bignum.cc 21.2 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include "../include/v8stdint.h"
6
#include "utils.h"
7
#include "bignum.h"
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

namespace v8 {
namespace internal {

Bignum::Bignum()
    : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
  for (int i = 0; i < kBigitCapacity; ++i) {
    bigits_[i] = 0;
  }
}


template<typename S>
static int BitSize(S value) {
  return 8 * sizeof(value);
}

25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
// Guaranteed to lie in one Bigit.
void Bignum::AssignUInt16(uint16_t value) {
  ASSERT(kBigitSize >= BitSize(value));
  Zero();
  if (value == 0) return;

  EnsureCapacity(1);
  bigits_[0] = value;
  used_digits_ = 1;
}


void Bignum::AssignUInt64(uint64_t value) {
  const int kUInt64Size = 64;

  Zero();
  if (value == 0) return;

  int needed_bigits = kUInt64Size / kBigitSize + 1;
  EnsureCapacity(needed_bigits);
  for (int i = 0; i < needed_bigits; ++i) {
47
    bigits_[i] = static_cast<Chunk>(value & kBigitMask);
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    value = value >> kBigitSize;
  }
  used_digits_ = needed_bigits;
  Clamp();
}


void Bignum::AssignBignum(const Bignum& other) {
  exponent_ = other.exponent_;
  for (int i = 0; i < other.used_digits_; ++i) {
    bigits_[i] = other.bigits_[i];
  }
  // Clear the excess digits (if there were any).
  for (int i = other.used_digits_; i < used_digits_; ++i) {
    bigits_[i] = 0;
  }
  used_digits_ = other.used_digits_;
}


static uint64_t ReadUInt64(Vector<const char> buffer,
                           int from,
                           int digits_to_read) {
  uint64_t result = 0;
  for (int i = from; i < from + digits_to_read; ++i) {
    int digit = buffer[i] - '0';
    ASSERT(0 <= digit && digit <= 9);
    result = result * 10 + digit;
  }
  return result;
}


void Bignum::AssignDecimalString(Vector<const char> value) {
  // 2^64 = 18446744073709551616 > 10^19
  const int kMaxUint64DecimalDigits = 19;
  Zero();
  int length = value.length();
  int pos = 0;
  // Let's just say that each digit needs 4 bits.
  while (length >= kMaxUint64DecimalDigits) {
    uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
    pos += kMaxUint64DecimalDigits;
    length -= kMaxUint64DecimalDigits;
    MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
    AddUInt64(digits);
  }
  uint64_t digits = ReadUInt64(value, pos, length);
  MultiplyByPowerOfTen(length);
  AddUInt64(digits);
  Clamp();
}


static int HexCharValue(char c) {
  if ('0' <= c && c <= '9') return c - '0';
  if ('a' <= c && c <= 'f') return 10 + c - 'a';
  if ('A' <= c && c <= 'F') return 10 + c - 'A';
  UNREACHABLE();
  return 0;  // To make compiler happy.
}


void Bignum::AssignHexString(Vector<const char> value) {
  Zero();
  int length = value.length();

  int needed_bigits = length * 4 / kBigitSize + 1;
  EnsureCapacity(needed_bigits);
  int string_index = length - 1;
  for (int i = 0; i < needed_bigits - 1; ++i) {
    // These bigits are guaranteed to be "full".
    Chunk current_bigit = 0;
    for (int j = 0; j < kBigitSize / 4; j++) {
      current_bigit += HexCharValue(value[string_index--]) << (j * 4);
    }
    bigits_[i] = current_bigit;
  }
  used_digits_ = needed_bigits - 1;

  Chunk most_significant_bigit = 0;  // Could be = 0;
  for (int j = 0; j <= string_index; ++j) {
    most_significant_bigit <<= 4;
    most_significant_bigit += HexCharValue(value[j]);
  }
  if (most_significant_bigit != 0) {
    bigits_[used_digits_] = most_significant_bigit;
    used_digits_++;
  }
  Clamp();
}


void Bignum::AddUInt64(uint64_t operand) {
  if (operand == 0) return;
  Bignum other;
  other.AssignUInt64(operand);
  AddBignum(other);
}


void Bignum::AddBignum(const Bignum& other) {
  ASSERT(IsClamped());
  ASSERT(other.IsClamped());

  // If this has a greater exponent than other append zero-bigits to this.
  // After this call exponent_ <= other.exponent_.
  Align(other);

  // There are two possibilities:
  //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
  //     bbbbb 00000000
  //   ----------------
  //   ccccccccccc 0000
  // or
  //    aaaaaaaaaa 0000
  //  bbbbbbbbb 0000000
  //  -----------------
  //  cccccccccccc 0000
  // In both cases we might need a carry bigit.

  EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
  Chunk carry = 0;
  int bigit_pos = other.exponent_ - exponent_;
  ASSERT(bigit_pos >= 0);
  for (int i = 0; i < other.used_digits_; ++i) {
    Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
    bigits_[bigit_pos] = sum & kBigitMask;
    carry = sum >> kBigitSize;
    bigit_pos++;
  }

  while (carry != 0) {
    Chunk sum = bigits_[bigit_pos] + carry;
    bigits_[bigit_pos] = sum & kBigitMask;
    carry = sum >> kBigitSize;
    bigit_pos++;
  }
  used_digits_ = Max(bigit_pos, used_digits_);
  ASSERT(IsClamped());
}


void Bignum::SubtractBignum(const Bignum& other) {
  ASSERT(IsClamped());
  ASSERT(other.IsClamped());
  // We require this to be bigger than other.
  ASSERT(LessEqual(other, *this));

  Align(other);

  int offset = other.exponent_ - exponent_;
  Chunk borrow = 0;
  int i;
  for (i = 0; i < other.used_digits_; ++i) {
    ASSERT((borrow == 0) || (borrow == 1));
    Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
    bigits_[i + offset] = difference & kBigitMask;
    borrow = difference >> (kChunkSize - 1);
  }
  while (borrow != 0) {
    Chunk difference = bigits_[i + offset] - borrow;
    bigits_[i + offset] = difference & kBigitMask;
    borrow = difference >> (kChunkSize - 1);
    ++i;
  }
  Clamp();
}


void Bignum::ShiftLeft(int shift_amount) {
  if (used_digits_ == 0) return;
  exponent_ += shift_amount / kBigitSize;
  int local_shift = shift_amount % kBigitSize;
  EnsureCapacity(used_digits_ + 1);
  BigitsShiftLeft(local_shift);
}


void Bignum::MultiplyByUInt32(uint32_t factor) {
  if (factor == 1) return;
  if (factor == 0) {
    Zero();
    return;
  }
  if (used_digits_ == 0) return;

  // The product of a bigit with the factor is of size kBigitSize + 32.
  // Assert that this number + 1 (for the carry) fits into double chunk.
  ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
  DoubleChunk carry = 0;
  for (int i = 0; i < used_digits_; ++i) {
    DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
    bigits_[i] = static_cast<Chunk>(product & kBigitMask);
    carry = (product >> kBigitSize);
  }
  while (carry != 0) {
    EnsureCapacity(used_digits_ + 1);
246
    bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    used_digits_++;
    carry >>= kBigitSize;
  }
}


void Bignum::MultiplyByUInt64(uint64_t factor) {
  if (factor == 1) return;
  if (factor == 0) {
    Zero();
    return;
  }
  ASSERT(kBigitSize < 32);
  uint64_t carry = 0;
  uint64_t low = factor & 0xFFFFFFFF;
  uint64_t high = factor >> 32;
  for (int i = 0; i < used_digits_; ++i) {
    uint64_t product_low = low * bigits_[i];
    uint64_t product_high = high * bigits_[i];
    uint64_t tmp = (carry & kBigitMask) + product_low;
267
    bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
268 269 270 271 272
    carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
        (product_high << (32 - kBigitSize));
  }
  while (carry != 0) {
    EnsureCapacity(used_digits_ + 1);
273
    bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    used_digits_++;
    carry >>= kBigitSize;
  }
}


void Bignum::MultiplyByPowerOfTen(int exponent) {
  const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
  const uint16_t kFive1 = 5;
  const uint16_t kFive2 = kFive1 * 5;
  const uint16_t kFive3 = kFive2 * 5;
  const uint16_t kFive4 = kFive3 * 5;
  const uint16_t kFive5 = kFive4 * 5;
  const uint16_t kFive6 = kFive5 * 5;
  const uint32_t kFive7 = kFive6 * 5;
  const uint32_t kFive8 = kFive7 * 5;
  const uint32_t kFive9 = kFive8 * 5;
  const uint32_t kFive10 = kFive9 * 5;
  const uint32_t kFive11 = kFive10 * 5;
  const uint32_t kFive12 = kFive11 * 5;
  const uint32_t kFive13 = kFive12 * 5;
  const uint32_t kFive1_to_12[] =
      { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
        kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };

  ASSERT(exponent >= 0);
  if (exponent == 0) return;
  if (used_digits_ == 0) return;

  // We shift by exponent at the end just before returning.
  int remaining_exponent = exponent;
  while (remaining_exponent >= 27) {
    MultiplyByUInt64(kFive27);
    remaining_exponent -= 27;
  }
  while (remaining_exponent >= 13) {
    MultiplyByUInt32(kFive13);
    remaining_exponent -= 13;
  }
  if (remaining_exponent > 0) {
    MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
  }
  ShiftLeft(exponent);
}


void Bignum::Square() {
  ASSERT(IsClamped());
  int product_length = 2 * used_digits_;
  EnsureCapacity(product_length);

  // Comba multiplication: compute each column separately.
  // Example: r = a2a1a0 * b2b1b0.
  //    r =  1    * a0b0 +
  //        10    * (a1b0 + a0b1) +
  //        100   * (a2b0 + a1b1 + a0b2) +
  //        1000  * (a2b1 + a1b2) +
  //        10000 * a2b2
  //
  // In the worst case we have to accumulate nb-digits products of digit*digit.
  //
  // Assert that the additional number of bits in a DoubleChunk are enough to
  // sum up used_digits of Bigit*Bigit.
  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
    UNIMPLEMENTED();
  }
  DoubleChunk accumulator = 0;
  // First shift the digits so we don't overwrite them.
  int copy_offset = used_digits_;
  for (int i = 0; i < used_digits_; ++i) {
    bigits_[copy_offset + i] = bigits_[i];
  }
  // We have two loops to avoid some 'if's in the loop.
  for (int i = 0; i < used_digits_; ++i) {
    // Process temporary digit i with power i.
    // The sum of the two indices must be equal to i.
    int bigit_index1 = i;
    int bigit_index2 = 0;
    // Sum all of the sub-products.
    while (bigit_index1 >= 0) {
      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
      bigit_index1--;
      bigit_index2++;
    }
    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
    accumulator >>= kBigitSize;
  }
  for (int i = used_digits_; i < product_length; ++i) {
    int bigit_index1 = used_digits_ - 1;
    int bigit_index2 = i - bigit_index1;
    // Invariant: sum of both indices is again equal to i.
    // Inner loop runs 0 times on last iteration, emptying accumulator.
    while (bigit_index2 < used_digits_) {
      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
      bigit_index1--;
      bigit_index2++;
    }
    // The overwritten bigits_[i] will never be read in further loop iterations,
    // because bigit_index1 and bigit_index2 are always greater
    // than i - used_digits_.
    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
    accumulator >>= kBigitSize;
  }
  // Since the result was guaranteed to lie inside the number the
  // accumulator must be 0 now.
  ASSERT(accumulator == 0);

  // Don't forget to update the used_digits and the exponent.
  used_digits_ = product_length;
  exponent_ *= 2;
  Clamp();
}


void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
  ASSERT(base != 0);
  ASSERT(power_exponent >= 0);
  if (power_exponent == 0) {
    AssignUInt16(1);
    return;
  }
  Zero();
  int shifts = 0;
  // We expect base to be in range 2-32, and most often to be 10.
  // It does not make much sense to implement different algorithms for counting
  // the bits.
  while ((base & 1) == 0) {
    base >>= 1;
    shifts++;
  }
  int bit_size = 0;
  int tmp_base = base;
  while (tmp_base != 0) {
    tmp_base >>= 1;
    bit_size++;
  }
  int final_size = bit_size * power_exponent;
  // 1 extra bigit for the shifting, and one for rounded final_size.
  EnsureCapacity(final_size / kBigitSize + 2);

  // Left to Right exponentiation.
  int mask = 1;
  while (power_exponent >= mask) mask <<= 1;

  // The mask is now pointing to the bit above the most significant 1-bit of
  // power_exponent.
  // Get rid of first 1-bit;
  mask >>= 2;
  uint64_t this_value = base;

  bool delayed_multipliciation = false;
  const uint64_t max_32bits = 0xFFFFFFFF;
  while (mask != 0 && this_value <= max_32bits) {
    this_value = this_value * this_value;
    // Verify that there is enough space in this_value to perform the
    // multiplication.  The first bit_size bits must be 0.
    if ((power_exponent & mask) != 0) {
      uint64_t base_bits_mask =
          ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
      bool high_bits_zero = (this_value & base_bits_mask) == 0;
      if (high_bits_zero) {
        this_value *= base;
      } else {
        delayed_multipliciation = true;
      }
    }
    mask >>= 1;
  }
  AssignUInt64(this_value);
  if (delayed_multipliciation) {
    MultiplyByUInt32(base);
  }

  // Now do the same thing as a bignum.
  while (mask != 0) {
    Square();
    if ((power_exponent & mask) != 0) {
      MultiplyByUInt32(base);
    }
    mask >>= 1;
  }

  // And finally add the saved shifts.
  ShiftLeft(shifts * power_exponent);
}


// Precondition: this/other < 16bit.
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
  ASSERT(IsClamped());
  ASSERT(other.IsClamped());
  ASSERT(other.used_digits_ > 0);

  // Easy case: if we have less digits than the divisor than the result is 0.
  // Note: this handles the case where this == 0, too.
  if (BigitLength() < other.BigitLength()) {
    return 0;
  }

  Align(other);

  uint16_t result = 0;

  // Start by removing multiples of 'other' until both numbers have the same
  // number of digits.
  while (BigitLength() > other.BigitLength()) {
    // This naive approach is extremely inefficient if the this divided other
    // might be big. This function is implemented for doubleToString where
    // the result should be small (less than 10).
    ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
    // Remove the multiples of the first digit.
    // Example this = 23 and other equals 9. -> Remove 2 multiples.
    result += bigits_[used_digits_ - 1];
    SubtractTimes(other, bigits_[used_digits_ - 1]);
  }

  ASSERT(BigitLength() == other.BigitLength());

  // Both bignums are at the same length now.
  // Since other has more than 0 digits we know that the access to
  // bigits_[used_digits_ - 1] is safe.
  Chunk this_bigit = bigits_[used_digits_ - 1];
  Chunk other_bigit = other.bigits_[other.used_digits_ - 1];

  if (other.used_digits_ == 1) {
    // Shortcut for easy (and common) case.
    int quotient = this_bigit / other_bigit;
    bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
    result += quotient;
    Clamp();
    return result;
  }

  int division_estimate = this_bigit / (other_bigit + 1);
  result += division_estimate;
  SubtractTimes(other, division_estimate);

  if (other_bigit * (division_estimate + 1) > this_bigit) {
    // No need to even try to subtract. Even if other's remaining digits were 0
    // another subtraction would be too much.
    return result;
  }

  while (LessEqual(other, *this)) {
    SubtractBignum(other);
    result++;
  }
  return result;
}


template<typename S>
static int SizeInHexChars(S number) {
  ASSERT(number > 0);
  int result = 0;
  while (number != 0) {
    number >>= 4;
    result++;
  }
  return result;
}


static char HexCharOfValue(int value) {
  ASSERT(0 <= value && value <= 16);
  if (value < 10) return value + '0';
  return value - 10 + 'A';
}


bool Bignum::ToHexString(char* buffer, int buffer_size) const {
  ASSERT(IsClamped());
  // Each bigit must be printable as separate hex-character.
  ASSERT(kBigitSize % 4 == 0);
  const int kHexCharsPerBigit = kBigitSize / 4;

  if (used_digits_ == 0) {
    if (buffer_size < 2) return false;
    buffer[0] = '0';
    buffer[1] = '\0';
    return true;
  }
  // We add 1 for the terminating '\0' character.
  int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
      SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
  if (needed_chars > buffer_size) return false;
  int string_index = needed_chars - 1;
  buffer[string_index--] = '\0';
  for (int i = 0; i < exponent_; ++i) {
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
      buffer[string_index--] = '0';
    }
  }
  for (int i = 0; i < used_digits_ - 1; ++i) {
    Chunk current_bigit = bigits_[i];
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
      buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
      current_bigit >>= 4;
    }
  }
  // And finally the last bigit.
  Chunk most_significant_bigit = bigits_[used_digits_ - 1];
  while (most_significant_bigit != 0) {
    buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
    most_significant_bigit >>= 4;
  }
  return true;
}


Bignum::Chunk Bignum::BigitAt(int index) const {
  if (index >= BigitLength()) return 0;
  if (index < exponent_) return 0;
  return bigits_[index - exponent_];
}


int Bignum::Compare(const Bignum& a, const Bignum& b) {
  ASSERT(a.IsClamped());
  ASSERT(b.IsClamped());
  int bigit_length_a = a.BigitLength();
  int bigit_length_b = b.BigitLength();
  if (bigit_length_a < bigit_length_b) return -1;
  if (bigit_length_a > bigit_length_b) return +1;
  for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
    Chunk bigit_a = a.BigitAt(i);
    Chunk bigit_b = b.BigitAt(i);
    if (bigit_a < bigit_b) return -1;
    if (bigit_a > bigit_b) return +1;
    // Otherwise they are equal up to this digit. Try the next digit.
  }
  return 0;
}


int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
  ASSERT(a.IsClamped());
  ASSERT(b.IsClamped());
  ASSERT(c.IsClamped());
  if (a.BigitLength() < b.BigitLength()) {
    return PlusCompare(b, a, c);
  }
  if (a.BigitLength() + 1 < c.BigitLength()) return -1;
  if (a.BigitLength() > c.BigitLength()) return +1;
  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
  // of 'a'.
  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
    return -1;
  }

  Chunk borrow = 0;
  // Starting at min_exponent all digits are == 0. So no need to compare them.
  int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
    Chunk chunk_a = a.BigitAt(i);
    Chunk chunk_b = b.BigitAt(i);
    Chunk chunk_c = c.BigitAt(i);
    Chunk sum = chunk_a + chunk_b;
    if (sum > chunk_c + borrow) {
      return +1;
    } else {
      borrow = chunk_c + borrow - sum;
      if (borrow > 1) return -1;
      borrow <<= kBigitSize;
    }
  }
  if (borrow == 0) return 0;
  return -1;
}


void Bignum::Clamp() {
  while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
    used_digits_--;
  }
  if (used_digits_ == 0) {
    // Zero.
    exponent_ = 0;
  }
}


bool Bignum::IsClamped() const {
  return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
}


void Bignum::Zero() {
  for (int i = 0; i < used_digits_; ++i) {
    bigits_[i] = 0;
  }
  used_digits_ = 0;
  exponent_ = 0;
}


void Bignum::Align(const Bignum& other) {
  if (exponent_ > other.exponent_) {
    // If "X" represents a "hidden" digit (by the exponent) then we are in the
    // following case (a == this, b == other):
    // a:  aaaaaaXXXX   or a:   aaaaaXXX
    // b:     bbbbbbX      b: bbbbbbbbXX
    // We replace some of the hidden digits (X) of a with 0 digits.
    // a:  aaaaaa000X   or a:   aaaaa0XX
    int zero_digits = exponent_ - other.exponent_;
    EnsureCapacity(used_digits_ + zero_digits);
    for (int i = used_digits_ - 1; i >= 0; --i) {
      bigits_[i + zero_digits] = bigits_[i];
    }
    for (int i = 0; i < zero_digits; ++i) {
      bigits_[i] = 0;
    }
    used_digits_ += zero_digits;
    exponent_ -= zero_digits;
    ASSERT(used_digits_ >= 0);
    ASSERT(exponent_ >= 0);
  }
}


void Bignum::BigitsShiftLeft(int shift_amount) {
  ASSERT(shift_amount < kBigitSize);
  ASSERT(shift_amount >= 0);
  Chunk carry = 0;
  for (int i = 0; i < used_digits_; ++i) {
    Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
    bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
    carry = new_carry;
  }
  if (carry != 0) {
    bigits_[used_digits_] = carry;
    used_digits_++;
  }
}


void Bignum::SubtractTimes(const Bignum& other, int factor) {
716 717 718 719 720 721 722
#ifdef DEBUG
  Bignum a, b;
  a.AssignBignum(*this);
  b.AssignBignum(other);
  b.MultiplyByUInt32(factor);
  a.SubtractBignum(b);
#endif
723 724 725 726 727 728 729 730 731 732 733 734
  ASSERT(exponent_ <= other.exponent_);
  if (factor < 3) {
    for (int i = 0; i < factor; ++i) {
      SubtractBignum(other);
    }
    return;
  }
  Chunk borrow = 0;
  int exponent_diff = other.exponent_ - exponent_;
  for (int i = 0; i < other.used_digits_; ++i) {
    DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
    DoubleChunk remove = borrow + product;
735 736
    Chunk difference =
        bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
737 738 739 740 741 742 743 744 745 746 747
    bigits_[i + exponent_diff] = difference & kBigitMask;
    borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
                                (remove >> kBigitSize));
  }
  for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
    if (borrow == 0) return;
    Chunk difference = bigits_[i] - borrow;
    bigits_[i] = difference & kBigitMask;
    borrow = difference >> (kChunkSize - 1);
  }
  Clamp();
748
  ASSERT(Bignum::Equal(a, *this));
749 750 751 752
}


} }  // namespace v8::internal