lithium-codegen-s390.cc 191 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Copyright 2014 the V8 project authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/crankshaft/s390/lithium-codegen-s390.h"

#include "src/base/bits.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/crankshaft/hydrogen-osr.h"
#include "src/crankshaft/s390/lithium-gap-resolver-s390.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"

namespace v8 {
namespace internal {

class SafepointGenerator final : public CallWrapper {
 public:
  SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers,
                     Safepoint::DeoptMode mode)
      : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {}
  virtual ~SafepointGenerator() {}

  void BeforeCall(int call_size) const override {}

  void AfterCall() const override {
    codegen_->RecordSafepoint(pointers_, deopt_mode_);
  }

 private:
  LCodeGen* codegen_;
  LPointerMap* pointers_;
  Safepoint::DeoptMode deopt_mode_;
};

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope(
    LCodeGen* codegen)
    : codegen_(codegen) {
  DCHECK(codegen_->info()->is_calling());
  DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
  codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
  StoreRegistersStateStub stub(codegen_->isolate());
  codegen_->masm_->CallStub(&stub);
}

LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() {
  DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
  RestoreRegistersStateStub stub(codegen_->isolate());
  codegen_->masm_->CallStub(&stub);
  codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#define __ masm()->

bool LCodeGen::GenerateCode() {
  LPhase phase("Z_Code generation", chunk());
  DCHECK(is_unused());
  status_ = GENERATING;

  // Open a frame scope to indicate that there is a frame on the stack.  The
  // NONE indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done in GeneratePrologue).
  FrameScope frame_scope(masm_, StackFrame::NONE);

  return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
         GenerateJumpTable() && GenerateSafepointTable();
}

void LCodeGen::FinishCode(Handle<Code> code) {
  DCHECK(is_done());
  code->set_stack_slots(GetTotalFrameSlotCount());
  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
  PopulateDeoptimizationData(code);
}

void LCodeGen::SaveCallerDoubles() {
  DCHECK(info()->saves_caller_doubles());
  DCHECK(NeedsEagerFrame());
  Comment(";;; Save clobbered callee double registers");
  int count = 0;
  BitVector* doubles = chunk()->allocated_double_registers();
  BitVector::Iterator save_iterator(doubles);
  while (!save_iterator.Done()) {
86 87
    __ StoreDouble(DoubleRegister::from_code(save_iterator.Current()),
                   MemOperand(sp, count * kDoubleSize));
88 89 90 91 92 93 94 95 96 97 98 99 100
    save_iterator.Advance();
    count++;
  }
}

void LCodeGen::RestoreCallerDoubles() {
  DCHECK(info()->saves_caller_doubles());
  DCHECK(NeedsEagerFrame());
  Comment(";;; Restore clobbered callee double registers");
  BitVector* doubles = chunk()->allocated_double_registers();
  BitVector::Iterator save_iterator(doubles);
  int count = 0;
  while (!save_iterator.Done()) {
101 102
    __ LoadDouble(DoubleRegister::from_code(save_iterator.Current()),
                  MemOperand(sp, count * kDoubleSize));
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    save_iterator.Advance();
    count++;
  }
}

bool LCodeGen::GeneratePrologue() {
  DCHECK(is_generating());

  if (info()->IsOptimizing()) {
    ProfileEntryHookStub::MaybeCallEntryHook(masm_);

    // r3: Callee's JS function.
    // cp: Callee's context.
    // fp: Caller's frame pointer.
    // lr: Caller's pc.
    // ip: Our own function entry (required by the prologue)
  }

  int prologue_offset = masm_->pc_offset();

  if (prologue_offset) {
    // Prologue logic requires its starting address in ip and the
    // corresponding offset from the function entry.  Need to add
    // 4 bytes for the size of AHI/AGHI that AddP expands into.
127 128
    prologue_offset += sizeof(FourByteInstr);
    __ AddP(ip, ip, Operand(prologue_offset));
129 130 131 132
  }
  info()->set_prologue_offset(prologue_offset);
  if (NeedsEagerFrame()) {
    if (info()->IsStub()) {
133
      __ StubPrologue(StackFrame::STUB, ip, prologue_offset);
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    } else {
      __ Prologue(info()->GeneratePreagedPrologue(), ip, prologue_offset);
    }
    frame_is_built_ = true;
  }

  // Reserve space for the stack slots needed by the code.
  int slots = GetStackSlotCount();
  if (slots > 0) {
    __ lay(sp, MemOperand(sp, -(slots * kPointerSize)));
    if (FLAG_debug_code) {
      __ Push(r2, r3);
      __ mov(r2, Operand(slots * kPointerSize));
      __ mov(r3, Operand(kSlotsZapValue));
      Label loop;
      __ bind(&loop);
      __ StoreP(r3, MemOperand(sp, r2, kPointerSize));
      __ lay(r2, MemOperand(r2, -kPointerSize));
      __ CmpP(r2, Operand::Zero());
      __ bne(&loop);
      __ Pop(r2, r3);
    }
  }

  if (info()->saves_caller_doubles()) {
    SaveCallerDoubles();
  }
  return !is_aborted();
}

void LCodeGen::DoPrologue(LPrologue* instr) {
  Comment(";;; Prologue begin");

  // Possibly allocate a local context.
168
  if (info()->scope()->NeedsContext()) {
169 170 171 172 173 174 175
    Comment(";;; Allocate local context");
    bool need_write_barrier = true;
    // Argument to NewContext is the function, which is in r3.
    int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
    if (info()->scope()->is_script_scope()) {
      __ push(r3);
176
      __ Push(info()->scope()->scope_info());
177 178
      __ CallRuntime(Runtime::kNewScriptContext);
      deopt_mode = Safepoint::kLazyDeopt;
179
    } else {
180 181 182 183 184 185 186 187 188 189 190
      if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
        FastNewFunctionContextStub stub(isolate());
        __ mov(FastNewFunctionContextDescriptor::SlotsRegister(),
               Operand(slots));
        __ CallStub(&stub);
        // Result of FastNewFunctionContextStub is always in new space.
        need_write_barrier = false;
      } else {
        __ push(r3);
        __ CallRuntime(Runtime::kNewFunctionContext);
      }
191 192 193 194 195 196 197 198
    }
    RecordSafepoint(deopt_mode);

    // Context is returned in both r2 and cp.  It replaces the context
    // passed to us.  It's saved in the stack and kept live in cp.
    __ LoadRR(cp, r2);
    __ StoreP(r2, MemOperand(fp, StandardFrameConstants::kContextOffset));
    // Copy any necessary parameters into the context.
199 200
    int num_parameters = info()->scope()->num_parameters();
    int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
201
    for (int i = first_parameter; i < num_parameters; i++) {
202 203
      Variable* var = (i == -1) ? info()->scope()->receiver()
                                : info()->scope()->parameter(i);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      if (var->IsContextSlot()) {
        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
                               (num_parameters - 1 - i) * kPointerSize;
        // Load parameter from stack.
        __ LoadP(r2, MemOperand(fp, parameter_offset));
        // Store it in the context.
        MemOperand target = ContextMemOperand(cp, var->index());
        __ StoreP(r2, target);
        // Update the write barrier. This clobbers r5 and r2.
        if (need_write_barrier) {
          __ RecordWriteContextSlot(cp, target.offset(), r2, r5,
                                    GetLinkRegisterState(), kSaveFPRegs);
        } else if (FLAG_debug_code) {
          Label done;
          __ JumpIfInNewSpace(cp, r2, &done);
          __ Abort(kExpectedNewSpaceObject);
          __ bind(&done);
        }
      }
    }
    Comment(";;; End allocate local context");
  }

  Comment(";;; Prologue end");
}

void LCodeGen::GenerateOsrPrologue() {
  // Generate the OSR entry prologue at the first unknown OSR value, or if there
  // are none, at the OSR entrypoint instruction.
  if (osr_pc_offset_ >= 0) return;

  osr_pc_offset_ = masm()->pc_offset();

  // Adjust the frame size, subsuming the unoptimized frame into the
  // optimized frame.
  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
  DCHECK(slots >= 0);
  __ lay(sp, MemOperand(sp, -slots * kPointerSize));
}

void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
  if (instr->IsCall()) {
    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
  }
  if (!instr->IsLazyBailout() && !instr->IsGap()) {
    safepoints_.BumpLastLazySafepointIndex();
  }
}

bool LCodeGen::GenerateDeferredCode() {
  DCHECK(is_generating());
  if (deferred_.length() > 0) {
    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
      LDeferredCode* code = deferred_[i];

      HValue* value =
          instructions_->at(code->instruction_index())->hydrogen_value();
261
      RecordAndWritePosition(value->position());
262 263 264 265 266 267 268 269 270 271 272 273 274

      Comment(
          ";;; <@%d,#%d> "
          "-------------------- Deferred %s --------------------",
          code->instruction_index(), code->instr()->hydrogen_value()->id(),
          code->instr()->Mnemonic());
      __ bind(code->entry());
      if (NeedsDeferredFrame()) {
        Comment(";;; Build frame");
        DCHECK(!frame_is_built_);
        DCHECK(info()->IsStub());
        frame_is_built_ = true;
        __ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB));
275
        __ PushCommonFrame(scratch0());
276 277 278 279 280 281
        Comment(";;; Deferred code");
      }
      code->Generate();
      if (NeedsDeferredFrame()) {
        Comment(";;; Destroy frame");
        DCHECK(frame_is_built_);
282
        __ PopCommonFrame(scratch0());
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        frame_is_built_ = false;
      }
      __ b(code->exit());
    }
  }

  return !is_aborted();
}

bool LCodeGen::GenerateJumpTable() {
  // Check that the jump table is accessible from everywhere in the function
  // code, i.e. that offsets in halfworld to the table can be encoded in the
  // 32-bit signed immediate of a branch instruction.
  // To simplify we consider the code size from the first instruction to the
  // end of the jump table. We also don't consider the pc load delta.
  // Each entry in the jump table generates one instruction and inlines one
  // 32bit data after it.
  // TODO(joransiu): The Int24 condition can likely be relaxed for S390
  if (!is_int24(masm()->pc_offset() + jump_table_.length() * 7)) {
    Abort(kGeneratedCodeIsTooLarge);
  }

  if (jump_table_.length() > 0) {
    Label needs_frame, call_deopt_entry;

    Comment(";;; -------------------- Jump table --------------------");
    Address base = jump_table_[0].address;

    Register entry_offset = scratch0();

    int length = jump_table_.length();
    for (int i = 0; i < length; i++) {
      Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
      __ bind(&table_entry->label);

      DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
      Address entry = table_entry->address;
      DeoptComment(table_entry->deopt_info);

      // Second-level deopt table entries are contiguous and small, so instead
      // of loading the full, absolute address of each one, load an immediate
      // offset which will be added to the base address later.
      __ mov(entry_offset, Operand(entry - base));

      if (table_entry->needs_frame) {
        DCHECK(!info()->saves_caller_doubles());
        Comment(";;; call deopt with frame");
330
        __ PushCommonFrame();
331 332 333 334 335 336 337 338 339 340 341 342 343 344
        __ b(r14, &needs_frame);
      } else {
        __ b(r14, &call_deopt_entry);
      }
    }

    if (needs_frame.is_linked()) {
      __ bind(&needs_frame);
      // This variant of deopt can only be used with stubs. Since we don't
      // have a function pointer to install in the stack frame that we're
      // building, install a special marker there instead.
      DCHECK(info()->IsStub());
      __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB));
      __ push(ip);
345
      DCHECK(info()->IsStub());
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    }

    Comment(";;; call deopt");
    __ bind(&call_deopt_entry);

    if (info()->saves_caller_doubles()) {
      DCHECK(info()->IsStub());
      RestoreCallerDoubles();
    }

    // Add the base address to the offset previously loaded in entry_offset.
    __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
    __ AddP(ip, entry_offset, ip);
    __ Jump(ip);
  }

  // The deoptimization jump table is the last part of the instruction
  // sequence. Mark the generated code as done unless we bailed out.
  if (!is_aborted()) status_ = DONE;
  return !is_aborted();
}

bool LCodeGen::GenerateSafepointTable() {
  DCHECK(is_done());
  safepoints_.Emit(masm(), GetTotalFrameSlotCount());
  return !is_aborted();
}

Register LCodeGen::ToRegister(int code) const {
  return Register::from_code(code);
}

DoubleRegister LCodeGen::ToDoubleRegister(int code) const {
  return DoubleRegister::from_code(code);
}

Register LCodeGen::ToRegister(LOperand* op) const {
  DCHECK(op->IsRegister());
  return ToRegister(op->index());
}

Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
  if (op->IsRegister()) {
    return ToRegister(op->index());
  } else if (op->IsConstantOperand()) {
    LConstantOperand* const_op = LConstantOperand::cast(op);
    HConstant* constant = chunk_->LookupConstant(const_op);
    Handle<Object> literal = constant->handle(isolate());
    Representation r = chunk_->LookupLiteralRepresentation(const_op);
    if (r.IsInteger32()) {
      AllowDeferredHandleDereference get_number;
      DCHECK(literal->IsNumber());
      __ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number()));
    } else if (r.IsDouble()) {
      Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
    } else {
      DCHECK(r.IsSmiOrTagged());
      __ Move(scratch, literal);
    }
    return scratch;
  } else if (op->IsStackSlot()) {
    __ LoadP(scratch, ToMemOperand(op));
    return scratch;
  }
  UNREACHABLE();
  return scratch;
}

void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op,
                                       Register dst) {
  DCHECK(IsInteger32(const_op));
  HConstant* constant = chunk_->LookupConstant(const_op);
  int32_t value = constant->Integer32Value();
  if (IsSmi(const_op)) {
    __ LoadSmiLiteral(dst, Smi::FromInt(value));
  } else {
    __ LoadIntLiteral(dst, value);
  }
}

DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
  DCHECK(op->IsDoubleRegister());
  return ToDoubleRegister(op->index());
}

Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
  HConstant* constant = chunk_->LookupConstant(op);
  DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
  return constant->handle(isolate());
}

bool LCodeGen::IsInteger32(LConstantOperand* op) const {
  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}

bool LCodeGen::IsSmi(LConstantOperand* op) const {
  return chunk_->LookupLiteralRepresentation(op).IsSmi();
}

int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
  return ToRepresentation(op, Representation::Integer32());
}

intptr_t LCodeGen::ToRepresentation(LConstantOperand* op,
                                    const Representation& r) const {
  HConstant* constant = chunk_->LookupConstant(op);
  int32_t value = constant->Integer32Value();
  if (r.IsInteger32()) return value;
  DCHECK(r.IsSmiOrTagged());
  return reinterpret_cast<intptr_t>(Smi::FromInt(value));
}

Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
  HConstant* constant = chunk_->LookupConstant(op);
  return Smi::FromInt(constant->Integer32Value());
}

double LCodeGen::ToDouble(LConstantOperand* op) const {
  HConstant* constant = chunk_->LookupConstant(op);
  DCHECK(constant->HasDoubleValue());
  return constant->DoubleValue();
}

Operand LCodeGen::ToOperand(LOperand* op) {
  if (op->IsConstantOperand()) {
    LConstantOperand* const_op = LConstantOperand::cast(op);
    HConstant* constant = chunk()->LookupConstant(const_op);
    Representation r = chunk_->LookupLiteralRepresentation(const_op);
    if (r.IsSmi()) {
      DCHECK(constant->HasSmiValue());
      return Operand(Smi::FromInt(constant->Integer32Value()));
    } else if (r.IsInteger32()) {
      DCHECK(constant->HasInteger32Value());
      return Operand(constant->Integer32Value());
    } else if (r.IsDouble()) {
      Abort(kToOperandUnsupportedDoubleImmediate);
    }
    DCHECK(r.IsTagged());
    return Operand(constant->handle(isolate()));
  } else if (op->IsRegister()) {
    return Operand(ToRegister(op));
  } else if (op->IsDoubleRegister()) {
    Abort(kToOperandIsDoubleRegisterUnimplemented);
    return Operand::Zero();
  }
  // Stack slots not implemented, use ToMemOperand instead.
  UNREACHABLE();
  return Operand::Zero();
}

static int ArgumentsOffsetWithoutFrame(int index) {
  DCHECK(index < 0);
  return -(index + 1) * kPointerSize;
}

MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
  DCHECK(!op->IsRegister());
  DCHECK(!op->IsDoubleRegister());
  DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
  if (NeedsEagerFrame()) {
    return MemOperand(fp, FrameSlotToFPOffset(op->index()));
  } else {
    // Retrieve parameter without eager stack-frame relative to the
    // stack-pointer.
    return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
  }
}

MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
  DCHECK(op->IsDoubleStackSlot());
  if (NeedsEagerFrame()) {
    return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
  } else {
    // Retrieve parameter without eager stack-frame relative to the
    // stack-pointer.
    return MemOperand(sp,
                      ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
  }
}

void LCodeGen::WriteTranslation(LEnvironment* environment,
                                Translation* translation) {
  if (environment == NULL) return;

  // The translation includes one command per value in the environment.
  int translation_size = environment->translation_size();

  WriteTranslation(environment->outer(), translation);
  WriteTranslationFrame(environment, translation);

  int object_index = 0;
  int dematerialized_index = 0;
  for (int i = 0; i < translation_size; ++i) {
    LOperand* value = environment->values()->at(i);
    AddToTranslation(
        environment, translation, value, environment->HasTaggedValueAt(i),
        environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
  }
}

void LCodeGen::AddToTranslation(LEnvironment* environment,
                                Translation* translation, LOperand* op,
                                bool is_tagged, bool is_uint32,
                                int* object_index_pointer,
                                int* dematerialized_index_pointer) {
  if (op == LEnvironment::materialization_marker()) {
    int object_index = (*object_index_pointer)++;
    if (environment->ObjectIsDuplicateAt(object_index)) {
      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
      translation->DuplicateObject(dupe_of);
      return;
    }
    int object_length = environment->ObjectLengthAt(object_index);
    if (environment->ObjectIsArgumentsAt(object_index)) {
      translation->BeginArgumentsObject(object_length);
    } else {
      translation->BeginCapturedObject(object_length);
    }
    int dematerialized_index = *dematerialized_index_pointer;
    int env_offset = environment->translation_size() + dematerialized_index;
    *dematerialized_index_pointer += object_length;
    for (int i = 0; i < object_length; ++i) {
      LOperand* value = environment->values()->at(env_offset + i);
      AddToTranslation(environment, translation, value,
                       environment->HasTaggedValueAt(env_offset + i),
                       environment->HasUint32ValueAt(env_offset + i),
                       object_index_pointer, dematerialized_index_pointer);
    }
    return;
  }

  if (op->IsStackSlot()) {
    int index = op->index();
    if (is_tagged) {
      translation->StoreStackSlot(index);
    } else if (is_uint32) {
      translation->StoreUint32StackSlot(index);
    } else {
      translation->StoreInt32StackSlot(index);
    }
  } else if (op->IsDoubleStackSlot()) {
    int index = op->index();
    translation->StoreDoubleStackSlot(index);
  } else if (op->IsRegister()) {
    Register reg = ToRegister(op);
    if (is_tagged) {
      translation->StoreRegister(reg);
    } else if (is_uint32) {
      translation->StoreUint32Register(reg);
    } else {
      translation->StoreInt32Register(reg);
    }
  } else if (op->IsDoubleRegister()) {
    DoubleRegister reg = ToDoubleRegister(op);
    translation->StoreDoubleRegister(reg);
  } else if (op->IsConstantOperand()) {
    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    translation->StoreLiteral(src_index);
  } else {
    UNREACHABLE();
  }
}

void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode,
                        LInstruction* instr) {
  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}

void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode,
                               LInstruction* instr,
                               SafepointMode safepoint_mode) {
  DCHECK(instr != NULL);
  __ Call(code, mode);
  RecordSafepointWithLazyDeopt(instr, safepoint_mode);

  // Signal that we don't inline smi code before these stubs in the
  // optimizing code generator.
  if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) {
    __ nop();
  }
}

void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments,
                           LInstruction* instr, SaveFPRegsMode save_doubles) {
  DCHECK(instr != NULL);

  __ CallRuntime(function, num_arguments, save_doubles);

  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}

void LCodeGen::LoadContextFromDeferred(LOperand* context) {
  if (context->IsRegister()) {
    __ Move(cp, ToRegister(context));
  } else if (context->IsStackSlot()) {
    __ LoadP(cp, ToMemOperand(context));
  } else if (context->IsConstantOperand()) {
    HConstant* constant =
        chunk_->LookupConstant(LConstantOperand::cast(context));
    __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
  } else {
    UNREACHABLE();
  }
}

void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc,
                                       LInstruction* instr, LOperand* context) {
  LoadContextFromDeferred(context);
  __ CallRuntimeSaveDoubles(id);
  RecordSafepointWithRegisters(instr->pointer_map(), argc,
                               Safepoint::kNoLazyDeopt);
}

void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
                                                    Safepoint::DeoptMode mode) {
  environment->set_has_been_used();
  if (!environment->HasBeenRegistered()) {
    // Physical stack frame layout:
    // -x ............. -4  0 ..................................... y
    // [incoming arguments] [spill slots] [pushed outgoing arguments]

    // Layout of the environment:
    // 0 ..................................................... size-1
    // [parameters] [locals] [expression stack including arguments]

    // Layout of the translation:
    // 0 ........................................................ size - 1 + 4
    // [expression stack including arguments] [locals] [4 words] [parameters]
    // |>------------  translation_size ------------<|

    int frame_count = 0;
    int jsframe_count = 0;
    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
      ++frame_count;
      if (e->frame_type() == JS_FUNCTION) {
        ++jsframe_count;
      }
    }
    Translation translation(&translations_, frame_count, jsframe_count, zone());
    WriteTranslation(environment, &translation);
    int deoptimization_index = deoptimizations_.length();
    int pc_offset = masm()->pc_offset();
    environment->Register(deoptimization_index, translation.index(),
                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    deoptimizations_.Add(environment, zone());
  }
}

void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
696
                            DeoptimizeReason deopt_reason,
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
                            Deoptimizer::BailoutType bailout_type,
                            CRegister cr) {
  LEnvironment* environment = instr->environment();
  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
  DCHECK(environment->HasBeenRegistered());
  int id = environment->deoptimization_index();
  Address entry =
      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
  if (entry == NULL) {
    Abort(kBailoutWasNotPrepared);
    return;
  }

  if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
    Register scratch = scratch0();
    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
    Label no_deopt;

    // Store the condition on the stack if necessary
    if (cond != al) {
      Label done;
      __ LoadImmP(scratch, Operand::Zero());
      __ b(NegateCondition(cond), &done, Label::kNear);
      __ LoadImmP(scratch, Operand(1));
      __ bind(&done);
      __ push(scratch);
    }

    Label done;
    __ Push(r3);
    __ mov(scratch, Operand(count));
    __ LoadW(r3, MemOperand(scratch));
    __ Sub32(r3, r3, Operand(1));
    __ Cmp32(r3, Operand::Zero());
    __ bne(&no_deopt, Label::kNear);

    __ LoadImmP(r3, Operand(FLAG_deopt_every_n_times));
    __ StoreW(r3, MemOperand(scratch));
    __ Pop(r3);

    if (cond != al) {
      // Clean up the stack before the deoptimizer call
      __ pop(scratch);
    }

    __ Call(entry, RelocInfo::RUNTIME_ENTRY);

    __ b(&done);

    __ bind(&no_deopt);
    __ StoreW(r3, MemOperand(scratch));
    __ Pop(r3);

    if (cond != al) {
      // Clean up the stack before the deoptimizer call
      __ pop(scratch);
    }

    __ bind(&done);

    if (cond != al) {
      cond = ne;
      __ CmpP(scratch, Operand::Zero());
    }
  }

  if (info()->ShouldTrapOnDeopt()) {
    __ stop("trap_on_deopt", cond, kDefaultStopCode, cr);
  }

767
  Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
768 769 770 771 772 773 774 775 776 777 778

  DCHECK(info()->IsStub() || frame_is_built_);
  // Go through jump table if we need to handle condition, build frame, or
  // restore caller doubles.
  if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) {
    __ Call(entry, RelocInfo::RUNTIME_ENTRY);
  } else {
    Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
                                            !frame_is_built_);
    // We often have several deopts to the same entry, reuse the last
    // jump entry if this is the case.
779
    if (FLAG_trace_deopt || isolate()->is_profiling() ||
780 781 782 783 784 785 786 787 788
        jump_table_.is_empty() ||
        !table_entry.IsEquivalentTo(jump_table_.last())) {
      jump_table_.Add(table_entry, zone());
    }
    __ b(cond, &jump_table_.last().label /*, cr*/);
  }
}

void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
789
                            DeoptimizeReason deopt_reason, CRegister cr) {
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
  Deoptimizer::BailoutType bailout_type =
      info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
  DeoptimizeIf(cond, instr, deopt_reason, bailout_type, cr);
}

void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
                                            SafepointMode safepoint_mode) {
  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
  } else {
    DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
    RecordSafepointWithRegisters(instr->pointer_map(), 0,
                                 Safepoint::kLazyDeopt);
  }
}

void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind,
                               int arguments, Safepoint::DeoptMode deopt_mode) {
  DCHECK(expected_safepoint_kind_ == kind);

  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
  Safepoint safepoint =
      safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
  for (int i = 0; i < operands->length(); i++) {
    LOperand* pointer = operands->at(i);
    if (pointer->IsStackSlot()) {
      safepoint.DefinePointerSlot(pointer->index(), zone());
    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
    }
  }
}

void LCodeGen::RecordSafepoint(LPointerMap* pointers,
                               Safepoint::DeoptMode deopt_mode) {
  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}

void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
  LPointerMap empty_pointers(zone());
  RecordSafepoint(&empty_pointers, deopt_mode);
}

void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
                                            int arguments,
                                            Safepoint::DeoptMode deopt_mode) {
  RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}

static const char* LabelType(LLabel* label) {
  if (label->is_loop_header()) return " (loop header)";
  if (label->is_osr_entry()) return " (OSR entry)";
  return "";
}

void LCodeGen::DoLabel(LLabel* label) {
  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
          current_instruction_, label->hydrogen_value()->id(),
          label->block_id(), LabelType(label));
  __ bind(label->label());
  current_block_ = label->block_id();
  DoGap(label);
}

void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); }

void LCodeGen::DoGap(LGap* gap) {
  for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION;
       i++) {
    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
    LParallelMove* move = gap->GetParallelMove(inner_pos);
    if (move != NULL) DoParallelMove(move);
  }
}

void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); }

void LCodeGen::DoParameter(LParameter* instr) {
  // Nothing to do.
}

void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
  GenerateOsrPrologue();
}

void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  DCHECK(dividend.is(ToRegister(instr->result())));

  // Theoretically, a variation of the branch-free code for integer division by
  // a power of 2 (calculating the remainder via an additional multiplication
  // (which gets simplified to an 'and') and subtraction) should be faster, and
  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
  // indicate that positive dividends are heavily favored, so the branching
  // version performs better.
  HMod* hmod = instr->hydrogen();
  int32_t shift = WhichPowerOf2Abs(divisor);
  Label dividend_is_not_negative, done;
  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
    __ CmpP(dividend, Operand::Zero());
    __ bge(&dividend_is_not_negative, Label::kNear);
    if (shift) {
      // Note that this is correct even for kMinInt operands.
      __ LoadComplementRR(dividend, dividend);
      __ ExtractBitRange(dividend, dividend, shift - 1, 0);
      __ LoadComplementRR(dividend, dividend);
      if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
898
        DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
899 900 901 902
      }
    } else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
      __ mov(dividend, Operand::Zero());
    } else {
903
      DeoptimizeIf(al, instr, DeoptimizeReason::kMinusZero);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
    }
    __ b(&done, Label::kNear);
  }

  __ bind(&dividend_is_not_negative);
  if (shift) {
    __ ExtractBitRange(dividend, dividend, shift - 1, 0);
  } else {
    __ mov(dividend, Operand::Zero());
  }
  __ bind(&done);
}

void LCodeGen::DoModByConstI(LModByConstI* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  Register result = ToRegister(instr->result());
  DCHECK(!dividend.is(result));

  if (divisor == 0) {
924
    DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
925 926 927 928 929 930 931 932 933 934 935 936 937 938
    return;
  }

  __ TruncatingDiv(result, dividend, Abs(divisor));
  __ mov(ip, Operand(Abs(divisor)));
  __ Mul(result, result, ip);
  __ SubP(result, dividend, result /*, LeaveOE, SetRC*/);

  // Check for negative zero.
  HMod* hmod = instr->hydrogen();
  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
    Label remainder_not_zero;
    __ bne(&remainder_not_zero, Label::kNear /*, cr0*/);
    __ Cmp32(dividend, Operand::Zero());
939
    DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
940 941 942 943 944 945 946 947 948 949 950 951 952 953
    __ bind(&remainder_not_zero);
  }
}

void LCodeGen::DoModI(LModI* instr) {
  HMod* hmod = instr->hydrogen();
  Register left_reg = ToRegister(instr->left());
  Register right_reg = ToRegister(instr->right());
  Register result_reg = ToRegister(instr->result());
  Label done;

  // Check for x % 0.
  if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
    __ Cmp32(right_reg, Operand::Zero());
954
    DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
955 956 957 958 959 960 961 962 963 964
  }

  // Check for kMinInt % -1, dr will return undefined, which is not what we
  // want. We have to deopt if we care about -0, because we can't return that.
  if (hmod->CheckFlag(HValue::kCanOverflow)) {
    Label no_overflow_possible;
    __ Cmp32(left_reg, Operand(kMinInt));
    __ bne(&no_overflow_possible, Label::kNear);
    __ Cmp32(right_reg, Operand(-1));
    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
965
      DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
    } else {
      __ b(ne, &no_overflow_possible, Label::kNear);
      __ mov(result_reg, Operand::Zero());
      __ b(&done, Label::kNear);
    }
    __ bind(&no_overflow_possible);
  }

  // Divide instruction dr will implicity use register pair
  // r0 & r1 below.
  DCHECK(!left_reg.is(r1));
  DCHECK(!right_reg.is(r1));
  DCHECK(!result_reg.is(r1));
  __ LoadRR(r0, left_reg);
  __ srda(r0, Operand(32));
  __ dr(r0, right_reg);  // R0:R1 = R1 / divisor - R0 remainder

  __ LoadAndTestP_ExtendSrc(result_reg, r0);  // Copy remainder to resultreg

  // If we care about -0, test if the dividend is <0 and the result is 0.
  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
    __ bne(&done, Label::kNear);
    __ Cmp32(left_reg, Operand::Zero());
989
    DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
  }

  __ bind(&done);
}

void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  Register result = ToRegister(instr->result());
  DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
  DCHECK(!result.is(dividend));

  // Check for (0 / -x) that will produce negative zero.
  HDiv* hdiv = instr->hydrogen();
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
    __ Cmp32(dividend, Operand::Zero());
1006
    DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1007 1008 1009 1010
  }
  // Check for (kMinInt / -1).
  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
    __ Cmp32(dividend, Operand(0x80000000));
1011
    DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1012 1013 1014 1015 1016 1017 1018
  }

  int32_t shift = WhichPowerOf2Abs(divisor);

  // Deoptimize if remainder will not be 0.
  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) {
    __ TestBitRange(dividend, shift - 1, 0, r0);
1019
    DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, cr0);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
  }

  if (divisor == -1) {  // Nice shortcut, not needed for correctness.
    __ LoadComplementRR(result, dividend);
    return;
  }
  if (shift == 0) {
    __ LoadRR(result, dividend);
  } else {
    if (shift == 1) {
      __ ShiftRight(result, dividend, Operand(31));
    } else {
      __ ShiftRightArith(result, dividend, Operand(31));
      __ ShiftRight(result, result, Operand(32 - shift));
    }
    __ AddP(result, dividend, result);
    __ ShiftRightArith(result, result, Operand(shift));
#if V8_TARGET_ARCH_S390X
    __ lgfr(result, result);
#endif
  }
  if (divisor < 0) __ LoadComplementRR(result, result);
}

void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  Register result = ToRegister(instr->result());
  DCHECK(!dividend.is(result));

  if (divisor == 0) {
1051
    DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1052 1053 1054 1055 1056 1057 1058
    return;
  }

  // Check for (0 / -x) that will produce negative zero.
  HDiv* hdiv = instr->hydrogen();
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
    __ Cmp32(dividend, Operand::Zero());
1059
    DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
  }

  __ TruncatingDiv(result, dividend, Abs(divisor));
  if (divisor < 0) __ LoadComplementRR(result, result);

  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
    Register scratch = scratch0();
    __ mov(ip, Operand(divisor));
    __ Mul(scratch, result, ip);
    __ Cmp32(scratch, dividend);
1070
    DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
  }
}

// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
  HBinaryOperation* hdiv = instr->hydrogen();
  const Register dividend = ToRegister(instr->dividend());
  const Register divisor = ToRegister(instr->divisor());
  Register result = ToRegister(instr->result());

  DCHECK(!dividend.is(result));
  DCHECK(!divisor.is(result));

  // Check for x / 0.
  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
    __ Cmp32(divisor, Operand::Zero());
1087
    DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1088 1089 1090 1091 1092 1093 1094 1095
  }

  // Check for (0 / -x) that will produce negative zero.
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
    Label dividend_not_zero;
    __ Cmp32(dividend, Operand::Zero());
    __ bne(&dividend_not_zero, Label::kNear);
    __ Cmp32(divisor, Operand::Zero());
1096
    DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1097 1098 1099 1100 1101 1102 1103 1104 1105
    __ bind(&dividend_not_zero);
  }

  // Check for (kMinInt / -1).
  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
    Label dividend_not_min_int;
    __ Cmp32(dividend, Operand(kMinInt));
    __ bne(&dividend_not_min_int, Label::kNear);
    __ Cmp32(divisor, Operand(-1));
1106
    DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    __ bind(&dividend_not_min_int);
  }

  __ LoadRR(r0, dividend);
  __ srda(r0, Operand(32));
  __ dr(r0, divisor);  // R0:R1 = R1 / divisor - R0 remainder - R1 quotient

  __ LoadAndTestP_ExtendSrc(result, r1);  // Move quotient to result register

  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
    // Deoptimize if remainder is not 0.
    __ Cmp32(r0, Operand::Zero());
1119
    DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
  }
}

void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
  HBinaryOperation* hdiv = instr->hydrogen();
  Register dividend = ToRegister(instr->dividend());
  Register result = ToRegister(instr->result());
  int32_t divisor = instr->divisor();
  bool can_overflow = hdiv->CheckFlag(HValue::kLeftCanBeMinInt);

  // If the divisor is positive, things are easy: There can be no deopts and we
  // can simply do an arithmetic right shift.
  int32_t shift = WhichPowerOf2Abs(divisor);
  if (divisor > 0) {
    if (shift || !result.is(dividend)) {
      __ ShiftRightArith(result, dividend, Operand(shift));
#if V8_TARGET_ARCH_S390X
      __ lgfr(result, result);
#endif
    }
    return;
  }

// If the divisor is negative, we have to negate and handle edge cases.
#if V8_TARGET_ARCH_S390X
  if (divisor == -1 && can_overflow) {
    __ Cmp32(dividend, Operand(0x80000000));
1147
    DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1148 1149 1150 1151 1152
  }
#endif

  __ LoadComplementRR(result, dividend);
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1153
    DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, cr0);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
  }

// If the negation could not overflow, simply shifting is OK.
#if !V8_TARGET_ARCH_S390X
  if (!can_overflow) {
#endif
    if (shift) {
      __ ShiftRightArithP(result, result, Operand(shift));
    }
    return;
#if !V8_TARGET_ARCH_S390X
  }

  // Dividing by -1 is basically negation, unless we overflow.
  if (divisor == -1) {
1169
    DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow, cr0);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    return;
  }

  Label overflow_label, done;
  __ b(overflow, &overflow_label, Label::kNear);
  __ ShiftRightArith(result, result, Operand(shift));
#if V8_TARGET_ARCH_S390X
  __ lgfr(result, result);
#endif
  __ b(&done, Label::kNear);
  __ bind(&overflow_label);
  __ mov(result, Operand(kMinInt / divisor));
  __ bind(&done);
#endif
}

void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
  Register dividend = ToRegister(instr->dividend());
  int32_t divisor = instr->divisor();
  Register result = ToRegister(instr->result());
  DCHECK(!dividend.is(result));

  if (divisor == 0) {
1193
    DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1194 1195 1196 1197 1198 1199 1200
    return;
  }

  // Check for (0 / -x) that will produce negative zero.
  HMathFloorOfDiv* hdiv = instr->hydrogen();
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
    __ Cmp32(dividend, Operand::Zero());
1201
    DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
  }

  // Easy case: We need no dynamic check for the dividend and the flooring
  // division is the same as the truncating division.
  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
    __ TruncatingDiv(result, dividend, Abs(divisor));
    if (divisor < 0) __ LoadComplementRR(result, result);
    return;
  }

  // In the general case we may need to adjust before and after the truncating
  // division to get a flooring division.
  Register temp = ToRegister(instr->temp());
  DCHECK(!temp.is(dividend) && !temp.is(result));
  Label needs_adjustment, done;
  __ Cmp32(dividend, Operand::Zero());
  __ b(divisor > 0 ? lt : gt, &needs_adjustment);
  __ TruncatingDiv(result, dividend, Abs(divisor));
  if (divisor < 0) __ LoadComplementRR(result, result);
  __ b(&done, Label::kNear);
  __ bind(&needs_adjustment);
  __ AddP(temp, dividend, Operand(divisor > 0 ? 1 : -1));
  __ TruncatingDiv(result, temp, Abs(divisor));
  if (divisor < 0) __ LoadComplementRR(result, result);
  __ SubP(result, result, Operand(1));
  __ bind(&done);
}

// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
  HBinaryOperation* hdiv = instr->hydrogen();
  const Register dividend = ToRegister(instr->dividend());
  const Register divisor = ToRegister(instr->divisor());
  Register result = ToRegister(instr->result());

  DCHECK(!dividend.is(result));
  DCHECK(!divisor.is(result));

  // Check for x / 0.
  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
    __ Cmp32(divisor, Operand::Zero());
1244
    DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1245 1246 1247 1248 1249 1250 1251 1252
  }

  // Check for (0 / -x) that will produce negative zero.
  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
    Label dividend_not_zero;
    __ Cmp32(dividend, Operand::Zero());
    __ bne(&dividend_not_zero, Label::kNear);
    __ Cmp32(divisor, Operand::Zero());
1253
    DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    __ bind(&dividend_not_zero);
  }

  // Check for (kMinInt / -1).
  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
    Label no_overflow_possible;
    __ Cmp32(dividend, Operand(kMinInt));
    __ bne(&no_overflow_possible, Label::kNear);
    __ Cmp32(divisor, Operand(-1));
    if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1264
      DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
    } else {
      __ bne(&no_overflow_possible, Label::kNear);
      __ LoadRR(result, dividend);
    }
    __ bind(&no_overflow_possible);
  }

  __ LoadRR(r0, dividend);
  __ srda(r0, Operand(32));
  __ dr(r0, divisor);  // R0:R1 = R1 / divisor - R0 remainder - R1 quotient

  __ lr(result, r1);  // Move quotient to result register

  Label done;
  Register scratch = scratch0();
  // If both operands have the same sign then we are done.
  __ Xor(scratch, dividend, divisor);
  __ ltr(scratch, scratch);  // use 32 bit version LoadAndTestRR even in 64 bit
  __ bge(&done, Label::kNear);

  // If there is no remainder then we are done.
  __ lr(scratch, result);
  __ msr(scratch, divisor);
  __ Cmp32(dividend, scratch);
  __ beq(&done, Label::kNear);

  // We performed a truncating division. Correct the result.
1292
  __ Sub32(result, result, Operand(1));
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
  __ bind(&done);
}

void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
  DoubleRegister addend = ToDoubleRegister(instr->addend());
  DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
  DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
  DoubleRegister result = ToDoubleRegister(instr->result());

  // Unable to use madbr as the intermediate value is not rounded
  // to proper precision
  __ ldr(result, multiplier);
  __ mdbr(result, multiplicand);
  __ adbr(result, addend);
}

void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
  DoubleRegister minuend = ToDoubleRegister(instr->minuend());
  DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
  DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
  DoubleRegister result = ToDoubleRegister(instr->result());

  // Unable to use msdbr as the intermediate value is not rounded
  // to proper precision
  __ ldr(result, multiplier);
  __ mdbr(result, multiplicand);
  __ sdbr(result, minuend);
}

void LCodeGen::DoMulI(LMulI* instr) {
  Register scratch = scratch0();
  Register result = ToRegister(instr->result());
  // Note that result may alias left.
  Register left = ToRegister(instr->left());
  LOperand* right_op = instr->right();

  bool bailout_on_minus_zero =
      instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);

  if (right_op->IsConstantOperand()) {
    int32_t constant = ToInteger32(LConstantOperand::cast(right_op));

    if (bailout_on_minus_zero && (constant < 0)) {
      // The case of a null constant will be handled separately.
      // If constant is negative and left is null, the result should be -0.
      __ CmpP(left, Operand::Zero());
1340
      DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1341 1342 1343 1344 1345 1346 1347 1348 1349
    }

    switch (constant) {
      case -1:
        if (can_overflow) {
#if V8_TARGET_ARCH_S390X
          if (instr->hydrogen()->representation().IsSmi()) {
#endif
            __ LoadComplementRR(result, left);
1350
            DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1351 1352 1353 1354
#if V8_TARGET_ARCH_S390X
          } else {
            __ LoadComplementRR(result, left);
            __ TestIfInt32(result, r0);
1355
            DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
          }
#endif
        } else {
          __ LoadComplementRR(result, left);
        }
        break;
      case 0:
        if (bailout_on_minus_zero) {
// If left is strictly negative and the constant is null, the
// result is -0. Deoptimize if required, otherwise return 0.
#if V8_TARGET_ARCH_S390X
          if (instr->hydrogen()->representation().IsSmi()) {
#endif
            __ Cmp32(left, Operand::Zero());
#if V8_TARGET_ARCH_S390X
          } else {
            __ Cmp32(left, Operand::Zero());
          }
#endif
1375
          DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
        }
        __ LoadImmP(result, Operand::Zero());
        break;
      case 1:
        __ Move(result, left);
        break;
      default:
        // Multiplying by powers of two and powers of two plus or minus
        // one can be done faster with shifted operands.
        // For other constants we emit standard code.
        int32_t mask = constant >> 31;
        uint32_t constant_abs = (constant + mask) ^ mask;

        if (base::bits::IsPowerOfTwo32(constant_abs)) {
          int32_t shift = WhichPowerOf2(constant_abs);
          __ ShiftLeftP(result, left, Operand(shift));
          // Correct the sign of the result if the constant is negative.
          if (constant < 0) __ LoadComplementRR(result, result);
        } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
          int32_t shift = WhichPowerOf2(constant_abs - 1);
          __ ShiftLeftP(scratch, left, Operand(shift));
          __ AddP(result, scratch, left);
          // Correct the sign of the result if the constant is negative.
          if (constant < 0) __ LoadComplementRR(result, result);
        } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
          int32_t shift = WhichPowerOf2(constant_abs + 1);
          __ ShiftLeftP(scratch, left, Operand(shift));
          __ SubP(result, scratch, left);
          // Correct the sign of the result if the constant is negative.
          if (constant < 0) __ LoadComplementRR(result, result);
        } else {
          // Generate standard code.
          __ Move(result, left);
          __ MulP(result, Operand(constant));
        }
    }

  } else {
    DCHECK(right_op->IsRegister());
    Register right = ToRegister(right_op);

    if (can_overflow) {
#if V8_TARGET_ARCH_S390X
      // result = left * right.
      if (instr->hydrogen()->representation().IsSmi()) {
        __ SmiUntag(result, left);
        __ SmiUntag(scratch, right);
        __ msgr(result, scratch);
      } else {
        __ LoadRR(result, left);
        __ msgr(result, right);
      }
      __ TestIfInt32(result, r0);
1429
      DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
      if (instr->hydrogen()->representation().IsSmi()) {
        __ SmiTag(result);
      }
#else
      // r0:scratch = scratch * right
      if (instr->hydrogen()->representation().IsSmi()) {
        __ SmiUntag(scratch, left);
        __ mr_z(r0, right);
        __ LoadRR(result, scratch);
      } else {
        // r0:scratch = scratch * right
        __ LoadRR(scratch, left);
        __ mr_z(r0, right);
        __ LoadRR(result, scratch);
      }
      __ TestIfInt32(r0, result, scratch);
1446
      DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
#endif
    } else {
      if (instr->hydrogen()->representation().IsSmi()) {
        __ SmiUntag(result, left);
        __ Mul(result, result, right);
      } else {
        __ Mul(result, left, right);
      }
    }

    if (bailout_on_minus_zero) {
      Label done;
#if V8_TARGET_ARCH_S390X
      if (instr->hydrogen()->representation().IsSmi()) {
#endif
        __ XorP(r0, left, right);
        __ LoadAndTestRR(r0, r0);
        __ bge(&done, Label::kNear);
#if V8_TARGET_ARCH_S390X
      } else {
        __ XorP(r0, left, right);
        __ Cmp32(r0, Operand::Zero());
        __ bge(&done, Label::kNear);
      }
#endif
      // Bail out if the result is minus zero.
      __ CmpP(result, Operand::Zero());
1474
      DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
      __ bind(&done);
    }
  }
}

void LCodeGen::DoBitI(LBitI* instr) {
  LOperand* left_op = instr->left();
  LOperand* right_op = instr->right();
  DCHECK(left_op->IsRegister());
  Register left = ToRegister(left_op);
  Register result = ToRegister(instr->result());

  if (right_op->IsConstantOperand()) {
    switch (instr->op()) {
      case Token::BIT_AND:
        __ AndP(result, left, Operand(ToOperand(right_op)));
        break;
      case Token::BIT_OR:
        __ OrP(result, left, Operand(ToOperand(right_op)));
        break;
      case Token::BIT_XOR:
        __ XorP(result, left, Operand(ToOperand(right_op)));
        break;
      default:
        UNREACHABLE();
        break;
    }
  } else if (right_op->IsStackSlot()) {
    // Reg-Mem instruction clobbers, so copy src to dst first.
    if (!left.is(result)) __ LoadRR(result, left);
    switch (instr->op()) {
      case Token::BIT_AND:
        __ AndP(result, ToMemOperand(right_op));
        break;
      case Token::BIT_OR:
        __ OrP(result, ToMemOperand(right_op));
        break;
      case Token::BIT_XOR:
        __ XorP(result, ToMemOperand(right_op));
        break;
      default:
        UNREACHABLE();
        break;
    }
  } else {
    DCHECK(right_op->IsRegister());

    switch (instr->op()) {
      case Token::BIT_AND:
        __ AndP(result, left, ToRegister(right_op));
        break;
      case Token::BIT_OR:
        __ OrP(result, left, ToRegister(right_op));
        break;
      case Token::BIT_XOR:
        __ XorP(result, left, ToRegister(right_op));
        break;
      default:
        UNREACHABLE();
        break;
    }
  }
}

void LCodeGen::DoShiftI(LShiftI* instr) {
  // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
  // result may alias either of them.
  LOperand* right_op = instr->right();
  Register left = ToRegister(instr->left());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();
  if (right_op->IsRegister()) {
    // Mask the right_op operand.
    __ AndP(scratch, ToRegister(right_op), Operand(0x1F));
    switch (instr->op()) {
      case Token::ROR:
        // rotate_right(a, b) == rotate_left(a, 32 - b)
        __ LoadComplementRR(scratch, scratch);
        __ rll(result, left, scratch, Operand(32));
#if V8_TARGET_ARCH_S390X
        __ lgfr(result, result);
#endif
        break;
      case Token::SAR:
        __ ShiftRightArith(result, left, scratch);
#if V8_TARGET_ARCH_S390X
        __ lgfr(result, result);
#endif
        break;
      case Token::SHR:
        __ ShiftRight(result, left, scratch);
#if V8_TARGET_ARCH_S390X
        __ lgfr(result, result);
#endif
        if (instr->can_deopt()) {
#if V8_TARGET_ARCH_S390X
          __ ltgfr(result, result /*, SetRC*/);
#else
          __ ltr(result, result);  // Set the <,==,> condition
#endif
1575
          DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue, cr0);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        }
        break;
      case Token::SHL:
        __ ShiftLeft(result, left, scratch);
#if V8_TARGET_ARCH_S390X
        __ lgfr(result, result);
#endif
        break;
      default:
        UNREACHABLE();
        break;
    }
  } else {
    // Mask the right_op operand.
    int value = ToInteger32(LConstantOperand::cast(right_op));
    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
    switch (instr->op()) {
      case Token::ROR:
        if (shift_count != 0) {
          __ rll(result, left, Operand(32 - shift_count));
#if V8_TARGET_ARCH_S390X
          __ lgfr(result, result);
#endif
        } else {
          __ Move(result, left);
        }
        break;
      case Token::SAR:
        if (shift_count != 0) {
          __ ShiftRightArith(result, left, Operand(shift_count));
#if V8_TARGET_ARCH_S390X
          __ lgfr(result, result);
#endif
        } else {
          __ Move(result, left);
        }
        break;
      case Token::SHR:
        if (shift_count != 0) {
          __ ShiftRight(result, left, Operand(shift_count));
#if V8_TARGET_ARCH_S390X
          __ lgfr(result, result);
#endif
        } else {
          if (instr->can_deopt()) {
            __ Cmp32(left, Operand::Zero());
1622
            DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
          }
          __ Move(result, left);
        }
        break;
      case Token::SHL:
        if (shift_count != 0) {
#if V8_TARGET_ARCH_S390X
          if (instr->hydrogen_value()->representation().IsSmi()) {
            __ ShiftLeftP(result, left, Operand(shift_count));
#else
          if (instr->hydrogen_value()->representation().IsSmi() &&
              instr->can_deopt()) {
            if (shift_count != 1) {
              __ ShiftLeft(result, left, Operand(shift_count - 1));
#if V8_TARGET_ARCH_S390X
              __ lgfr(result, result);
#endif
              __ SmiTagCheckOverflow(result, result, scratch);
            } else {
              __ SmiTagCheckOverflow(result, left, scratch);
            }
1644
            DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
#endif
          } else {
            __ ShiftLeft(result, left, Operand(shift_count));
#if V8_TARGET_ARCH_S390X
            __ lgfr(result, result);
#endif
          }
        } else {
          __ Move(result, left);
        }
        break;
      default:
        UNREACHABLE();
        break;
    }
  }
}

void LCodeGen::DoSubI(LSubI* instr) {
  LOperand* left = instr->left();
  LOperand* right = instr->right();
  LOperand* result = instr->result();

  bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
                     instr->hydrogen()->representation().IsExternal());

#if V8_TARGET_ARCH_S390X
  // The overflow detection needs to be tested on the lower 32-bits.
  // As a result, on 64-bit, we need to force 32-bit arithmetic operations
  // to set the CC overflow bit properly.  The result is then sign-extended.
  bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
#else
  bool checkOverflow = true;
#endif

  if (right->IsConstantOperand()) {
    if (!isInteger || !checkOverflow)
      __ SubP(ToRegister(result), ToRegister(left), ToOperand(right));
    else
      __ Sub32(ToRegister(result), ToRegister(left), ToOperand(right));
  } else if (right->IsRegister()) {
    if (!isInteger)
      __ SubP(ToRegister(result), ToRegister(left), ToRegister(right));
    else if (!checkOverflow)
      __ SubP_ExtendSrc(ToRegister(result), ToRegister(left),
                        ToRegister(right));
    else
      __ Sub32(ToRegister(result), ToRegister(left), ToRegister(right));
  } else {
    if (!left->Equals(instr->result()))
      __ LoadRR(ToRegister(result), ToRegister(left));

    MemOperand mem = ToMemOperand(right);
    if (!isInteger) {
      __ SubP(ToRegister(result), mem);
    } else {
#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
      // We want to read the 32-bits directly from memory
      MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
#else
      MemOperand Upper32Mem = ToMemOperand(right);
#endif
      if (checkOverflow) {
        __ Sub32(ToRegister(result), Upper32Mem);
      } else {
        __ SubP_ExtendSrc(ToRegister(result), Upper32Mem);
      }
    }
  }

#if V8_TARGET_ARCH_S390X
  if (isInteger && checkOverflow)
    __ lgfr(ToRegister(result), ToRegister(result));
#endif
  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1720
    DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1721 1722 1723 1724
  }
}

void LCodeGen::DoConstantI(LConstantI* instr) {
1725 1726 1727 1728 1729
  Register dst = ToRegister(instr->result());
  if (instr->value() == 0)
    __ XorP(dst, dst);
  else
    __ Load(dst, Operand(instr->value()));
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
}

void LCodeGen::DoConstantS(LConstantS* instr) {
  __ LoadSmiLiteral(ToRegister(instr->result()), instr->value());
}

void LCodeGen::DoConstantD(LConstantD* instr) {
  DCHECK(instr->result()->IsDoubleRegister());
  DoubleRegister result = ToDoubleRegister(instr->result());
  uint64_t bits = instr->bits();
  __ LoadDoubleLiteral(result, bits, scratch0());
}

void LCodeGen::DoConstantE(LConstantE* instr) {
  __ mov(ToRegister(instr->result()), Operand(instr->value()));
}

void LCodeGen::DoConstantT(LConstantT* instr) {
  Handle<Object> object = instr->value(isolate());
  AllowDeferredHandleDereference smi_check;
  __ Move(ToRegister(instr->result()), object);
}

MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index,
                                           String::Encoding encoding) {
  if (index->IsConstantOperand()) {
    int offset = ToInteger32(LConstantOperand::cast(index));
    if (encoding == String::TWO_BYTE_ENCODING) {
      offset *= kUC16Size;
    }
    STATIC_ASSERT(kCharSize == 1);
    return FieldMemOperand(string, SeqString::kHeaderSize + offset);
  }
  Register scratch = scratch0();
  DCHECK(!scratch.is(string));
  DCHECK(!scratch.is(ToRegister(index)));
  // TODO(joransiu) : Fold Add into FieldMemOperand
  if (encoding == String::ONE_BYTE_ENCODING) {
    __ AddP(scratch, string, ToRegister(index));
  } else {
    STATIC_ASSERT(kUC16Size == 2);
    __ ShiftLeftP(scratch, ToRegister(index), Operand(1));
    __ AddP(scratch, string, scratch);
  }
  return FieldMemOperand(scratch, SeqString::kHeaderSize);
}

void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
  String::Encoding encoding = instr->hydrogen()->encoding();
  Register string = ToRegister(instr->string());
  Register result = ToRegister(instr->result());

  if (FLAG_debug_code) {
    Register scratch = scratch0();
    __ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
    __ llc(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));

    __ AndP(scratch, scratch,
            Operand(kStringRepresentationMask | kStringEncodingMask));
    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
    __ CmpP(scratch,
            Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type
                                                          : two_byte_seq_type));
    __ Check(eq, kUnexpectedStringType);
  }

  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
  if (encoding == String::ONE_BYTE_ENCODING) {
    __ llc(result, operand);
  } else {
    __ llh(result, operand);
  }
}

void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
  String::Encoding encoding = instr->hydrogen()->encoding();
  Register string = ToRegister(instr->string());
  Register value = ToRegister(instr->value());

  if (FLAG_debug_code) {
    Register index = ToRegister(instr->index());
    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
    int encoding_mask =
        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
            ? one_byte_seq_type
            : two_byte_seq_type;
    __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
  }

  MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
  if (encoding == String::ONE_BYTE_ENCODING) {
    __ stc(value, operand);
  } else {
    __ sth(value, operand);
  }
}

void LCodeGen::DoAddI(LAddI* instr) {
  LOperand* left = instr->left();
  LOperand* right = instr->right();
  LOperand* result = instr->result();
  bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
                     instr->hydrogen()->representation().IsExternal());
#if V8_TARGET_ARCH_S390X
  // The overflow detection needs to be tested on the lower 32-bits.
  // As a result, on 64-bit, we need to force 32-bit arithmetic operations
  // to set the CC overflow bit properly.  The result is then sign-extended.
  bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
#else
  bool checkOverflow = true;
#endif

  if (right->IsConstantOperand()) {
    if (!isInteger || !checkOverflow)
      __ AddP(ToRegister(result), ToRegister(left), ToOperand(right));
    else
      __ Add32(ToRegister(result), ToRegister(left), ToOperand(right));
  } else if (right->IsRegister()) {
    if (!isInteger)
      __ AddP(ToRegister(result), ToRegister(left), ToRegister(right));
    else if (!checkOverflow)
      __ AddP_ExtendSrc(ToRegister(result), ToRegister(left),
                        ToRegister(right));
    else
      __ Add32(ToRegister(result), ToRegister(left), ToRegister(right));
  } else {
    if (!left->Equals(instr->result()))
      __ LoadRR(ToRegister(result), ToRegister(left));

    MemOperand mem = ToMemOperand(right);
    if (!isInteger) {
      __ AddP(ToRegister(result), mem);
    } else {
#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
      // We want to read the 32-bits directly from memory
      MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
#else
      MemOperand Upper32Mem = ToMemOperand(right);
#endif
      if (checkOverflow) {
        __ Add32(ToRegister(result), Upper32Mem);
      } else {
        __ AddP_ExtendSrc(ToRegister(result), Upper32Mem);
      }
    }
  }

#if V8_TARGET_ARCH_S390X
  if (isInteger && checkOverflow)
    __ lgfr(ToRegister(result), ToRegister(result));
#endif
  // Doptimize on overflow
  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1885
    DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
  }
}

void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
  LOperand* left = instr->left();
  LOperand* right = instr->right();
  HMathMinMax::Operation operation = instr->hydrogen()->operation();
  Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge;
  if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
    Register left_reg = ToRegister(left);
    Register right_reg = EmitLoadRegister(right, ip);
    Register result_reg = ToRegister(instr->result());
    Label return_left, done;
#if V8_TARGET_ARCH_S390X
    if (instr->hydrogen_value()->representation().IsSmi()) {
#endif
      __ CmpP(left_reg, right_reg);
#if V8_TARGET_ARCH_S390X
    } else {
      __ Cmp32(left_reg, right_reg);
    }
#endif
    __ b(cond, &return_left, Label::kNear);
    __ Move(result_reg, right_reg);
    __ b(&done, Label::kNear);
    __ bind(&return_left);
    __ Move(result_reg, left_reg);
    __ bind(&done);
  } else {
    DCHECK(instr->hydrogen()->representation().IsDouble());
    DoubleRegister left_reg = ToDoubleRegister(left);
    DoubleRegister right_reg = ToDoubleRegister(right);
    DoubleRegister result_reg = ToDoubleRegister(instr->result());
    Label check_nan_left, check_zero, return_left, return_right, done;
    __ cdbr(left_reg, right_reg);
    __ bunordered(&check_nan_left, Label::kNear);
    __ beq(&check_zero);
    __ b(cond, &return_left, Label::kNear);
    __ b(&return_right, Label::kNear);

    __ bind(&check_zero);
    __ lzdr(kDoubleRegZero);
    __ cdbr(left_reg, kDoubleRegZero);
    __ bne(&return_left, Label::kNear);  // left == right != 0.

    // At this point, both left and right are either 0 or -0.
    // N.B. The following works because +0 + -0 == +0
    if (operation == HMathMinMax::kMathMin) {
      // For min we want logical-or of sign bit: -(-L + -R)
      __ lcdbr(left_reg, left_reg);
      __ ldr(result_reg, left_reg);
      if (left_reg.is(right_reg)) {
        __ adbr(result_reg, right_reg);
      } else {
        __ sdbr(result_reg, right_reg);
      }
      __ lcdbr(result_reg, result_reg);
    } else {
      // For max we want logical-and of sign bit: (L + R)
      __ ldr(result_reg, left_reg);
      __ adbr(result_reg, right_reg);
    }
    __ b(&done, Label::kNear);

    __ bind(&check_nan_left);
    __ cdbr(left_reg, left_reg);
    __ bunordered(&return_left, Label::kNear);  // left == NaN.

    __ bind(&return_right);
    if (!right_reg.is(result_reg)) {
      __ ldr(result_reg, right_reg);
    }
    __ b(&done, Label::kNear);

    __ bind(&return_left);
    if (!left_reg.is(result_reg)) {
      __ ldr(result_reg, left_reg);
    }
    __ bind(&done);
  }
}

void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
  DoubleRegister left = ToDoubleRegister(instr->left());
  DoubleRegister right = ToDoubleRegister(instr->right());
  DoubleRegister result = ToDoubleRegister(instr->result());
  // All operations except MOD are computed in-place.
  DCHECK(instr->op() == Token::MOD || left.is(result));
  switch (instr->op()) {
    case Token::ADD:
      __ adbr(result, right);
      break;
    case Token::SUB:
      __ sdbr(result, right);
      break;
    case Token::MUL:
      __ mdbr(result, right);
      break;
    case Token::DIV:
      __ ddbr(result, right);
      break;
    case Token::MOD: {
      __ PrepareCallCFunction(0, 2, scratch0());
      __ MovToFloatParameters(left, right);
      __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
                       0, 2);
      // Move the result in the double result register.
      __ MovFromFloatResult(result);
      break;
    }
    default:
      UNREACHABLE();
      break;
  }
}

void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->left()).is(r3));
  DCHECK(ToRegister(instr->right()).is(r2));
  DCHECK(ToRegister(instr->result()).is(r2));

  Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
  CallCode(code, RelocInfo::CODE_TARGET, instr);
}

template <class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition cond) {
  int left_block = instr->TrueDestination(chunk_);
  int right_block = instr->FalseDestination(chunk_);

  int next_block = GetNextEmittedBlock();

  if (right_block == left_block || cond == al) {
    EmitGoto(left_block);
  } else if (left_block == next_block) {
    __ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block));
  } else if (right_block == next_block) {
    __ b(cond, chunk_->GetAssemblyLabel(left_block));
  } else {
    __ b(cond, chunk_->GetAssemblyLabel(left_block));
    __ b(chunk_->GetAssemblyLabel(right_block));
  }
}

template <class InstrType>
void LCodeGen::EmitTrueBranch(InstrType instr, Condition cond) {
  int true_block = instr->TrueDestination(chunk_);
  __ b(cond, chunk_->GetAssemblyLabel(true_block));
}

template <class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond) {
  int false_block = instr->FalseDestination(chunk_);
  __ b(cond, chunk_->GetAssemblyLabel(false_block));
}

void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); }

void LCodeGen::DoBranch(LBranch* instr) {
  Representation r = instr->hydrogen()->value()->representation();
  DoubleRegister dbl_scratch = double_scratch0();

  if (r.IsInteger32()) {
    DCHECK(!info()->IsStub());
    Register reg = ToRegister(instr->value());
    __ Cmp32(reg, Operand::Zero());
    EmitBranch(instr, ne);
  } else if (r.IsSmi()) {
    DCHECK(!info()->IsStub());
    Register reg = ToRegister(instr->value());
    __ CmpP(reg, Operand::Zero());
    EmitBranch(instr, ne);
  } else if (r.IsDouble()) {
    DCHECK(!info()->IsStub());
    DoubleRegister reg = ToDoubleRegister(instr->value());
    __ lzdr(kDoubleRegZero);
    __ cdbr(reg, kDoubleRegZero);
    // Test the double value. Zero and NaN are false.
    Condition lt_gt = static_cast<Condition>(lt | gt);

    EmitBranch(instr, lt_gt);
  } else {
    DCHECK(r.IsTagged());
    Register reg = ToRegister(instr->value());
    HType type = instr->hydrogen()->value()->type();
    if (type.IsBoolean()) {
      DCHECK(!info()->IsStub());
      __ CompareRoot(reg, Heap::kTrueValueRootIndex);
      EmitBranch(instr, eq);
    } else if (type.IsSmi()) {
      DCHECK(!info()->IsStub());
      __ CmpP(reg, Operand::Zero());
      EmitBranch(instr, ne);
    } else if (type.IsJSArray()) {
      DCHECK(!info()->IsStub());
      EmitBranch(instr, al);
    } else if (type.IsHeapNumber()) {
      DCHECK(!info()->IsStub());
2085 2086
      __ LoadDouble(dbl_scratch,
                    FieldMemOperand(reg, HeapNumber::kValueOffset));
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
      // Test the double value. Zero and NaN are false.
      __ lzdr(kDoubleRegZero);
      __ cdbr(dbl_scratch, kDoubleRegZero);
      Condition lt_gt = static_cast<Condition>(lt | gt);
      EmitBranch(instr, lt_gt);
    } else if (type.IsString()) {
      DCHECK(!info()->IsStub());
      __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
      __ CmpP(ip, Operand::Zero());
      EmitBranch(instr, ne);
    } else {
2098
      ToBooleanHints expected = instr->hydrogen()->expected_input_types();
2099
      // Avoid deopts in the case where we've never executed this path before.
2100
      if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
2101

2102
      if (expected & ToBooleanHint::kUndefined) {
2103 2104 2105 2106
        // undefined -> false.
        __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
        __ beq(instr->FalseLabel(chunk_));
      }
2107
      if (expected & ToBooleanHint::kBoolean) {
2108 2109 2110 2111 2112 2113
        // Boolean -> its value.
        __ CompareRoot(reg, Heap::kTrueValueRootIndex);
        __ beq(instr->TrueLabel(chunk_));
        __ CompareRoot(reg, Heap::kFalseValueRootIndex);
        __ beq(instr->FalseLabel(chunk_));
      }
2114
      if (expected & ToBooleanHint::kNull) {
2115 2116 2117 2118 2119
        // 'null' -> false.
        __ CompareRoot(reg, Heap::kNullValueRootIndex);
        __ beq(instr->FalseLabel(chunk_));
      }

2120
      if (expected & ToBooleanHint::kSmallInteger) {
2121 2122 2123 2124
        // Smis: 0 -> false, all other -> true.
        __ CmpP(reg, Operand::Zero());
        __ beq(instr->FalseLabel(chunk_));
        __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2125
      } else if (expected & ToBooleanHint::kNeedsMap) {
2126 2127
        // If we need a map later and have a Smi -> deopt.
        __ TestIfSmi(reg);
2128
        DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0);
2129 2130 2131
      }

      const Register map = scratch0();
2132
      if (expected & ToBooleanHint::kNeedsMap) {
2133 2134
        __ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset));

2135
        if (expected & ToBooleanHint::kCanBeUndetectable) {
2136 2137 2138 2139 2140 2141 2142
          // Undetectable -> false.
          __ tm(FieldMemOperand(map, Map::kBitFieldOffset),
                Operand(1 << Map::kIsUndetectable));
          __ bne(instr->FalseLabel(chunk_));
        }
      }

2143
      if (expected & ToBooleanHint::kReceiver) {
2144 2145 2146 2147 2148
        // spec object -> true.
        __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
        __ bge(instr->TrueLabel(chunk_));
      }

2149
      if (expected & ToBooleanHint::kString) {
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
        // String value -> false iff empty.
        Label not_string;
        __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
        __ bge(&not_string, Label::kNear);
        __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
        __ CmpP(ip, Operand::Zero());
        __ bne(instr->TrueLabel(chunk_));
        __ b(instr->FalseLabel(chunk_));
        __ bind(&not_string);
      }

2161
      if (expected & ToBooleanHint::kSymbol) {
2162 2163 2164 2165 2166
        // Symbol value -> true.
        __ CompareInstanceType(map, ip, SYMBOL_TYPE);
        __ beq(instr->TrueLabel(chunk_));
      }

2167
      if (expected & ToBooleanHint::kSimdValue) {
2168 2169 2170 2171 2172 2173
        // SIMD value -> true.
        Label not_simd;
        __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
        __ beq(instr->TrueLabel(chunk_));
      }

2174
      if (expected & ToBooleanHint::kHeapNumber) {
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
        // heap number -> false iff +0, -0, or NaN.
        Label not_heap_number;
        __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
        __ bne(&not_heap_number, Label::kNear);
        __ LoadDouble(dbl_scratch,
                      FieldMemOperand(reg, HeapNumber::kValueOffset));
        __ lzdr(kDoubleRegZero);
        __ cdbr(dbl_scratch, kDoubleRegZero);
        __ bunordered(instr->FalseLabel(chunk_));  // NaN -> false.
        __ beq(instr->FalseLabel(chunk_));         // +0, -0 -> false.
        __ b(instr->TrueLabel(chunk_));
        __ bind(&not_heap_number);
      }

2189
      if (expected != ToBooleanHint::kAny) {
2190 2191
        // We've seen something for the first time -> deopt.
        // This can only happen if we are not generic already.
2192
        DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
      }
    }
  }
}

void LCodeGen::EmitGoto(int block) {
  if (!IsNextEmittedBlock(block)) {
    __ b(chunk_->GetAssemblyLabel(LookupDestination(block)));
  }
}

void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); }

Condition LCodeGen::TokenToCondition(Token::Value op) {
  Condition cond = kNoCondition;
  switch (op) {
    case Token::EQ:
    case Token::EQ_STRICT:
      cond = eq;
      break;
    case Token::NE:
    case Token::NE_STRICT:
      cond = ne;
      break;
    case Token::LT:
      cond = lt;
      break;
    case Token::GT:
      cond = gt;
      break;
    case Token::LTE:
      cond = le;
      break;
    case Token::GTE:
      cond = ge;
      break;
    case Token::IN:
    case Token::INSTANCEOF:
    default:
      UNREACHABLE();
  }
  return cond;
}

void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
  LOperand* left = instr->left();
  LOperand* right = instr->right();
  bool is_unsigned =
      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
  Condition cond = TokenToCondition(instr->op());

  if (left->IsConstantOperand() && right->IsConstantOperand()) {
    // We can statically evaluate the comparison.
    double left_val = ToDouble(LConstantOperand::cast(left));
    double right_val = ToDouble(LConstantOperand::cast(right));
    int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
                         ? instr->TrueDestination(chunk_)
                         : instr->FalseDestination(chunk_);
    EmitGoto(next_block);
  } else {
    if (instr->is_double()) {
      // Compare left and right operands as doubles and load the
      // resulting flags into the normal status register.
      __ cdbr(ToDoubleRegister(left), ToDoubleRegister(right));
      // If a NaN is involved, i.e. the result is unordered,
      // jump to false block label.
      __ bunordered(instr->FalseLabel(chunk_));
    } else {
      if (right->IsConstantOperand()) {
        int32_t value = ToInteger32(LConstantOperand::cast(right));
        if (instr->hydrogen_value()->representation().IsSmi()) {
          if (is_unsigned) {
            __ CmpLogicalSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
          } else {
            __ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
          }
        } else {
          if (is_unsigned) {
            __ CmpLogical32(ToRegister(left), ToOperand(right));
          } else {
            __ Cmp32(ToRegister(left), ToOperand(right));
          }
        }
      } else if (left->IsConstantOperand()) {
        int32_t value = ToInteger32(LConstantOperand::cast(left));
        if (instr->hydrogen_value()->representation().IsSmi()) {
          if (is_unsigned) {
            __ CmpLogicalSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
          } else {
            __ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
          }
        } else {
          if (is_unsigned) {
            __ CmpLogical32(ToRegister(right), ToOperand(left));
          } else {
            __ Cmp32(ToRegister(right), ToOperand(left));
          }
        }
        // We commuted the operands, so commute the condition.
        cond = CommuteCondition(cond);
      } else if (instr->hydrogen_value()->representation().IsSmi()) {
        if (is_unsigned) {
          __ CmpLogicalP(ToRegister(left), ToRegister(right));
        } else {
          __ CmpP(ToRegister(left), ToRegister(right));
        }
      } else {
        if (is_unsigned) {
          __ CmpLogical32(ToRegister(left), ToRegister(right));
        } else {
          __ Cmp32(ToRegister(left), ToRegister(right));
        }
      }
    }
    EmitBranch(instr, cond);
  }
}

void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
  Register left = ToRegister(instr->left());
  Register right = ToRegister(instr->right());

  __ CmpP(left, right);
  EmitBranch(instr, eq);
}

void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
  if (instr->hydrogen()->representation().IsTagged()) {
    Register input_reg = ToRegister(instr->object());
    __ CmpP(input_reg, Operand(factory()->the_hole_value()));
    EmitBranch(instr, eq);
    return;
  }

  DoubleRegister input_reg = ToDoubleRegister(instr->object());
  __ cdbr(input_reg, input_reg);
  EmitFalseBranch(instr, ordered);

  Register scratch = scratch0();
  // Convert to GPR and examine the upper 32 bits
  __ lgdr(scratch, input_reg);
  __ srlg(scratch, scratch, Operand(32));
  __ Cmp32(scratch, Operand(kHoleNanUpper32));
  EmitBranch(instr, eq);
}

Condition LCodeGen::EmitIsString(Register input, Register temp1,
                                 Label* is_not_string,
                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
  if (check_needed == INLINE_SMI_CHECK) {
    __ JumpIfSmi(input, is_not_string);
  }
  __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);

  return lt;
}

void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
  Register reg = ToRegister(instr->value());
  Register temp1 = ToRegister(instr->temp());

  SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
                              ? OMIT_SMI_CHECK
                              : INLINE_SMI_CHECK;
  Condition true_cond =
      EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);

  EmitBranch(instr, true_cond);
}

void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
  Register input_reg = EmitLoadRegister(instr->value(), ip);
  __ TestIfSmi(input_reg);
  EmitBranch(instr, eq);
}

void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
  Register input = ToRegister(instr->value());
  Register temp = ToRegister(instr->temp());

  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
  }
  __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
  __ tm(FieldMemOperand(temp, Map::kBitFieldOffset),
        Operand(1 << Map::kIsUndetectable));
  EmitBranch(instr, ne);
}

static Condition ComputeCompareCondition(Token::Value op) {
  switch (op) {
    case Token::EQ_STRICT:
    case Token::EQ:
      return eq;
    case Token::LT:
      return lt;
    case Token::GT:
      return gt;
    case Token::LTE:
      return le;
    case Token::GTE:
      return ge;
    default:
      UNREACHABLE();
      return kNoCondition;
  }
}

void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->left()).is(r3));
  DCHECK(ToRegister(instr->right()).is(r2));

2407
  Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2408
  CallCode(code, RelocInfo::CODE_TARGET, instr);
2409 2410
  __ CompareRoot(r2, Heap::kTrueValueRootIndex);
  EmitBranch(instr, eq);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
}

static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
  InstanceType from = instr->from();
  InstanceType to = instr->to();
  if (from == FIRST_TYPE) return to;
  DCHECK(from == to || to == LAST_TYPE);
  return from;
}

static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
  InstanceType from = instr->from();
  InstanceType to = instr->to();
  if (from == to) return eq;
  if (to == LAST_TYPE) return ge;
  if (from == FIRST_TYPE) return le;
  UNREACHABLE();
  return eq;
}

void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
  Register scratch = scratch0();
  Register input = ToRegister(instr->value());

  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
  }

  __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
  EmitBranch(instr, BranchCondition(instr->hydrogen()));
}

// Branches to a label or falls through with the answer in flags.  Trashes
// the temp registers, but not the input.
void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false,
                               Handle<String> class_name, Register input,
                               Register temp, Register temp2) {
  DCHECK(!input.is(temp));
  DCHECK(!input.is(temp2));
  DCHECK(!temp.is(temp2));

  __ JumpIfSmi(input, is_false);

2454 2455
  __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE);
  STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2456
  if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2457
    __ bge(is_true);
2458
  } else {
2459
    __ bge(is_false);
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
  }

  // Check if the constructor in the map is a function.
  Register instance_type = ip;
  __ GetMapConstructor(temp, temp, temp2, instance_type);

  // Objects with a non-function constructor have class 'Object'.
  __ CmpP(instance_type, Operand(JS_FUNCTION_TYPE));
  if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
    __ bne(is_true);
  } else {
    __ bne(is_false);
  }

  // temp now contains the constructor function. Grab the
  // instance class name from there.
  __ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
  __ LoadP(temp,
           FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset));
  // The class name we are testing against is internalized since it's a literal.
  // The name in the constructor is internalized because of the way the context
  // is booted.  This routine isn't expected to work for random API-created
  // classes and it doesn't have to because you can't access it with natives
  // syntax.  Since both sides are internalized it is sufficient to use an
  // identity comparison.
  __ CmpP(temp, Operand(class_name));
  // End with the answer in flags.
}

void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
  Register input = ToRegister(instr->value());
  Register temp = scratch0();
  Register temp2 = ToRegister(instr->temp());
  Handle<String> class_name = instr->hydrogen()->class_name();

  EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
                  class_name, input, temp, temp2);

  EmitBranch(instr, eq);
}

void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
  Register reg = ToRegister(instr->value());
  Register temp = ToRegister(instr->temp());

  __ mov(temp, Operand(instr->map()));
  __ CmpP(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
  EmitBranch(instr, eq);
}

void LCodeGen::DoHasInPrototypeChainAndBranch(
    LHasInPrototypeChainAndBranch* instr) {
  Register const object = ToRegister(instr->object());
  Register const object_map = scratch0();
  Register const object_instance_type = ip;
  Register const object_prototype = object_map;
  Register const prototype = ToRegister(instr->prototype());

  // The {object} must be a spec object.  It's sufficient to know that {object}
  // is not a smi, since all other non-spec objects have {null} prototypes and
  // will be ruled out below.
  if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
    __ TestIfSmi(object);
    EmitFalseBranch(instr, eq);
  }
  // Loop through the {object}s prototype chain looking for the {prototype}.
  __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
  Label loop;
  __ bind(&loop);

  // Deoptimize if the object needs to be access checked.
  __ LoadlB(object_instance_type,
            FieldMemOperand(object_map, Map::kBitFieldOffset));
  __ TestBit(object_instance_type, Map::kIsAccessCheckNeeded, r0);
2534
  DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck, cr0);
2535 2536
  // Deoptimize for proxies.
  __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2537
  DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy);
2538 2539 2540 2541
  __ LoadP(object_prototype,
           FieldMemOperand(object_map, Map::kPrototypeOffset));
  __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
  EmitFalseBranch(instr, eq);
2542 2543
  __ CmpP(object_prototype, prototype);
  EmitTrueBranch(instr, eq);
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
  __ LoadP(object_map,
           FieldMemOperand(object_prototype, HeapObject::kMapOffset));
  __ b(&loop);
}

void LCodeGen::DoCmpT(LCmpT* instr) {
  DCHECK(ToRegister(instr->context()).is(cp));
  Token::Value op = instr->op();

  Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
  CallCode(ic, RelocInfo::CODE_TARGET, instr);
  // This instruction also signals no smi code inlined
  __ CmpP(r2, Operand::Zero());

  Condition condition = ComputeCompareCondition(op);
  Label true_value, done;

  __ b(condition, &true_value, Label::kNear);

  __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
  __ b(&done, Label::kNear);

  __ bind(&true_value);
  __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);

  __ bind(&done);
}

void LCodeGen::DoReturn(LReturn* instr) {
  if (FLAG_trace && info()->IsOptimizing()) {
    // Push the return value on the stack as the parameter.
    // Runtime::TraceExit returns its parameter in r2.  We're leaving the code
    // managed by the register allocator and tearing down the frame, it's
    // safe to write to the context register.
    __ push(r2);
    __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
    __ CallRuntime(Runtime::kTraceExit);
  }
  if (info()->saves_caller_doubles()) {
    RestoreCallerDoubles();
  }
  if (instr->has_constant_parameter_count()) {
    int parameter_count = ToInteger32(instr->constant_parameter_count());
    int32_t sp_delta = (parameter_count + 1) * kPointerSize;
    if (NeedsEagerFrame()) {
      masm_->LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
    } else if (sp_delta != 0) {
      // TODO(joransiu): Clean this up into Macro Assembler
      if (sp_delta >= 0 && sp_delta < 4096)
        __ la(sp, MemOperand(sp, sp_delta));
      else
        __ lay(sp, MemOperand(sp, sp_delta));
    }
  } else {
    DCHECK(info()->IsStub());  // Functions would need to drop one more value.
    Register reg = ToRegister(instr->parameter_count());
    // The argument count parameter is a smi
    if (NeedsEagerFrame()) {
      masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
    }
    __ SmiToPtrArrayOffset(r0, reg);
    __ AddP(sp, sp, r0);
  }

  __ Ret();
}

void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
  Register context = ToRegister(instr->context());
  Register result = ToRegister(instr->result());
  __ LoadP(result, ContextMemOperand(context, instr->slot_index()));
  if (instr->hydrogen()->RequiresHoleCheck()) {
    __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
    if (instr->hydrogen()->DeoptimizesOnHole()) {
2618
      DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
    } else {
      Label skip;
      __ bne(&skip, Label::kNear);
      __ mov(result, Operand(factory()->undefined_value()));
      __ bind(&skip);
    }
  }
}

void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
  Register context = ToRegister(instr->context());
  Register value = ToRegister(instr->value());
  Register scratch = scratch0();
  MemOperand target = ContextMemOperand(context, instr->slot_index());

  Label skip_assignment;

  if (instr->hydrogen()->RequiresHoleCheck()) {
    __ LoadP(scratch, target);
    __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex);
    if (instr->hydrogen()->DeoptimizesOnHole()) {
2640
      DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
    } else {
      __ bne(&skip_assignment);
    }
  }

  __ StoreP(value, target);
  if (instr->hydrogen()->NeedsWriteBarrier()) {
    SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
                                ? OMIT_SMI_CHECK
                                : INLINE_SMI_CHECK;
    __ RecordWriteContextSlot(context, target.offset(), value, scratch,
                              GetLinkRegisterState(), kSaveFPRegs,
                              EMIT_REMEMBERED_SET, check_needed);
  }

  __ bind(&skip_assignment);
}

void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
  HObjectAccess access = instr->hydrogen()->access();
  int offset = access.offset();
  Register object = ToRegister(instr->object());

  if (access.IsExternalMemory()) {
    Register result = ToRegister(instr->result());
    MemOperand operand = MemOperand(object, offset);
    __ LoadRepresentation(result, operand, access.representation(), r0);
    return;
  }

  if (instr->hydrogen()->representation().IsDouble()) {
    DCHECK(access.IsInobject());
    DoubleRegister result = ToDoubleRegister(instr->result());
2674
    __ LoadDouble(result, FieldMemOperand(object, offset));
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
    return;
  }

  Register result = ToRegister(instr->result());
  if (!access.IsInobject()) {
    __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
    object = result;
  }

  Representation representation = access.representation();

#if V8_TARGET_ARCH_S390X
  // 64-bit Smi optimization
  if (representation.IsSmi() &&
      instr->hydrogen()->representation().IsInteger32()) {
    // Read int value directly from upper half of the smi.
    offset = SmiWordOffset(offset);
    representation = Representation::Integer32();
  }
#endif

  __ LoadRepresentation(result, FieldMemOperand(object, offset), representation,
                        r0);
}

void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
  Register scratch = scratch0();
  Register function = ToRegister(instr->function());
  Register result = ToRegister(instr->result());

  // Get the prototype or initial map from the function.
  __ LoadP(result,
           FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));

  // Check that the function has a prototype or an initial map.
  __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2711
  DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

  // If the function does not have an initial map, we're done.
  Label done;
  __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
  __ bne(&done, Label::kNear);

  // Get the prototype from the initial map.
  __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));

  // All done.
  __ bind(&done);
}

void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
  Register result = ToRegister(instr->result());
  __ LoadRoot(result, instr->index());
}

void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
  Register arguments = ToRegister(instr->arguments());
  Register result = ToRegister(instr->result());
  // There are two words between the frame pointer and the last argument.
  // Subtracting from length accounts for one of them add one more.
  if (instr->length()->IsConstantOperand()) {
    int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
    if (instr->index()->IsConstantOperand()) {
      int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
      int index = (const_length - const_index) + 1;
      __ LoadP(result, MemOperand(arguments, index * kPointerSize));
    } else {
      Register index = ToRegister(instr->index());
      __ SubP(result, index, Operand(const_length + 1));
      __ LoadComplementRR(result, result);
      __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
      __ LoadP(result, MemOperand(arguments, result));
    }
  } else if (instr->index()->IsConstantOperand()) {
    Register length = ToRegister(instr->length());
    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
    int loc = const_index - 1;
    if (loc != 0) {
      __ SubP(result, length, Operand(loc));
      __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
      __ LoadP(result, MemOperand(arguments, result));
    } else {
      __ ShiftLeftP(result, length, Operand(kPointerSizeLog2));
      __ LoadP(result, MemOperand(arguments, result));
    }
  } else {
    Register length = ToRegister(instr->length());
    Register index = ToRegister(instr->index());
    __ SubP(result, length, index);
    __ AddP(result, result, Operand(1));
    __ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
    __ LoadP(result, MemOperand(arguments, result));
  }
}

void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
  Register external_pointer = ToRegister(instr->elements());
  Register key = no_reg;
  ElementsKind elements_kind = instr->elements_kind();
  bool key_is_constant = instr->key()->IsConstantOperand();
  int constant_key = 0;
  if (key_is_constant) {
    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
    if (constant_key & 0xF0000000) {
      Abort(kArrayIndexConstantValueTooBig);
    }
  } else {
    key = ToRegister(instr->key());
  }
  int element_size_shift = ElementsKindToShiftSize(elements_kind);
  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
2786
  bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
  int base_offset = instr->base_offset();
  bool use_scratch = false;

  if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
    DoubleRegister result = ToDoubleRegister(instr->result());
    if (key_is_constant) {
      base_offset += constant_key << element_size_shift;
      if (!is_int20(base_offset)) {
        __ mov(scratch0(), Operand(base_offset));
        base_offset = 0;
        use_scratch = true;
      }
    } else {
2800 2801
      __ IndexToArrayOffset(scratch0(), key, element_size_shift, key_is_smi,
                            keyMaybeNegative);
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
      use_scratch = true;
    }
    if (elements_kind == FLOAT32_ELEMENTS) {
      if (!use_scratch) {
        __ ldeb(result, MemOperand(external_pointer, base_offset));
      } else {
        __ ldeb(result, MemOperand(scratch0(), external_pointer, base_offset));
      }
    } else {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
      if (!use_scratch) {
2812
        __ LoadDouble(result, MemOperand(external_pointer, base_offset));
2813
      } else {
2814 2815
        __ LoadDouble(result,
                      MemOperand(scratch0(), external_pointer, base_offset));
2816 2817 2818 2819 2820 2821
      }
    }
  } else {
    Register result = ToRegister(instr->result());
    MemOperand mem_operand =
        PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
2822 2823
                            constant_key, element_size_shift, base_offset,
                            keyMaybeNegative);
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
    switch (elements_kind) {
      case INT8_ELEMENTS:
        __ LoadB(result, mem_operand);
        break;
      case UINT8_ELEMENTS:
      case UINT8_CLAMPED_ELEMENTS:
        __ LoadlB(result, mem_operand);
        break;
      case INT16_ELEMENTS:
        __ LoadHalfWordP(result, mem_operand);
        break;
      case UINT16_ELEMENTS:
        __ LoadLogicalHalfWordP(result, mem_operand);
        break;
      case INT32_ELEMENTS:
        __ LoadW(result, mem_operand, r0);
        break;
      case UINT32_ELEMENTS:
        __ LoadlW(result, mem_operand, r0);
        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
          __ CmpLogical32(result, Operand(0x80000000));
2845
          DeoptimizeIf(ge, instr, DeoptimizeReason::kNegativeValue);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
        }
        break;
      case FLOAT32_ELEMENTS:
      case FLOAT64_ELEMENTS:
      case FAST_HOLEY_DOUBLE_ELEMENTS:
      case FAST_HOLEY_ELEMENTS:
      case FAST_HOLEY_SMI_ELEMENTS:
      case FAST_DOUBLE_ELEMENTS:
      case FAST_ELEMENTS:
      case FAST_SMI_ELEMENTS:
      case DICTIONARY_ELEMENTS:
      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
      case FAST_STRING_WRAPPER_ELEMENTS:
      case SLOW_STRING_WRAPPER_ELEMENTS:
      case NO_ELEMENTS:
        UNREACHABLE();
        break;
    }
  }
}

void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
  Register elements = ToRegister(instr->elements());
  bool key_is_constant = instr->key()->IsConstantOperand();
  Register key = no_reg;
  DoubleRegister result = ToDoubleRegister(instr->result());
  Register scratch = scratch0();

  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
2877
  bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
  int constant_key = 0;
  if (key_is_constant) {
    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
    if (constant_key & 0xF0000000) {
      Abort(kArrayIndexConstantValueTooBig);
    }
  } else {
    key = ToRegister(instr->key());
  }

  bool use_scratch = false;
  intptr_t base_offset = instr->base_offset() + constant_key * kDoubleSize;
  if (!key_is_constant) {
    use_scratch = true;
2892 2893
    __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
                          keyMaybeNegative);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
  }

  // Memory references support up to 20-bits signed displacement in RXY form
  // Include Register::kExponentOffset in check, so we are guaranteed not to
  // overflow displacement later.
  if (!is_int20(base_offset + Register::kExponentOffset)) {
    use_scratch = true;
    if (key_is_constant) {
      __ mov(scratch, Operand(base_offset));
    } else {
      __ AddP(scratch, Operand(base_offset));
    }
    base_offset = 0;
  }

  if (!use_scratch) {
2910
    __ LoadDouble(result, MemOperand(elements, base_offset));
2911
  } else {
2912
    __ LoadDouble(result, MemOperand(scratch, elements, base_offset));
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
  }

  if (instr->hydrogen()->RequiresHoleCheck()) {
    if (!use_scratch) {
      __ LoadlW(r0,
                MemOperand(elements, base_offset + Register::kExponentOffset));
    } else {
      __ LoadlW(r0, MemOperand(scratch, elements,
                               base_offset + Register::kExponentOffset));
    }
    __ Cmp32(r0, Operand(kHoleNanUpper32));
2924
    DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
  }
}

void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
  HLoadKeyed* hinstr = instr->hydrogen();
  Register elements = ToRegister(instr->elements());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();
  int offset = instr->base_offset();

  if (instr->key()->IsConstantOperand()) {
    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
    offset += ToInteger32(const_operand) * kPointerSize;
  } else {
    Register key = ToRegister(instr->key());
    // Even though the HLoadKeyed instruction forces the input
    // representation for the key to be an integer, the input gets replaced
    // during bound check elimination with the index argument to the bounds
    // check, which can be tagged, so that case must be handled here, too.
    if (hinstr->key()->representation().IsSmi()) {
      __ SmiToPtrArrayOffset(scratch, key);
    } else {
      __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
    }
  }

  bool requires_hole_check = hinstr->RequiresHoleCheck();
  Representation representation = hinstr->representation();

#if V8_TARGET_ARCH_S390X
  // 64-bit Smi optimization
  if (representation.IsInteger32() &&
      hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
    DCHECK(!requires_hole_check);
    // Read int value directly from upper half of the smi.
    offset = SmiWordOffset(offset);
  }
#endif

  if (instr->key()->IsConstantOperand()) {
    __ LoadRepresentation(result, MemOperand(elements, offset), representation,
                          r1);
  } else {
    __ LoadRepresentation(result, MemOperand(scratch, elements, offset),
                          representation, r1);
  }

  // Check for the hole value.
  if (requires_hole_check) {
    if (IsFastSmiElementsKind(hinstr->elements_kind())) {
      __ TestIfSmi(result);
2976
      DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0);
2977 2978
    } else {
      __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2979
      DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2980 2981 2982 2983 2984 2985 2986 2987 2988
    }
  } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
    DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
    Label done;
    __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
    __ CmpP(result, scratch);
    __ bne(&done);
    if (info()->IsStub()) {
      // A stub can safely convert the hole to undefined only if the array
2989
      // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
2990 2991
      // it needs to bail out.
      __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2992
      __ LoadP(result, FieldMemOperand(result, PropertyCell::kValueOffset));
2993
      __ CmpSmiLiteral(result, Smi::FromInt(Isolate::kProtectorValid), r0);
2994
      DeoptimizeIf(ne, instr, DeoptimizeReason::kHole);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
    }
    __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
    __ bind(&done);
  }
}

void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
  if (instr->is_fixed_typed_array()) {
    DoLoadKeyedExternalArray(instr);
  } else if (instr->hydrogen()->representation().IsDouble()) {
    DoLoadKeyedFixedDoubleArray(instr);
  } else {
    DoLoadKeyedFixedArray(instr);
  }
}

MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base,
                                         bool key_is_constant, bool key_is_smi,
                                         int constant_key,
                                         int element_size_shift,
3015 3016
                                         int base_offset,
                                         bool keyMaybeNegative) {
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
  Register scratch = scratch0();

  if (key_is_constant) {
    int offset = (base_offset + (constant_key << element_size_shift));
    if (!is_int20(offset)) {
      __ mov(scratch, Operand(offset));
      return MemOperand(base, scratch);
    } else {
      return MemOperand(base,
                        (constant_key << element_size_shift) + base_offset);
    }
  }

  bool needs_shift =
      (element_size_shift != (key_is_smi ? kSmiTagSize + kSmiShiftSize : 0));

  if (needs_shift) {
3034 3035
    __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
                          keyMaybeNegative);
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
  } else {
    scratch = key;
  }

  if (!is_int20(base_offset)) {
    __ AddP(scratch, Operand(base_offset));
    base_offset = 0;
  }
  return MemOperand(scratch, base, base_offset);
}

void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
  Register scratch = scratch0();
  Register result = ToRegister(instr->result());

  if (instr->hydrogen()->from_inlined()) {
    __ lay(result, MemOperand(sp, -2 * kPointerSize));
3053
  } else if (instr->hydrogen()->arguments_adaptor()) {
3054 3055 3056
    // Check if the calling frame is an arguments adaptor frame.
    Label done, adapted;
    __ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3057 3058 3059
    __ LoadP(
        result,
        MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset));
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
    __ CmpSmiLiteral(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);

    // Result is the frame pointer for the frame if not adapted and for the real
    // frame below the adaptor frame if adapted.
    __ beq(&adapted, Label::kNear);
    __ LoadRR(result, fp);
    __ b(&done, Label::kNear);

    __ bind(&adapted);
    __ LoadRR(result, scratch);
    __ bind(&done);
3071 3072
  } else {
    __ LoadRR(result, fp);
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
  }
}

void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
  Register elem = ToRegister(instr->elements());
  Register result = ToRegister(instr->result());

  Label done;

  // If no arguments adaptor frame the number of arguments is fixed.
  __ CmpP(fp, elem);
  __ mov(result, Operand(scope()->num_parameters()));
  __ beq(&done, Label::kNear);

  // Arguments adaptor frame present. Get argument length from there.
  __ LoadP(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ LoadP(result,
           MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ SmiUntag(result);

  // Argument length is in result register.
  __ bind(&done);
}

void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
  Register receiver = ToRegister(instr->receiver());
  Register function = ToRegister(instr->function());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();

  // If the receiver is null or undefined, we have to pass the global
  // object as a receiver to normal functions. Values have to be
  // passed unchanged to builtins and strict-mode functions.
  Label global_object, result_in_receiver;

  if (!instr->hydrogen()->known_function()) {
    // Do not transform the receiver to object for strict mode
    // functions or builtins.
    __ LoadP(scratch,
             FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
    __ LoadlW(scratch, FieldMemOperand(
                           scratch, SharedFunctionInfo::kCompilerHintsOffset));
    __ AndP(r0, scratch, Operand((1 << SharedFunctionInfo::kStrictModeBit) |
                                 (1 << SharedFunctionInfo::kNativeBit)));
    __ bne(&result_in_receiver, Label::kNear);
  }

  // Normal function. Replace undefined or null with global receiver.
  __ CompareRoot(receiver, Heap::kNullValueRootIndex);
  __ beq(&global_object, Label::kNear);
  __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
  __ beq(&global_object, Label::kNear);

  // Deoptimize if the receiver is not a JS object.
  __ TestIfSmi(receiver);
3128
  DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0);
3129
  __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
3130
  DeoptimizeIf(lt, instr, DeoptimizeReason::kNotAJavaScriptObject);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162

  __ b(&result_in_receiver, Label::kNear);
  __ bind(&global_object);
  __ LoadP(result, FieldMemOperand(function, JSFunction::kContextOffset));
  __ LoadP(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
  __ LoadP(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));

  if (result.is(receiver)) {
    __ bind(&result_in_receiver);
  } else {
    Label result_ok;
    __ b(&result_ok, Label::kNear);
    __ bind(&result_in_receiver);
    __ LoadRR(result, receiver);
    __ bind(&result_ok);
  }
}

void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
  Register receiver = ToRegister(instr->receiver());
  Register function = ToRegister(instr->function());
  Register length = ToRegister(instr->length());
  Register elements = ToRegister(instr->elements());
  Register scratch = scratch0();
  DCHECK(receiver.is(r2));  // Used for parameter count.
  DCHECK(function.is(r3));  // Required by InvokeFunction.
  DCHECK(ToRegister(instr->result()).is(r2));

  // Copy the arguments to this function possibly from the
  // adaptor frame below it.
  const uint32_t kArgumentsLimit = 1 * KB;
  __ CmpLogicalP(length, Operand(kArgumentsLimit));
3163
  DeoptimizeIf(gt, instr, DeoptimizeReason::kTooManyArguments);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184

  // Push the receiver and use the register to keep the original
  // number of arguments.
  __ push(receiver);
  __ LoadRR(receiver, length);
  // The arguments are at a one pointer size offset from elements.
  __ AddP(elements, Operand(1 * kPointerSize));

  // Loop through the arguments pushing them onto the execution
  // stack.
  Label invoke, loop;
  // length is a small non-negative integer, due to the test above.
  __ CmpP(length, Operand::Zero());
  __ beq(&invoke, Label::kNear);
  __ bind(&loop);
  __ ShiftLeftP(r1, length, Operand(kPointerSizeLog2));
  __ LoadP(scratch, MemOperand(elements, r1));
  __ push(scratch);
  __ BranchOnCount(length, &loop);

  __ bind(&invoke);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197

  InvokeFlag flag = CALL_FUNCTION;
  if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
    DCHECK(!info()->saves_caller_doubles());
    // TODO(ishell): drop current frame before pushing arguments to the stack.
    flag = JUMP_FUNCTION;
    ParameterCount actual(r2);
    // It is safe to use r5, r6 and r7 as scratch registers here given that
    // 1) we are not going to return to caller function anyway,
    // 2) r5 (new.target) will be initialized below.
    PrepareForTailCall(actual, r5, r6, r7);
  }

3198 3199 3200 3201 3202 3203
  DCHECK(instr->HasPointerMap());
  LPointerMap* pointers = instr->pointer_map();
  SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
  // The number of arguments is stored in receiver which is r2, as expected
  // by InvokeFunction.
  ParameterCount actual(receiver);
3204
  __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
}

void LCodeGen::DoPushArgument(LPushArgument* instr) {
  LOperand* argument = instr->value();
  if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
    Abort(kDoPushArgumentNotImplementedForDoubleType);
  } else {
    Register argument_reg = EmitLoadRegister(argument, ip);
    __ push(argument_reg);
  }
}

void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); }

void LCodeGen::DoThisFunction(LThisFunction* instr) {
  Register result = ToRegister(instr->result());
  __ LoadP(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}

void LCodeGen::DoContext(LContext* instr) {
  // If there is a non-return use, the context must be moved to a register.
  Register result = ToRegister(instr->result());
  if (info()->IsOptimizing()) {
    __ LoadP(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
  } else {
    // If there is no frame, the context must be in cp.
    DCHECK(result.is(cp));
  }
}

void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
  DCHECK(ToRegister(instr->context()).is(cp));
3237
  __ Move(scratch0(), instr->hydrogen()->declarations());
3238 3239 3240
  __ push(scratch0());
  __ LoadSmiLiteral(scratch0(), Smi::FromInt(instr->hydrogen()->flags()));
  __ push(scratch0());
3241 3242
  __ Move(scratch0(), instr->hydrogen()->feedback_vector());
  __ push(scratch0());
3243 3244 3245 3246 3247
  CallRuntime(Runtime::kDeclareGlobals, instr);
}

void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
                                 int formal_parameter_count, int arity,
3248
                                 bool is_tail_call, LInstruction* instr) {
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
  bool dont_adapt_arguments =
      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
  bool can_invoke_directly =
      dont_adapt_arguments || formal_parameter_count == arity;

  Register function_reg = r3;

  LPointerMap* pointers = instr->pointer_map();

  if (can_invoke_directly) {
    // Change context.
    __ LoadP(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));

    // Always initialize new target and number of actual arguments.
    __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
    __ mov(r2, Operand(arity));

    bool is_self_call = function.is_identical_to(info()->closure());

    // Invoke function.
    if (is_self_call) {
3270 3271 3272 3273 3274 3275
      Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
      if (is_tail_call) {
        __ Jump(self, RelocInfo::CODE_TARGET);
      } else {
        __ Call(self, RelocInfo::CODE_TARGET);
      }
3276 3277
    } else {
      __ LoadP(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3278 3279 3280 3281 3282
      if (is_tail_call) {
        __ JumpToJSEntry(ip);
      } else {
        __ CallJSEntry(ip);
      }
3283 3284
    }

3285 3286 3287 3288
    if (!is_tail_call) {
      // Set up deoptimization.
      RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
    }
3289 3290
  } else {
    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3291
    ParameterCount actual(arity);
3292
    ParameterCount expected(formal_parameter_count);
3293 3294
    InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
    __ InvokeFunction(function_reg, expected, actual, flag, generator);
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
  }
}

void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
  DCHECK(instr->context() != NULL);
  DCHECK(ToRegister(instr->context()).is(cp));
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();

  // Deoptimize if not a heap number.
  __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
  __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
3308
  DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

  Label done;
  Register exponent = scratch0();
  scratch = no_reg;
  __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
  // Check the sign of the argument. If the argument is positive, just
  // return it.
  __ Cmp32(exponent, Operand::Zero());
  // Move the input to the result if necessary.
  __ Move(result, input);
  __ bge(&done);

  // Input is negative. Reverse its sign.
  // Preserve the value of all registers.
  {
    PushSafepointRegistersScope scope(this);

    // Registers were saved at the safepoint, so we can use
    // many scratch registers.
    Register tmp1 = input.is(r3) ? r2 : r3;
    Register tmp2 = input.is(r4) ? r2 : r4;
    Register tmp3 = input.is(r5) ? r2 : r5;
    Register tmp4 = input.is(r6) ? r2 : r6;

    // exponent: floating point exponent value.

    Label allocated, slow;
    __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
    __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
    __ b(&allocated);

    // Slow case: Call the runtime system to do the number allocation.
    __ bind(&slow);

    CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
                            instr->context());
    // Set the pointer to the new heap number in tmp.
    if (!tmp1.is(r2)) __ LoadRR(tmp1, r2);
    // Restore input_reg after call to runtime.
    __ LoadFromSafepointRegisterSlot(input, input);
    __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));

    __ bind(&allocated);
    // exponent: floating point exponent value.
    // tmp1: allocated heap number.

    // Clear the sign bit.
    __ nilf(exponent, Operand(~HeapNumber::kSignMask));
    __ StoreW(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
    __ LoadlW(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
    __ StoreW(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));

    __ StoreToSafepointRegisterSlot(tmp1, result);
  }

  __ bind(&done);
}

void LCodeGen::EmitMathAbs(LMathAbs* instr) {
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  Label done;
  __ CmpP(input, Operand::Zero());
  __ Move(result, input);
  __ bge(&done, Label::kNear);
  __ LoadComplementRR(result, result);
  // Deoptimize on overflow.
3376
  DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow, cr0);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
  __ bind(&done);
}

#if V8_TARGET_ARCH_S390X
void LCodeGen::EmitInteger32MathAbs(LMathAbs* instr) {
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  Label done;
  __ Cmp32(input, Operand::Zero());
  __ Move(result, input);
  __ bge(&done, Label::kNear);

  // Deoptimize on overflow.
  __ Cmp32(input, Operand(0x80000000));
3391
  DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

  __ LoadComplementRR(result, result);
  __ bind(&done);
}
#endif

void LCodeGen::DoMathAbs(LMathAbs* instr) {
  // Class for deferred case.
  class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
   public:
    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override {
      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
    }
    LInstruction* instr() override { return instr_; }

   private:
    LMathAbs* instr_;
  };

  Representation r = instr->hydrogen()->value()->representation();
  if (r.IsDouble()) {
    DoubleRegister input = ToDoubleRegister(instr->value());
    DoubleRegister result = ToDoubleRegister(instr->result());
    __ lpdbr(result, input);
#if V8_TARGET_ARCH_S390X
  } else if (r.IsInteger32()) {
    EmitInteger32MathAbs(instr);
  } else if (r.IsSmi()) {
#else
  } else if (r.IsSmiOrInteger32()) {
#endif
    EmitMathAbs(instr);
  } else {
    // Representation is tagged.
    DeferredMathAbsTaggedHeapNumber* deferred =
        new (zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
    Register input = ToRegister(instr->value());
    // Smi check.
    __ JumpIfNotSmi(input, deferred->entry());
    // If smi, handle it directly.
    EmitMathAbs(instr);
    __ bind(deferred->exit());
  }
}

void LCodeGen::DoMathFloor(LMathFloor* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  Register result = ToRegister(instr->result());
  Register input_high = scratch0();
  Register scratch = ip;
  Label done, exact;

  __ TryInt32Floor(result, input, input_high, scratch, double_scratch0(), &done,
                   &exact);
3448
  DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3449 3450 3451 3452 3453 3454 3455

  __ bind(&exact);
  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
    // Test for -0.
    __ CmpP(result, Operand::Zero());
    __ bne(&done, Label::kNear);
    __ Cmp32(input_high, Operand::Zero());
3456
    DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
  }
  __ bind(&done);
}

void LCodeGen::DoMathRound(LMathRound* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  Register result = ToRegister(instr->result());
  DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
  DoubleRegister input_plus_dot_five = double_scratch1;
  Register scratch1 = scratch0();
  Register scratch2 = ip;
  DoubleRegister dot_five = double_scratch0();
  Label convert, done;

  __ LoadDoubleLiteral(dot_five, 0.5, r0);
  __ lpdbr(double_scratch1, input);
  __ cdbr(double_scratch1, dot_five);
3474
  DeoptimizeIf(unordered, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3475 3476 3477 3478 3479 3480 3481
  // If input is in [-0.5, -0], the result is -0.
  // If input is in [+0, +0.5[, the result is +0.
  // If the input is +0.5, the result is 1.
  __ bgt(&convert, Label::kNear);  // Out of [-0.5, +0.5].
  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
    // [-0.5, -0] (negative) yields minus zero.
    __ TestDoubleSign(input, scratch1);
3482
    DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
  }
  Label return_zero;
  __ cdbr(input, dot_five);
  __ bne(&return_zero, Label::kNear);
  __ LoadImmP(result, Operand(1));  // +0.5.
  __ b(&done, Label::kNear);
  // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
  // flag kBailoutOnMinusZero.
  __ bind(&return_zero);
  __ LoadImmP(result, Operand::Zero());
  __ b(&done, Label::kNear);

  __ bind(&convert);
  __ ldr(input_plus_dot_five, input);
  __ adbr(input_plus_dot_five, dot_five);
  // Reuse dot_five (double_scratch0) as we no longer need this value.
  __ TryInt32Floor(result, input_plus_dot_five, scratch1, scratch2,
                   double_scratch0(), &done, &done);
3501
  DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
  __ bind(&done);
}

void LCodeGen::DoMathFround(LMathFround* instr) {
  DoubleRegister input_reg = ToDoubleRegister(instr->value());
  DoubleRegister output_reg = ToDoubleRegister(instr->result());

  // Round double to float
  __ ledbr(output_reg, input_reg);
  // Extend from float to double
  __ ldebr(output_reg, output_reg);
}

void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  DoubleRegister result = ToDoubleRegister(instr->result());
  __ sqdbr(result, input);
}

void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
  DoubleRegister input = ToDoubleRegister(instr->value());
  DoubleRegister result = ToDoubleRegister(instr->result());
  DoubleRegister temp = double_scratch0();

  // Note that according to ECMA-262 15.8.2.13:
  // Math.pow(-Infinity, 0.5) == Infinity
  // Math.sqrt(-Infinity) == NaN
  Label skip, done;

  __ LoadDoubleLiteral(temp, -V8_INFINITY, scratch0());
  __ cdbr(input, temp);
  __ bne(&skip, Label::kNear);
  __ lcdbr(result, temp);
  __ b(&done, Label::kNear);

  // Add +0 to convert -0 to +0.
  __ bind(&skip);
  __ ldr(result, input);
  __ lzdr(kDoubleRegZero);
  __ adbr(result, kDoubleRegZero);
  __ sqdbr(result, result);
  __ bind(&done);
}

void LCodeGen::DoPower(LPower* instr) {
  Representation exponent_type = instr->hydrogen()->right()->representation();
  // Having marked this as a call, we can use any registers.
  // Just make sure that the input/output registers are the expected ones.
  Register tagged_exponent = MathPowTaggedDescriptor::exponent();
  DCHECK(!instr->right()->IsDoubleRegister() ||
         ToDoubleRegister(instr->right()).is(d2));
  DCHECK(!instr->right()->IsRegister() ||
         ToRegister(instr->right()).is(tagged_exponent));
  DCHECK(ToDoubleRegister(instr->left()).is(d1));
  DCHECK(ToDoubleRegister(instr->result()).is(d3));

  if (exponent_type.IsSmi()) {
    MathPowStub stub(isolate(), MathPowStub::TAGGED);
    __ CallStub(&stub);
  } else if (exponent_type.IsTagged()) {
    Label no_deopt;
    __ JumpIfSmi(tagged_exponent, &no_deopt);
    __ LoadP(r9, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
    __ CompareRoot(r9, Heap::kHeapNumberMapRootIndex);
3566
    DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
    __ bind(&no_deopt);
    MathPowStub stub(isolate(), MathPowStub::TAGGED);
    __ CallStub(&stub);
  } else if (exponent_type.IsInteger32()) {
    MathPowStub stub(isolate(), MathPowStub::INTEGER);
    __ CallStub(&stub);
  } else {
    DCHECK(exponent_type.IsDouble());
    MathPowStub stub(isolate(), MathPowStub::DOUBLE);
    __ CallStub(&stub);
  }
}

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
void LCodeGen::DoMathCos(LMathCos* instr) {
  __ PrepareCallCFunction(0, 1, scratch0());
  __ MovToFloatParameter(ToDoubleRegister(instr->value()));
  __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
  __ MovFromFloatResult(ToDoubleRegister(instr->result()));
}

void LCodeGen::DoMathSin(LMathSin* instr) {
  __ PrepareCallCFunction(0, 1, scratch0());
  __ MovToFloatParameter(ToDoubleRegister(instr->value()));
  __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
  __ MovFromFloatResult(ToDoubleRegister(instr->result()));
}

3594
void LCodeGen::DoMathExp(LMathExp* instr) {
3595 3596 3597 3598
  __ PrepareCallCFunction(0, 1, scratch0());
  __ MovToFloatParameter(ToDoubleRegister(instr->value()));
  __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
  __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3599 3600 3601 3602 3603
}

void LCodeGen::DoMathLog(LMathLog* instr) {
  __ PrepareCallCFunction(0, 1, scratch0());
  __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3604
  __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
  __ MovFromFloatResult(ToDoubleRegister(instr->result()));
}

void LCodeGen::DoMathClz32(LMathClz32* instr) {
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  Label done;
  __ llgfr(result, input);
  __ flogr(r0, result);
  __ LoadRR(result, r0);
  __ CmpP(r0, Operand::Zero());
  __ beq(&done, Label::kNear);
  __ SubP(result, Operand(32));
  __ bind(&done);
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
                                  Register scratch1, Register scratch2,
                                  Register scratch3) {
#if DEBUG
  if (actual.is_reg()) {
    DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
  } else {
    DCHECK(!AreAliased(scratch1, scratch2, scratch3));
  }
#endif
  if (FLAG_code_comments) {
    if (actual.is_reg()) {
3633 3634 3635
      Comment(";;; PrepareForTailCall, actual: %s {",
              RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
                  actual.reg().code()));
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
    } else {
      Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
    }
  }

  // Check if next frame is an arguments adaptor frame.
  Register caller_args_count_reg = scratch1;
  Label no_arguments_adaptor, formal_parameter_count_loaded;
  __ LoadP(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ LoadP(scratch3,
           MemOperand(scratch2, StandardFrameConstants::kContextOffset));
  __ CmpSmiLiteral(scratch3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
  __ bne(&no_arguments_adaptor);

  // Drop current frame and load arguments count from arguments adaptor frame.
  __ LoadRR(fp, scratch2);
  __ LoadP(caller_args_count_reg,
           MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
  __ SmiUntag(caller_args_count_reg);
  __ b(&formal_parameter_count_loaded);

  __ bind(&no_arguments_adaptor);
  // Load caller's formal parameter count
  __ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count()));

  __ bind(&formal_parameter_count_loaded);
  __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);

  Comment(";;; }");
}

3667
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3668
  HInvokeFunction* hinstr = instr->hydrogen();
3669 3670 3671 3672
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->function()).is(r3));
  DCHECK(instr->HasPointerMap());

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
  bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;

  if (is_tail_call) {
    DCHECK(!info()->saves_caller_doubles());
    ParameterCount actual(instr->arity());
    // It is safe to use r5, r6 and r7 as scratch registers here given that
    // 1) we are not going to return to caller function anyway,
    // 2) r5 (new.target) will be initialized below.
    PrepareForTailCall(actual, r5, r6, r7);
  }

  Handle<JSFunction> known_function = hinstr->known_function();
3685 3686 3687
  if (known_function.is_null()) {
    LPointerMap* pointers = instr->pointer_map();
    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3688 3689 3690
    ParameterCount actual(instr->arity());
    InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
    __ InvokeFunction(r3, no_reg, actual, flag, generator);
3691
  } else {
3692 3693
    CallKnownFunction(known_function, hinstr->formal_parameter_count(),
                      instr->arity(), is_tail_call, instr);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
  }
}

void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
  DCHECK(ToRegister(instr->result()).is(r2));

  if (instr->hydrogen()->IsTailCall()) {
    if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);

    if (instr->target()->IsConstantOperand()) {
      LConstantOperand* target = LConstantOperand::cast(instr->target());
      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
      __ Jump(code, RelocInfo::CODE_TARGET);
    } else {
      DCHECK(instr->target()->IsRegister());
      Register target = ToRegister(instr->target());
      __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
      __ JumpToJSEntry(ip);
    }
  } else {
    LPointerMap* pointers = instr->pointer_map();
    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);

    if (instr->target()->IsConstantOperand()) {
      LConstantOperand* target = LConstantOperand::cast(instr->target());
      Handle<Code> code = Handle<Code>::cast(ToHandle(target));
      generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
      __ Call(code, RelocInfo::CODE_TARGET);
    } else {
      DCHECK(instr->target()->IsRegister());
      Register target = ToRegister(instr->target());
      generator.BeforeCall(__ CallSize(target));
      __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
      __ CallJSEntry(ip);
    }
    generator.AfterCall();
  }
}

void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->constructor()).is(r3));
  DCHECK(ToRegister(instr->result()).is(r2));

  __ mov(r2, Operand(instr->arity()));
3739 3740
  __ Move(r4, instr->hydrogen()->site());

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
  ElementsKind kind = instr->hydrogen()->elements_kind();
  AllocationSiteOverrideMode override_mode =
      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
          ? DISABLE_ALLOCATION_SITES
          : DONT_OVERRIDE;

  if (instr->arity() == 0) {
    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
  } else if (instr->arity() == 1) {
    Label done;
    if (IsFastPackedElementsKind(kind)) {
      Label packed_case;
      // We might need a change here
      // look at the first argument
      __ LoadP(r7, MemOperand(sp, 0));
      __ CmpP(r7, Operand::Zero());
      __ beq(&packed_case, Label::kNear);

      ElementsKind holey_kind = GetHoleyElementsKind(kind);
      ArraySingleArgumentConstructorStub stub(isolate(), holey_kind,
                                              override_mode);
      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
      __ b(&done, Label::kNear);
      __ bind(&packed_case);
    }

    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
    __ bind(&done);
  } else {
3772
    ArrayNArgumentsConstructorStub stub(isolate());
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
  }
}

void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
  CallRuntime(instr->function(), instr->arity(), instr);
}

void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
  Register function = ToRegister(instr->function());
  Register code_object = ToRegister(instr->code_object());
  __ lay(code_object,
         MemOperand(code_object, Code::kHeaderSize - kHeapObjectTag));
  __ StoreP(code_object,
            FieldMemOperand(function, JSFunction::kCodeEntryOffset), r0);
}

void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
  Register result = ToRegister(instr->result());
  Register base = ToRegister(instr->base_object());
  if (instr->offset()->IsConstantOperand()) {
    LConstantOperand* offset = LConstantOperand::cast(instr->offset());
    __ lay(result, MemOperand(base, ToInteger32(offset)));
  } else {
    Register offset = ToRegister(instr->offset());
    __ lay(result, MemOperand(base, offset));
  }
}

void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
  HStoreNamedField* hinstr = instr->hydrogen();
  Representation representation = instr->representation();

  Register object = ToRegister(instr->object());
  Register scratch = scratch0();
  HObjectAccess access = hinstr->access();
  int offset = access.offset();

  if (access.IsExternalMemory()) {
    Register value = ToRegister(instr->value());
    MemOperand operand = MemOperand(object, offset);
    __ StoreRepresentation(value, operand, representation, r0);
    return;
  }

  __ AssertNotSmi(object);

#if V8_TARGET_ARCH_S390X
  DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
         IsInteger32(LConstantOperand::cast(instr->value())));
#else
  DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
         IsSmi(LConstantOperand::cast(instr->value())));
#endif
  if (!FLAG_unbox_double_fields && representation.IsDouble()) {
    DCHECK(access.IsInobject());
    DCHECK(!hinstr->has_transition());
    DCHECK(!hinstr->NeedsWriteBarrier());
    DoubleRegister value = ToDoubleRegister(instr->value());
    DCHECK(offset >= 0);
3833
    __ StoreDouble(value, FieldMemOperand(object, offset));
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
    return;
  }

  if (hinstr->has_transition()) {
    Handle<Map> transition = hinstr->transition_map();
    AddDeprecationDependency(transition);
    __ mov(scratch, Operand(transition));
    __ StoreP(scratch, FieldMemOperand(object, HeapObject::kMapOffset), r0);
    if (hinstr->NeedsWriteBarrierForMap()) {
      Register temp = ToRegister(instr->temp());
      // Update the write barrier for the map field.
      __ RecordWriteForMap(object, scratch, temp, GetLinkRegisterState(),
                           kSaveFPRegs);
    }
  }

  // Do the store.
  Register record_dest = object;
  Register record_value = no_reg;
  Register record_scratch = scratch;
#if V8_TARGET_ARCH_S390X
  if (FLAG_unbox_double_fields && representation.IsDouble()) {
    DCHECK(access.IsInobject());
    DoubleRegister value = ToDoubleRegister(instr->value());
3858
    __ StoreDouble(value, FieldMemOperand(object, offset));
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
    if (hinstr->NeedsWriteBarrier()) {
      record_value = ToRegister(instr->value());
    }
  } else {
    if (representation.IsSmi() &&
        hinstr->value()->representation().IsInteger32()) {
      DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
      // 64-bit Smi optimization
      // Store int value directly to upper half of the smi.
      offset = SmiWordOffset(offset);
      representation = Representation::Integer32();
    }
#endif
    if (access.IsInobject()) {
      Register value = ToRegister(instr->value());
      MemOperand operand = FieldMemOperand(object, offset);
      __ StoreRepresentation(value, operand, representation, r0);
      record_value = value;
    } else {
      Register value = ToRegister(instr->value());
      __ LoadP(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
      MemOperand operand = FieldMemOperand(scratch, offset);
      __ StoreRepresentation(value, operand, representation, r0);
      record_dest = scratch;
      record_value = value;
      record_scratch = object;
    }
#if V8_TARGET_ARCH_S390X
  }
#endif

  if (hinstr->NeedsWriteBarrier()) {
    __ RecordWriteField(record_dest, offset, record_value, record_scratch,
                        GetLinkRegisterState(), kSaveFPRegs,
                        EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(),
                        hinstr->PointersToHereCheckForValue());
  }
}

void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
  Representation representation = instr->hydrogen()->length()->representation();
  DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
  DCHECK(representation.IsSmiOrInteger32());

  Condition cc = instr->hydrogen()->allow_equality() ? lt : le;
  if (instr->length()->IsConstantOperand()) {
    int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
    Register index = ToRegister(instr->index());
    if (representation.IsSmi()) {
      __ CmpLogicalP(index, Operand(Smi::FromInt(length)));
    } else {
      __ CmpLogical32(index, Operand(length));
    }
    cc = CommuteCondition(cc);
  } else if (instr->index()->IsConstantOperand()) {
    int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
    Register length = ToRegister(instr->length());
    if (representation.IsSmi()) {
      __ CmpLogicalP(length, Operand(Smi::FromInt(index)));
    } else {
      __ CmpLogical32(length, Operand(index));
    }
  } else {
    Register index = ToRegister(instr->index());
    Register length = ToRegister(instr->length());
    if (representation.IsSmi()) {
      __ CmpLogicalP(length, index);
    } else {
      __ CmpLogical32(length, index);
    }
  }
  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
    Label done;
    __ b(NegateCondition(cc), &done, Label::kNear);
    __ stop("eliminated bounds check failed");
    __ bind(&done);
  } else {
3936
    DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds);
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
  }
}

void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
  Register external_pointer = ToRegister(instr->elements());
  Register key = no_reg;
  ElementsKind elements_kind = instr->elements_kind();
  bool key_is_constant = instr->key()->IsConstantOperand();
  int constant_key = 0;
  if (key_is_constant) {
    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
    if (constant_key & 0xF0000000) {
      Abort(kArrayIndexConstantValueTooBig);
    }
  } else {
    key = ToRegister(instr->key());
  }
  int element_size_shift = ElementsKindToShiftSize(elements_kind);
  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3956
  bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
  int base_offset = instr->base_offset();

  if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
    Register address = scratch0();
    DoubleRegister value(ToDoubleRegister(instr->value()));
    if (key_is_constant) {
      if (constant_key != 0) {
        base_offset += constant_key << element_size_shift;
        if (!is_int20(base_offset)) {
          __ mov(address, Operand(base_offset));
          __ AddP(address, external_pointer);
        } else {
          __ AddP(address, external_pointer, Operand(base_offset));
        }
        base_offset = 0;
      } else {
        address = external_pointer;
      }
    } else {
3976 3977
      __ IndexToArrayOffset(address, key, element_size_shift, key_is_smi,
                            keyMaybeNegative);
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
      __ AddP(address, external_pointer);
    }
    if (elements_kind == FLOAT32_ELEMENTS) {
      __ ledbr(double_scratch0(), value);
      __ StoreFloat32(double_scratch0(), MemOperand(address, base_offset));
    } else {  // Storing doubles, not floats.
      __ StoreDouble(value, MemOperand(address, base_offset));
    }
  } else {
    Register value(ToRegister(instr->value()));
    MemOperand mem_operand =
        PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
3990 3991
                            constant_key, element_size_shift, base_offset,
                            keyMaybeNegative);
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
    switch (elements_kind) {
      case UINT8_ELEMENTS:
      case UINT8_CLAMPED_ELEMENTS:
      case INT8_ELEMENTS:
        if (key_is_constant) {
          __ StoreByte(value, mem_operand, r0);
        } else {
          __ StoreByte(value, mem_operand);
        }
        break;
      case INT16_ELEMENTS:
      case UINT16_ELEMENTS:
        if (key_is_constant) {
          __ StoreHalfWord(value, mem_operand, r0);
        } else {
          __ StoreHalfWord(value, mem_operand);
        }
        break;
      case INT32_ELEMENTS:
      case UINT32_ELEMENTS:
        if (key_is_constant) {
          __ StoreW(value, mem_operand, r0);
        } else {
          __ StoreW(value, mem_operand);
        }
        break;
      case FLOAT32_ELEMENTS:
      case FLOAT64_ELEMENTS:
      case FAST_DOUBLE_ELEMENTS:
      case FAST_ELEMENTS:
      case FAST_SMI_ELEMENTS:
      case FAST_HOLEY_DOUBLE_ELEMENTS:
      case FAST_HOLEY_ELEMENTS:
      case FAST_HOLEY_SMI_ELEMENTS:
      case DICTIONARY_ELEMENTS:
      case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
      case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
      case FAST_STRING_WRAPPER_ELEMENTS:
      case SLOW_STRING_WRAPPER_ELEMENTS:
      case NO_ELEMENTS:
        UNREACHABLE();
        break;
    }
  }
}

void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
  DoubleRegister value = ToDoubleRegister(instr->value());
  Register elements = ToRegister(instr->elements());
  Register key = no_reg;
  Register scratch = scratch0();
  DoubleRegister double_scratch = double_scratch0();
  bool key_is_constant = instr->key()->IsConstantOperand();
  int constant_key = 0;

  // Calculate the effective address of the slot in the array to store the
  // double value.
  if (key_is_constant) {
    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
    if (constant_key & 0xF0000000) {
      Abort(kArrayIndexConstantValueTooBig);
    }
  } else {
    key = ToRegister(instr->key());
  }
  int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
  bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4059
  bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
  int base_offset = instr->base_offset() + constant_key * kDoubleSize;
  bool use_scratch = false;
  intptr_t address_offset = base_offset;

  if (key_is_constant) {
    // Memory references support up to 20-bits signed displacement in RXY form
    if (!is_int20((address_offset))) {
      __ mov(scratch, Operand(address_offset));
      address_offset = 0;
      use_scratch = true;
    }
  } else {
    use_scratch = true;
4073 4074
    __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
                          keyMaybeNegative);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
    // Memory references support up to 20-bits signed displacement in RXY form
    if (!is_int20((address_offset))) {
      __ AddP(scratch, Operand(address_offset));
      address_offset = 0;
    }
  }

  if (instr->NeedsCanonicalization()) {
    // Turn potential sNaN value into qNaN.
    __ CanonicalizeNaN(double_scratch, value);
    DCHECK(address_offset >= 0);
    if (use_scratch)
4087 4088
      __ StoreDouble(double_scratch,
                     MemOperand(scratch, elements, address_offset));
4089
    else
4090
      __ StoreDouble(double_scratch, MemOperand(elements, address_offset));
4091 4092
  } else {
    if (use_scratch)
4093
      __ StoreDouble(value, MemOperand(scratch, elements, address_offset));
4094
    else
4095
      __ StoreDouble(value, MemOperand(elements, address_offset));
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
  }
}

void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
  HStoreKeyed* hinstr = instr->hydrogen();
  Register value = ToRegister(instr->value());
  Register elements = ToRegister(instr->elements());
  Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
  Register scratch = scratch0();
  int offset = instr->base_offset();

  // Do the store.
  if (instr->key()->IsConstantOperand()) {
    DCHECK(!hinstr->NeedsWriteBarrier());
    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
    offset += ToInteger32(const_operand) * kPointerSize;
  } else {
    // Even though the HLoadKeyed instruction forces the input
    // representation for the key to be an integer, the input gets replaced
    // during bound check elimination with the index argument to the bounds
    // check, which can be tagged, so that case must be handled here, too.
    if (hinstr->key()->representation().IsSmi()) {
      __ SmiToPtrArrayOffset(scratch, key);
    } else {
4120 4121
      if (instr->hydrogen()->IsDehoisted() ||
          !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
#if V8_TARGET_ARCH_S390X
        // If array access is dehoisted, the key, being an int32, can contain
        // a negative value, as needs to be sign-extended to 64-bit for
        // memory access.
        __ lgfr(key, key);
#endif
        __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
      } else {
        // Small optimization to reduce pathlength.  After Bounds Check,
        // the key is guaranteed to be non-negative.  Leverage RISBG,
        // which also performs zero-extension.
        __ risbg(scratch, key, Operand(32 - kPointerSizeLog2),
                 Operand(63 - kPointerSizeLog2), Operand(kPointerSizeLog2),
                 true);
      }
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
    }
  }

  Representation representation = hinstr->value()->representation();

#if V8_TARGET_ARCH_S390X
  // 64-bit Smi optimization
  if (representation.IsInteger32()) {
    DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
    DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
    // Store int value directly to upper half of the smi.
    offset = SmiWordOffset(offset);
  }
#endif

  if (instr->key()->IsConstantOperand()) {
    __ StoreRepresentation(value, MemOperand(elements, offset), representation,
                           scratch);
  } else {
    __ StoreRepresentation(value, MemOperand(scratch, elements, offset),
                           representation, r0);
  }

  if (hinstr->NeedsWriteBarrier()) {
    SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
                                ? OMIT_SMI_CHECK
                                : INLINE_SMI_CHECK;
    // Compute address of modified element and store it into key register.
    if (instr->key()->IsConstantOperand()) {
      __ lay(key, MemOperand(elements, offset));
    } else {
      __ lay(key, MemOperand(scratch, elements, offset));
    }
    __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
                   EMIT_REMEMBERED_SET, check_needed,
                   hinstr->PointersToHereCheckForValue());
  }
}

void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
  // By cases: external, fast double
  if (instr->is_fixed_typed_array()) {
    DoStoreKeyedExternalArray(instr);
  } else if (instr->hydrogen()->value()->representation().IsDouble()) {
    DoStoreKeyedFixedDoubleArray(instr);
  } else {
    DoStoreKeyedFixedArray(instr);
  }
}

void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
  class DeferredMaybeGrowElements final : public LDeferredCode {
   public:
    DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
    LInstruction* instr() override { return instr_; }

   private:
    LMaybeGrowElements* instr_;
  };

  Register result = r2;
  DeferredMaybeGrowElements* deferred =
      new (zone()) DeferredMaybeGrowElements(this, instr);
  LOperand* key = instr->key();
  LOperand* current_capacity = instr->current_capacity();

  DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
  DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
  DCHECK(key->IsConstantOperand() || key->IsRegister());
  DCHECK(current_capacity->IsConstantOperand() ||
         current_capacity->IsRegister());

  if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
    int32_t constant_capacity =
        ToInteger32(LConstantOperand::cast(current_capacity));
    if (constant_key >= constant_capacity) {
      // Deferred case.
      __ b(deferred->entry());
    }
  } else if (key->IsConstantOperand()) {
    int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
    __ Cmp32(ToRegister(current_capacity), Operand(constant_key));
    __ ble(deferred->entry());
  } else if (current_capacity->IsConstantOperand()) {
    int32_t constant_capacity =
        ToInteger32(LConstantOperand::cast(current_capacity));
    __ Cmp32(ToRegister(key), Operand(constant_capacity));
    __ bge(deferred->entry());
  } else {
    __ Cmp32(ToRegister(key), ToRegister(current_capacity));
    __ bge(deferred->entry());
  }

  if (instr->elements()->IsRegister()) {
    __ Move(result, ToRegister(instr->elements()));
  } else {
    __ LoadP(result, ToMemOperand(instr->elements()));
  }

  __ bind(deferred->exit());
}

void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
  Register result = r2;
  __ LoadImmP(result, Operand::Zero());

  // We have to call a stub.
  {
    PushSafepointRegistersScope scope(this);
    if (instr->object()->IsRegister()) {
      __ Move(result, ToRegister(instr->object()));
    } else {
      __ LoadP(result, ToMemOperand(instr->object()));
    }

    LOperand* key = instr->key();
    if (key->IsConstantOperand()) {
4260 4261 4262 4263 4264 4265 4266 4267 4268
      LConstantOperand* constant_key = LConstantOperand::cast(key);
      int32_t int_key = ToInteger32(constant_key);
      if (Smi::IsValid(int_key)) {
        __ LoadSmiLiteral(r5, Smi::FromInt(int_key));
      } else {
        // We should never get here at runtime because there is a smi check on
        // the key before this point.
        __ stop("expected smi");
      }
4269 4270 4271 4272
    } else {
      __ SmiTag(r5, ToRegister(key));
    }

4273
    GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4274 4275 4276 4277 4278 4279 4280 4281
    __ CallStub(&stub);
    RecordSafepointWithLazyDeopt(
        instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
    __ StoreToSafepointRegisterSlot(result, result);
  }

  // Deopt on smi, which means the elements array changed to dictionary mode.
  __ TestIfSmi(result);
4282
  DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0);
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
}

void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
  Register object_reg = ToRegister(instr->object());
  Register scratch = scratch0();

  Handle<Map> from_map = instr->original_map();
  Handle<Map> to_map = instr->transitioned_map();
  ElementsKind from_kind = instr->from_kind();
  ElementsKind to_kind = instr->to_kind();

  Label not_applicable;
  __ LoadP(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
  __ CmpP(scratch, Operand(from_map));
  __ bne(&not_applicable);

  if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
    Register new_map_reg = ToRegister(instr->new_map_temp());
    __ mov(new_map_reg, Operand(to_map));
    __ StoreP(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
    // Write barrier.
    __ RecordWriteForMap(object_reg, new_map_reg, scratch,
                         GetLinkRegisterState(), kDontSaveFPRegs);
  } else {
    DCHECK(ToRegister(instr->context()).is(cp));
    DCHECK(object_reg.is(r2));
    PushSafepointRegistersScope scope(this);
    __ Move(r3, to_map);
4311
    TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
4312 4313 4314 4315 4316 4317 4318 4319 4320
    __ CallStub(&stub);
    RecordSafepointWithRegisters(instr->pointer_map(), 0,
                                 Safepoint::kLazyDeopt);
  }
  __ bind(&not_applicable);
}

void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
  Register object = ToRegister(instr->object());
4321 4322
  Register temp1 = ToRegister(instr->temp1());
  Register temp2 = ToRegister(instr->temp2());
4323
  Label no_memento_found;
4324
  __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
4325
  DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound);
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
  __ bind(&no_memento_found);
}

void LCodeGen::DoStringAdd(LStringAdd* instr) {
  DCHECK(ToRegister(instr->context()).is(cp));
  DCHECK(ToRegister(instr->left()).is(r3));
  DCHECK(ToRegister(instr->right()).is(r2));
  StringAddStub stub(isolate(), instr->hydrogen()->flags(),
                     instr->hydrogen()->pretenure_flag());
  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}

void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
  class DeferredStringCharCodeAt final : public LDeferredCode {
   public:
    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
    LInstruction* instr() override { return instr_; }

   private:
    LStringCharCodeAt* instr_;
  };

  DeferredStringCharCodeAt* deferred =
      new (zone()) DeferredStringCharCodeAt(this, instr);

  StringCharLoadGenerator::Generate(
      masm(), ToRegister(instr->string()), ToRegister(instr->index()),
      ToRegister(instr->result()), deferred->entry());
  __ bind(deferred->exit());
}

void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
  Register string = ToRegister(instr->string());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();

  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
  __ LoadImmP(result, Operand::Zero());

  PushSafepointRegistersScope scope(this);
  __ push(string);
  // Push the index as a smi. This is safe because of the checks in
  // DoStringCharCodeAt above.
  if (instr->index()->IsConstantOperand()) {
    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
    __ LoadSmiLiteral(scratch, Smi::FromInt(const_index));
    __ push(scratch);
  } else {
    Register index = ToRegister(instr->index());
    __ SmiTag(index);
    __ push(index);
  }
  CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
                          instr->context());
  __ AssertSmi(r2);
  __ SmiUntag(r2);
  __ StoreToSafepointRegisterSlot(r2, result);
}

void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
  class DeferredStringCharFromCode final : public LDeferredCode {
   public:
    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override {
      codegen()->DoDeferredStringCharFromCode(instr_);
    }
    LInstruction* instr() override { return instr_; }

   private:
    LStringCharFromCode* instr_;
  };

  DeferredStringCharFromCode* deferred =
      new (zone()) DeferredStringCharFromCode(this, instr);

  DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
  Register char_code = ToRegister(instr->char_code());
  Register result = ToRegister(instr->result());
  DCHECK(!char_code.is(result));

  __ CmpLogicalP(char_code, Operand(String::kMaxOneByteCharCode));
  __ bgt(deferred->entry());
  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
  __ ShiftLeftP(r0, char_code, Operand(kPointerSizeLog2));
  __ AddP(result, r0);
  __ LoadP(result, FieldMemOperand(result, FixedArray::kHeaderSize));
  __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
  __ beq(deferred->entry());
  __ bind(deferred->exit());
}

void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
  Register char_code = ToRegister(instr->char_code());
  Register result = ToRegister(instr->result());

  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
  __ LoadImmP(result, Operand::Zero());

  PushSafepointRegistersScope scope(this);
  __ SmiTag(char_code);
  __ push(char_code);
  CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
                          instr->context());
  __ StoreToSafepointRegisterSlot(r2, result);
}

void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
  LOperand* input = instr->value();
  DCHECK(input->IsRegister() || input->IsStackSlot());
  LOperand* output = instr->result();
  DCHECK(output->IsDoubleRegister());
  if (input->IsStackSlot()) {
    Register scratch = scratch0();
    __ LoadP(scratch, ToMemOperand(input));
    __ ConvertIntToDouble(scratch, ToDoubleRegister(output));
  } else {
    __ ConvertIntToDouble(ToRegister(input), ToDoubleRegister(output));
  }
}

void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
  LOperand* input = instr->value();
  LOperand* output = instr->result();
  __ ConvertUnsignedIntToDouble(ToRegister(input), ToDoubleRegister(output));
}

void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
  class DeferredNumberTagI final : public LDeferredCode {
   public:
    DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override {
      codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
                                       instr_->temp2(), SIGNED_INT32);
    }
    LInstruction* instr() override { return instr_; }

   private:
    LNumberTagI* instr_;
  };

  Register src = ToRegister(instr->value());
  Register dst = ToRegister(instr->result());

  DeferredNumberTagI* deferred = new (zone()) DeferredNumberTagI(this, instr);
#if V8_TARGET_ARCH_S390X
  __ SmiTag(dst, src);
#else
  // Add src to itself to defect SMI overflow.
  __ Add32(dst, src, src);
  __ b(overflow, deferred->entry());
#endif
  __ bind(deferred->exit());
}

void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
  class DeferredNumberTagU final : public LDeferredCode {
   public:
    DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override {
      codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
                                       instr_->temp2(), UNSIGNED_INT32);
    }
    LInstruction* instr() override { return instr_; }

   private:
    LNumberTagU* instr_;
  };

  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());

  DeferredNumberTagU* deferred = new (zone()) DeferredNumberTagU(this, instr);
  __ CmpLogicalP(input, Operand(Smi::kMaxValue));
  __ bgt(deferred->entry());
  __ SmiTag(result, input);
  __ bind(deferred->exit());
}

void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value,
                                     LOperand* temp1, LOperand* temp2,
                                     IntegerSignedness signedness) {
  Label done, slow;
  Register src = ToRegister(value);
  Register dst = ToRegister(instr->result());
  Register tmp1 = scratch0();
  Register tmp2 = ToRegister(temp1);
  Register tmp3 = ToRegister(temp2);
  DoubleRegister dbl_scratch = double_scratch0();

  if (signedness == SIGNED_INT32) {
    // There was overflow, so bits 30 and 31 of the original integer
    // disagree. Try to allocate a heap number in new space and store
    // the value in there. If that fails, call the runtime system.
    if (dst.is(src)) {
      __ SmiUntag(src, dst);
      __ xilf(src, Operand(HeapNumber::kSignMask));
    }
    __ ConvertIntToDouble(src, dbl_scratch);
  } else {
    __ ConvertUnsignedIntToDouble(src, dbl_scratch);
  }

  if (FLAG_inline_new) {
    __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
    __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
    __ b(&done);
  }

  // Slow case: Call the runtime system to do the number allocation.
  __ bind(&slow);
  {
    // TODO(3095996): Put a valid pointer value in the stack slot where the
    // result register is stored, as this register is in the pointer map, but
    // contains an integer value.
    __ LoadImmP(dst, Operand::Zero());

    // Preserve the value of all registers.
    PushSafepointRegistersScope scope(this);
4553 4554 4555 4556
    // Reset the context register.
    if (!dst.is(cp)) {
      __ LoadImmP(cp, Operand::Zero());
    }
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
    __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
    RecordSafepointWithRegisters(instr->pointer_map(), 0,
                                 Safepoint::kNoLazyDeopt);
    __ StoreToSafepointRegisterSlot(r2, dst);
  }

  // Done. Put the value in dbl_scratch into the value of the allocated heap
  // number.
  __ bind(&done);
  __ StoreDouble(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
}

void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
  class DeferredNumberTagD final : public LDeferredCode {
   public:
    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
    LInstruction* instr() override { return instr_; }

   private:
    LNumberTagD* instr_;
  };

  DoubleRegister input_reg = ToDoubleRegister(instr->value());
  Register scratch = scratch0();
  Register reg = ToRegister(instr->result());
  Register temp1 = ToRegister(instr->temp());
  Register temp2 = ToRegister(instr->temp2());

  DeferredNumberTagD* deferred = new (zone()) DeferredNumberTagD(this, instr);
  if (FLAG_inline_new) {
    __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
    __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
  } else {
    __ b(deferred->entry());
  }
  __ bind(deferred->exit());
  __ StoreDouble(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
}

void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
  Register reg = ToRegister(instr->result());
  __ LoadImmP(reg, Operand::Zero());

  PushSafepointRegistersScope scope(this);
4606 4607 4608 4609
  // Reset the context register.
  if (!reg.is(cp)) {
    __ LoadImmP(cp, Operand::Zero());
  }
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
  RecordSafepointWithRegisters(instr->pointer_map(), 0,
                               Safepoint::kNoLazyDeopt);
  __ StoreToSafepointRegisterSlot(r2, reg);
}

void LCodeGen::DoSmiTag(LSmiTag* instr) {
  HChange* hchange = instr->hydrogen();
  Register input = ToRegister(instr->value());
  Register output = ToRegister(instr->result());
  if (hchange->CheckFlag(HValue::kCanOverflow) &&
      hchange->value()->CheckFlag(HValue::kUint32)) {
    __ TestUnsignedSmiCandidate(input, r0);
4623
    DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, cr0);
4624 4625 4626 4627 4628
  }
#if !V8_TARGET_ARCH_S390X
  if (hchange->CheckFlag(HValue::kCanOverflow) &&
      !hchange->value()->CheckFlag(HValue::kUint32)) {
    __ SmiTagCheckOverflow(output, input, r0);
4629
    DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0);
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
  } else {
#endif
    __ SmiTag(output, input);
#if !V8_TARGET_ARCH_S390X
  }
#endif
}

void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
  Register input = ToRegister(instr->value());
  Register result = ToRegister(instr->result());
  if (instr->needs_check()) {
    __ tmll(input, Operand(kHeapObjectTag));
4643
    DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0);
4644 4645 4646 4647 4648 4649 4650 4651 4652
    __ SmiUntag(result, input);
  } else {
    __ SmiUntag(result, input);
  }
}

void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
                                DoubleRegister result_reg,
                                NumberUntagDMode mode) {
4653
  bool can_convert_undefined_to_nan = instr->truncating();
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
  bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();

  Register scratch = scratch0();
  DCHECK(!result_reg.is(double_scratch0()));

  Label convert, load_smi, done;

  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
    // Smi check.
    __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);

    // Heap number map check.
    __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
    __ CmpP(scratch, RootMemOperand(Heap::kHeapNumberMapRootIndex));

    if (can_convert_undefined_to_nan) {
      __ bne(&convert, Label::kNear);
    } else {
4672
      DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
4673 4674
    }
    // load heap number
4675 4676
    __ LoadDouble(result_reg,
                  FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4677 4678
    if (deoptimize_on_minus_zero) {
      __ TestDoubleIsMinusZero(result_reg, scratch, ip);
4679
      DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
4680 4681 4682 4683 4684 4685
    }
    __ b(&done, Label::kNear);
    if (can_convert_undefined_to_nan) {
      __ bind(&convert);
      // Convert undefined (and hole) to NaN.
      __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4686
      DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
4687
      __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4688 4689
      __ LoadDouble(result_reg,
                    FieldMemOperand(scratch, HeapNumber::kValueOffset));
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
      __ b(&done, Label::kNear);
    }
  } else {
    __ SmiUntag(scratch, input_reg);
    DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
  }
  // Smi to double register conversion
  __ bind(&load_smi);
  // scratch: untagged value of input_reg
  __ ConvertIntToDouble(scratch, result_reg);
  __ bind(&done);
}

void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
  Register input_reg = ToRegister(instr->value());
  Register scratch1 = scratch0();
  Register scratch2 = ToRegister(instr->temp());
  DoubleRegister double_scratch = double_scratch0();
  DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());

  DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
  DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));

  Label done;

  // Heap number map check.
  __ LoadP(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
  __ CompareRoot(scratch1, Heap::kHeapNumberMapRootIndex);

  if (instr->truncating()) {
4720 4721 4722 4723 4724
    Label truncate;
    __ beq(&truncate);
    __ CompareInstanceType(scratch1, scratch1, ODDBALL_TYPE);
    DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball);
    __ bind(&truncate);
4725 4726 4727 4728
    __ LoadRR(scratch2, input_reg);
    __ TruncateHeapNumberToI(input_reg, scratch2);
  } else {
    // Deoptimize if we don't have a heap number.
4729
    DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
4730

4731 4732
    __ LoadDouble(double_scratch2,
                  FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4733 4734 4735 4736 4737 4738
    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
      // preserve heap number pointer in scratch2 for minus zero check below
      __ LoadRR(scratch2, input_reg);
    }
    __ TryDoubleToInt32Exact(input_reg, double_scratch2, scratch1,
                             double_scratch);
4739
    DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4740 4741 4742 4743 4744

    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
      __ CmpP(input_reg, Operand::Zero());
      __ bne(&done, Label::kNear);
      __ TestHeapNumberSign(scratch2, scratch1);
4745
      DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    }
  }
  __ bind(&done);
}

void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
  class DeferredTaggedToI final : public LDeferredCode {
   public:
    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
    LInstruction* instr() override { return instr_; }

   private:
    LTaggedToI* instr_;
  };

  LOperand* input = instr->value();
  DCHECK(input->IsRegister());
  DCHECK(input->Equals(instr->result()));

  Register input_reg = ToRegister(input);

  if (instr->hydrogen()->value()->representation().IsSmi()) {
    __ SmiUntag(input_reg);
  } else {
    DeferredTaggedToI* deferred = new (zone()) DeferredTaggedToI(this, instr);

    // Branch to deferred code if the input is a HeapObject.
    __ JumpIfNotSmi(input_reg, deferred->entry());

    __ SmiUntag(input_reg);
    __ bind(deferred->exit());
  }
}

void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
  LOperand* input = instr->value();
  DCHECK(input->IsRegister());
  LOperand* result = instr->result();
  DCHECK(result->IsDoubleRegister());

  Register input_reg = ToRegister(input);
  DoubleRegister result_reg = ToDoubleRegister(result);

  HValue* value = instr->hydrogen()->value();
  NumberUntagDMode mode = value->representation().IsSmi()
                              ? NUMBER_CANDIDATE_IS_SMI
                              : NUMBER_CANDIDATE_IS_ANY_TAGGED;

  EmitNumberUntagD(instr, input_reg, result_reg, mode);
}

void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
  Register result_reg = ToRegister(instr->result());
  Register scratch1 = scratch0();
  DoubleRegister double_input = ToDoubleRegister(instr->value());
  DoubleRegister double_scratch = double_scratch0();

  if (instr->truncating()) {
    __ TruncateDoubleToI(result_reg, double_input);
  } else {
    __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
                             double_scratch);
    // Deoptimize if the input wasn't a int32 (inside a double).
4811
    DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4812 4813 4814 4815 4816
    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
      Label done;
      __ CmpP(result_reg, Operand::Zero());
      __ bne(&done, Label::kNear);
      __ TestDoubleSign(double_input, scratch1);
4817
      DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
      __ bind(&done);
    }
  }
}

void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
  Register result_reg = ToRegister(instr->result());
  Register scratch1 = scratch0();
  DoubleRegister double_input = ToDoubleRegister(instr->value());
  DoubleRegister double_scratch = double_scratch0();

  if (instr->truncating()) {
    __ TruncateDoubleToI(result_reg, double_input);
  } else {
    __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
                             double_scratch);
    // Deoptimize if the input wasn't a int32 (inside a double).
4835
    DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4836 4837 4838 4839 4840
    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
      Label done;
      __ CmpP(result_reg, Operand::Zero());
      __ bne(&done, Label::kNear);
      __ TestDoubleSign(double_input, scratch1);
4841
      DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
4842 4843 4844 4845 4846 4847 4848
      __ bind(&done);
    }
  }
#if V8_TARGET_ARCH_S390X
  __ SmiTag(result_reg);
#else
  __ SmiTagCheckOverflow(result_reg, r0);
4849
  DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0);
4850 4851 4852 4853 4854 4855
#endif
}

void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
  LOperand* input = instr->value();
  __ TestIfSmi(ToRegister(input));
4856
  DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0);
4857 4858 4859 4860 4861 4862
}

void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
    LOperand* input = instr->value();
    __ TestIfSmi(ToRegister(input));
4863
    DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0);
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
  }
}

void LCodeGen::DoCheckArrayBufferNotNeutered(
    LCheckArrayBufferNotNeutered* instr) {
  Register view = ToRegister(instr->view());
  Register scratch = scratch0();

  __ LoadP(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
  __ LoadlW(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
  __ And(r0, scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
4875
  DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds, cr0);
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
}

void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
  Register input = ToRegister(instr->value());
  Register scratch = scratch0();

  __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));

  if (instr->hydrogen()->is_interval_check()) {
    InstanceType first;
    InstanceType last;
    instr->hydrogen()->GetCheckInterval(&first, &last);

    __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
                      Operand(first));

    // If there is only one type in the interval check for equality.
    if (first == last) {
4894
      DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
4895
    } else {
4896
      DeoptimizeIf(lt, instr, DeoptimizeReason::kWrongInstanceType);
4897 4898 4899 4900
      // Omit check for the last type.
      if (last != LAST_TYPE) {
        __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
                          Operand(last));
4901
        DeoptimizeIf(gt, instr, DeoptimizeReason::kWrongInstanceType);
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
      }
    }
  } else {
    uint8_t mask;
    uint8_t tag;
    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);

    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));

    if (base::bits::IsPowerOfTwo32(mask)) {
      DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
      __ AndP(scratch, Operand(mask));
4914 4915
      DeoptimizeIf(tag == 0 ? ne : eq, instr,
                   DeoptimizeReason::kWrongInstanceType);
4916 4917 4918
    } else {
      __ AndP(scratch, Operand(mask));
      __ CmpP(scratch, Operand(tag));
4919
      DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
    }
  }
}

void LCodeGen::DoCheckValue(LCheckValue* instr) {
  Register reg = ToRegister(instr->value());
  Handle<HeapObject> object = instr->hydrogen()->object().handle();
  AllowDeferredHandleDereference smi_check;
  if (isolate()->heap()->InNewSpace(*object)) {
    Register reg = ToRegister(instr->value());
    Handle<Cell> cell = isolate()->factory()->NewCell(object);
    __ mov(ip, Operand(cell));
    __ CmpP(reg, FieldMemOperand(ip, Cell::kValueOffset));
  } else {
    __ CmpP(reg, Operand(object));
  }
4936
  DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch);
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
}

void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
  Register temp = ToRegister(instr->temp());
  {
    PushSafepointRegistersScope scope(this);
    __ push(object);
    __ LoadImmP(cp, Operand::Zero());
    __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
    RecordSafepointWithRegisters(instr->pointer_map(), 1,
                                 Safepoint::kNoLazyDeopt);
    __ StoreToSafepointRegisterSlot(r2, temp);
  }
  __ TestIfSmi(temp);
4951
  DeoptimizeIf(eq, instr, DeoptimizeReason::kInstanceMigrationFailed, cr0);
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
}

void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
  class DeferredCheckMaps final : public LDeferredCode {
   public:
    DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
        : LDeferredCode(codegen), instr_(instr), object_(object) {
      SetExit(check_maps());
    }
    void Generate() override {
      codegen()->DoDeferredInstanceMigration(instr_, object_);
    }
    Label* check_maps() { return &check_maps_; }
    LInstruction* instr() override { return instr_; }

   private:
    LCheckMaps* instr_;
    Label check_maps_;
    Register object_;
  };

  if (instr->hydrogen()->IsStabilityCheck()) {
    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
    for (int i = 0; i < maps->size(); ++i) {
      AddStabilityDependency(maps->at(i).handle());
    }
    return;
  }

  LOperand* input = instr->value();
  DCHECK(input->IsRegister());
  Register reg = ToRegister(input);

  DeferredCheckMaps* deferred = NULL;
  if (instr->hydrogen()->HasMigrationTarget()) {
    deferred = new (zone()) DeferredCheckMaps(this, instr, reg);
    __ bind(deferred->check_maps());
  }

  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
  Label success;
  for (int i = 0; i < maps->size() - 1; i++) {
    Handle<Map> map = maps->at(i).handle();
    __ CompareMap(reg, map, &success);
    __ beq(&success);
  }

  Handle<Map> map = maps->at(maps->size() - 1).handle();
  __ CompareMap(reg, map, &success);
  if (instr->hydrogen()->HasMigrationTarget()) {
    __ bne(deferred->entry());
  } else {
5004
    DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
  }

  __ bind(&success);
}

void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
  DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
  Register result_reg = ToRegister(instr->result());
  __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
}

void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
  Register unclamped_reg = ToRegister(instr->unclamped());
  Register result_reg = ToRegister(instr->result());
  __ ClampUint8(result_reg, unclamped_reg);
}

void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
  Register scratch = scratch0();
  Register input_reg = ToRegister(instr->unclamped());
  Register result_reg = ToRegister(instr->result());
  DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
  Label is_smi, done, heap_number;

  // Both smi and heap number cases are handled.
  __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);

  // Check for heap number
  __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
  __ CmpP(scratch, Operand(factory()->heap_number_map()));
  __ beq(&heap_number, Label::kNear);

  // Check for undefined. Undefined is converted to zero for clamping
  // conversions.
  __ CmpP(input_reg, Operand(factory()->undefined_value()));
5040
  DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
5041 5042 5043 5044 5045
  __ LoadImmP(result_reg, Operand::Zero());
  __ b(&done, Label::kNear);

  // Heap number
  __ bind(&heap_number);
5046
  __ LoadDouble(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
  __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
  __ b(&done, Label::kNear);

  // smi
  __ bind(&is_smi);
  __ ClampUint8(result_reg, result_reg);

  __ bind(&done);
}

void LCodeGen::DoAllocate(LAllocate* instr) {
  class DeferredAllocate final : public LDeferredCode {
   public:
    DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override { codegen()->DoDeferredAllocate(instr_); }
    LInstruction* instr() override { return instr_; }

   private:
    LAllocate* instr_;
  };

  DeferredAllocate* deferred = new (zone()) DeferredAllocate(this, instr);

  Register result = ToRegister(instr->result());
  Register scratch = ToRegister(instr->temp1());
  Register scratch2 = ToRegister(instr->temp2());

  // Allocate memory for the object.
5076
  AllocationFlags flags = NO_ALLOCATION_FLAGS;
5077 5078 5079 5080 5081 5082 5083 5084
  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
  }
  if (instr->hydrogen()->IsOldSpaceAllocation()) {
    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
    flags = static_cast<AllocationFlags>(flags | PRETENURE);
  }

5085 5086 5087 5088 5089 5090
  if (instr->hydrogen()->IsAllocationFoldingDominator()) {
    flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
  }

  DCHECK(!instr->hydrogen()->IsAllocationFolded());

5091 5092
  if (instr->size()->IsConstantOperand()) {
    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5093
    CHECK(size <= kMaxRegularHeapObjectSize);
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
  } else {
    Register size = ToRegister(instr->size());
    __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
  }

  __ bind(deferred->exit());

  if (instr->hydrogen()->MustPrefillWithFiller()) {
    if (instr->size()->IsConstantOperand()) {
      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
      __ LoadIntLiteral(scratch, size);
    } else {
      scratch = ToRegister(instr->size());
    }
    __ lay(scratch, MemOperand(scratch, -kPointerSize));
    Label loop;
    __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
    __ bind(&loop);
    __ StoreP(scratch2, MemOperand(scratch, result, -kHeapObjectTag));
#if V8_TARGET_ARCH_S390X
    __ lay(scratch, MemOperand(scratch, -kPointerSize));
#else
    // TODO(joransiu): Improve the following sequence.
    // Need to use AHI instead of LAY as top nibble is not set with LAY, causing
    // incorrect result with the signed compare
    __ AddP(scratch, Operand(-kPointerSize));
#endif
    __ CmpP(scratch, Operand::Zero());
    __ bge(&loop);
  }
}

void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
  Register result = ToRegister(instr->result());

  // TODO(3095996): Get rid of this. For now, we need to make the
  // result register contain a valid pointer because it is already
  // contained in the register pointer map.
5133
  __ LoadSmiLiteral(result, Smi::kZero);
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168

  PushSafepointRegistersScope scope(this);
  if (instr->size()->IsRegister()) {
    Register size = ToRegister(instr->size());
    DCHECK(!size.is(result));
    __ SmiTag(size);
    __ push(size);
  } else {
    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
#if !V8_TARGET_ARCH_S390X
    if (size >= 0 && size <= Smi::kMaxValue) {
#endif
      __ Push(Smi::FromInt(size));
#if !V8_TARGET_ARCH_S390X
    } else {
      // We should never get here at runtime => abort
      __ stop("invalid allocation size");
      return;
    }
#endif
  }

  int flags = AllocateDoubleAlignFlag::encode(
      instr->hydrogen()->MustAllocateDoubleAligned());
  if (instr->hydrogen()->IsOldSpaceAllocation()) {
    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
    flags = AllocateTargetSpace::update(flags, OLD_SPACE);
  } else {
    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
  }
  __ Push(Smi::FromInt(flags));

  CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr,
                          instr->context());
  __ StoreToSafepointRegisterSlot(r2, result);
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

  if (instr->hydrogen()->IsAllocationFoldingDominator()) {
    AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
    if (instr->hydrogen()->IsOldSpaceAllocation()) {
      DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
      allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
    }
    // If the allocation folding dominator allocate triggered a GC, allocation
    // happend in the runtime. We have to reset the top pointer to virtually
    // undo the allocation.
    ExternalReference allocation_top =
        AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
    Register top_address = scratch0();
    __ SubP(r2, r2, Operand(kHeapObjectTag));
    __ mov(top_address, Operand(allocation_top));
    __ StoreP(r2, MemOperand(top_address));
    __ AddP(r2, r2, Operand(kHeapObjectTag));
  }
}

void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
  DCHECK(instr->hydrogen()->IsAllocationFolded());
  DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
  Register result = ToRegister(instr->result());
  Register scratch1 = ToRegister(instr->temp1());
  Register scratch2 = ToRegister(instr->temp2());

  AllocationFlags flags = ALLOCATION_FOLDED;
  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
  }
  if (instr->hydrogen()->IsOldSpaceAllocation()) {
    DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
    flags = static_cast<AllocationFlags>(flags | PRETENURE);
  }
  if (instr->size()->IsConstantOperand()) {
    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5206
    CHECK(size <= kMaxRegularHeapObjectSize);
5207 5208 5209 5210 5211
    __ FastAllocate(size, result, scratch1, scratch2, flags);
  } else {
    Register size = ToRegister(instr->size());
    __ FastAllocate(size, result, scratch1, scratch2, flags);
  }
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
}

void LCodeGen::DoTypeof(LTypeof* instr) {
  DCHECK(ToRegister(instr->value()).is(r5));
  DCHECK(ToRegister(instr->result()).is(r2));
  Label end, do_call;
  Register value_register = ToRegister(instr->value());
  __ JumpIfNotSmi(value_register, &do_call);
  __ mov(r2, Operand(isolate()->factory()->number_string()));
  __ b(&end);
  __ bind(&do_call);
5223 5224
  Callable callable = CodeFactory::Typeof(isolate());
  CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
  __ bind(&end);
}

void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
  Register input = ToRegister(instr->value());

  Condition final_branch_condition =
      EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input,
                   instr->type_literal());
  if (final_branch_condition != kNoCondition) {
    EmitBranch(instr, final_branch_condition);
  }
}

Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label,
                                 Register input, Handle<String> type_name) {
  Condition final_branch_condition = kNoCondition;
  Register scratch = scratch0();
  Factory* factory = isolate()->factory();
  if (String::Equals(type_name, factory->number_string())) {
    __ JumpIfSmi(input, true_label);
    __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
    __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->string_string())) {
    __ JumpIfSmi(input, false_label);
    __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
    final_branch_condition = lt;

  } else if (String::Equals(type_name, factory->symbol_string())) {
    __ JumpIfSmi(input, false_label);
    __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->boolean_string())) {
    __ CompareRoot(input, Heap::kTrueValueRootIndex);
    __ beq(true_label);
    __ CompareRoot(input, Heap::kFalseValueRootIndex);
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->undefined_string())) {
    __ CompareRoot(input, Heap::kNullValueRootIndex);
    __ beq(false_label);
    __ JumpIfSmi(input, false_label);
    // Check for undetectable objects => true.
    __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
    __ ExtractBit(r0, scratch, Map::kIsUndetectable);
    __ CmpP(r0, Operand::Zero());
    final_branch_condition = ne;

  } else if (String::Equals(type_name, factory->function_string())) {
    __ JumpIfSmi(input, false_label);
    __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
    __ AndP(scratch, scratch,
            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
    __ CmpP(scratch, Operand(1 << Map::kIsCallable));
    final_branch_condition = eq;

  } else if (String::Equals(type_name, factory->object_string())) {
    __ JumpIfSmi(input, false_label);
    __ CompareRoot(input, Heap::kNullValueRootIndex);
    __ beq(true_label);
    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
    __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
    __ blt(false_label);
    // Check for callable or undetectable objects => false.
    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
    __ AndP(r0, scratch,
            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
    __ CmpP(r0, Operand::Zero());
    final_branch_condition = eq;

// clang-format off
#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)        \
  } else if (String::Equals(type_name, factory->type##_string())) {  \
    __ JumpIfSmi(input, false_label);                                \
    __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
    __ CompareRoot(scratch, Heap::k##Type##MapRootIndex);            \
    final_branch_condition = eq;
  SIMD128_TYPES(SIMD128_TYPE)
#undef SIMD128_TYPE
    // clang-format on

  } else {
    __ b(false_label);
  }

  return final_branch_condition;
}

void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
  if (info()->ShouldEnsureSpaceForLazyDeopt()) {
    // Ensure that we have enough space after the previous lazy-bailout
    // instruction for patching the code here.
    int current_pc = masm()->pc_offset();
    if (current_pc < last_lazy_deopt_pc_ + space_needed) {
      int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
      DCHECK_EQ(0, padding_size % 2);
      while (padding_size > 0) {
        __ nop();
        padding_size -= 2;
      }
    }
  }
  last_lazy_deopt_pc_ = masm()->pc_offset();
}

void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
  last_lazy_deopt_pc_ = masm()->pc_offset();
  DCHECK(instr->HasEnvironment());
  LEnvironment* env = instr->environment();
  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}

void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
  Deoptimizer::BailoutType type = instr->hydrogen()->type();
  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
  // needed return address), even though the implementation of LAZY and EAGER is
  // now identical. When LAZY is eventually completely folded into EAGER, remove
  // the special case below.
  if (info()->IsStub() && type == Deoptimizer::EAGER) {
    type = Deoptimizer::LAZY;
  }

  DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
}

void LCodeGen::DoDummy(LDummy* instr) {
  // Nothing to see here, move on!
}

void LCodeGen::DoDummyUse(LDummyUse* instr) {
  // Nothing to see here, move on!
}

void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
  PushSafepointRegistersScope scope(this);
  LoadContextFromDeferred(instr->context());
  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
  RecordSafepointWithLazyDeopt(
      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
  DCHECK(instr->HasEnvironment());
  LEnvironment* env = instr->environment();
  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}

void LCodeGen::DoStackCheck(LStackCheck* instr) {
  class DeferredStackCheck final : public LDeferredCode {
   public:
    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
        : LDeferredCode(codegen), instr_(instr) {}
    void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
    LInstruction* instr() override { return instr_; }

   private:
    LStackCheck* instr_;
  };

  DCHECK(instr->HasEnvironment());
  LEnvironment* env = instr->environment();
  // There is no LLazyBailout instruction for stack-checks. We have to
  // prepare for lazy deoptimization explicitly here.
  if (instr->hydrogen()->is_function_entry()) {
    // Perform stack overflow check.
    Label done;
    __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
    __ bge(&done, Label::kNear);
    DCHECK(instr->context()->IsRegister());
    DCHECK(ToRegister(instr->context()).is(cp));
    CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET,
             instr);
    __ bind(&done);
  } else {
    DCHECK(instr->hydrogen()->is_backwards_branch());
    // Perform stack overflow check if this goto needs it before jumping.
    DeferredStackCheck* deferred_stack_check =
        new (zone()) DeferredStackCheck(this, instr);
    __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
    __ blt(deferred_stack_check->entry());
    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    __ bind(instr->done_label());
    deferred_stack_check->SetExit(instr->done_label());
    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
    // Don't record a deoptimization index for the safepoint here.
    // This will be done explicitly when emitting call and the safepoint in
    // the deferred code.
  }
}

void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
  // This is a pseudo-instruction that ensures that the environment here is
  // properly registered for deoptimization and records the assembler's PC
  // offset.
  LEnvironment* environment = instr->environment();

  // If the environment were already registered, we would have no way of
  // backpatching it with the spill slot operands.
  DCHECK(!environment->HasBeenRegistered());
  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);

  GenerateOsrPrologue();
}

void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
  Label use_cache, call_runtime;
  __ CheckEnumCache(&call_runtime);

  __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
  __ b(&use_cache);

  // Get the set of properties to enumerate.
  __ bind(&call_runtime);
  __ push(r2);
  CallRuntime(Runtime::kForInEnumerate, instr);
  __ bind(&use_cache);
}

void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
  Register map = ToRegister(instr->map());
  Register result = ToRegister(instr->result());
  Label load_cache, done;
  __ EnumLength(result, map);
5451
  __ CmpSmiLiteral(result, Smi::kZero, r0);
5452 5453 5454 5455 5456 5457 5458 5459 5460
  __ bne(&load_cache, Label::kNear);
  __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
  __ b(&done, Label::kNear);

  __ bind(&load_cache);
  __ LoadInstanceDescriptors(map, result);
  __ LoadP(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
  __ LoadP(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
  __ CmpP(result, Operand::Zero());
5461
  DeoptimizeIf(eq, instr, DeoptimizeReason::kNoCache);
5462 5463 5464 5465 5466 5467 5468 5469 5470

  __ bind(&done);
}

void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
  Register object = ToRegister(instr->value());
  Register map = ToRegister(instr->map());
  __ LoadP(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
  __ CmpP(map, scratch0());
5471
  DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
}

void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
                                           Register result, Register object,
                                           Register index) {
  PushSafepointRegistersScope scope(this);
  __ Push(object, index);
  __ LoadImmP(cp, Operand::Zero());
  __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
  RecordSafepointWithRegisters(instr->pointer_map(), 2,
                               Safepoint::kNoLazyDeopt);
  __ StoreToSafepointRegisterSlot(r2, result);
}

void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
  class DeferredLoadMutableDouble final : public LDeferredCode {
   public:
    DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr,
                              Register result, Register object, Register index)
        : LDeferredCode(codegen),
          instr_(instr),
          result_(result),
          object_(object),
          index_(index) {}
    void Generate() override {
      codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
    }
    LInstruction* instr() override { return instr_; }

   private:
    LLoadFieldByIndex* instr_;
    Register result_;
    Register object_;
    Register index_;
  };

  Register object = ToRegister(instr->object());
  Register index = ToRegister(instr->index());
  Register result = ToRegister(instr->result());
  Register scratch = scratch0();

  DeferredLoadMutableDouble* deferred;
  deferred = new (zone())
      DeferredLoadMutableDouble(this, instr, result, object, index);

  Label out_of_object, done;

  __ TestBitMask(index, reinterpret_cast<uintptr_t>(Smi::FromInt(1)), r0);
  __ bne(deferred->entry());
  __ ShiftRightArithP(index, index, Operand(1));

  __ CmpP(index, Operand::Zero());
  __ blt(&out_of_object, Label::kNear);

  __ SmiToPtrArrayOffset(r0, index);
  __ AddP(scratch, object, r0);
  __ LoadP(result, FieldMemOperand(scratch, JSObject::kHeaderSize));

  __ b(&done, Label::kNear);

  __ bind(&out_of_object);
  __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
  // Index is equal to negated out of object property index plus 1.
  __ SmiToPtrArrayOffset(r0, index);
  __ SubP(scratch, result, r0);
  __ LoadP(result,
           FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize));
  __ bind(deferred->exit());
  __ bind(&done);
}

#undef __
5544

5545 5546
}  // namespace internal
}  // namespace v8