assembler.h 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
33
// Copyright 2006-2009 the V8 project authors. All rights reserved.
34 35 36 37 38 39

#ifndef V8_ASSEMBLER_H_
#define V8_ASSEMBLER_H_

#include "runtime.h"
#include "top.h"
40
#include "token.h"
41
#include "objects.h"
42

43 44
namespace v8 {
namespace internal {
45 46 47 48 49 50 51 52


// -----------------------------------------------------------------------------
// Labels represent pc locations; they are typically jump or call targets.
// After declaration, a label can be freely used to denote known or (yet)
// unknown pc location. Assembler::bind() is used to bind a label to the
// current pc. A label can be bound only once.

53
class Label BASE_EMBEDDED {
54
 public:
55
  INLINE(Label())                 { Unuse(); }
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  INLINE(~Label())                { ASSERT(!is_linked()); }

  INLINE(void Unuse())            { pos_ = 0; }

  INLINE(bool is_bound()  const)  { return pos_ <  0; }
  INLINE(bool is_unused() const)  { return pos_ == 0; }
  INLINE(bool is_linked() const)  { return pos_ >  0; }

  // Returns the position of bound or linked labels. Cannot be used
  // for unused labels.
  int pos() const;

 private:
  // pos_ encodes both the binding state (via its sign)
  // and the binding position (via its value) of a label.
  //
  // pos_ <  0  bound label, pos() returns the jump target position
  // pos_ == 0  unused label
  // pos_ >  0  linked label, pos() returns the last reference position
  int pos_;

  void bind_to(int pos)  {
    pos_ = -pos - 1;
    ASSERT(is_bound());
  }
  void link_to(int pos)  {
    pos_ =  pos + 1;
    ASSERT(is_linked());
  }

  friend class Assembler;
87
  friend class RegexpAssembler;
88
  friend class Displacement;
89
  friend class ShadowTarget;
90
  friend class RegExpMacroAssemblerIrregexp;
91 92 93 94 95 96
};


// -----------------------------------------------------------------------------
// Relocation information

kasperl@chromium.org's avatar
kasperl@chromium.org committed
97

98 99 100 101 102 103 104 105 106
// Relocation information consists of the address (pc) of the datum
// to which the relocation information applies, the relocation mode
// (rmode), and an optional data field. The relocation mode may be
// "descriptive" and not indicate a need for relocation, but simply
// describe a property of the datum. Such rmodes are useful for GC
// and nice disassembly output.

class RelocInfo BASE_EMBEDDED {
 public:
107 108 109 110 111 112 113 114 115 116 117 118 119 120
  // The constant kNoPosition is used with the collecting of source positions
  // in the relocation information. Two types of source positions are collected
  // "position" (RelocMode position) and "statement position" (RelocMode
  // statement_position). The "position" is collected at places in the source
  // code which are of interest when making stack traces to pin-point the source
  // location of a stack frame as close as possible. The "statement position" is
  // collected at the beginning at each statement, and is used to indicate
  // possible break locations. kNoPosition is used to indicate an
  // invalid/uninitialized position value.
  static const int kNoPosition = -1;

  enum Mode {
    // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
121 122 123
    CODE_TARGET_CONTEXT,  // Code target used for contextual loads.
    DEBUG_BREAK,  // Code target for the debugger statement.
    CODE_TARGET,  // Code target which is not any of the above.
124 125 126 127 128 129 130 131
    EMBEDDED_OBJECT,

    // Everything after runtime_entry (inclusive) is not GC'ed.
    RUNTIME_ENTRY,
    JS_RETURN,  // Marks start of the ExitJSFrame code.
    COMMENT,
    POSITION,  // See comment for kNoPosition above.
    STATEMENT_POSITION,  // See comment for kNoPosition above.
132
    DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
133 134 135 136 137 138 139 140
    EXTERNAL_REFERENCE,  // The address of an external C++ function.
    INTERNAL_REFERENCE,  // An address inside the same function.

    // add more as needed
    // Pseudo-types
    NUMBER_OF_MODES,  // must be no greater than 14 - see RelocInfoWriter
    NONE,  // never recorded
    LAST_CODE_ENUM = CODE_TARGET,
141
    LAST_GCED_ENUM = EMBEDDED_OBJECT
142 143 144
  };


145
  RelocInfo() {}
146
  RelocInfo(byte* pc, Mode rmode, intptr_t data)
147 148 149
      : pc_(pc), rmode_(rmode), data_(data) {
  }

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  static inline bool IsConstructCall(Mode mode) {
    return mode == CONSTRUCT_CALL;
  }
  static inline bool IsCodeTarget(Mode mode) {
    return mode <= LAST_CODE_ENUM;
  }
  // Is the relocation mode affected by GC?
  static inline bool IsGCRelocMode(Mode mode) {
    return mode <= LAST_GCED_ENUM;
  }
  static inline bool IsJSReturn(Mode mode) {
    return mode == JS_RETURN;
  }
  static inline bool IsComment(Mode mode) {
    return mode == COMMENT;
  }
  static inline bool IsPosition(Mode mode) {
    return mode == POSITION || mode == STATEMENT_POSITION;
  }
  static inline bool IsStatementPosition(Mode mode) {
    return mode == STATEMENT_POSITION;
  }
  static inline bool IsExternalReference(Mode mode) {
    return mode == EXTERNAL_REFERENCE;
  }
  static inline bool IsInternalReference(Mode mode) {
    return mode == INTERNAL_REFERENCE;
  }
178 179 180
  static inline bool IsDebugBreakSlot(Mode mode) {
    return mode == DEBUG_BREAK_SLOT;
  }
181 182
  static inline int ModeMask(Mode mode) { return 1 << mode; }

183 184 185
  // Accessors
  byte* pc() const  { return pc_; }
  void set_pc(byte* pc) { pc_ = pc; }
186
  Mode rmode() const {  return rmode_; }
187 188 189
  intptr_t data() const  { return data_; }

  // Apply a relocation by delta bytes
190
  INLINE(void apply(intptr_t delta));
191

192 193 194 195 196
  // Is the pointer this relocation info refers to coded like a plain pointer
  // or is it strange in some way (eg relative or patched into a series of
  // instructions).
  bool IsCodedSpecially();

197 198 199
  // Read/modify the code target in the branch/call instruction
  // this relocation applies to;
  // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
200 201 202
  INLINE(Address target_address());
  INLINE(void set_target_address(Address target));
  INLINE(Object* target_object());
203
  INLINE(Handle<Object> target_object_handle(Assembler* origin));
204 205 206
  INLINE(Object** target_object_address());
  INLINE(void set_target_object(Object* target));

207 208 209 210 211 212
  // Read the address of the word containing the target_address in an
  // instruction stream.  What this means exactly is architecture-independent.
  // The only architecture-independent user of this function is the serializer.
  // The serializer uses it to find out how many raw bytes of instruction to
  // output before the next target.  Architecture-independent code shouldn't
  // dereference the pointer it gets back from this.
213
  INLINE(Address target_address_address());
214 215 216 217 218 219 220 221 222 223
  // This indicates how much space a target takes up when deserializing a code
  // stream.  For most architectures this is just the size of a pointer.  For
  // an instruction like movw/movt where the target bits are mixed into the
  // instruction bits the size of the target will be zero, indicating that the
  // serializer should not step forwards in memory after a target is resolved
  // and written.  In this case the target_address_address function above
  // should return the end of the instructions to be patched, allowing the
  // deserializer to deserialize the instructions as raw bytes and put them in
  // place, ready to be patched with the target.
  INLINE(int target_address_size());
224

225 226 227 228 229 230 231 232 233 234 235 236 237
  // Read/modify the reference in the instruction this relocation
  // applies to; can only be called if rmode_ is external_reference
  INLINE(Address* target_reference_address());

  // Read/modify the address of a call instruction. This is used to relocate
  // the break points where straight-line code is patched with a call
  // instruction.
  INLINE(Address call_address());
  INLINE(void set_call_address(Address target));
  INLINE(Object* call_object());
  INLINE(Object** call_object_address());
  INLINE(void set_call_object(Object* target));

238 239
  inline void Visit(ObjectVisitor* v);

240
  // Patch the code with some other code.
241
  void PatchCode(byte* instructions, int instruction_count);
242 243

  // Patch the code with a call.
244
  void PatchCodeWithCall(Address target, int guard_bytes);
245 246 247 248

  // Check whether this return sequence has been patched
  // with a call to the debugger.
  INLINE(bool IsPatchedReturnSequence());
249

250 251 252 253
  // Check whether this debug break slot has been patched with a call to the
  // debugger.
  INLINE(bool IsPatchedDebugBreakSlotSequence());

254 255
#ifdef ENABLE_DISASSEMBLER
  // Printing
256
  static const char* RelocModeName(Mode rmode);
257
  void Print();
258
#endif  // ENABLE_DISASSEMBLER
259 260 261 262 263
#ifdef DEBUG
  // Debugging
  void Verify();
#endif

264 265 266
  static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
  static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
  static const int kDebugMask = kPositionMask | 1 << COMMENT;
267 268 269 270 271 272 273 274
  static const int kApplyMask;  // Modes affected by apply. Depends on arch.

 private:
  // On ARM, note that pc_ is the address of the constant pool entry
  // to be relocated and not the address of the instruction
  // referencing the constant pool entry (except when rmode_ ==
  // comment).
  byte* pc_;
275
  Mode rmode_;
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  intptr_t data_;
  friend class RelocIterator;
};


// RelocInfoWriter serializes a stream of relocation info. It writes towards
// lower addresses.
class RelocInfoWriter BASE_EMBEDDED {
 public:
  RelocInfoWriter() : pos_(NULL), last_pc_(NULL), last_data_(0) {}
  RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc),
                                         last_data_(0) {}

  byte* pos() const { return pos_; }
  byte* last_pc() const { return last_pc_; }

  void Write(const RelocInfo* rinfo);

  // Update the state of the stream after reloc info buffer
  // and/or code is moved while the stream is active.
  void Reposition(byte* pos, byte* pc) {
    pos_ = pos;
    last_pc_ = pc;
  }

301 302 303 304 305 306
  // Max size (bytes) of a written RelocInfo. Longest encoding is
  // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
  // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
  // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
  // Here we use the maximum of the two.
  static const int kMaxSize = 16;
307 308 309 310 311

 private:
  inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
  inline void WriteTaggedPC(uint32_t pc_delta, int tag);
  inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
312 313
  inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
  inline void WriteTaggedData(intptr_t data_delta, int tag);
314 315 316 317 318
  inline void WriteExtraTag(int extra_tag, int top_tag);

  byte* pos_;
  byte* last_pc_;
  intptr_t last_data_;
319
  DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
};


// A RelocIterator iterates over relocation information.
// Typical use:
//
//   for (RelocIterator it(code); !it.done(); it.next()) {
//     // do something with it.rinfo() here
//   }
//
// A mask can be specified to skip unwanted modes.
class RelocIterator: public Malloced {
 public:
  // Create a new iterator positioned at
  // the beginning of the reloc info.
  // Relocation information with mode k is included in the
  // iteration iff bit k of mode_mask is set.
  explicit RelocIterator(Code* code, int mode_mask = -1);
  explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);

  // Iteration
  bool done() const  { return done_; }
  void next();

  // Return pointer valid until next next().
  RelocInfo* rinfo() {
    ASSERT(!done());
    return &rinfo_;
  }

 private:
  // Advance* moves the position before/after reading.
  // *Read* reads from current byte(s) into rinfo_.
  // *Get* just reads and returns info on current byte.
  void Advance(int bytes = 1) { pos_ -= bytes; }
  int AdvanceGetTag();
  int GetExtraTag();
  int GetTopTag();
  void ReadTaggedPC();
  void AdvanceReadPC();
  void AdvanceReadData();
  void AdvanceReadVariableLengthPCJump();
  int GetPositionTypeTag();
  void ReadTaggedData();

365
  static RelocInfo::Mode DebugInfoModeFromTag(int tag);
366 367 368

  // If the given mode is wanted, set it in rinfo_ and return true.
  // Else return false. Used for efficiently skipping unwanted modes.
369
  bool SetMode(RelocInfo::Mode mode) {
370 371 372 373 374 375 376 377
    return (mode_mask_ & 1 << mode) ? (rinfo_.rmode_ = mode, true) : false;
  }

  byte* pos_;
  byte* end_;
  RelocInfo rinfo_;
  bool done_;
  int mode_mask_;
378
  DISALLOW_COPY_AND_ASSIGN(RelocIterator);
379 380 381 382 383 384 385 386 387
};


//------------------------------------------------------------------------------
// External function

//----------------------------------------------------------------------------
class IC_Utility;
class SCTableReference;
388 389 390
#ifdef ENABLE_DEBUGGER_SUPPORT
class Debug_Address;
#endif
391

392 393 394 395 396 397 398 399 400

typedef void* ExternalReferenceRedirector(void* original, bool fp_return);


// An ExternalReference represents a C++ address used in the generated
// code. All references to C++ functions and variables must be encapsulated in
// an ExternalReference instance. This is done in order to track the origin of
// all external references in the code so that they can be bound to the correct
// addresses when deserializing a heap.
401 402 403 404
class ExternalReference BASE_EMBEDDED {
 public:
  explicit ExternalReference(Builtins::CFunctionId id);

405 406
  explicit ExternalReference(ApiFunction* ptr);

407 408 409 410 411 412 413 414
  explicit ExternalReference(Builtins::Name name);

  explicit ExternalReference(Runtime::FunctionId id);

  explicit ExternalReference(Runtime::Function* f);

  explicit ExternalReference(const IC_Utility& ic_utility);

415
#ifdef ENABLE_DEBUGGER_SUPPORT
416
  explicit ExternalReference(const Debug_Address& debug_address);
417
#endif
418 419 420 421 422 423 424 425 426 427 428

  explicit ExternalReference(StatsCounter* counter);

  explicit ExternalReference(Top::AddressId id);

  explicit ExternalReference(const SCTableReference& table_ref);

  // One-of-a-kind references. These references are not part of a general
  // pattern. This means that they have to be added to the
  // ExternalReferenceTable in serialize.cc manually.

429
  static ExternalReference perform_gc_function();
430
  static ExternalReference fill_heap_number_with_random_function();
431
  static ExternalReference random_uint32_function();
432
  static ExternalReference transcendental_cache_array_address();
433

434 435 436 437
  // Static data in the keyed lookup cache.
  static ExternalReference keyed_lookup_cache_keys();
  static ExternalReference keyed_lookup_cache_field_offsets();

438 439 440
  // Static variable Factory::the_hole_value.location()
  static ExternalReference the_hole_value_location();

441 442 443
  // Static variable Heap::roots_address()
  static ExternalReference roots_address();

444
  // Static variable StackGuard::address_of_jslimit()
445 446 447 448
  static ExternalReference address_of_stack_limit();

  // Static variable StackGuard::address_of_real_jslimit()
  static ExternalReference address_of_real_stack_limit();
449

450 451 452
  // Static variable RegExpStack::limit_address()
  static ExternalReference address_of_regexp_stack_limit();

453 454 455 456 457
  // Static variables for RegExp.
  static ExternalReference address_of_static_offsets_vector();
  static ExternalReference address_of_regexp_stack_memory_address();
  static ExternalReference address_of_regexp_stack_memory_size();

458 459
  // Static variable Heap::NewSpaceStart()
  static ExternalReference new_space_start();
460
  static ExternalReference new_space_mask();
461
  static ExternalReference heap_always_allocate_scope_depth();
462 463 464 465 466

  // Used for fast allocation in generated code.
  static ExternalReference new_space_allocation_top_address();
  static ExternalReference new_space_allocation_limit_address();

467
  static ExternalReference double_fp_operation(Token::Value operation);
468
  static ExternalReference compare_doubles();
469

470 471 472 473 474 475
  static ExternalReference handle_scope_extensions_address();
  static ExternalReference handle_scope_next_address();
  static ExternalReference handle_scope_limit_address();

  static ExternalReference scheduled_exception_address();

476
  Address address() const {return reinterpret_cast<Address>(address_);}
477

478 479 480 481 482 483 484 485
#ifdef ENABLE_DEBUGGER_SUPPORT
  // Function Debug::Break()
  static ExternalReference debug_break();

  // Used to check if single stepping is enabled in generated code.
  static ExternalReference debug_step_in_fp_address();
#endif

486
#ifndef V8_INTERPRETED_REGEXP
lrn@chromium.org's avatar
lrn@chromium.org committed
487 488 489 490 491 492 493 494 495 496
  // C functions called from RegExp generated code.

  // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
  static ExternalReference re_case_insensitive_compare_uc16();

  // Function RegExpMacroAssembler*::CheckStackGuardState()
  static ExternalReference re_check_stack_guard_state();

  // Function NativeRegExpMacroAssembler::GrowStack()
  static ExternalReference re_grow_stack();
497 498 499 500

  // byte NativeRegExpMacroAssembler::word_character_bitmap
  static ExternalReference re_word_character_map();

lrn@chromium.org's avatar
lrn@chromium.org committed
501 502
#endif

503 504 505 506 507 508 509
  // This lets you register a function that rewrites all external references.
  // Used by the ARM simulator to catch calls to external references.
  static void set_redirector(ExternalReferenceRedirector* redirector) {
    ASSERT(redirector_ == NULL);  // We can't stack them.
    redirector_ = redirector;
  }

510 511
 private:
  explicit ExternalReference(void* address)
512 513 514 515 516 517
      : address_(address) {}

  static ExternalReferenceRedirector* redirector_;

  static void* Redirect(void* address, bool fp_return = false) {
    if (redirector_ == NULL) return address;
518 519
    void* answer = (*redirector_)(address, fp_return);
    return answer;
520 521 522 523
  }

  static void* Redirect(Address address_arg, bool fp_return = false) {
    void* address = reinterpret_cast<void*>(address_arg);
524 525 526 527
    void* answer = (redirector_ == NULL) ?
                   address :
                   (*redirector_)(address, fp_return);
    return answer;
528
  }
529

530
  void* address_;
531 532 533 534 535 536 537 538 539 540 541
};


// -----------------------------------------------------------------------------
// Utility functions

static inline bool is_intn(int x, int n)  {
  return -(1 << (n-1)) <= x && x < (1 << (n-1));
}

static inline bool is_int8(int x)  { return is_intn(x, 8); }
542 543 544
static inline bool is_int16(int x)  { return is_intn(x, 16); }
static inline bool is_int18(int x)  { return is_intn(x, 18); }
static inline bool is_int24(int x)  { return is_intn(x, 24); }
545 546 547 548 549

static inline bool is_uintn(int x, int n) {
  return (x & -(1 << n)) == 0;
}

550
static inline bool is_uint2(int x)  { return is_uintn(x, 2); }
551 552 553
static inline bool is_uint3(int x)  { return is_uintn(x, 3); }
static inline bool is_uint4(int x)  { return is_uintn(x, 4); }
static inline bool is_uint5(int x)  { return is_uintn(x, 5); }
554
static inline bool is_uint6(int x)  { return is_uintn(x, 6); }
555
static inline bool is_uint8(int x)  { return is_uintn(x, 8); }
556
static inline bool is_uint10(int x)  { return is_uintn(x, 10); }
557 558 559
static inline bool is_uint12(int x)  { return is_uintn(x, 12); }
static inline bool is_uint16(int x)  { return is_uintn(x, 16); }
static inline bool is_uint24(int x)  { return is_uintn(x, 24); }
560 561 562 563 564 565 566 567 568 569
static inline bool is_uint26(int x)  { return is_uintn(x, 26); }
static inline bool is_uint28(int x)  { return is_uintn(x, 28); }

static inline int NumberOfBitsSet(uint32_t x) {
  unsigned int num_bits_set;
  for (num_bits_set = 0; x; x >>= 1) {
    num_bits_set += x & 1;
  }
  return num_bits_set;
}
570 571 572 573

} }  // namespace v8::internal

#endif  // V8_ASSEMBLER_H_