string-builder.cc 9.76 KB
Newer Older
1 2 3 4
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5
#include "src/string-builder-inl.h"
6

7
#include "src/isolate-inl.h"
8
#include "src/objects/fixed-array-inl.h"
9
#include "src/objects/js-array-inl.h"
10

11 12 13
namespace v8 {
namespace internal {

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
template <typename sinkchar>
void StringBuilderConcatHelper(String* special, sinkchar* sink,
                               FixedArray* fixed_array, int array_length) {
  DisallowHeapAllocation no_gc;
  int position = 0;
  for (int i = 0; i < array_length; i++) {
    Object* element = fixed_array->get(i);
    if (element->IsSmi()) {
      // Smi encoding of position and length.
      int encoded_slice = Smi::ToInt(element);
      int pos;
      int len;
      if (encoded_slice > 0) {
        // Position and length encoded in one smi.
        pos = StringBuilderSubstringPosition::decode(encoded_slice);
        len = StringBuilderSubstringLength::decode(encoded_slice);
      } else {
        // Position and length encoded in two smis.
        Object* obj = fixed_array->get(++i);
        DCHECK(obj->IsSmi());
        pos = Smi::ToInt(obj);
        len = -encoded_slice;
      }
      String::WriteToFlat(special, sink + position, pos, pos + len);
      position += len;
    } else {
      String* string = String::cast(element);
      int element_length = string->length();
      String::WriteToFlat(string, sink + position, 0, element_length);
      position += element_length;
    }
  }
}

template void StringBuilderConcatHelper<uint8_t>(String* special, uint8_t* sink,
                                                 FixedArray* fixed_array,
                                                 int array_length);

template void StringBuilderConcatHelper<uc16>(String* special, uc16* sink,
                                              FixedArray* fixed_array,
                                              int array_length);

int StringBuilderConcatLength(int special_length, FixedArray* fixed_array,
                              int array_length, bool* one_byte) {
  DisallowHeapAllocation no_gc;
  int position = 0;
  for (int i = 0; i < array_length; i++) {
    int increment = 0;
    Object* elt = fixed_array->get(i);
    if (elt->IsSmi()) {
      // Smi encoding of position and length.
      int smi_value = Smi::ToInt(elt);
      int pos;
      int len;
      if (smi_value > 0) {
        // Position and length encoded in one smi.
        pos = StringBuilderSubstringPosition::decode(smi_value);
        len = StringBuilderSubstringLength::decode(smi_value);
      } else {
        // Position and length encoded in two smis.
        len = -smi_value;
        // Get the position and check that it is a positive smi.
        i++;
        if (i >= array_length) return -1;
        Object* next_smi = fixed_array->get(i);
        if (!next_smi->IsSmi()) return -1;
        pos = Smi::ToInt(next_smi);
        if (pos < 0) return -1;
      }
      DCHECK_GE(pos, 0);
      DCHECK_GE(len, 0);
      if (pos > special_length || len > special_length - pos) return -1;
      increment = len;
    } else if (elt->IsString()) {
      String* element = String::cast(elt);
      int element_length = element->length();
      increment = element_length;
      if (*one_byte && !element->HasOnlyOneByteChars()) {
        *one_byte = false;
      }
    } else {
      return -1;
    }
    if (increment > String::kMaxLength - position) {
      return kMaxInt;  // Provoke throw on allocation.
    }
    position += increment;
  }
  return position;
}

FixedArrayBuilder::FixedArrayBuilder(Isolate* isolate, int initial_capacity)
    : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
      length_(0),
      has_non_smi_elements_(false) {
  // Require a non-zero initial size. Ensures that doubling the size to
  // extend the array will work.
  DCHECK_GT(initial_capacity, 0);
}

FixedArrayBuilder::FixedArrayBuilder(Handle<FixedArray> backing_store)
    : array_(backing_store), length_(0), has_non_smi_elements_(false) {
  // Require a non-zero initial size. Ensures that doubling the size to
  // extend the array will work.
  DCHECK_GT(backing_store->length(), 0);
}

bool FixedArrayBuilder::HasCapacity(int elements) {
  int length = array_->length();
  int required_length = length_ + elements;
  return (length >= required_length);
}

void FixedArrayBuilder::EnsureCapacity(Isolate* isolate, int elements) {
  int length = array_->length();
  int required_length = length_ + elements;
  if (length < required_length) {
    int new_length = length;
    do {
      new_length *= 2;
    } while (new_length < required_length);
    Handle<FixedArray> extended_array =
        isolate->factory()->NewFixedArrayWithHoles(new_length);
    array_->CopyTo(0, *extended_array, 0, length_);
    array_ = extended_array;
  }
}

void FixedArrayBuilder::Add(Object* value) {
  DCHECK(!value->IsSmi());
  DCHECK(length_ < capacity());
  array_->set(length_, value);
  length_++;
  has_non_smi_elements_ = true;
}

void FixedArrayBuilder::Add(Smi* value) {
  DCHECK(value->IsSmi());
  DCHECK(length_ < capacity());
  array_->set(length_, value);
  length_++;
}

int FixedArrayBuilder::capacity() { return array_->length(); }

Handle<JSArray> FixedArrayBuilder::ToJSArray(Handle<JSArray> target_array) {
  JSArray::SetContent(target_array, array_);
  target_array->set_length(Smi::FromInt(length_));
  return target_array;
}

ReplacementStringBuilder::ReplacementStringBuilder(Heap* heap,
                                                   Handle<String> subject,
                                                   int estimated_part_count)
    : heap_(heap),
      array_builder_(heap->isolate(), estimated_part_count),
      subject_(subject),
      character_count_(0),
      is_one_byte_(subject->IsOneByteRepresentation()) {
  // Require a non-zero initial size. Ensures that doubling the size to
  // extend the array will work.
  DCHECK_GT(estimated_part_count, 0);
}

void ReplacementStringBuilder::EnsureCapacity(int elements) {
  array_builder_.EnsureCapacity(heap_->isolate(), elements);
}

void ReplacementStringBuilder::AddString(Handle<String> string) {
  int length = string->length();
  DCHECK_GT(length, 0);
  AddElement(*string);
  if (!string->IsOneByteRepresentation()) {
    is_one_byte_ = false;
  }
  IncrementCharacterCount(length);
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
MaybeHandle<String> ReplacementStringBuilder::ToString() {
  Isolate* isolate = heap_->isolate();
  if (array_builder_.length() == 0) {
    return isolate->factory()->empty_string();
  }

  Handle<String> joined_string;
  if (is_one_byte_) {
    Handle<SeqOneByteString> seq;
    ASSIGN_RETURN_ON_EXCEPTION(
        isolate, seq, isolate->factory()->NewRawOneByteString(character_count_),
        String);

    DisallowHeapAllocation no_gc;
    uint8_t* char_buffer = seq->GetChars();
    StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(),
                              array_builder_.length());
    joined_string = Handle<String>::cast(seq);
  } else {
    // Two-byte.
    Handle<SeqTwoByteString> seq;
    ASSIGN_RETURN_ON_EXCEPTION(
        isolate, seq, isolate->factory()->NewRawTwoByteString(character_count_),
        String);

    DisallowHeapAllocation no_gc;
    uc16* char_buffer = seq->GetChars();
    StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(),
                              array_builder_.length());
    joined_string = Handle<String>::cast(seq);
  }
  return joined_string;
}

226 227 228 229 230
void ReplacementStringBuilder::AddElement(Object* element) {
  DCHECK(element->IsSmi() || element->IsString());
  DCHECK(array_builder_.capacity() > array_builder_.length());
  array_builder_.Add(element);
}
231 232 233 234 235 236 237 238

IncrementalStringBuilder::IncrementalStringBuilder(Isolate* isolate)
    : isolate_(isolate),
      encoding_(String::ONE_BYTE_ENCODING),
      overflowed_(false),
      part_length_(kInitialPartLength),
      current_index_(0) {
  // Create an accumulator handle starting with the empty string.
239 240
  accumulator_ =
      Handle<String>::New(ReadOnlyRoots(isolate).empty_string(), isolate);
241 242 243 244
  current_part_ =
      factory()->NewRawOneByteString(part_length_).ToHandleChecked();
}

245 246 247
int IncrementalStringBuilder::Length() const {
  return accumulator_->length() + current_index_;
}
248

249
void IncrementalStringBuilder::Accumulate(Handle<String> new_part) {
250
  Handle<String> new_accumulator;
251
  if (accumulator()->length() + new_part->length() > String::kMaxLength) {
252 253 254 255
    // Set the flag and carry on. Delay throwing the exception till the end.
    new_accumulator = factory()->empty_string();
    overflowed_ = true;
  } else {
256 257
    new_accumulator =
        factory()->NewConsString(accumulator(), new_part).ToHandleChecked();
258 259 260 261 262 263
  }
  set_accumulator(new_accumulator);
}


void IncrementalStringBuilder::Extend() {
264 265
  DCHECK_EQ(current_index_, current_part()->length());
  Accumulate(current_part());
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  if (part_length_ <= kMaxPartLength / kPartLengthGrowthFactor) {
    part_length_ *= kPartLengthGrowthFactor;
  }
  Handle<String> new_part;
  if (encoding_ == String::ONE_BYTE_ENCODING) {
    new_part = factory()->NewRawOneByteString(part_length_).ToHandleChecked();
  } else {
    new_part = factory()->NewRawTwoByteString(part_length_).ToHandleChecked();
  }
  // Reuse the same handle to avoid being invalidated when exiting handle scope.
  set_current_part(new_part);
  current_index_ = 0;
}


MaybeHandle<String> IncrementalStringBuilder::Finish() {
  ShrinkCurrentPart();
283
  Accumulate(current_part());
284 285 286 287 288 289 290 291 292 293 294
  if (overflowed_) {
    THROW_NEW_ERROR(isolate_, NewInvalidStringLengthError(), String);
  }
  return accumulator();
}


void IncrementalStringBuilder::AppendString(Handle<String> string) {
  ShrinkCurrentPart();
  part_length_ = kInitialPartLength;  // Allocate conservatively.
  Extend();  // Attach current part and allocate new part.
295
  Accumulate(string);
296
}
297 298
}  // namespace internal
}  // namespace v8