stub-cache.h 4.71 KB
Newer Older
1 2 3 4
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5 6
#ifndef V8_IC_STUB_CACHE_H_
#define V8_IC_STUB_CACHE_H_
7

8
#include "src/objects/name.h"
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

namespace v8 {
namespace internal {

// The stub cache is used for megamorphic property accesses.
// It maps (map, name, type) to property access handlers. The cache does not
// need explicit invalidation when a prototype chain is modified, since the
// handlers verify the chain.


class SCTableReference {
 public:
  Address address() const { return address_; }

 private:
  explicit SCTableReference(Address address) : address_(address) {}

  Address address_;

  friend class StubCache;
};


class StubCache {
 public:
  struct Entry {
35 36 37
    // The values here have plain Address types because they are read
    // directly from generated code. As a nice side effect, this keeps
    // #includes lightweight.
38
    Address key;
39
    // {value} is a tagged heap object reference (weak or strong), equivalent
40
    // to a MaybeObject's payload.
41
    Address value;
42 43
    // {map} is a tagged Map pointer, or nullptr.
    Address map;
44 45 46 47
  };

  void Initialize();
  // Access cache for entry hash(name, map).
48 49
  void Set(Name name, Map map, MaybeObject handler);
  MaybeObject Get(Name name, Map map);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  // Clear the lookup table (@ mark compact collection).
  void Clear();

  enum Table { kPrimary, kSecondary };

  SCTableReference key_reference(StubCache::Table table) {
    return SCTableReference(
        reinterpret_cast<Address>(&first_entry(table)->key));
  }

  SCTableReference map_reference(StubCache::Table table) {
    return SCTableReference(
        reinterpret_cast<Address>(&first_entry(table)->map));
  }

  SCTableReference value_reference(StubCache::Table table) {
    return SCTableReference(
        reinterpret_cast<Address>(&first_entry(table)->value));
  }

  StubCache::Entry* first_entry(StubCache::Table table) {
    switch (table) {
      case StubCache::kPrimary:
        return StubCache::primary_;
      case StubCache::kSecondary:
        return StubCache::secondary_;
    }
    UNREACHABLE();
  }

  Isolate* isolate() { return isolate_; }

  // Setting the entry size such that the index is shifted by Name::kHashShift
  // is convenient; shifting down the length field (to extract the hash code)
  // automatically discards the hash bit field.
  static const int kCacheIndexShift = Name::kHashShift;

87 88 89 90 91
  static const int kPrimaryTableBits = 11;
  static const int kPrimaryTableSize = (1 << kPrimaryTableBits);
  static const int kSecondaryTableBits = 9;
  static const int kSecondaryTableSize = (1 << kSecondaryTableBits);

92
  // Some magic number used in the secondary hash computation.
ishell's avatar
ishell committed
93
  static const int kSecondaryMagic = 0xb16ca6e5;
94

95 96
  static int PrimaryOffsetForTesting(Name name, Map map);
  static int SecondaryOffsetForTesting(Name name, int seed);
97 98

  // The constructor is made public only for the purposes of testing.
99
  explicit StubCache(Isolate* isolate);
100

101
 private:
102 103 104 105 106 107 108 109 110 111
  // The stub cache has a primary and secondary level.  The two levels have
  // different hashing algorithms in order to avoid simultaneous collisions
  // in both caches.  Unlike a probing strategy (quadratic or otherwise) the
  // update strategy on updates is fairly clear and simple:  Any existing entry
  // in the primary cache is moved to the secondary cache, and secondary cache
  // entries are overwritten.

  // Hash algorithm for the primary table.  This algorithm is replicated in
  // assembler for every architecture.  Returns an index into the table that
  // is scaled by 1 << kCacheIndexShift.
112
  static int PrimaryOffset(Name name, Map map);
113 114 115 116

  // Hash algorithm for the secondary table.  This algorithm is replicated in
  // assembler for every architecture.  Returns an index into the table that
  // is scaled by 1 << kCacheIndexShift.
117
  static int SecondaryOffset(Name name, int seed);
118 119 120 121 122 123 124 125 126 127 128 129

  // Compute the entry for a given offset in exactly the same way as
  // we do in generated code.  We generate an hash code that already
  // ends in Name::kHashShift 0s.  Then we multiply it so it is a multiple
  // of sizeof(Entry).  This makes it easier to avoid making mistakes
  // in the hashed offset computations.
  static Entry* entry(Entry* table, int offset) {
    const int multiplier = sizeof(*table) >> Name::kHashShift;
    return reinterpret_cast<Entry*>(reinterpret_cast<Address>(table) +
                                    offset * multiplier);
  }

130
 private:
131 132 133 134 135 136 137 138 139
  Entry primary_[kPrimaryTableSize];
  Entry secondary_[kSecondaryTableSize];
  Isolate* isolate_;

  friend class Isolate;
  friend class SCTableReference;

  DISALLOW_COPY_AND_ASSIGN(StubCache);
};
140 141
}  // namespace internal
}  // namespace v8
142

143
#endif  // V8_IC_STUB_CACHE_H_