code.h 32.4 KB
Newer Older
1 2 3 4 5 6 7
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_CODE_H_
#define V8_OBJECTS_CODE_H_

8
#include "src/handler-table.h"
9
#include "src/objects.h"
10
#include "src/objects/fixed-array.h"
11 12 13 14 15 16 17 18 19

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

class ByteArray;
class BytecodeArray;
20
class CodeDataContainer;
21

22 23 24 25
namespace interpreter {
class Register;
}

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
// Code describes objects with on-the-fly generated machine code.
class Code : public HeapObject {
 public:
  // Opaque data type for encapsulating code flags like kind, inline
  // cache state, and arguments count.
  typedef uint32_t Flags;

#define CODE_KIND_LIST(V)   \
  V(OPTIMIZED_FUNCTION)     \
  V(BYTECODE_HANDLER)       \
  V(STUB)                   \
  V(BUILTIN)                \
  V(REGEXP)                 \
  V(WASM_FUNCTION)          \
  V(WASM_TO_JS_FUNCTION)    \
  V(JS_TO_WASM_FUNCTION)    \
  V(WASM_INTERPRETER_ENTRY) \
  V(C_WASM_ENTRY)

  enum Kind {
#define DEFINE_CODE_KIND_ENUM(name) name,
    CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
#undef DEFINE_CODE_KIND_ENUM
        NUMBER_OF_KINDS
  };

  static const char* Kind2String(Kind kind);

#ifdef ENABLE_DISASSEMBLER
55
  void Disassemble(const char* name, std::ostream& os,
56
                   Address current_pc = kNullAddress);
57 58
#endif

59 60
  // [instruction_size]: Size of the native instructions, including embedded
  // data such as the safepoints table.
61 62
  inline int raw_instruction_size() const;
  inline void set_raw_instruction_size(int value);
63

64 65 66 67 68
  // Returns the size of the native instructions, including embedded
  // data such as the safepoints table. For off-heap code objects
  // this may from instruction_size in that this will return the size of the
  // off-heap instruction stream rather than the on-heap trampoline located
  // at instruction_start.
69
  inline int InstructionSize() const;
70
#ifdef V8_EMBEDDED_BUILTINS
71
  int OffHeapInstructionSize() const;
72
#endif
73

74 75 76 77 78 79 80 81 82 83
  // [relocation_info]: Code relocation information
  DECL_ACCESSORS(relocation_info, ByteArray)
  void InvalidateEmbeddedObjects();

  // [deoptimization_data]: Array containing data for deopt.
  DECL_ACCESSORS(deoptimization_data, FixedArray)

  // [source_position_table]: ByteArray for the source positions table or
  // SourcePositionTableWithFrameCache.
  DECL_ACCESSORS(source_position_table, Object)
84
  inline ByteArray* SourcePositionTable() const;
85

86 87 88
  // [code_data_container]: A container indirection for all mutable fields.
  DECL_ACCESSORS(code_data_container, CodeDataContainer)

89
  // [stub_key]: The major/minor key of a code stub.
90 91 92 93
  inline uint32_t stub_key() const;
  inline void set_stub_key(uint32_t key);

  // [next_code_link]: Link for lists of optimized or deoptimized code.
94 95 96
  // Note that this field is stored in the {CodeDataContainer} to be mutable.
  inline Object* next_code_link() const;
  inline void set_next_code_link(Object* value);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

  // [constant_pool offset]: Offset of the constant pool.
  // Valid for FLAG_enable_embedded_constant_pool only
  inline int constant_pool_offset() const;
  inline void set_constant_pool_offset(int offset);

  // Unchecked accessors to be used during GC.
  inline ByteArray* unchecked_relocation_info() const;

  inline int relocation_size() const;

  // [kind]: Access to specific code kind.
  inline Kind kind() const;

  inline bool is_stub() const;
  inline bool is_optimized_code() const;
  inline bool is_wasm_code() const;

  // Testers for interpreter builtins.
  inline bool is_interpreter_trampoline_builtin() const;

  // Tells whether the code checks the optimization marker in the function's
  // feedback vector.
  inline bool checks_optimization_marker() const;

122
  // Tells whether the outgoing parameters of this code are tagged pointers.
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  inline bool has_tagged_params() const;

  // [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
  // code object was generated by the TurboFan optimizing compiler.
  inline bool is_turbofanned() const;

  // [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
  // embedded objects in code should be treated weakly.
  inline bool can_have_weak_objects() const;
  inline void set_can_have_weak_objects(bool value);

  // [is_construct_stub]: For kind BUILTIN, tells whether the code object
  // represents a hand-written construct stub
  // (e.g., NumberConstructor_ConstructStub).
  inline bool is_construct_stub() const;
  inline void set_is_construct_stub(bool value);

  // [builtin_index]: For builtins, tells which builtin index the code object
  // has. The builtin index is a non-negative integer for builtins, and -1
  // otherwise.
  inline int builtin_index() const;
  inline void set_builtin_index(int id);
  inline bool is_builtin() const;

147 148 149
  inline bool has_safepoint_info() const;

  // [stack_slots]: If {has_safepoint_info()}, the number of stack slots
150
  // reserved in the code prologue.
151
  inline int stack_slots() const;
152

153 154
  // [safepoint_table_offset]: If {has_safepoint_info()}, the offset in the
  // instruction stream where the safepoint table starts.
155 156
  inline int safepoint_table_offset() const;
  inline void set_safepoint_table_offset(int offset);
157

158 159 160 161 162
  // [handler_table_offset]: The offset in the instruction stream where the
  // exception handler table starts.
  inline int handler_table_offset() const;
  inline void set_handler_table_offset(int offset);

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
  // the code is going to be deoptimized because of dead embedded maps.
  inline bool marked_for_deoptimization() const;
  inline void set_marked_for_deoptimization(bool flag);

  // [deopt_already_counted]: For kind OPTIMIZED_FUNCTION tells whether
  // the code was already deoptimized.
  inline bool deopt_already_counted() const;
  inline void set_deopt_already_counted(bool flag);

  // [is_promise_rejection]: For kind BUILTIN tells whether the
  // exception thrown by the code will lead to promise rejection or
  // uncaught if both this and is_exception_caught is set.
  // Use GetBuiltinCatchPrediction to access this.
  inline void set_is_promise_rejection(bool flag);

  // [is_exception_caught]: For kind BUILTIN tells whether the
  // exception thrown by the code will be caught internally or
  // uncaught if both this and is_promise_rejection is set.
  // Use GetBuiltinCatchPrediction to access this.
  inline void set_is_exception_caught(bool flag);

  // [constant_pool]: The constant pool for this function.
186
  inline Address constant_pool() const;
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

  // Get the safepoint entry for the given pc.
  SafepointEntry GetSafepointEntry(Address pc);

  // The entire code object including its header is copied verbatim to the
  // snapshot so that it can be written in one, fast, memcpy during
  // deserialization. The deserializer will overwrite some pointers, rather
  // like a runtime linker, but the random allocation addresses used in the
  // mksnapshot process would still be present in the unlinked snapshot data,
  // which would make snapshot production non-reproducible. This method wipes
  // out the to-be-overwritten header data for reproducible snapshots.
  inline void WipeOutHeader();

  // Clear uninitialized padding space. This ensures that the snapshot content
  // is deterministic.
  inline void clear_padding();
  // Initialize the flags field. Similar to clear_padding above this ensure that
  // the snapshot content is deterministic.
205 206
  inline void initialize_flags(Kind kind, bool has_unwinding_info,
                               bool is_turbofanned, int stack_slots);
207 208 209 210 211 212 213 214 215 216 217

  // Convert a target address into a code object.
  static inline Code* GetCodeFromTargetAddress(Address address);

  // Convert an entry address into an object.
  static inline Object* GetObjectFromEntryAddress(Address location_of_address);

  // Convert a code entry into an object.
  static inline Object* GetObjectFromCodeEntry(Address code_entry);

  // Returns the address of the first instruction.
218
  inline Address raw_instruction_start() const;
219

220 221 222
  // Returns the address of the first instruction. For off-heap code objects
  // this differs from instruction_start (which would point to the off-heap
  // trampoline instead).
223
  inline Address InstructionStart() const;
224
#ifdef V8_EMBEDDED_BUILTINS
225
  Address OffHeapInstructionStart() const;
226
#endif
227

228
  // Returns the address right after the last instruction.
229
  inline Address raw_instruction_end() const;
230

231 232 233
  // Returns the address right after the last instruction. For off-heap code
  // objects this differs from instruction_end (which would point to the
  // off-heap trampoline instead).
234
  inline Address InstructionEnd() const;
235
#ifdef V8_EMBEDDED_BUILTINS
236
  Address OffHeapInstructionEnd() const;
237
#endif
238

239 240 241 242 243 244 245 246 247 248 249
  // Returns the size of the instructions, padding, relocation and unwinding
  // information.
  inline int body_size() const;

  // Returns the size of code and its metadata. This includes the size of code
  // relocation information, deoptimization data and handler table.
  inline int SizeIncludingMetadata() const;

  // Returns the address of the first relocation info (read backwards!).
  inline byte* relocation_start() const;

250 251 252
  // Returns the address right after the relocation info (read backwards!).
  inline byte* relocation_end() const;

253 254 255 256 257
  // [has_unwinding_info]: Whether this code object has unwinding information.
  // If it doesn't, unwinding_information_start() will point to invalid data.
  //
  // The body of all code objects has the following layout.
  //
258
  //  +--------------------------+  <-- raw_instruction_start()
259 260 261 262 263
  //  |       instructions       |
  //  |           ...            |
  //  +--------------------------+
  //  |      relocation info     |
  //  |           ...            |
264
  //  +--------------------------+  <-- raw_instruction_end()
265
  //
266
  // If has_unwinding_info() is false, raw_instruction_end() points to the first
267 268 269 270 271 272
  // memory location after the end of the code object. Otherwise, the body
  // continues as follows:
  //
  //  +--------------------------+
  //  |    padding to the next   |
  //  |  8-byte aligned address  |
273
  //  +--------------------------+  <-- raw_instruction_end()
274 275 276 277 278 279 280 281 282 283
  //  |   [unwinding_info_size]  |
  //  |        as uint64_t       |
  //  +--------------------------+  <-- unwinding_info_start()
  //  |       unwinding info     |
  //  |            ...           |
  //  +--------------------------+  <-- unwinding_info_end()
  //
  // and unwinding_info_end() points to the first memory location after the end
  // of the code object.
  //
284
  inline bool has_unwinding_info() const;
285 286 287 288 289 290

  // [unwinding_info_size]: Size of the unwinding information.
  inline int unwinding_info_size() const;
  inline void set_unwinding_info_size(int value);

  // Returns the address of the unwinding information, if any.
291
  inline Address unwinding_info_start() const;
292 293

  // Returns the address right after the end of the unwinding information.
294
  inline Address unwinding_info_end() const;
295 296

  // Code entry point.
297
  inline Address entry() const;
298 299

  // Returns true if pc is inside this object's instructions.
300
  inline bool contains(Address pc);
301 302 303 304 305 306 307 308

  // Relocate the code by delta bytes. Called to signal that this code
  // object has been moved by delta bytes.
  void Relocate(intptr_t delta);

  // Migrate code described by desc.
  void CopyFrom(const CodeDesc& desc);

309 310 311 312 313 314 315
  // Migrate code from desc without flushing the instruction cache.
  void CopyFromNoFlush(const CodeDesc& desc);

  // Flushes the instruction cache for the executable instructions of this code
  // object.
  void FlushICache() const;

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  // Returns the object size for a given body (used for allocation).
  static int SizeFor(int body_size) {
    DCHECK_SIZE_TAG_ALIGNED(body_size);
    return RoundUp(kHeaderSize + body_size, kCodeAlignment);
  }

  // Calculate the size of the code object to report for log events. This takes
  // the layout of the code object into account.
  inline int ExecutableSize() const;

  DECL_CAST(Code)

  // Dispatched behavior.
  inline int CodeSize() const;

  DECL_PRINTER(Code)
  DECL_VERIFIER(Code)

334
  void PrintDeoptLocation(FILE* out, const char* str, Address pc);
335 336
  bool CanDeoptAt(Address pc);

337 338
  void SetMarkedForDeoptimization(const char* reason);

339 340 341 342 343 344 345
  inline HandlerTable::CatchPrediction GetBuiltinCatchPrediction();

#ifdef DEBUG
  enum VerifyMode { kNoContextSpecificPointers, kNoContextRetainingPointers };
  void VerifyEmbeddedObjects(VerifyMode mode = kNoContextRetainingPointers);
#endif  // DEBUG

346 347 348 349
#ifdef V8_EMBEDDED_BUILTINS
  bool IsProcessIndependent();
#endif

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  inline bool CanContainWeakObjects();

  inline bool IsWeakObject(Object* object);

  static inline bool IsWeakObjectInOptimizedCode(Object* object);

  static Handle<WeakCell> WeakCellFor(Handle<Code> code);
  WeakCell* CachedWeakCell();

  // Return true if the function is inlined in the code.
  bool Inlines(SharedFunctionInfo* sfi);

  class OptimizedCodeIterator {
   public:
    explicit OptimizedCodeIterator(Isolate* isolate);
    Code* Next();

   private:
    Context* next_context_;
    Code* current_code_;
    Isolate* isolate_;

    DisallowHeapAllocation no_gc;
    DISALLOW_COPY_AND_ASSIGN(OptimizedCodeIterator)
  };

  static const int kConstantPoolSize =
      FLAG_enable_embedded_constant_pool ? kIntSize : 0;

  // Layout description.
  static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
  static const int kDeoptimizationDataOffset =
382
      kRelocationInfoOffset + kPointerSize;
383 384
  static const int kSourcePositionTableOffset =
      kDeoptimizationDataOffset + kPointerSize;
385
  static const int kCodeDataContainerOffset =
386
      kSourcePositionTableOffset + kPointerSize;
387
  static const int kInstructionSizeOffset =
388
      kCodeDataContainerOffset + kPointerSize;
389
  static const int kFlagsOffset = kInstructionSizeOffset + kIntSize;
390
  static const int kSafepointTableOffsetOffset = kFlagsOffset + kIntSize;
391 392 393
  static const int kHandlerTableOffsetOffset =
      kSafepointTableOffsetOffset + kIntSize;
  static const int kStubKeyOffset = kHandlerTableOffsetOffset + kIntSize;
394
  static const int kConstantPoolOffset = kStubKeyOffset + kIntSize;
395 396
  static const int kBuiltinIndexOffset =
      kConstantPoolOffset + kConstantPoolSize;
397
  static const int kHeaderPaddingStart = kBuiltinIndexOffset + kIntSize;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

  // Add padding to align the instruction start following right after
  // the Code object header.
  static const int kHeaderSize =
      (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;

  // Data or code not directly visited by GC directly starts here.
  // The serializer needs to copy bytes starting from here verbatim.
  // Objects embedded into code is visited via reloc info.
  static const int kDataStart = kInstructionSizeOffset;

  inline int GetUnwindingInfoSizeOffset() const;

  class BodyDescriptor;

  // Flags layout.  BitField<type, shift, size>.
414 415 416 417 418 419 420
#define CODE_FLAGS_BIT_FIELDS(V, _)    \
  V(HasUnwindingInfoField, bool, 1, _) \
  V(KindField, Kind, 5, _)             \
  V(IsTurbofannedField, bool, 1, _)    \
  V(StackSlotsField, int, 24, _)
  DEFINE_BIT_FIELDS(CODE_FLAGS_BIT_FIELDS)
#undef CODE_FLAGS_BIT_FIELDS
421 422
  static_assert(NUMBER_OF_KINDS <= KindField::kMax, "Code::KindField size");
  static_assert(StackSlotsField::kNext <= 32, "Code::flags field exhausted");
423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  // KindSpecificFlags layout (STUB, BUILTIN and OPTIMIZED_FUNCTION)
#define CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS(V, _) \
  V(MarkedForDeoptimizationField, bool, 1, _)     \
  V(DeoptAlreadyCountedField, bool, 1, _)         \
  V(CanHaveWeakObjectsField, bool, 1, _)          \
  V(IsConstructStubField, bool, 1, _)             \
  V(IsPromiseRejectionField, bool, 1, _)          \
  V(IsExceptionCaughtField, bool, 1, _)
  DEFINE_BIT_FIELDS(CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS)
#undef CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS
  static_assert(IsExceptionCaughtField::kNext <= 32, "KindSpecificFlags full");

  // The {marked_for_deoptimization} field is accessed from generated code.
  static const int kMarkedForDeoptimizationBit =
      MarkedForDeoptimizationField::kShift;
439 440 441 442 443 444 445 446 447 448 449 450 451

  static const int kArgumentsBits = 16;
  static const int kMaxArguments = (1 << kArgumentsBits) - 1;

 private:
  friend class RelocIterator;

  bool is_promise_rejection() const;
  bool is_exception_caught() const;

  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
};

452 453 454 455 456 457 458
// CodeDataContainer is a container for all mutable fields associated with its
// referencing {Code} object. Since {Code} objects reside on write-protected
// pages within the heap, its header fields need to be immutable. There always
// is a 1-to-1 relation between {Code} and {CodeDataContainer}, the referencing
// field {Code::code_data_container} itself is immutable.
class CodeDataContainer : public HeapObject {
 public:
459
  DECL_ACCESSORS(next_code_link, Object)
460 461 462 463 464 465 466 467 468 469 470 471
  DECL_INT_ACCESSORS(kind_specific_flags)

  // Clear uninitialized padding space. This ensures that the snapshot content
  // is deterministic.
  inline void clear_padding();

  DECL_CAST(CodeDataContainer)

  // Dispatched behavior.
  DECL_PRINTER(CodeDataContainer)
  DECL_VERIFIER(CodeDataContainer)

472 473 474
  static const int kNextCodeLinkOffset = HeapObject::kHeaderSize;
  static const int kKindSpecificFlagsOffset =
      kNextCodeLinkOffset + kPointerSize;
475 476 477
  static const int kUnalignedSize = kKindSpecificFlagsOffset + kIntSize;
  static const int kSize = OBJECT_POINTER_ALIGN(kUnalignedSize);

478 479 480 481 482 483 484 485 486 487 488 489 490
  // During mark compact we need to take special care for weak fields.
  static const int kPointerFieldsStrongEndOffset = kNextCodeLinkOffset;
  static const int kPointerFieldsWeakEndOffset = kKindSpecificFlagsOffset;

  // Ignores weakness.
  typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
                              kPointerFieldsWeakEndOffset, kSize>
      BodyDescriptor;

  // Respects weakness.
  typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
                              kPointerFieldsStrongEndOffset, kSize>
      BodyDescriptorWeak;
491

492 493 494 495
 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeDataContainer);
};

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
class AbstractCode : public HeapObject {
 public:
  // All code kinds and INTERPRETED_FUNCTION.
  enum Kind {
#define DEFINE_CODE_KIND_ENUM(name) name,
    CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
#undef DEFINE_CODE_KIND_ENUM
        INTERPRETED_FUNCTION,
    NUMBER_OF_KINDS
  };

  static const char* Kind2String(Kind kind);

  int SourcePosition(int offset);
  int SourceStatementPosition(int offset);

  // Returns the address of the first instruction.
513
  inline Address raw_instruction_start();
514

515 516 517 518 519
  // Returns the address of the first instruction. For off-heap code objects
  // this differs from instruction_start (which would point to the off-heap
  // trampoline instead).
  inline Address InstructionStart();

520
  // Returns the address right after the last instruction.
521
  inline Address raw_instruction_end();
522

523 524 525 526 527
  // Returns the address right after the last instruction. For off-heap code
  // objects this differs from instruction_end (which would point to the
  // off-heap trampoline instead).
  inline Address InstructionEnd();

528
  // Returns the size of the code instructions.
529
  inline int raw_instruction_size();
530

531 532 533 534 535 536 537
  // Returns the size of the native instructions, including embedded
  // data such as the safepoints table. For off-heap code objects
  // this may from instruction_size in that this will return the size of the
  // off-heap instruction stream rather than the on-heap trampoline located
  // at instruction_start.
  inline int InstructionSize();

538 539 540 541 542
  // Return the source position table.
  inline ByteArray* source_position_table();

  inline Object* stack_frame_cache();
  static void SetStackFrameCache(Handle<AbstractCode> abstract_code,
543
                                 Handle<SimpleNumberDictionary> cache);
544 545 546 547 548 549
  void DropStackFrameCache();

  // Returns the size of instructions and the metadata.
  inline int SizeIncludingMetadata();

  // Returns true if pc is inside this object's instructions.
550
  inline bool contains(Address pc);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

  // Returns the AbstractCode::Kind of the code.
  inline Kind kind();

  // Calculate the size of the code object to report for log events. This takes
  // the layout of the code object into account.
  inline int ExecutableSize();

  DECL_CAST(AbstractCode)
  inline Code* GetCode();
  inline BytecodeArray* GetBytecodeArray();

  // Max loop nesting marker used to postpose OSR. We don't take loop
  // nesting that is deeper than 5 levels into account.
  static const int kMaxLoopNestingMarker = 6;
};

// Dependent code is a singly linked list of fixed arrays. Each array contains
// code objects in weak cells for one dependent group. The suffix of the array
// can be filled with the undefined value if the number of codes is less than
// the length of the array.
//
// +------+-----------------+--------+--------+-----+--------+-----------+-----+
// | next | count & group 1 | code 1 | code 2 | ... | code n | undefined | ... |
// +------+-----------------+--------+--------+-----+--------+-----------+-----+
//    |
//    V
// +------+-----------------+--------+--------+-----+--------+-----------+-----+
// | next | count & group 2 | code 1 | code 2 | ... | code m | undefined | ... |
// +------+-----------------+--------+--------+-----+--------+-----------+-----+
//    |
//    V
// empty_fixed_array()
//
// The list of fixed arrays is ordered by dependency groups.

class DependentCode : public FixedArray {
 public:
  enum DependencyGroup {
    // Group of code that embed a transition to this map, and depend on being
    // deoptimized when the transition is replaced by a new version.
    kTransitionGroup,
    // Group of code that omit run-time prototype checks for prototypes
    // described by this map. The group is deoptimized whenever an object
    // described by this map changes shape (and transitions to a new map),
    // possibly invalidating the assumptions embedded in the code.
    kPrototypeCheckGroup,
    // Group of code that depends on global property values in property cells
    // not being changed.
    kPropertyCellChangedGroup,
    // Group of code that omit run-time checks for field(s) introduced by
    // this map, i.e. for the field type.
    kFieldOwnerGroup,
    // Group of code that omit run-time type checks for initial maps of
    // constructors.
    kInitialMapChangedGroup,
    // Group of code that depends on tenuring information in AllocationSites
    // not being changed.
    kAllocationSiteTenuringChangedGroup,
    // Group of code that depends on element transition information in
    // AllocationSites not being changed.
    kAllocationSiteTransitionChangedGroup
  };

  static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;
  static const int kNextLinkIndex = 0;
  static const int kFlagsIndex = 1;
  static const int kCodesStartIndex = 2;

  bool Contains(DependencyGroup group, WeakCell* code_cell);
  bool IsEmpty(DependencyGroup group);

  static Handle<DependentCode> InsertCompilationDependencies(
      Handle<DependentCode> entries, DependencyGroup group,
      Handle<Foreign> info);

  static Handle<DependentCode> InsertWeakCode(Handle<DependentCode> entries,
                                              DependencyGroup group,
                                              Handle<WeakCell> code_cell);

  void UpdateToFinishedCode(DependencyGroup group, Foreign* info,
                            WeakCell* code_cell);

  void RemoveCompilationDependencies(DependentCode::DependencyGroup group,
                                     Foreign* info);

  void DeoptimizeDependentCodeGroup(Isolate* isolate,
                                    DependentCode::DependencyGroup group);

  bool MarkCodeForDeoptimization(Isolate* isolate,
                                 DependentCode::DependencyGroup group);

  // The following low-level accessors should only be used by this class
  // and the mark compact collector.
  inline DependentCode* next_link();
  inline void set_next_link(DependentCode* next);
  inline int count();
  inline void set_count(int value);
  inline DependencyGroup group();
  inline void set_group(DependencyGroup group);
  inline Object* object_at(int i);
  inline void set_object_at(int i, Object* object);
  inline void clear_at(int i);
  inline void copy(int from, int to);
  DECL_CAST(DependentCode)

  static const char* DependencyGroupName(DependencyGroup group);

 private:
  static Handle<DependentCode> Insert(Handle<DependentCode> entries,
                                      DependencyGroup group,
                                      Handle<Object> object);
  static Handle<DependentCode> New(DependencyGroup group, Handle<Object> object,
                                   Handle<DependentCode> next);
  static Handle<DependentCode> EnsureSpace(Handle<DependentCode> entries);
  // Compact by removing cleared weak cells and return true if there was
  // any cleared weak cell.
  bool Compact();
  static int Grow(int number_of_entries) {
    if (number_of_entries < 5) return number_of_entries + 1;
    return number_of_entries * 5 / 4;
  }
  inline int flags();
  inline void set_flags(int flags);
  class GroupField : public BitField<int, 0, 3> {};
  class CountField : public BitField<int, 3, 27> {};
  STATIC_ASSERT(kGroupCount <= GroupField::kMax + 1);
};

// BytecodeArray represents a sequence of interpreter bytecodes.
class BytecodeArray : public FixedArrayBase {
 public:
  enum Age {
    kNoAgeBytecodeAge = 0,
    kQuadragenarianBytecodeAge,
    kQuinquagenarianBytecodeAge,
    kSexagenarianBytecodeAge,
    kSeptuagenarianBytecodeAge,
    kOctogenarianBytecodeAge,
    kAfterLastBytecodeAge,
    kFirstBytecodeAge = kNoAgeBytecodeAge,
    kLastBytecodeAge = kAfterLastBytecodeAge - 1,
    kBytecodeAgeCount = kAfterLastBytecodeAge - kFirstBytecodeAge - 1,
    kIsOldBytecodeAge = kSexagenarianBytecodeAge
  };

  static int SizeFor(int length) {
    return OBJECT_POINTER_ALIGN(kHeaderSize + length);
  }

  // Setter and getter
  inline byte get(int index);
  inline void set(int index, byte value);

  // Returns data start address.
  inline Address GetFirstBytecodeAddress();

  // Accessors for frame size.
  inline int frame_size() const;
  inline void set_frame_size(int frame_size);

  // Accessor for register count (derived from frame_size).
  inline int register_count() const;

  // Accessors for parameter count (including implicit 'this' receiver).
  inline int parameter_count() const;
  inline void set_parameter_count(int number_of_parameters);

  // Register used to pass the incoming new.target or generator object from the
  // fucntion call.
  inline interpreter::Register incoming_new_target_or_generator_register()
      const;
  inline void set_incoming_new_target_or_generator_register(
      interpreter::Register incoming_new_target_or_generator_register);

  // Accessors for profiling count.
  inline int interrupt_budget() const;
  inline void set_interrupt_budget(int interrupt_budget);

  // Accessors for OSR loop nesting level.
  inline int osr_loop_nesting_level() const;
  inline void set_osr_loop_nesting_level(int depth);

  // Accessors for bytecode's code age.
  inline Age bytecode_age() const;
  inline void set_bytecode_age(Age age);

  // Accessors for the constant pool.
  DECL_ACCESSORS(constant_pool, FixedArray)

  // Accessors for handler table containing offsets of exception handlers.
742
  DECL_ACCESSORS(handler_table, ByteArray)
743 744 745 746 747 748

  // Accessors for source position table containing mappings between byte code
  // offset and source position or SourcePositionTableWithFrameCache.
  DECL_ACCESSORS(source_position_table, Object)

  inline ByteArray* SourcePositionTable();
749
  inline void ClearFrameCacheFromSourcePositionTable();
750 751 752 753 754 755

  DECL_CAST(BytecodeArray)

  // Dispatched behavior.
  inline int BytecodeArraySize();

756
  inline int raw_instruction_size();
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

  // Returns the size of bytecode and its metadata. This includes the size of
  // bytecode, constant pool, source position table, and handler table.
  inline int SizeIncludingMetadata();

  int SourcePosition(int offset);
  int SourceStatementPosition(int offset);

  DECL_PRINTER(BytecodeArray)
  DECL_VERIFIER(BytecodeArray)

  void Disassemble(std::ostream& os);

  void CopyBytecodesTo(BytecodeArray* to);

  // Bytecode aging
  bool IsOld() const;
  void MakeOlder();

  // Clear uninitialized padding space. This ensures that the snapshot content
  // is deterministic.
  inline void clear_padding();

// Layout description.
#define BYTECODE_ARRAY_FIELDS(V)                           \
  /* Pointer fields. */                                    \
  V(kConstantPoolOffset, kPointerSize)                     \
  V(kHandlerTableOffset, kPointerSize)                     \
  V(kSourcePositionTableOffset, kPointerSize)              \
  V(kFrameSizeOffset, kIntSize)                            \
  V(kParameterSizeOffset, kIntSize)                        \
  V(kIncomingNewTargetOrGeneratorRegisterOffset, kIntSize) \
  V(kInterruptBudgetOffset, kIntSize)                      \
  V(kOSRNestingLevelOffset, kCharSize)                     \
  V(kBytecodeAgeOffset, kCharSize)                         \
  /* Total size. */                                        \
  V(kHeaderSize, 0)

  DEFINE_FIELD_OFFSET_CONSTANTS(FixedArrayBase::kHeaderSize,
                                BYTECODE_ARRAY_FIELDS)
#undef BYTECODE_ARRAY_FIELDS

  // Maximal memory consumption for a single BytecodeArray.
  static const int kMaxSize = 512 * MB;
  // Maximal length of a single BytecodeArray.
  static const int kMaxLength = kMaxSize - kHeaderSize;

  class BodyDescriptor;
  // No weak fields.
  typedef BodyDescriptor BodyDescriptorWeak;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(BytecodeArray);
};

812 813 814
// DeoptimizationData is a fixed array used to hold the deoptimization data for
// optimized code.  It also contains information about functions that were
// inlined.  If N different functions were inlined then the first N elements of
815 816 817
// the literal array will contain these functions.
//
// It can be empty.
818
class DeoptimizationData : public FixedArray {
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
 public:
  // Layout description.  Indices in the array.
  static const int kTranslationByteArrayIndex = 0;
  static const int kInlinedFunctionCountIndex = 1;
  static const int kLiteralArrayIndex = 2;
  static const int kOsrBytecodeOffsetIndex = 3;
  static const int kOsrPcOffsetIndex = 4;
  static const int kOptimizationIdIndex = 5;
  static const int kSharedFunctionInfoIndex = 6;
  static const int kWeakCellCacheIndex = 7;
  static const int kInliningPositionsIndex = 8;
  static const int kFirstDeoptEntryIndex = 9;

  // Offsets of deopt entry elements relative to the start of the entry.
  static const int kBytecodeOffsetRawOffset = 0;
  static const int kTranslationIndexOffset = 1;
  static const int kPcOffset = 2;
  static const int kDeoptEntrySize = 3;

// Simple element accessors.
#define DECL_ELEMENT_ACCESSORS(name, type) \
  inline type* name();                     \
  inline void Set##name(type* value);

  DECL_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
  DECL_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
  DECL_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
  DECL_ELEMENT_ACCESSORS(OsrBytecodeOffset, Smi)
  DECL_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
  DECL_ELEMENT_ACCESSORS(OptimizationId, Smi)
  DECL_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
  DECL_ELEMENT_ACCESSORS(WeakCellCache, Object)
  DECL_ELEMENT_ACCESSORS(InliningPositions, PodArray<InliningPosition>)

#undef DECL_ELEMENT_ACCESSORS

// Accessors for elements of the ith deoptimization entry.
#define DECL_ENTRY_ACCESSORS(name, type) \
  inline type* name(int i);              \
  inline void Set##name(int i, type* value);

  DECL_ENTRY_ACCESSORS(BytecodeOffsetRaw, Smi)
  DECL_ENTRY_ACCESSORS(TranslationIndex, Smi)
  DECL_ENTRY_ACCESSORS(Pc, Smi)

#undef DECL_ENTRY_ACCESSORS

  inline BailoutId BytecodeOffset(int i);

  inline void SetBytecodeOffset(int i, BailoutId value);

  inline int DeoptCount();

  static const int kNotInlinedIndex = -1;

  // Returns the inlined function at the given position in LiteralArray, or the
  // outer function if index == kNotInlinedIndex.
  class SharedFunctionInfo* GetInlinedFunction(int index);

878 879 880
  // Allocates a DeoptimizationData.
  static Handle<DeoptimizationData> New(Isolate* isolate, int deopt_entry_count,
                                        PretenureFlag pretenure);
881

882 883 884
  // Return an empty DeoptimizationData.
  static Handle<DeoptimizationData> Empty(Isolate* isolate);

885
  DECL_CAST(DeoptimizationData)
886 887

#ifdef ENABLE_DISASSEMBLER
888
  void DeoptimizationDataPrint(std::ostream& os);  // NOLINT
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
#endif

 private:
  static int IndexForEntry(int i) {
    return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
  }

  static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
};

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_CODE_H_