check_if_double_array;

  // Register usage.
859 860 861
  Register value = ValueRegister();
  Register key = NameRegister();
  Register receiver = ReceiverRegister();
862
  DCHECK(value.is(a0));
863 864 865 866 867 868 869 870 871 872 873 874 875 876
  Register receiver_map = a3;
  Register elements_map = a6;
  Register elements = a7;  // Elements array of the receiver.
  // a4 and a5 are used as general scratch registers.

  // Check that the key is a smi.
  __ JumpIfNotSmi(key, &slow);
  // Check that the object isn't a smi.
  __ JumpIfSmi(receiver, &slow);
  // Get the map of the object.
  __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  // Check that the receiver does not require access checks and is not observed.
  // The generic stub does not perform map checks or handle observed objects.
  __ lbu(a4, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
877 878
  __ And(a4, a4,
         Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved));
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
  __ Branch(&slow, ne, a4, Operand(zero_reg));
  // Check if the object is a JS array or not.
  __ lbu(a4, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
  __ Branch(&array, eq, a4, Operand(JS_ARRAY_TYPE));
  // Check that the object is some kind of JSObject.
  __ Branch(&slow, lt, a4, Operand(FIRST_JS_OBJECT_TYPE));

  // Object case: Check key against length in the elements array.
  __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  // Check array bounds. Both the key and the length of FixedArray are smis.
  __ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset));
  __ Branch(&fast_object, lo, key, Operand(a4));

  // Slow case, handle jump to runtime.
  __ bind(&slow);
  // Entry registers are intact.
  // a0: value.
  // a1: key.
  // a2: receiver.
898
  PropertyICCompiler::GenerateRuntimeSetProperty(masm, strict_mode);
899 900 901 902 903 904 905 906 907 908 909 910 911

  // Extra capacity case: Check if there is extra capacity to
  // perform the store and update the length. Used for adding one
  // element to the array by writing to array[array.length].
  __ bind(&extra);
  // Condition code from comparing key and array length is still available.
  // Only support writing to array[array.length].
  __ Branch(&slow, ne, key, Operand(a4));
  // Check for room in the elements backing store.
  // Both the key and the length of FixedArray are smis.
  __ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset));
  __ Branch(&slow, hs, key, Operand(a4));
  __ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
912 913
  __ Branch(&check_if_double_array, ne, elements_map,
            Heap::kFixedArrayMapRootIndex);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

  __ jmp(&fast_object_grow);

  __ bind(&check_if_double_array);
  __ Branch(&slow, ne, elements_map, Heap::kFixedDoubleArrayMapRootIndex);
  __ jmp(&fast_double_grow);

  // Array case: Get the length and the elements array from the JS
  // array. Check that the array is in fast mode (and writable); if it
  // is the length is always a smi.
  __ bind(&array);
  __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));

  // Check the key against the length in the array.
  __ ld(a4, FieldMemOperand(receiver, JSArray::kLengthOffset));
  __ Branch(&extra, hs, key, Operand(a4));

931 932 933
  KeyedStoreGenerateGenericHelper(
      masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
      value, key, receiver, receiver_map, elements_map, elements);
934
  KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow,
935 936 937
                                  &slow, kDontCheckMap, kIncrementLength, value,
                                  key, receiver, receiver_map, elements_map,
                                  elements);
938 939 940 941 942 943 944 945 946 947 948
}


void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
  // Return address is in ra.
  Label slow;

  Register receiver = ReceiverRegister();
  Register key = NameRegister();
  Register scratch1 = a3;
  Register scratch2 = a4;
949 950
  DCHECK(!scratch1.is(receiver) && !scratch1.is(key));
  DCHECK(!scratch2.is(receiver) && !scratch2.is(key));
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, &slow);

  // Check that the key is an array index, that is Uint32.
  __ And(a4, key, Operand(kSmiTagMask | kSmiSignMask));
  __ Branch(&slow, ne, a4, Operand(zero_reg));

  // Get the map of the receiver.
  __ ld(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset));

  // Check that it has indexed interceptor and access checks
  // are not enabled for this object.
  __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitFieldOffset));
  __ And(scratch2, scratch2, Operand(kSlowCaseBitFieldMask));
  __ Branch(&slow, ne, scratch2, Operand(1 << Map::kHasIndexedInterceptor));
  // Everything is fine, call runtime.
  __ Push(receiver, key);  // Receiver, key.

  // Perform tail call to the entry.
971 972 973 974
  __ TailCallExternalReference(
      ExternalReference(IC_Utility(kLoadElementWithInterceptor),
                        masm->isolate()),
      2, 1);
975 976 977 978 979 980 981 982

  __ bind(&slow);
  GenerateMiss(masm);
}


void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
  // Push receiver, key and value for runtime call.
983
  __ Push(ReceiverRegister(), NameRegister(), ValueRegister());
984 985 986 987 988 989 990 991

  ExternalReference ref =
      ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
  __ TailCallExternalReference(ref, 3, 1);
}


void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
992 993
  Register receiver = ReceiverRegister();
  Register name = NameRegister();
994 995 996
  DCHECK(receiver.is(a1));
  DCHECK(name.is(a2));
  DCHECK(ValueRegister().is(a0));
997 998

  // Get the receiver from the stack and probe the stub cache.
999 1000
  Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
      Code::ComputeHandlerFlags(Code::STORE_IC));
1001 1002
  masm->isolate()->stub_cache()->GenerateProbe(masm, flags, receiver, name, a3,
                                               a4, a5, a6);
1003 1004 1005 1006 1007 1008 1009

  // Cache miss: Jump to runtime.
  GenerateMiss(masm);
}


void StoreIC::GenerateMiss(MacroAssembler* masm) {
1010
  __ Push(ReceiverRegister(), NameRegister(), ValueRegister());
1011
  // Perform tail call to the entry.
1012 1013
  ExternalReference ref =
      ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
1014 1015 1016 1017 1018 1019
  __ TailCallExternalReference(ref, 3, 1);
}


void StoreIC::GenerateNormal(MacroAssembler* masm) {
  Label miss;
1020 1021 1022
  Register receiver = ReceiverRegister();
  Register name = NameRegister();
  Register value = ValueRegister();
1023
  Register dictionary = a3;
1024
  DCHECK(!AreAliased(value, receiver, name, dictionary, a4, a5));
1025

1026
  __ ld(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
1027

1028
  GenerateDictionaryStore(masm, &miss, a3, name, value, a4, a5);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->store_normal_hit(), 1, a4, a5);
  __ Ret();

  __ bind(&miss);
  __ IncrementCounter(counters->store_normal_miss(), 1, a4, a5);
  GenerateMiss(masm);
}


#undef __


Condition CompareIC::ComputeCondition(Token::Value op) {
  switch (op) {
    case Token::EQ_STRICT:
    case Token::EQ:
      return eq;
    case Token::LT:
      return lt;
    case Token::GT:
      return gt;
    case Token::LTE:
      return le;
    case Token::GTE:
      return ge;
    default:
      UNREACHABLE();
      return kNoCondition;
  }
}


bool CompareIC::HasInlinedSmiCode(Address address) {
  // The address of the instruction following the call.
  Address andi_instruction_address =
      address + Assembler::kCallTargetAddressOffset;

  // If the instruction following the call is not a andi at, rx, #yyy, nothing
  // was inlined.
  Instr instr = Assembler::instr_at(andi_instruction_address);
  return Assembler::IsAndImmediate(instr) &&
1071
         Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code());
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}


void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
  Address andi_instruction_address =
      address + Assembler::kCallTargetAddressOffset;

  // If the instruction following the call is not a andi at, rx, #yyy, nothing
  // was inlined.
  Instr instr = Assembler::instr_at(andi_instruction_address);
  if (!(Assembler::IsAndImmediate(instr) &&
        Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code()))) {
    return;
  }

  // The delta to the start of the map check instruction and the
  // condition code uses at the patched jump.
  int delta = Assembler::GetImmediate16(instr);
  delta += Assembler::GetRs(instr) * kImm16Mask;
  // If the delta is 0 the instruction is andi at, zero_reg, #0 which also
  // signals that nothing was inlined.
  if (delta == 0) {
    return;
  }

  if (FLAG_trace_ic) {
1098 1099
    PrintF("[  patching ic at %p, andi=%p, delta=%d\n", address,
           andi_instruction_address, delta);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
  }

  Address patch_address =
      andi_instruction_address - delta * Instruction::kInstrSize;
  Instr instr_at_patch = Assembler::instr_at(patch_address);
  Instr branch_instr =
      Assembler::instr_at(patch_address + Instruction::kInstrSize);
  // This is patching a conditional "jump if not smi/jump if smi" site.
  // Enabling by changing from
  //   andi at, rx, 0
  //   Branch <target>, eq, at, Operand(zero_reg)
  // to:
  //   andi at, rx, #kSmiTagMask
  //   Branch <target>, ne, at, Operand(zero_reg)
  // and vice-versa to be disabled again.
  CodePatcher patcher(patch_address, 2);
  Register reg = Register::from_code(Assembler::GetRs(instr_at_patch));
  if (check == ENABLE_INLINED_SMI_CHECK) {
1118 1119
    DCHECK(Assembler::IsAndImmediate(instr_at_patch));
    DCHECK_EQ(0, Assembler::GetImmediate16(instr_at_patch));
1120 1121
    patcher.masm()->andi(at, reg, kSmiTagMask);
  } else {
1122 1123
    DCHECK(check == DISABLE_INLINED_SMI_CHECK);
    DCHECK(Assembler::IsAndImmediate(instr_at_patch));
1124 1125
    patcher.masm()->andi(at, reg, 0);
  }
1126
  DCHECK(Assembler::IsBranch(branch_instr));
1127 1128 1129
  if (Assembler::IsBeq(branch_instr)) {
    patcher.ChangeBranchCondition(ne);
  } else {
1130
    DCHECK(Assembler::IsBne(branch_instr));
1131 1132 1133
    patcher.ChangeBranchCondition(eq);
  }
}
1134 1135
}
}  // namespace v8::internal
1136 1137

#endif  // V8_TARGET_ARCH_MIPS64